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Abstract: In this work, we study the thermodynamics of a non-conformal QFT using holography,
specifically the AdS/CFT correspondence. The dual description consists of five-dimensional AdS
spacetime with Einstein gravity coupled to a scalar field that breaks conformal symmetry, in order to
model non-conformal systems inspired by QCD. By numerically solving the Einstein-Klein-Gordon
equations, we construct black brane solutions and extract the temperature and entropy associated
with thermal states in the dual QFT. The s/T 3(T ) plot exhibits the expected behaviour of a CFT
at both high and low temperatures, but shows non-conformal behaviour in the intermediate region.
Keywords: holography, AdS/CFT correspondence, quantum field theories, quantum chromody-
namics, black branes, equation of state.
SDGs: 4. Quality Education. 9. Industry, Innovation and Infrastructure.

I. INTRODUCTION

Performing calculations at low energies in quantum
chromodynamics (QCD) is difficult due to the strong cou-
pling constant. The anti-de Sitter/conformal field theory
(AdS/CFT) correspondence provides a framework that
enables useful insights into QCD. It maps the problem
to a five-dimensional gravity theory that approximates
the equation of state (EOS) of a quantum field theory
(QFT) by using black hole solutions in that spacetime.

In this work, we focus on obtaining the EOS
s = s(T ) of a non-conformal QFT—motivated by the
non-conformal nature of QCD—at zero chemical poten-
tial µ. To do so, we construct different black hole solu-
tions, each of which is dual to a thermal state in the dual
theory.

This paper is organized as follows. In section II, we
present the theoretical foundations behind this study,
from the holographic principle to the EOS. In section III,
we describe the main calculation details and computa-
tional methods. In section IV, we analyse, discuss, and
compare our results with theoretical expectations. In
section V, we summarize our conclusions.

II. THEORETICAL FRAMEWORK

A. The holographic principle and the AdS/CFT
correspondence

The holographic principle states that the degrees of
freedom and the dynamics within a volume V of a quan-
tum gravity theory can be encoded on its boundary ∂V ,
in terms of an effective theory—a theory that is applica-
ble only under specific conditions [1]—whose precise form
may be unknown [2].

One of the most important realizations of the holo-
graphic principle is the gauge/gravity duality, originally
motivated by string theory. This duality conjectures that

a QFT with gauge symmetry—the effective theory—is
dual—bijective map—to a theory of quantum gravity de-
fined in the bulk [2].

The most prominent example of a gauge/gravity du-
ality is the AdS/CFT correspondence, also known as
the Maldacena conjecture [3]. This duality, charac-
terized by a high degree of symmetry, relates two su-
persymmetric and conformal theories. The canonical
example of the AdS/CFT correspondence is the dual-
ity between N = 4 supersymmetric Yang–Mills (SYM)
theory, a (3 + 1)-dimensional conformal QFT, and a
ten-dimensional type IIB closed superstring theory on
AdS5 × S5. It should be emphasized that the correspon-
dence remains a conjecture, although there is evidence in
its favour [2, 4].

B. Large N and strong coupling limits

Focusing on the duality between N = 4 SYM and type
IIB closed superstring theory on AdS5 ×S5, we can con-
sider two limits that simplify the treatment [2].

1. Large N or ’t Hooft limit: N → ∞, where N is
the rank of the special unitary group SU(N)—the
gauge group—keeping the ’t Hooft coupling of the
QFT, λ = g2YMN , fixed.

2. Strong coupling limit: λ → ∞.

One can show that now our problem has been reduced
to the duality between strongly coupled N = 4 SYM and
type IIB supergravity on weakly curved AdS5 × S5, i.e.,
classical gravity rather than quantum gravity [2].

C. Dimensional reduction and consistent
truncation

The treatment can be further simplified by working in
a lower-dimensional effective theory through dimensional
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reduction and consistent truncation.
By compactifying the five dimensions of the 5-sphere

S5, we obtain a five-dimensional Einstein gravity theory
on AdS5 coupled to additional fields. This procedure is
known as dimensional reduction. Furthermore, to avoid
working with a large number of fields, we can consistently
set most of them to zero and retain only a few. This
procedure is known as consistent truncation [2, 5].

The essential idea is that any solution of the five-
dimensional effective theory with extra fields corresponds
to a solution of the full ten-dimensional theory.

D. Extension of AdS/CFT: bottom-up models

In the previous subsections, we explained the so-called
top-down approach: starting from a well-defined theory
in the context of duality, such as string theory—which is
dual to a QFT—and ending up with a reduced effective
theory.

An alternative is the bottom-up approach. The idea
is to start with an appropriate effective theory on the
gravity side and conjecture that it has a dual QFT, in the
same sense as in top-down models. The main advantage
of these models is that one can impose specific properties
that the QFT is expected to exhibit, whereas the main
disadvantage is that one does not actually know whether
a dual QFT exists [2, 4].

E. Non-conformal QFT and gravity

Let us now particularize the above discussion to this
study. QCD is a non-conformal SU(3) Yang-Mills theory
without supersymmetry, in contrast to N = 4 SYM [4].
Hence, if we aim to study certain aspects of non-
conformal theories using holography, it is necessary to
break conformal invariance on the gravity side. Modi-
fying the bulk theory so that it captures this essential
feature that boundary theory has, motivates the use of a
bottom-up approach.

In the top-down approach one finds that strongly cou-
pled N = 4 SYM is dual to type IIB supergravity on
weakly curved AdS5 × S5. By performing a dimensional
reduction, we work in a five-dimensional Einstein grav-
ity theory on AdS5 with additional fields. Let us now
examine consistent truncation.

Because we want to continue describing a theory of
gravity, we retain the gravity field, which is the metric
tensor gµν . Moreover, we also retain one more field, a
scalar field ϕ, which allows us to break the conformal
invariance and thus get closer to QCD. This scalar field
has an associated scalar potential V (ϕ), which must be
chosen—here is the bottom-up approach. Our potential
is based on the one presented in [6] but with a different
convention chosen to be consistent with [7]. It is defined

in terms of the superpotential

W (ϕ) := − 3

2L
− 1

8L
ϕ2 − 1

64Lϕ2
M

ϕ4 +
1

64LϕQ
ϕ6, (1)

which leads to the scalar potential—see Fig. 1

V (ϕ) := −16

3
W (ϕ)2 + 8W ′(ϕ)2, (2)

where L is the radius of curvature of the asymptotic AdS
geometry and ϕM and ϕQ are constants. In this study we
focus on the model with L = 1, ϕM = 1, and ϕQ = 10.

Figure 1: Scalar potential V (ϕ) defined in Eq. (2) for the
model parameters L = 1, ϕM = 1, and ϕQ = 10.

Our approach is then based on a bottom-up model
where we have left a scalar field to capture qualitative
features inspired by QCD—although the dual theory is
not intended to reproduce QCD—with the scalar poten-
tial chosen according to the Eq. (2). Therefore, we have
the duality between AdS5 spacetime with two additional
fields—metric and scalar field—dual to a non-conformal
QFT.

We conclude this subsection by justifying how to ob-
tain the temperature and the entropy of a thermal state
on the QFT side, and why a thermal state corresponds
to a black brane solution on the gravity side.

When the gauge theory has a finite temperature, the
thermal states are computed as follows. It can be shown
that the gauge theory at zero temperature is dual to
an AdS5 spacetime, while at non-zero finite tempera-
ture it is dual to an AdS5 black hole. If this black
hole is the simplest one in AdS5 spacetime—the so called
Schwarzschild-AdS5 black hole (SAdS5)—the dual QFT
is N = 4 SYM. Moreover, if a perturbation is added via a
field, one obtains more exotic AdS black holes, breaking
symmetries. The temperature and entropy of the QFT
are then related to the Hawking temperature and Beken-
stein–Hawking entropy, i.e., the quantities evaluated at
the event horizon of the black hole, r = rH [5].

Thermal states are characterized by their spacetime-
translation invariance, i.e., invariance under translations
in the x⃗ and t directions. It is therefore natural to require
that the dual gravity theory also has these symmetries,
and this is what fixes the planar topology of the black
hole, commonly referred to as a black brane.
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Holography and thermodynamics of a non-conformal quantum field theory Adrià Olives-Salmerón

F. Lagrangian density, metric and scalar field
ansatz, equations of motion, and thermodynamics

We follow [7] throughout this work. On the grav-
itational side, we use geometrized-like units, setting
c = kB = 1 and G = 1

8π . Since we also fix the scale L = 1,
all quantities become dimensionless within this unit sys-
tem—see Appendix A for further discussion. Let us now
develop our effective five-dimensional gravity model cou-
pled to a scalar field, defined by the following Lagrangian
density

L =
1

2κ2

[
R− 1

2
(∂ϕ)2 − V (ϕ)

]
, (3)

where κ2 = 8πG
c4 =1 is related to Newton’s gravitational

constant and R is the Ricci scalar. This Lagrangian can
be directly motivated from Einstein-Hilbert and Klein-
Gordon Lagrangians, by generalizing the mass term in
the latter through a non-trivial potential V (ϕ) instead of
1
2m

2ϕ2. When the scalar field is constant the potential
V (ϕ) becomes a constant as well, effectively acting as
a negative cosmological constant and yielding an SAdS5
geometry.

We now propose an ansatz for the metric and scalar
field. Using (t, x⃗) as spacetime coordinates and r as the
holographic coordinate, the symmetries of thermal states
discussed in the previous subsection imply that all func-
tions must not depend on (t, x⃗) coordinates. Therefore,
ϕ = ϕ(r), and the most general form for an AdS5 black
brane geometry consistent with these symmetries is

ds2 = e2A(r)
[
−h(r)dt2 + dx⃗2

]
+

e2B(r)

h(r)
dr2, (4)

where A(r) and B(r) are functions of the holographic
coordinate, and h(r) is called the blackening factor, as it
vanishes at the horizon, h(rH) = 0.

Minimizing the action defined by Lagrangian (3), and
inserting ϕ = ϕ(r) and (4), one obtains the equations of
motion (EOMs)—see Appendix B. Fixing the gauge we
can set B(r) = 0. It yields to the second-order ordinary
differential equations (ODEs)

A′′ +
1

6
ϕ′2 = 0

h′′ + 4A′h′ = 0 (5)

ϕ′′ +

(
4A′ +

h′

h

)
ϕ′ − 1

h

dV

dϕ
= 0,

and the first-order ODE—namely, the zero-energy con-
straint

h(24A′2 − ϕ′2) + 6A′h′ + 2V (ϕ) = 0, (6)

for ϕ(r), A(r), and h(r).
We conclude this subsection by presenting the explicit

expressions for the temperature and entropy of a thermal

state on the QFT side. We need to compute the temper-
ature T and entropy density s at the event horizon of
the black brane, rH . This is a standard procedure within
the AdS/CFT framework and it can be found in most
AdS/CFT textbooks, e.g., in [2, p. 80]. However, it is
important to note that in general each solution exhibits
different asymptotic behaviour as r → ∞ and, more im-
portantly, the behaviour of ϕ(r) in this limit is charac-
terized by ϕA, which introduces an energy scale in the
dual QFT—see Appendix C. Therefore, to construct the
EOS we must compare all results within the framework
of the same QFT, i.e., within the same energy scale. This
requirement implies that the asymptotic metric and ϕA

values must be the same for all solutions. Since this is
generally not true, it is necessary to make a rescaling
of coordinates (t̃, ⃗̃x, r̃) requiring the metric to be asymp-
totically AdS5 and the dual QFT to share the common
energy scale, ϕ̃A. The expressions are—see Appendix D

T =
eÃ(r̃)

4π

dh̃

dr̃

∣∣∣∣∣
r̃=r̃H

, s =
2π

κ2
e3Ã(r̃)

∣∣∣∣
r̃=r̃H

, (7)

where all quantities are expressed in this new set of
rescaled coordinates such that the metric asymptotically
approaches canonical AdS5 and the QFT energy scale
is given by ϕ̃A—see section III C for the expressions we
used.

G. IR and UV limits

The holographic coordinate r encodes the energy scale
of the boundary theory. It can be demonstrated that
large values of r correspond to high energies—ultraviolet
(UV)—while small values, in particular those near the
black brane horizon, correspond to low energies—infrared
(IR)— [5].

To ensure an asymptotically AdS5 geometry as r → ∞,
the scalar field must vanish in this limit, as shown in
Appendix C. Therefore, in terms of the scalar field, the
UV limit corresponds to ϕ → 0, while near the black
brane horizon the scalar field approaches a finite value
ϕ(rH) =: ϕH , which may or may not be close to the
minimum of the potential. Since rH is a finite value this
corresponds to the IR limit.

The full solution can then be understood as the result
of integrating the EOMs from a value ϕH—associated
with the IR region—to the UV point at ϕ = 0. The ther-
modynamic quantities T and s of each black brane solu-
tion, which depend on the functions A(r) and h(r), are
then determined by the scalar field profile—particularly
by ϕH—and the shape of the potential V (ϕ). To obtain
different black brane solutions, we integrate the EOMs
for different values of ϕH, perturbing the SAdS5 geome-
try.
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III. CALCULATION

A. Initial conditions

We have three functions—ϕ(r), A(r), and
h(r)—governed by second-order ODEs. This would
normally require six initial conditions, which we choose
to specify at the horizon rH = 1. However, the constraint
relates the functions and their derivatives, reducing the
number of independent initial conditions from six to
five, and imposing regularity of the solution near the
horizon introduces an additional condition, leaving only
four independent initial conditions.

The initial conditions are set as follows. By definition,
ϕ(rH) = ϕH, with ϕH ∈ (ϕmin, ϕmax), where ϕmin = 0
and ϕmax ≈ 3.08 correspond to the values of the scalar
field at the maximum and minimum of the potential (2),
respectively. The value A(rH) = 0 is fixed by rescaling t
and x⃗. By the black brane ansatz, h(rH) = 0. Finally,
we set h′(rH) = 1/L by rescaling t.

To ensure regularity and avoid divergences, the func-
tions must admit a Taylor expansion near the hori-
zon. The initial conditions used are then evaluated at
r = rH + ε, with ε = 0.001. Hence, ϕ0 = ϕH, A0 = 0,
h0 = 0, and h1 = 1/L, while the remaining coefficients
are determined from the EOMs and the constraint using
Series and Solve in Mathematica. Thus, the input of
initial conditions must be

X(rH + ε) =

∞∑
k=0

Xkε
k, X ′(rH + ε) =

∞∑
k=1

kXkε
k−1, (8)

for each X ∈ {ϕ,A, h}, where the coefficients {Xi} are
determined from the expansion. Note that we now re-
cover the six initial conditions originally expected, since
the constraint and the regularity condition are now im-
plicitly present.

B. Numerical integration and parameters

We integrate the EOMs (5) for each value of ϕH us-
ing NDSolve in Mathematica, with the initial conditions
given in (8), and the functions ϕ(r), A(r), and h(r) over
the interval r ∈ [rH + ε, rlim]. Appendix E illustrates nu-
merical solutions corresponding to different values of ϕH.

Below is a summary of all relevant parameters: rH = 1,
L = 1, ϕM = 1, ϕQ = 10, κ = 1, ϕ0 = ϕH ∈ (ϕmin, ϕmax),
A0 = 0, h0 = 0, h1 = 1/L, ε = 0.001, and δ = 0.001—to
ensure that the interval for ϕH is open. It is also im-
portant to note that the sampling of ϕH values is non-
uniform, following a Gaussian-like distribution to better
resolve the transition region. The upper limit of integra-
tion is set to rlim = 10. The expansions for the initial con-
ditions are performed up to third order around r = rH.
As discussed in subsection III C, ν = 1, and rAdS is de-
fined as the value of the holographic coordinate such that
|h′(rAdS)| < 10−10.

C. UV normalization

As explained at the end of subsection II F, although
the expressions for temperature and entropy only require
the IR behaviour of the functions, we must integrate the
EOMs up to the UV. This is because normalization of the
AdS5 spacetime to its canonical form is necessary so that
all thermal states obtained correspond to the same QFT,
meaning they have the same energy scale ϕ̃A. Hence, we
must express our metric so that it matches the canoni-
cal AdS5 form with ϕ̃A. The coordinate transformation
given in (C22), derived in Appendix C, ensures this con-
dition. Expressing Eqs. (7) using this change of coor-
dinates—see Appendix F—yields the following formulas
for T and s, expressed so that they do not depend on the
energy scale chosen,

T

ϕ̃
1/ν
A

=
1

4π

1

Lϕ
1/ν
A

√
hfar
0

,
s

ϕ̃
3/ν
A

=
2π

κ2

1

ϕ
3/ν
A

, (9)

where hfar
0 and ϕA are defined in the UV expansions (C12)

and (C15), respectively, and ν is defined in (C8). In our
case, ν = 1, as derived in Appendix C. We extract these
values by evaluating h(r) and ϕ(r) in the limit r → ∞
and solving the equations for them. In practice, we define
a finite cutoff rAdS that ensures that asymptotic AdS5
behaviour has been reached. One option is to demand
that |h′(rAdS)| be less than an arbitrarily small number,
e.g., 10−10, in view of h(r) UV behaviour. Substituting
into the expansions (C12) and (C15) yields

ϕA = ϕ(rAdS)e
νA(rAdS), hfar

0 = h(rAdS). (10)

IV. EQUATION OF STATE

Conditions of thermodynamic stability imply that the
specific—here understood as per unit volume—heat ca-
pacity at constant chemical potential, defined by

cµ := T

(
∂s

∂T

)
µ

, (11)

must be positive. As shown in Fig. 2, there is a region
of instability and hence the Maxwell construction must
be performed. As a result, the function s(T ) exhibits a
discontinuity, i.e., a discontinuity in the first derivative
of the free energy with respect to temperature, namely a
first-order phase transition.

In the conformal case, thermodynamics is fixed by
conformal symmetry, and it is well known that s ∝ T 3,
i.e., s/T 3 remains constant [2, 5]. As shown in
Fig. 3, conformal behaviour is observed at both high
and low temperatures. These asymptotic limits cor-
respond to values of ϕH = ϕmin = 0—at high
temperatures—and ϕH = ϕmax ≈ 3.08—at low tempera-
ture—which are precisely the values of ϕ such that V (ϕ)
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Figure 2: Equation of state s(T ) of the non-conformal quan-
tum field theory obtained using holography.

Figure 3: Entropy density over T 3, as a function of tempera-
ture. The two extreme values of ϕH and the analytically ex-
pected asymptotic behaviour—see Eq. (H12)—are indicated.

attains the maximum V (ϕmin) = −12 and the minimum
V (ϕmax) ≈ −40.57, respectively—see Fig. 1. According
to the proposition proven in Appendix G—which states
that the scalar field remains constant, ϕ(r) = ϕH, if and
only if ϕH is an extremum of V (ϕ)—we conclude that
in both cases ϕ(r) = ϕH for all r. Therefore, as shown
in Appendix H, the corresponding solutions are SAdS5
black branes. We can thus use Eq. (H12) to compare the
numeric trend with the analytic values, s/T 3 ≈ 31.34
and s/T 3 ≈ 194.82.

In contrast, the intermediate region exhibits non-
conformal behaviour. The corresponding values of ϕH are
neither a maximum nor a minimum of V (ϕ), so, by the
above proposition, the scalar field has a non-trivial pro-
file, ϕ(r) ̸= ϕH, caused by the dV/dϕ term in (5). This af-
fects the metric functions A(r) and h(r), leading to defor-
mations of the SAdS5 geometry—more exotic black brane
solutions. Since these functions determine the thermody-
namic behaviour of the dual QFT—see Eqs. (9)—their
deformation gives rise to richer thermodynamic phenom-
ena, such as the first-order phase transitions observed
in this model, in contrast with N = 4 SYM theory,
which features only a plasma phase and no phase tran-
sitions [5]. The presence of a first-order phase transition
in our model highlights the departure from conformality,
confirming the effectiveness of the scalar potential chosen
in generating non-conformal behaviour.

These results align with subsection II G: ϕH → 0 cor-
responds to the UV—high temperatures—while ϕH ̸= 0
corresponds to the IR—low temperatures.

V. CONCLUSIONS

We obtain the EOS of a non-conformal QFT via holog-
raphy. By introducing a scalar field, we deform the
SAdS5 black brane solutions by tuning different values of
ϕH. Each configuration corresponds to a different ther-
mal state characterized by a specific temperature and en-
tropy. The scalar potential used in this model gives rise
to a first-order phase transition between two conformal
regimes—each characterized by a distinct effective cos-
mological constant—while conformal symmetry is broken
in the intermediate region.

In future work, we aim to include a Maxwell field to
study the system at non-zero chemical potential µ ̸= 0,
and to explore alternative scalar potentials that could
lead to different kinds of phase transitions.
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Resum: En aquest treball, estudiem la termodinàmica d’una QFT no conforme mitjançant
l’holografia, en particular la correspondència AdS/CFT. La descripció dual consisteix en un es-
paitemps de AdS de cinc dimensions amb gravetat d’Einstein acoblada a un camp escalar que
trenca la simetria conforme, amb l’objectiu de modelar sistemes no conformes inspirats per la QCD.
Resolent numèricament les equacions d’Einstein-Klein-Gordon, construïm solucions de branes negres
per obtenir la temperatura i l’entropia associada als estats tèrmics de la QFT dual. La representació
s/T 3(T ) mostra que, a altes i baixes temperatures, s’obté el comportament característic d’una CFT,
mentre que en la regió intermèdia trobem un comportament no conforme.
Paraules clau: holografia, correspondència AdS/CFT, teories quàntiques de camps, cromod-
inàmica quàntica, branes negres, equació d’estat.
ODSs: 4. Educació de qualitat i 9. Indústria, innovació, infraestructures.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats
2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar 12. Consum i producció responsables
4. Educació de qualitat X 13. Acció climàtica
5. Igualtat de gènere 14. Vida submarina
6. Aigua neta i sanejament 15. Vida terrestre
7. Energia neta i sostenible 16. Pau, justícia i institucions sòlides
8. Treball digne i creixement econòmic 17. Aliança pels objectius
9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, del grau universitari de Física i centrat en el desenvolupament de tècniques de recerca
avançades, es relaciona amb l’ODS 4. Educació de qualitat, i en particular amb la fita 4.4, ja que contribueix a la
formació universitària en metodologies científiques de gran rellevància. A més a més, també es pot vincular amb
l’ODS 9. Indústria, innovació i infraestructures, i en particular amb la fita 9.4, atès que aquest àmbit de la física
teòrica contribueix a una millor comprensió fonamental de les lleis de la natura, imprescindible per impulsar el progrés
industrial i tecnològic de manera sostenible.
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Appendix A: Units and dimensions

Natural unit systems are systems in which certain
physical constants are set to unity. As a result, some
physical dimensions become equivalent and can be ex-
pressed in terms of a reduced set of base dimensions.

1. Gravitational side

The standard choice of natural units in classical grav-
itation is

c = G = kB = 1, (A1)

where c is the speed of light, G is Newton’s gravitational
constant, and kB is Boltzmann’s constant. This unit sys-
tem is known as the geometrized unit system.

In this work, however, we adopt the convention

c = kB = 1, G =
1

8π
, (A2)

which we refer to as a “reduced geometrized units”. In or-
dinary units, all quantities relevant to our analysis have
dimensions that can be expressed as powers of length L,
mass M, time T, and absolute temperature Θ. By con-
trast, in the reduced geometrized units, all such quan-
tities share a common dimension, e.g., length L. That
is,

L = M = T = Θ = E. (A3)

It is important to note that we can not set ℏ = 1 in
classical gravity, since quantum effects are neglected. In
the limit ℏ → 0, the uncertainty principle becomes trivial,
and assigning ℏ a finite value would be inconsistent with
the classical regime.

In addition to setting certain fundamental constants to
be pure numbers, we also fix a dimensionless length scale
by choosing the AdS curvature radius to be L = 1. As a
result, all base units collapse into dimensionless derived
unit,

L = M = T = Θ = E = 1. (A4)

Hence, all physical quantities on the gravitational side
are dimensionless—represented by pure numbers—in this
unit system.

2. Quantum field theory side

The standard choice of natural units in QFT is

ℏ = c = kB = 1. (A5)

In this unit system,

L = M−1 = T = Θ−1 = E−1. (A6)

Therefore, on the QFT side, we work in energy units.

Appendix B: Derivation of the equations of motion

In the next, we derive the system of ODEs (5) and (6).
In view of the Lagrangian (3), and the ansatz ϕ = ϕ(r)

and (4), the action is

S =

∫
d5x

√
−g L

=

∫
dtdx⃗

∫
dr
√
−g

1

2κ2

[
R− 1

2
(∂ϕ)2 − V (ϕ)

]
=

V4

2κ2

∫
dr
√
−g

[
R− 1

2
(∂ϕ)2 − V (ϕ)

]
.

(B1)

Since a constant factor in the action does not alter the
EOMs, we can derive them for the holographic coordinate
action/Lagrangian defined as

Sr :=

∫
dr
√
−g

[
R− 1

2
(∂ϕ)2 − V (ϕ)

]
=:

∫
drLr.

(B2)
Since we are going to use Euler-Lagrange equations it is
important to include the determinant of the metric tensor
matrix in the Lagrangian. To construct our Lagrangian
we need the following ingredients.

• The value of
√
−g.

√
−g =

√
−
(
−h(r)e2A(r)

) (
e2A(r)

)3 (e2B(r)

h(r)

)
= e4A(r)+B(r) (B3)

• The Ricci scalar R. The only non-vanishing
Christoffel symbols are the next thirteen

Γt
tr = Γt

rt = A′ +
h′

2h
,

Γi
ir = Γi

ri = A′,

Γr
tt =

1

2
he2(A−B) (h′ + 2A′h) ,

Γr
ii = −A′he2(A−B),

Γr
rr = B′ +

h′

2h
,

where we use i for x, y, z coordinates and we omit
the function dependencies for simplicity. Therefore,

R = e−2B
(
−8A′′h− h′′ − 20A′2h

+8A′B′h− 9A′h′ +B′h′) . (B4)

• The scalar product (∂ϕ)2.

(∂ϕ)2 = ∂µϕ∂
µϕ

= gµν∂µϕ(r)∂νϕ(r)

= grr∂rϕ∂rϕ

= he−2Bϕ′2. (B5)
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Introducing (B3)-(B5) in the Lr yields

Lr = e4A−B

[
− 8A′′h− h′′ − 20A′2h+ 8A′B′h

− 9A′h′ +B′h′ − 1

2
hϕ′2 − e2BV (ϕ)

]
. (B6)

Now we need to use the Euler-Lagrange equations with
second-order derivatives, namely

d2

dr2

(
∂Lr

∂f ′′

)
− d

dr

(
∂Lr

∂f ′

)
+

∂Lr

∂f
= 0, (B7)

with f ∈ {ϕ,A, h}.
For ϕ straightforwardly leads to the ODE

ϕ′′ +

(
4A′ −B′ +

h′

h

)
ϕ′ − e2B

h

dV

dϕ
= 0. (B8)

For B also straightforwardly leads to the ODE

h(24A′2 − ϕ′2) + 6A′h′ + 2e2BV (ϕ) = 0, (B9)

that is, the constraint.
For h straightforwardly leads to the ODE

A′′ −A′B′ +
1

6
ϕ′2 = 0. (B10)

Finally, for A leads to the ODE

− 24

(
A′′ + 2A′2 −A′B′ +

1

12
ϕ′2

)
h

− 3h′′ − 3 (8A′ −B′)h′ − 4e2BV (ϕ) = 0,

and using (B9) and (B10) one finds that

h′′ + (4A′ −B′)h′ = 0. (B11)

Appendix C: UV expansions of ϕ, A, and h, and UV
normalization

Our metric for a generic choice of scaled-
coordinates—defined with respect to the original
ones by an affine transformation—is

ds̃2 = e2Ã(r̃)
[
−h̃(r̃)dt̃

2
+ d⃗̃x

2
]
+

1

h̃(r̃)
dr̃2. (C1)

AdS5 metric in Poincaré patch coordinates [2] is

ds2 =
ρ2

L2

(
−dt2 + dx⃗2

)
+

L2

ρ2
dρ2, (C2)

where ρ ∈ [0,∞), but let us define a new coordinate r
such that ρ

L = e
r
L , hence r ∈ (−∞,∞). Then,

ds2 = e2
r
L

(
−dt2 + dx⃗2

)
+ dr2. (C3)

Demanding our metric to be asymptotically—when
r̃ → ∞—AdS5 in the canonical form, i.e., without scaling
factors, we obtain by comparison between (C1) and (C3)

Ã(r̃ → ∞) := lim
r̃→∞

Ã(r̃) =
r̃

L
, (C4)

and

h̃(r̃ → ∞) := lim
r̃→∞

h̃(r̃) = 1, (C5)

and hence Ã′(r̃ → ∞) = 1
L , Ã′′(r̃ → ∞) = 0, and

h̃′(r̃ → ∞) = h̃′′(r̃ → ∞) = 0.
If ϕ(r) = 0 or ϕ(r) = ϕH = const., then

Ṽ = −12Ã′2h̃ = −12/L2

and the trend of ϕ̃ is trivially—note that if the coordi-
nates are not scaled, this value could be different.

Let us study the case where ϕ(r) is not trivial. Plug-
ging everything into the EOMs (5) and constraint (6)
yields different information:

1. ϕ̃′(r̃ → ∞) = 0, implying that ϕ̃(r̃ → ∞) = const.,

2. Ṽ ′(ϕ̃(r̃ → ∞)) = 0, i.e., the potential Ṽ (ϕ) has no
ϕ̃ term, and has an extremum at this value,

3. Ṽ (ϕ̃(r̃ → ∞)) = − 12
L2 = const., which if

ϕ ∈ (ϕmin, ϕmax) as in our case, that implies
ϕ̃(r̃ → ∞) = 0.

By performing an iterative process, we can obtain an
explicit dependence for ϕ̃. Let us introduce new param-
eters. The potential can be expanded as a Taylor series
around ϕ̃ = 0 in the UV limit. We know that there is no
linear term, and also we know from section II F that the
second-order term is just the mass term of Klein-Gordon
Lagrangian. Setting ϕ(r) = ϕ̃(r̃)—scalar field is invariant
under a change of coordinates—we obtain

Ṽ (ϕ̃) = − 12

L2
+

1

2
m2

ϕϕ̃
2 +O(ϕ̃3). (C6)

The dimension of the operator Oϕ, which is dual to ϕ, is
∆ϕ and it is defined as

m2
ϕL

2 =: ∆ϕ(∆ϕ − 4). (C7)

Here we consider the case where ∆ϕ ∈ (2, 4) [8]. We also
define

ν := 4−∆ϕ. (C8)

Introducing again all the above information into the third
EOM but computing it for ϕ̃(r̃ → ∞) relaxing the con-
ditions of the null limits, we find

ϕ̃′′(r̃ → ∞) +
4

L
ϕ̃′(r̃ → ∞)− ν(ν − 4)

L2
ϕ̃(r̃ → ∞) = 0,
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that yields

ϕ̃(r̃ → ∞) = ϕ̃Ae
− ν

L r̃ + ϕ̃Be
− (4−ν)

L r̃.

For our potential (2) we have that ∆ϕ = 4 − ν = 3,
because comparing the second-order coefficient of (2)
with (C6) yields m2

ϕ = −3/L2, that implies ∆ϕ = 3.
Hence, the second term of ϕ̃(r̃ → ∞) can be neglected,
consequently

ϕ̃(r̃ → ∞) = ϕ̃Ae
− ν

L r̃. (C9)

Therefore,

ϕ̃(r̃ → ∞) = ϕ̃Ae
− ν

L r̃,

∴ Ã(r̃ → ∞) =
r̃

L
, (C10)

h̃(r̃ → ∞) = 1.

This asymptotic behaviour corresponds to canonical
AdS5.

We are now in a position to derive the asymp-
totic expansions of the functions ϕ, A, and h in the
UV limit using another coordinates that asymptot-
ically do not match with canonical AdS5—instead,
match with scaled AdS5. However, we must
first establish that ϕ(r → ∞) = 0, and conse-
quently, ϕ′(r → ∞) = ϕ′′(r → ∞) = 0, and that
V (ϕ(r → ∞)) = − 12

L2 , as proven before. Inserting
this information into the EOMs (5) and (6) yields
further constraints on the UV behaviour of the fields,
which will guide the structure of their asymptotic
expansions. In what follows, we adopt the constants so
that they match those used in [? ].

From the first equation in (5), we obtain trivially

A(r) =
Afar

−1

L
r +Afar

0 =: α(r), (C11)

straightforwardly from the second one,

h(r) = hfar
0 + hfar

4 e−4α(r), (C12)

the third one simply verifies that V ′(ϕ) = 0, and for the
constraint (6), we obtain the relation

V (ϕ(r → ∞)) = − 12

L2
Afar

−1

2
hfar
0

!
= − 12

L2
,

that imposing the value of V (ϕ(r → ∞)), yields the fol-
lowing relation

Afar
−1 =

1√
hfar
0

. (C13)

The negative sign has been discarded, as it leads to a
behaviour of A(r) that is inconsistent with the form re-
quired by Eq. (C4).

Before computing the UV expansion of the scalar field,
let us follow the same argument as in the canonical case.

The potential can be expanded as a Taylor series around
ϕ = 0 in the UV limit. We know that there is no lin-
ear term, and also we know from section II F that the
second-order term is just the mass term of Klein-Gordon
Lagrangian. Therefore,

V (ϕ) = − 12

L2
+

1

2
m2

ϕϕ
2 +O(ϕ3). (C14)

This finally allows us to determine the UV expansion of
the scalar field. Plugging all of the above into the third
ODE in (5), in order to solve it for ϕ, and neglecting
the exponential terms—since r → ∞ and Afar

−1 > 0, as
implied by its particular form in (C4)—yields

ϕ′′ +

(
4
Afar

−1

L

)
ϕ′ −Afar

−1

2 ν(ν − 4)

L2
ϕ = 0,

whose solution is

ϕ(r) = C1e
−ν

Afar
−1
L r + C2e

−(4−ν)
Afar

−1
L r

= C1e
−ν(α(r)−Afar

0 ) + C2e
−(4−ν)(α(r)−Afar

0 )

= C1e
νAfar

0 e−να(r) + C2e
(4−ν)Afar

0 e−(4−ν)α(r)

and redefining the constants

ϕ(r) = ϕAe
−να(r) + ϕBe

−(4−ν)α(r). (C15)

Therefore,

ϕ(r → ∞) = ϕAe
−να(r) + ϕBe

−(4−ν)α(r),

∴ A(r → ∞) =
Afar

−1

L
r +Afar

0 =: α(r), (C16)

h(r → ∞) = hfar
0 + hfar

4 e−4α(r).

This asymptotic behaviour corresponds to scaled AdS5.
Finally, using (C10) and (C16), we can establish the re-

lation between both coordinate systems in the UV limit.
It is important to remark that although we compare both
coordinates in the UV limit it must be true for all values
of the holographic coordinate since we are only scaling
coordinates using an affine transformation.

Recalling that ϕ̃(r̃ → ∞) = ϕ(r → ∞) and
∆ϕ ∼ 4 ⇔ ν ≪ 1, we have

r̃

L
= α(r)− ln

(
ϕA

ϕ̃A

)1/ν

=
Afar

−1

L
r +Afar

0 − ln

(
ϕA

ϕ̃A

)1/ν

.

(C17)
It then immediately follows that

Ã(r̃) = A(r)− ln

(
ϕA

ϕ̃A

)1/ν

. (C18)

Setting ds̃2 = ds2,

⃗̃x =

(
ϕA

ϕ̃A

)1/ν

x⃗, (C19)
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and

t̃ =

(
ϕA

ϕ̃A

)1/ν √
hfar
0 t. (C20)

Moreover, by direct comparison,

h̃(r̃) =
1

hfar
0

h(r). (C21)

In summary,

t̃ =

(
ϕA

ϕ̃A

)1/ν √
hfar
0 t,

⃗̃x =

(
ϕA

ϕ̃A

)1/ν

x⃗, (C22)

r̃

L
= α(r)− ln

(
ϕA

ϕ̃A

)1/ν

=
Afar

−1

L
r +Afar

0 − ln

(
ϕA

ϕ̃A

)1/ν

,

Ã(r̃) = A(r)− ln

(
ϕA

ϕ̃A

)1/ν

,

h̃(r̃) =
1

hfar
0

h(r).

Appendix D: Derivation of the equations for T and s

In this Appendix, we derive Eqs. (7) starting
from [2, p. 82, Eq. (2.159)]. If the metric is

ds2 = −f(r)dt2 + · · ·+ 1

g(r)
dr2, (D1)

then the temperature at the horizon is

TH =

√
f ′(rH)g′(rH)

4π
. (D2)

In view of our metric,

ds̃2 = e2Ã(r̃)
[
−h̃(r̃)dt̃

2
+ d⃗̃x

2
]
+

1

h̃(r̃)
dr̃2, (D3)

we have f(r̃) = h̃(r̃)e2Ã(r̃) and g(r̃) = h̃(r̃), hence
f ′(r̃) =

(
h̃′(r̃) + 2Ã′(r̃)h̃(r̃)

)
e2Ã(r̃) and g′(r̃) = h̃′(r̃).

Then, the expression for the temperature is

TH =

√
h̃′(r̃H)e2Ã(r̃H)h̃′(r̃H)

4π

=
h̃′(r̃H)e

Ã(r̃H)

4π

=
eÃ(r̃)

4π

dh̃

dr̃

∣∣∣∣∣
r̃=r̃H

. (D4)

For the entropy density, we have the Bekenstein-
Hawking equation [2, p. 84, Eq. (2.182)],

S =
A

4G
=

2πA

κ2
, (D5)

where A is the area of the black hole horizon. Computing
it,

A =

∫
r̃=r̃H

dx̃dỹdz̃
√
g̃subspace

=

∫
r̃=r̃H

dx̃dỹdz̃ e3Ã(r̃)

= e3Ã(r̃)

∫
r̃=r̃H

dx̃dỹdz̃

= e3Ã(rH)Ṽ3, (D6)

where the determinant is computed as in (B3) but in this
subspace, yields

s =
2π

κ2
e3Ã(r̃)

∣∣∣∣
r̃=r̃H

. (D7)

Appendix E: Examples of numerical solutions for
different values of ϕH

We show the numerical profiles of ϕ(r), A(r), and h(r)
for some values of ϕH, from the horizon r = 1 to the UV
r > 1, where the geometry approaches AdS5.
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Figure 4: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 0.00001.

Figure 5: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 0.50000.

Figure 6: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 1.00000.
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Figure 7: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 1.50000.

Figure 8: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 2.00000.

Figure 9: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 2.50000.
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Figure 10: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 3.00000.

Figure 11: Numerical solution for ϕ(r), A(r), and h(r) with horizon value ϕH = 3.07891.
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Appendix F: Expressions for T and s in terms of UV
quantities

This appendix is devoted to obtaining expressions for
T and s in scaled coordinates, i.e., coordinates in which
the metric is not asymptotically AdS5 in its canonical
form—a more general scenario that allows us to use these
formulas even when solutions are scaled by arbitrary con-
stants. This procedure is referred to as scaling, as it ef-
fectively normalizes the asymptotic form of AdS5 to its
canonical form.

The coordinate transformation is given in (C22). Let
us start with the temperature T ,

T =
eÃ(r̃)

4π

dh̃

dr̃

∣∣∣∣∣
r̃=r̃H

=
e
A(r)−ln

(
ϕA
ϕ̃A

)1/ν

4π

1

hfar
0

dh

dr

dr

dr̃

∣∣∣∣∣∣
r=rH

=
1

4π

1(
ϕA

ϕ̃A

)1/ν √
hfar
0

eA(r)h′(r)

∣∣∣∣∣∣∣
r=rH

,

and plugging the initial conditions A(rH) = 0 and
h′(rH) = 1/L we obtain

T

ϕ̃
1/ν
A

=
1

4π

1

Lϕ
1/ν
A

√
hfar
0

. (F1)

Finally the entropy density s,

s =
2π

κ2
e3Ã(r̃)

∣∣∣∣
r̃=r̃H

=
2π

κ2
e
3A(r)−3 ln

(
ϕA
ϕ̃A

)1/ν
∣∣∣∣
r=rH

=
2π

κ2
e3A(r)

(
ϕA

ϕ̃A

)−3/ν
∣∣∣∣∣
r=rH

,

and applying the initial condition A(rH) = 0 yields

s

ϕ̃
3/ν
A

=
2π

κ2

1

ϕ
3/ν
A

. (F2)

Appendix G: ϕH = ϕmin or ϕmax ⇔ ϕ(r) = ϕH

In this appendix, we prove an important result: if the
scalar field at the horizon is located at either a maximum
or a minimum of the potential, then it remains constant
along the holographic direction and vice versa. The in-
tuitive idea behind this is as follows. When a potential
energy reaches an extremum, the associated force van-
ishes, i.e., dV/dϕ = 0. Furthermore, if the field starts at
“rest”—namely ϕ′(rH) = 0—there is no source to perturb
its initial position and it remains stationary.

Proposition 1. ϕH is an extremum of V (ϕ) if and only
if ϕ(r) = ϕH for all values of r.

Proof. (⇐) Suppose that ϕ(r) = ϕH is constant for all
r. Then, ϕ′(r) = ϕ′′(r) = 0. Substituting into the scalar
field EOM,

ϕ′′ +

(
4A′ +

h′

h

)
ϕ′ − 1

h

dV

dϕ
= 0,

we find

− 1

h(r)

dV

dϕ

∣∣∣∣
ϕH

= 0,

which implies that dV
dϕ

∣∣∣
ϕH

= 0. Therefore, ϕH is an ex-

tremum of the potential.
(⇒) Now suppose that ϕH is an extremum of V (ϕ),

i.e., dV
dϕ

∣∣∣
ϕH

= 0. Let us consider the EOM in the r → rH

limit:

ϕ′′(r → rH) +

(
4A′(r → rH) +

h′(r → rH)

h(r → rH)

)
ϕ′(r → rH)

− 1

h(r → rH)

dV

dϕ

∣∣∣∣
(r→rH)

= 0.

The coefficient of the first-order derivative term di-
verges, hence ϕ′(r → rH) = 0 to ensure a regular so-
lution. The potential term vanishes although the 1/h
term diverges, because it decreases faster than |dV/dϕ|
increases because ϕ′(r → rH) = 0, and regular condition
implies

ϕ(r) = ϕ(rH) + ϕ′(rH)(r − rH) +O
(
(r − rH)

2
)
≈ ϕH

h(r) = h(rH) + h′(rH)(r − rH) +O
(
(r − rH)

2
)

≈ 1

L
(r − rH).

Therefore, ϕ′′(r → rH) = C, but C = 0 because
ϕ′(r → rH) = 0.

We now proceed by mathematical induction to show
that all higher derivatives vanish at the horizon, implying
ϕ(r) = ϕH for all r.

Base case (k = 0): We have already shown that
ϕ(1)(rH) = ϕ′(rH) = 0.

Induction step: Assuming that ϕ(k)(rH) = 0 for all
1 ≤ k ≤ n. Let us prove that ϕ(k+1)(rH) = 0. By the
inductive hypothesis,

ϕ(r) = ϕH +

∞∑
n=k+1

ϕn(r − rH)
n

= ϕH + ϕk+1(r − rH)
k+1 +O

(
(r − rH)

k+2
)

= ϕH +O
(
(r − rH)

k+1
)
.

Therefore,

ϕ′(r) = (k + 1)ϕk+1(r − rH)
k +O

(
(r − rH)

k+1
)
,
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and

ϕ′′(r) = (k + 1)kϕk+1(r − rH)
k−1 +O

(
(r − rH)

k
)
.

Since h(r) has a simple zero, h(r) = O (r − rH),
therefore h′(r) = h1 + O (r − rH). Moreover,
1/h(r) = O

(
(r − rH)

−1
)
, and A′(r) = A1 + O (r − rH).

Finally,

dV

dϕ
=

dV

dϕ

∣∣∣∣
ϕH

+
d2V

dϕ2

∣∣∣∣
ϕH

(ϕ(r)− ϕH) + . . .

= O
(
(r − rH)

k+1
)
,

since the first term is zero and ϕH cancels with the cor-
responding term in ϕ(r). Plugging everything into the
EOM, one finds that:

• the second derivative term, has terms of order
(r − rH)

k−1 and higher,

• the first derivative term, also has terms of order
(r − rH)

k−1 and higher,

• and the potential term, has terms of order (r−rH)
k

and higher.

Equating terms of order (r − rH)
k−1 terms, one obtains:

(k + 1)kϕk+1 + (const.)(k + 1)ϕk+1 = 0,

it follows that ϕ(k+1) ∝ ϕk+1 = 0.
Therefore, by induction, all derivatives of ϕ vanish at

r = rH, and thus ϕ(r) = ϕH for all r.

Appendix H: Analytic solution for the case ϕ(r) = ϕH

As shown in Appendix G, if ϕH = ϕmin or ϕmax then
ϕ(r) = ϕH remains constant, and the system admits an
analytic solution, the SAdS5. Therefore, the EOMs are

A′′ = 0 (H1)
h′′ + 4A′h′ = 0. (H2)

Additionally, the constraint becomes

24A′2h+ 6A′h′ + 2V = 0. (H3)

Integrating the system yields

A(r) = b+ ar,

h(r) = c+ de−4ar,

where a, b, c, d ∈ R.
From the constraint (H3), we derive a condition that,

together with the initial conditions—see III A—allows us
to fix the solution:

24a2
(
c+ de−4ar

)
+ 6a

(
−4ade−4ar

)
+ 2V = 0

24a2c+ 24a2de−4ar − 24a2de−4ar + 2V = 0

24a2c+ 2V = 0

c = − V

12a2
.

Thus,

A(r) = ar + b, (H4)

h(r) = − V

12a2
+ de−4ar, (H5)

where a, b, d ∈ R.
Let us now determine the integration constants, start-

ing with the blackening function h(r):
h′(rH) = − V

3a

!
=

1

L
⇒ a = −1

3
LV

h(rH) = − V

12a2
+ de−4arH !

= 0 ⇒ d =
3

4L2V
e−

4
3LV rH .

For A(r), one has

A(rH) = arH + b
!
= 0 ⇒ b = −arH.

Therefore,

A(r) = −1

3
LV (r − rH), (H6)

h(r) = − 3

4L2V

(
1− e

4
3LV (r−rH)

)
. (H7)

It should be noted that to recover an AdS solution in
the UV limit, namely (C16)

A(r → ∞) =
1

L
√

hfar
0

r +Afar
0 ,

h(r → ∞) = hfar
0 + hfar

4 e−
4Afar

−1
L r−4Afar

0 ,

it must be true that V < 0. This is consistent with
the fact that the potential plays the role of a negative
cosmological constant in AdS spacetime.

By comparison, the analytic expressions for the UV
coefficients for ϕ(r) = ϕH case are:

Afar
−1 = −1

3
L2V, (H8)

Afar
0 =

1

3
LV rH, (H9)

hfar
0 = − 3

4L2V
, (H10)

hfar
4 =

3

4L2V
. (H11)

We can now compute s/T 3 in this analytic
case—ϕ(r) = ϕH—using Eqs. (F1) and (F2):

s

T 3
=

2π

κ2

1

ϕ
3/ν
A

[
1

4π

1

Lϕ
1/ν
A

√
hfar
0

]−3

=
128π4L3

κ2

(
hfar
0

)3/2
=

128π4L3

κ2

(
− 3

4L2V

)3/2

=
128π4

κ2

(
− 3

4V

)3/2

. (H12)
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