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Abstract: This work analyses global surface temperature anomalies from 1880 to 2024 using
the GISS database. ARIMA and Bayesian Structural Time Series models are employed to make
predictions. Both approaches reveal a strong warming trend predicting, respectively, an average
annual increase of 0.021 K and 0.031 K until 2060. Higher warming over land and, especially in the
Bayesian model, Arctic amplification are forecasted. These findings align with IPCC projections
and underscore the urgency of climate mitigation strategies.
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I. INTRODUCTION

It is undoubtedly the case that, over recent decades,
temperatures have not stopped rising. Even more trou-
bling is the fact that, according to the Intergovernmental
Panel on Climate Change (IPCC) projections, in every
likelihood they will continue to increase in the next years
[1].

This study aims to explore global temperature variabil-
ity and long-term trends using historical data. By apply-
ing time series modeling techniques, the project investi-
gates both temporal and spatial temperature dynamics.

II. DATA AND METHODOLOGY

A. Database description

In order to carry out this study, data provided by the
Goddard Institute for Space Studies (GISS) are used [2].
The database contains monthly running mean surface
temperature anomalies (A) on a 2→ → 2→ grid, starting in
1880 and ending in 2024. These anomalies are calculated
as a weighted average of nearby stations within 1,200
km, with weights decreasing linearly from unity (at the
given location) to zero. Extrapolation by assuming spa-
tial continuity is applied when no station is within 1,200
km. The GISS publication includes data from over 6,300
meteorological stations, while satellite measurements are
employed for oceanic areas. To express temperatures of
month m and year y as an anomaly, the transformation

Am,y = Tm,y ↑ T
(1951–1980)
m is used for every grid point,

where T
(1951 –1980)
m is the average temperature for month

m over the baseline period 1951–1980. Even though tem-
peratures are not in absolute terms, it may be useful to
consider that the 1951–1980 global mean surface air tem-
perature is estimated at 287.15 K (14 →C).

This project’s analysis is conducted using the R soft-
ware [3]. The first step consists of importing the corre-
sponding netCDF file, available at the GISS webpage [2].

Some missing values (10.9%) may be present, particularly
at extreme latitudes and in the earliest records. For sim-
plicity, these anomalies are removed. Hence, 25,104,721
complete observations are available to conduct the anal-
ysis.
Throughout the entire period of study, the global mean

temperature anomaly has been of 0.13 K. The warmest
complete year to date has been 2024 while the cold-
est 1909, with global mean temperatures of 288.75 K
(15.6 →C) and 286.65 K (13.5 →C), respectively.

B. Time series models

Time series analysis encompasses various statistical
models designed to capture patterns and dependencies
within data. Two of the most important are as follows.

1. Autoregressive integrated moving average

The Autoregressive Integrated Moving Average is a
powerful, e!cient and widely used statistical model for
analyzing and forecasting time series data [4]. It is de-
noted as ARIMA(p, d, q), where the parameters p, d, and
q correspond respectively to the autoregressive order, the
degree of di”erencing, and the moving average order.
In essence, the ARIMA model captures three key dy-

namics in a time series. First, the autoregressive (AR)
component of order p models the dependency between an
observation and a number of its previous values. This is
expressed as a linear combination of lagged observations:

Xt = ω1Xt↑1 + ω2Xt↑2 + · · ·+ ωpXt↑p + εt, (1)

where ω1, . . . ,ωp are the autoregressive parameters and
εt is a white noise error term with zero mean and constant
variance.
Second, the moving average (MA) component of order

q incorporates the influence of past forecast errors on the
current value, formulated as:
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Xt = εt + ϑ1εt↑1 + ϑ2εt↑2 + · · ·+ ϑqεt↑q, (2)

where ϑ1, . . . , ϑq are the moving average parameters.
When combined, these two components form the

ARMA(p, q) model:

Xt = ω1Xt↑1 + · · ·+ ωpXt↑p + εt + ϑ1εt↑1 + · · ·+ ϑqεt↑q.

(3)
However, many time series are not stationary -that is,

their statistical properties such as mean and variance
change over time-. To address this, di”erencing is ap-
plied d times until stationarity is achieved. Using the
backshift operator B defined by BXt = Xt↑1, the dif-
ferenced series is represented as Yt = (1↑B)dXt, where
Yt is assumed to be stationary. Consequently, the full
ARIMA(p, d, q) model can be expressed as:

Yt = ω1Yt↑1+ · · ·+ωpYt↑p+ ε
(Y )
t + ϑ1ε

(Y )
t↑1+ · · ·+ ϑqε

(Y )
t↑q,

(4)
Determining the appropriate d typically involves for-

mal statistical tests for stationarity, such as the aug-
mented Dickey–Fuller test, based on the regression equa-
tion:

#Xt = ϖXt↑1 +
p∑

i=1

ϱi#Xt↑i + εt, (5)

where #Xt = Xt ↑Xt↑1 represents the first di”erence
of the series, ϖ is the parameter being tested for station-
arity, p denotes the number of lagged di”erence terms
included to account for serial correlation, ϱ captures the
influence of past di”erences and εt is white noise. Thus,
the hypotheses to test are:

• H0: ϖ = 0 (non-stationary series)

• H1: ϖ < 0 (stationary series)

Once stationarity is ensured, the AR and MA terms
capture the structure of the transformed series.

Given a time series model, it is possible to predict ob-
servations at time t+1 by replacing in the ARIMA equa-
tion data until t. Hence, predictions for t+2 can be made
using the existing data at t and the prediction for t+ 1,
and successively. It has to be taken into account that the
further one prediction is, the more error it has.

2. Bayesian Structural Time Series

While ARIMA models are popular due to their sim-
plicity and computational e!ciency, they present several
limitations. They require stationarity, often demanding
transformations, and provide point forecasts with limited

uncertainty quantification. In contrast, Bayesian time se-
ries models o”er a probabilistic framework that incorpo-
rates prior knowledge and yields full posterior distribu-
tions over latent states and future observations, allowing
for more robust forecasts and coherent interval estimates
[5]. However, this model is by no means as e!cient as
the ARIMA, requiring high computation times.
Given a time series y = (y1, . . . , yT ), Bayesian infer-

ence treats parameters ! (such as variances or regression
coe!cients) and latent states xt (e.g., underlying trend
or seasonality) as random variables. The posterior dis-
tribution is derived via Bayes’ theorem:

p(!,x1:T | y1:T ) =
p(y1:T | x1:T ,!) p(x1:T | !) p(!)

p(y1:T )
.

(6)
Given the observed data y1:T , posterior inference is

typically performed using Markov Chain Monte Carlo
(MCMC) methods. Forecasting future values yT+h in-
volves integrating over posterior samples. In practice,
this posterior is approximated through MCMC sampling
as implemented in the bsts package in R, where the ini-
tial latent state x1 is modeled as multivariate normal
with mean vector m0 = 0 and diagonal covariance ma-
trix C0 = ς

2I, reflecting large initial uncertainty.
Forecasts are then obtained by sampling from the pre-

dictive distribution:

p(yT+h | y1:T ) ↓
1

S

S∑

s=1

p(yT+h | !(s)
,x(s)

T+h), (7)

where (!(s)
,x(s)

T+h) are draws from the posterior distri-
bution, providing full predictive intervals and accounting
for both parameter and state uncertainty.

III. FULL TEMPERATURE EVOLUTION

The observed global temperature anomaly data from
1880 to 2024 exhibit distinct phases of variation (Figure
1). Initially, from 1880 to 1910, there is a relatively sta-
ble period with a slight but not statistically significant
cooling (the Mann-Kendall test -which assumes as a null
hypothesis that there is no monotonic trend- presents
a p-value of 0.16). This could be attributed to signif-
icant volcanic activity, such as the eruption of Kraka-
toa (1883), minimal solar activity and natural variabil-
ity [6]. Between 1910 and 1940, a noticeable warming
trend emerges (Mann-Kendall p-value of 1 · 10↑7), possi-
bly linked to increased solar activity and reduced volcanic
aerosols. However, from 1940 to 1980, temperatures ex-
hibit stagnation (test p-value of 0.34, confirming there
is no trend), likely due to high sulfate aerosol emissions
from industrial activities, which reflect solar radiation.
From 1980 onwards, a sharp and consistent rise in global
temperature anomalies is evident (p-value of 3 · 10↑13),
driven by anthropogenic greenhouse gas emissions, par-
ticularly CO2 from fossil fuel combustion [1].
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Figure 1: Evolution of annual mean global temperature
anomaly, the baseline period being 1951-1980. Shaded

areas represent uncertainty.

Figure 2: 2024 global temperature anomalies using
1951-1980 as baseline period.

It may also be of interest to analyze how temperatures
have evolved in di”erent regions. Temperature anomalies
have increased most significantly in high northern lati-
tudes, particularly in the Arctic, Northern Canada, and
Siberia (Figure 2). This pattern, known as Arctic ampli-
fication, is primarily driven by feedback mechanisms such
as ice-albedo reduction, lapse rate increase and greater
landmass sensitivity to radiative forcing (di”erence be-
tween absorbed solar radiation and outgoing longwave
radiation at tropopause level). Conversely, equatorial re-
gions and parts of the Southern Ocean have experienced
comparatively modest warming. These di”erences arise
due to variations in ocean heat capacity, atmospheric cir-
culation patterns, and regional feedbacks. The relatively
stable temperatures in these zones are influenced by per-
sistent cloud cover and e!cient heat redistribution [7].
This is precisely why interannual fluctuations are high in
polar and subpolar regions (Figure 3), particularly in the
Arctic, where warming is also intense (Figure 2). Inter-
estingly, while Antarctica shows only modest long-term
warming, it is revealed that some Antarctic regions are
subject to substantial interannual variability. This sug-
gests that even in the absence of strong long-term trends,

Figure 3: Standard deviation ς with monthly available
data since 1880 to capture variability in each region.

local climate processes -such as katabatic winds and sea
ice dynamics- can lead to significant short-term fluctua-
tions [8].

IV. TIME SERIES MODELS
IMPLEMENTATION

A. Autoregressive integrated moving average

Focusing on the time series of mean global tempera-
ture anomaly (Figure 1), it is clear that there is no sta-
tionarity because the mean is not constant as it might
present a deterministic trend. To make sure, the aug-
mented Dickey-Fuller test is used, giving back ϖ = 0.10
with an associated p-value of 0.99, so the series is not
stationary. Hence, the series is di”erenced and the same
test is applied, with H0 being that the series is d ↔ 2
and H1 that d = 1. Now ϖ = ↑7.36 with an associated
p-value smaller than 0.01. In consequence, the one-time
di”erenced series is stationary, d = 1.
To determine p and q, the first step consists of plotting

the autocorrelation function (ACF) and partial autocor-
relation function (PACF) of the di”erenced time series
(Figure 4). It is clear that the ACF is significant until the
first lag, while the PACF has a sinusoidal shape, which is
an indicator of a MA(1) process [4]. Taking into account
all these considerations, the model could arguably be de-
scribed as an ARIMA(0,1,1). The residuals are constant
in mean around 0 and they exhibit neither autocorrela-
tion nor partial autocorrelation (Figure 5). Furthermore,
they follow a normal distribution (Shapiro-Wilk normal-
ity test gives back a p-value of 0.63 confirming the null
hypothesis of normality), which is also a sign that the
model might be correct. Notwithstanding, there may be
many other models that could adjust properly to this
time series. The R function auto.arima() included in
the forecast package returns the best model in terms
of the Akaike Information Criteria after testing a great

Treball de Fi de Grau 3 Barcelona, June 2025



Surface temperature analysis: variability and trends Marcel Pagès Ticó

Figure 4: Autocorrelation function and partial
autocorrelation fuction of di”erenced time series.

Figure 5: Residuals of ARIMA(0,1,1) model.

number of combinations of ARIMA models. The chosen
model is again the ARIMA(0,1,1).

By using this model, the temperature anomaly until
2060 is predicted (Figure 6). According to this model, in
the years to follow the temperature is expected to experi-
ence an upward deterministic trend, with a mean global
increase of approximately 0.021 K per year.

At this point it may be useful to know how tempera-
tures are expected to evolve in spatial terms. Given the
fact that auto.arima() is an automated function, a time
series with the available data for every location (2→→ 2→)
is given as input. Therefore, for every pair of longitude
and latitude values an ARIMA model is estimated and,
with it, predictions are made (Figure 7). It should be
emphasized that the validity of the chosen models is not
checked because the objective is to gain an understand-
ing of how temperatures are expected to evolve in each
region; a comprehensive analysis of each specific loca-
tion is not intended. A remarkable fact about this map
is that the temperatures are expected to increase sub-
stantially more in land zones -especially in the northern
hemisphere- than across the sea.

Figure 6: ARIMA’s predictions of temperature anomaly
from 2025 to 2060. Shaded areas indicate forecast

uncertainty: the inner band 80% and the outer one 95%.

Figure 7: ARIMA’s predictions of temperature anomaly
di”erence between 2050 and 2024.

B. Bayesian Structural Time Series Forecasting

At this time the aforementioned bsts package with
100,000 MCMC draws is implemented to the mean global
temperature series. The model predicts from 2025 to
2060 an average increase of 0.031 K per year (Figure 8).
As in the previous section, a model is applied for every

location and the expected value for every prediction is
extracted (Figure 9). The map suggests an increase of
temperatures in most parts of the globe, with northern
and terrestrial zones being in the lead.

V. DISCUSSION

The IPCC published on its Sixth Assessment Report
(2021) di”erent scenarios of future global temperatures
-ranked from 1, best, to 5, worst- depending on Shared
Socioeconomic Pathways (SSP), which are linked to the
expected radiative forcing levels [1].
The predicted values with the ARIMA model for the

mean global temperature are close to the intermediate
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Figure 8: Bayesian predictions of temperature anomaly
from 2025 to 2060. The blue line indicates the expected
value, and the green band indicates uncertainty of 95%.

Figure 9: Bayesian predictions of temperature anomaly
di”erence between 2050 and 2024.

scenario, SSP2 (radiative forcing of 4.5 W/m2), which in
the period of study forecasts an increase with an aver-
age of approximately 0.023 K per year. On the other
hand, the Bayesian Structural Time Series model fore-
casts more intense warming, resonating with the SSP3
(radiative forcing of 7.0 W/m2) that predicts an average
increase of about 0.028 K per year. Since the Bayesian

model yields full posterior distributions over future ob-
servations, it is of particular relevance to observe that the
predictions that fall within the 95% bear resemblance, in
shape and value, to SSP1 and SSP5, respectively (note
that the IPCC does not assign any explicit probability to
the di”erent SSP). Therefore, it would be fair to say that
the posterior distributions given by this model seem to
be realistic and in accordance with the IPCC projections.
With regard to spatial predictions, both the IPCC and

the ARIMA and Bayesian models agree that continental
zones will get hotter than oceanic areas, which could be
due to the lower heat capacity of land surfaces, reduced
evaporative cooling, and limited thermal redistribution
compared to oceans [1]. This being said, the ARIMA
predictions seem to underestimate the expected incre-
ment in temperatures in various regions, especially in
the Artic, while the Bayesian results apparently capture
considerably better the projections made by the IPCC.

VI. CONCLUSIONS

In light of the above, there is compelling evidence of
global warming, particularly pronounced in the northern
hemisphere. Furthermore, like the IPCC, both analyzed
time series models suggest temperatures will continue to
rise, especially in continental areas.
This underscores the critical importance of immediate

and sustained global e”orts to mitigate climate change.
Without decisive action, the projected increment in tem-
peratures could lead to irreversible impacts on ecosys-
tems, human health, and socioeconomic systems. The
evidence calls not for hesitation, but for a unified and
science-based response to an escalating global challenge.
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Resum: Aquest treball estudia les anomalies de temperatura global a la superf́ıcie entre 1880
i 2024 utilitzant dades proporcionades pel Goddard Institute for Space Studies (GISS). Fent una
primera anàlisi queda patent que les últimes dècades hi ha hagut un increment molt pronunciat
de temperatures. Per tal de poder fer prediccions es fa ús de dos models de sèries temporals:
l’ARIMA i el Bayesià estructural. Ambdós models revelen una tendència clara d’escalfament predint,
respectivament, augments mitjans anuals de 0.021 K i 0.031 K fins a l’any 2060. Els resultats
també indiquen un escalfament més intens a les zones continentals i, especialment en el model
Bayesià, una amplificació àrtica significativa. Aquests patrons coincideixen amb les projeccions
de l’Intergovernmental Panel on Climate Change (IPCC) que alerten que, amb pràcticament tota
probabilitat, les temperatures seguiran augmentant durant les pròximes dècades. Tot en conjunt
posa de manifest la necessitat d’adoptar amb urgència estratègies efectives de mitigació climàtica.
Paraules clau: Canvi climàtic, Tendències, Prediccions, ARIMA, Models Bayesians Estructurals

ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de les desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre X

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures

El contingut d’aquest TFG es relaciona amb l’ODS 13 (Acció climàtica) perquè posa de manifest l’escalfament que
ha patit darrerament el planeta. A més es prediu que les temperatures seguiran en augment. Per tant, això pot servir
per conscienciar del greu problema davant del que ens trobem, urgint mesures mitigadores.

També es pot relacionar amb l’ODS 15 (Vida terrestre), ja que el fenomen tractat pot afectar de forma considerable
la preservació dels ecosistemes terrestres.
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