
Semiclassical solutions in statistical quantum mechanics:
second-order corrections and applications to nuclear matter

Author: Vı́ctor Pascual Abraldes
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Juan M. Torres Rincón

Abstract: We consider the Feynman path integral formalism applied to different quantum sys-
tems at finite temperature under the semiclassical approximation. To refine previous results, we
first develop its second-order correction by implementing the Gel’fand-Yaglom method numerically
and apply it to the 1D nonperturbative anharmonic oscillator. Then, we extend the semiclassical
approach to a generic two-body potential, V (r), and apply it to the 3D spherical harmonic oscillator
and to the nucleon-nucleon interaction to obtain thermodynamical properties of nuclear matter.
Keywords: Quantum mechanics, path integral, nucleon-nucleon potential, virial coefficient
SDGs: 4. Quality Education. 9. Industry, Innovation and Infrastructure.

I. Introduction

An alternative formulation of Schrödinger’s quantum
mechanics is the one developed by Richard Feynman: the
path integral formalism [1]. In this approach, instead of
the wavefunction, the object of interest is the “kernel”,
which is the sum of all possible trajectories that the sys-
tem can follow, each of them weighted by the imaginary
exponential of the action associated to the path. This
kernel allows us to define a probability distribution.

On the one hand, our goal is to expand upon the results
of the TFG [2], where the classical solution of the path
integral in imaginary time (the so-called flucton [3, 4])
was applied to the one-dimensional (1D) harmonic (HO)
and anharmonic oscillators (AHO) in quantum mechan-
ics (QM). Here, we also study the 1D AHO, but go be-
yond the flucton solution and apply second-order correc-
tions to test the convergence of the semiclassical expan-
sion and compare it to the solution of the Schrödinger
equation combined within the thermal density matrix.

For this goal, we adapt the so-called Gel’fand-Yaglom
(GY) method [5]. It allows us to obtain the determinant
of a differential operator by solving a differential equation
with initial conditions instead of an eigenvalue problem.
This alternative requires much less computation time, as
it is easier to solve numerically. We test this method for
the AHO potential in the nonperturbative regime,

V (x) = mω2x2/2 + g2x4/2 , g ∼ 1 . (1)

On the other hand, we extend the semiclassical method
to the two-body problem, specifically, to two particles in-
teracting through a pairwise potential, V (r), whose rel-
ative motion turns out to be, in fact, one dimensional.

After a consistency check in the 3D spherically sym-
metric harmonic oscillator (which we discuss in detail in
App. C), we consider two nucleons interacting through
a very simple potential, the Serot-Walecka model. The
study of the two-body problem using the flucton path al-
lows us to extract the radial distribution function, g(r),
and the second virial coefficient, B2(T ), of nuclear mat-

ter at finite temperature. In contrast to the standard
classical calculations [6], our approach incorporates not
only thermal, but also quantum fluctuations.
We use natural units consisting of ℏ = kB = c = 1

throughout the following sections.

II. Theoretical background

In this section, we review the path integral formalism
applied to a 1D potential in QM as well as the two-body
problem. We also introduce the radial distribution func-
tion, g(r), and the second virial coefficient, B2(T ).

A. Path integrals in statistical mechanics

In the path integral formalism, the probability ampli-
tude for a particle in 1D of going from a = (xa, ta) to
b = (xb, tb) is defined as the kernel [1],

K(b; a) = K(xb, tb;xa, ta) =

∫ x(tb)=xb

x(ta)=xa

Dx(t) eiS[x(t)] ,

(2)
where Dx(t) and the limits of integration indicate that
we are summing over all possible trajectories starting at
a and ending at b. The action associated to a given tra-
jectory, x(t), in a potential, V (x), is defined as

S[x(t)] =

∫ tb

ta

dt

(
1

2
mẋ(t)

2 − V (x(t))

)
, (3)

where ẋ(t) is the time derivative of the trajectory.
Alternatively, we can also express the kernel in Eq. (2)

in terms of its spectral decomposition [1],

K(b; a) =
∑
n

ϕn(xb)ϕ
∗
n(xa)e

−iEn(tb−ta) , (4)

where the ϕn(x) and the En are, respectively, the eigen-
functions and the energy eigenvalues obtained from the
time-independent Schrödinger equation.
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Equation (4) formally coincides with the density ma-
trix at temperature T = 1/β used in statistical QM [1],

ρ(xa, xb) =
∑
n

ϕn(xb)ϕ
∗
n(xa)e

−Enβ . (5)

Thus, it is possible to establish a connection between
these two quantities if we perform a Wick rotation of
the time coordinate, t = −iτ . In this imaginary time,
Eqs. (4) and (2) can be rewritten, respectively, as

K(xb, τb;xa, τa) =
∑
n

ϕn(xb)ϕ
∗
n(xa)e

−En(τb−τa) (6)

=

∫ x(τb)=xb

x(τa)=xa

Dx(τ) e−SE[x(τ)] , (7)

where the weighting factor is a real exponential and
SE[x(τ)] is the so-called Euclidean action,

SE[x(τ)] =

∫ τb

τa

dτ

(
1

2
mẋ(τ)

2
+ V (x(τ))

)
. (8)

The comparison of Eqs. (5) and (6) allows us to identify
the time interval with the temperature: τb − τa = β. We
take τa = 0 and τb = β to study the thermal density
matrix of a quantum system and compute it using the
path integral in Eq. (7).

We eventually want to assign a probability density
function to the system to perform spatial averages. This
can be achieved by considering the diagonal elements of
the thermal density matrix in Eq. (5),

P̃ (x) := ρ(x, x) =
∑
n

|ϕn(x)|2e−Enβ . (9)

Notice that the integral of P̃ (x) over all x ∈ (−∞,∞) is
not one, but the well-known partition function,

Z(β) =
∑
n

e−Enβ . (10)

In the path integral, to evaluate the diagonal elements,
we need to consider closed paths, i.e., trajectories starting
and ending at the same point in space, which we call the
“observation point”, x0 := xa = xb. From Eqs. (6),(9)
and (7), we can define a normalized probability density

function by P (x) = Z(β)−1P̃ (x), where

P̃ (x0) =

∫ x(τ=β)=x0

x(τ=0)=x0

Dx(τ) e−SE[x(τ)] . (11)

B. Semiclassical approximation and flucton

The semiclassical approach relies on the assumption
that the trajectories which contribute the most to the
path integral are those near the one that minimizes the

Euclidean action. For this reason, we search for closed-
path solutions that make this action stationary. In the
present context, such a solution is called the “flucton”,
xfl(τ) [7]. It satisfies the following differential equation
deduced from the corresponding stationary action prin-
ciple,

mẍfl(τ) = V ′(xfl(τ)) ↔ δSE

δx(τ)

∣∣∣
x=xfl

= 0 , (12)

where V ′ is the first derivative of V with respect to x.
Note the opposite sign relative to Newton’s equation.
If we consider trajectories around the classical solution,

x(τ) = xfl(τ)+ y(τ), and make a functional expansion of
the Euclidean action, we obtain [1, 8],

SE[x(τ)] = SE[xfl(τ) + y(τ)] = SE[xfl(τ)]+

+
1

2

∫ β

0

dτ y(τ)
δ2SE

δx(τ)2

∣∣∣
x=xfl

y(τ) + · · · , (13)

where the linear term is zero because of Eq. (12).
At zeroth order, the action is simply given by the fluc-

ton path, SE[x(τ)] ≈ SE[xfl(τ)] =: Sfl(x0), depending
only on the observation point, x0. Then, we obtain a
normalized density, P (x), by using Eq. (11) for Sfl(x),
and normalizing to one:

P (x) =
e−Sfl(x)∫∞

−∞ dx0 e−Sfl(x0)
. (14)

This approximation was used in Ref. [2] to solve the
1D HO and AHO at zeroth order. In this TFG, we aim
to go to the next non-trivial order in the expansion (13).

C. Second-order corrections

To manipulate the second-order corrections to P (x) in
Eq. (13), we define the functional operator

O(xfl) :=
δ2SE

δx(τ)2

∣∣∣
x=xfl

= −m d2

dτ2
+ V ′′(xfl(τ)) (15)

and insert the second-order term of the action into the
exponential of the path integral (11). We arrive at the
following form for the probability density function [8],

P̃ (x) ≈ e−Sfl(x)

∫ y(τ=β)=0

y(τ=0)=0

Dy(τ) e− 1
2

∫ β
0

dτ y(τ)O(xfl)y(τ)

= Ce−Sfl(x)[det (O(xfl))]
−1/2 , (16)

where C is a constant appearing after the Gaussian in-
tegration that needs to be renormalized by matching the
result which uses V = 0 to the free case, whose parti-
tion function is finite and well known [1]. The remaining
task is to find the value of the determinant, which can
be expressed as the infinite product

det (O(xfl)) =
∏
n

λn , (17)
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where the λn are the eigenvalues of the operator,

O(xfl) ψn(τ) = λnψn(τ) , (18)

with boundary conditions ψn(0) = ψn(β) = 0, since these
are the path’s boundary conditions that the deviations
from the flucton solution, y(τ), must satisfy.
Instead of solving Eq. (18) (which is a problem of

similar complexity to solving the original Schrödinger
equation for V (x)), we adapt the GY method [5]. This
method replaces the eigenvalue equation (18) with a re-
lated initial value problem with the same differential op-
erator,

O(xfl) ψ(τ) = 0 , (19)

with ψ(0) = 0 and ψ̇(0) = 1. By obtaining the solution,
ψ(τ), the functional determinant simply reads [5],

det (O(xfl)) = ψ(β) , (20)

so we have reduced the problem to solving Eq. (19),
whose numerical scheme is described in App. B.

We conclude by noting that, for the HO, the second-
order correction to P̃ (x) is just a constant [1, 8], while,
for the AHO, we obtain an x-dependent factor, which
will be presented in Sec. III A. Our numerical method is
general, so it can be applied to any 1D potential.

D. The two-body problem:
application to nuclear matter

In this section, we implement, with some minor differ-
ences, the flucton procedure on a pair of particles inter-
acting via a central force in 3D. In the absence of external
forces, the kernel can be decoupled and expressed as the
product of the contribution of the center of mass (CM)
coordinate, R, and the relative coordinate, r [1],

K(b; a) = Kr(rb, tb; ra, ta)KR(Rb, tb;Ra, ta) . (21)

Thus, by factorizing the CM and relative motion, and
ignoring the CM movement, we focus on the radial coor-
dinate, as commonly done in classical mechanics, and re-
duce the system to a 1D problem for the variable r, which
takes values in the interval (0,∞) instead of (−∞,∞).
In order to explore a more physical situation, we study

a system of two nucleons interacting through a simple
pair potential, V (r). The treatment of this two-body
problem allows us to obtain two different fluid quantities
for a gas of interacting nucleons under such potential.

The first one is the radial distribution function, g(r).
It is a measure of the probability of finding a nucleon at
distance r from another one. In the classical, dilute limit,
it has the form [6],

g(r) = e−V (r)/T , (22)

with normalization 4π
∫∞
0

dr r2g(r) = Ω, where Ω is the
volume of the system.

We recall that, for ideal gases, g(r) = 1 and the prob-
ability of finding a particle at a given point does not
depend on the position of the others. For interacting
gases, liquids and solids, g(r) presents a nontrivial struc-
ture that lets us infer the most probable mutual distances
between particles in a fluid or a solid.
For a thermal quantum system, we can use the flucton

solution to approximate the path integral. The value of
g(r) coincides with that of P̃ (r) at this order [9],

g(r) = e−Sfl(r) . (23)

In addition, the equation of state for a non-ideal gas
or fluid can be expressed in terms of the virial expansion,
in powers of the particle density, ρ = N/Ω,

p/T = ρ+B2(T )ρ
2 +B3(T )ρ

2 + · · · , (24)

where p is the pressure and the quantities Bn(T ) are the
second, third, etc. virial coefficients. We are interested
in B2(T ), which is the first correction to the ideal gas
behavior. In the classical, dilute limit [6],

B2(T ) = −2π

∫ ∞

0

dr
(
e−V (r)/T − 1

)
r2 , (25)

but in our approach (including quantum fluctuations
through the flucton at zeroth order) we use [9],

B2(T ) = −2π

∫ ∞

0

dr
(
e−Sfl(r) − 1

)
r2 . (26)

III. Results

In this section, we present the results of this TFG. In
Sec. III A, we consider the 1D AHO and show the fluc-
ton trajectories and the second-order probability density
function, P (x), for different temperatures. In Sec. III B,
we deal with the nucleon-nucleon interaction, and show
how g(r;T ) and B2(T ) depend on temperature.
The uncertainty associated with the numerics has been

minimized by choosing a very fine discretization in the
codes, but the systematic error caused by truncating the
semiclassical expansion is very difficult to estimate since
it depends on V (r), T and r in a complex way. For this
reason, we do not assign error bars to our figures.

A. 1D AHO potential

We start with a 1D system under the potential (1) with
ω = 1 (without loss of generality) and g = 1, since this
method allows us to treat the nonperturbative regime.
We also set m = 1, so that all physical quantities, with
mass dimension, carry no units. The flucton trajectories
have been calculated by solving Eq. (12) numerically (see
details in App. A). We show some examples in Fig. 1 for
different values of β = 0.75, 1, 1.25, where we compare
them with the analytical solutions given in Ref. [10].
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FIG. 1. Symbols: our numerical flucton path solutions of the
AHO for three different values of β, each of them, with a
different value of x0. Lines: analytical solutions given in [10]
for the AHO. All paths start at τ = 0 and end at τ = β.

For a given β, we compute the action of each fluc-
ton path as in (8) and the corresponding P̃ (x0) =
exp(−Sfl(x0)). In order to add the second-order cor-
rection, we include the calculation of the determinant
to the classical approximation as detailed in Sec. II C.
Then, we repeat for all values of x0 and normalize the
probability distribution to obtain P (x). We do this for
β = 1/T = 10, 1 and 0.1, corresponding to low, medium
and high temperatures, respectively. These results are
shown in Fig. 2, where we compare them with the solu-
tion obtained by solving the Schrödinger equation for 200
eigenvalues and then applying Eq. (9) and normalizing.

We observe that the second-order semiclassical correc-
tion (GY method) improves over the zeroth-order calcu-
lation (flucton), especially at low temperatures (β >∼ 1),
improving over the results of Ref. [2]. Next orders (third
and fourth) are needed to describe the low temperature
case around x = 0.
We expect our numerical method to work well with

other potentials, since it is already written to use a
generic V (x).

B. Application to nuclear matter

In this section, we turn to a 3D spherically symmetric
potential. The simplest, exactly solvable potential is the
3D HO, but it is formally very similar to the 1D solution
given in [2]. For this reason, and due to space limitation,
we summarize this case in App. C, where we demonstrate
the excellent numerical performance of our code.

In order to present a more applied result, we turn to the
two-nucleon case and consider the Serot-Walecka (SW)
potential [11] as the simplest model for the NN inter-
action (we do not try to tackle precision physics in this
TFG, but to explore the capability of the semiclassical
approach in a toy model). The SW potential reads [7, 11],

V (r) = −ασ
e−mσr

r
+ αω

e−mωr

r
, (27)

FIG. 2. Normalized probability distribution, P (x), for the
AHO with ω = g = m = 1 for high (top panel), medium
(middle) and low (bottom) temperatures. We compare the
path integral result (PI) at 0th and 2nd order and the solution
to the Schrödinger equation (Sch. Eq.) together with Eq. (9).

where the attractive part corresponds to the exchange of
a scalar mode with strength ασ = 6.04 and mass mσ =
500 MeV, and the repulsive part, with αω = 15.17 and
mω = 782 MeV, all parameters chosen to reproduce the
binding energy per nucleon in infinite nuclear matter [11].
To implement this potential, we need to restore the

mass units in our code (fixing the overall scale of the
problem). We present the results for the function g(r) in
Fig. 3, where we consider temperatures of T = 25 MeV
(blue), T = 50 MeV (orange) and T = 75 MeV (green),
typical for low-energy heavy-ion collisions [7, 12] or the
medium formed in neutron star mergers [12]. In the inset,
we show the SW potential of Eq. (27).
At high T , the flucton calculation (lighter-colored sym-

bols) reproduces the classical expectation (darker-colored
lines), only with differences at low r (where the potential
increases). The differences become larger as we decrease
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FIG. 3. Radial distribution function of a gas of nucleons.
We show 3 temperatures: T = 25 MeV (blue), T = 50 MeV
(orange) and T = 75 MeV (green). Data points show the
numerical flucton solution, and lines, the classical expectation
in Eq. (22). In the inset, we show the SW potential for the
NN interaction.

the temperature, indicating that they are of quantum
origin. Since the flucton solution also considers quantum
fluctuations, the additional probability in the classical-
forbidden area is due to quantum penetration into the
potential. We also observe that the maximum of g(r) at
0.9 fm coincides with the minimum of the potential, but
quantum and thermal fluctuations can slightly shift it.

FIG. 4. Second virial coefficient versus temperature for a gas
of nucleons interacting with the SW potential. We show the
results using the flucton solution and the classical expectation.

Finally, we compare, in Fig. 4, the values obtained for
the coefficient B2(T ) using the flucton method of Eq. (26)
with the classical expectation in Eq. (25). We observe
that both the classical and the flucton values are nega-
tive, which means, in accordance with Eq. (24), that the
actual pressure is lower than that of the ideal gas, due to
the net attractive character of the potential. This effect
is more pronounced in the flucton case, where quantum
fluctuations are included, in line with the results of g(r).
Especially at low temperatures, our flucton solution can
be used to account for corrections to the ideal Fermi gas
approximation of infinite nuclear matter.

IV. Conclusions

In this TFG, we have studied the 1D AHO in QM us-
ing the semiclassical approximation. We have improved
the previous results in Ref. [2] by adding second-order
corrections with functional analysis and the GY method.
To the best of our knowledge, this is the first numerical
application of the GY method in QM in the literature.
Additionally, we have also applied the semiclassical ap-
proximation to the two-body problem. Specifically, we
considered two nucleons that interact through the SW
potential, allowing us to access the nuclear matter radial
distribution function and the second virial coefficient.
Our results could be helpful to explore the equation

of state of nuclear matter, for example, in neutron star
mergers. Some other possible extensions could be the
use of the flucton method to atomic systems to study
the properties of a quantum gas of interacting atoms, for
example, through a Lennard-Jones potential.
We are currently working on the application of the

second-order corrections into the two-body problem, to
combine the two main results of this TFG and quantify
the size of the corrections to the results of Figs. 3 and 4.
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Resum: Considerem el formalisme de la integral de camins de Feynman aplicat a diversos sis-
temes quàntics a temperatura finita sota l’aproximació semiclàssica. Per millorar resultats an-
teriors, primer desenvolupem la correcció a segon ordre implementant, numèricament, el mètode
de Gel’fand-Yaglom i l’apliquem a l’oscil·lador anharmònic en una dimensió. Després, estenem el
mètode semiclàssic a un potencial de dos cossos genèric, V (r), i l’apliquem a l’oscil·lador harmònic
en tres dimensions esfèricament simètric, aix́ı com a la interacció nucleó-nucleó, per obtenir diverses
propietats termodinàmiques de la matèria nuclear.
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ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs) 4.
Educació de qualitat. 9. Indústria, innovació, infraestructures.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG, centrat en aspectes teòrics de la mecànica quàntica i la metodologia de la integral
de camins, es relaciona amb l’ODS 4, i, en particular, amb la fita 4.4, ja que contribueix a l’educació avançada en
l’àmbit universitari, fomentant competències d’alt nivell en ciència i tecnologia. A més, pot vincular-se amb l’ODS
9, fita 9.5, ja que la recerca en f́ısica teòrica fomenta el desenvolupament cient́ıfic i tecnològic i impulsa les capacitats
d’investigació en camps amb aplicacions potencialment transformadores.
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Appendices

A. Numerical application of the flucton solution

As explained in Sec. II B, the flucton trajectory, xfl(τ),
is the solution of the classical equation of motion,

mẍfl(τ) = V ′(xfl(τ)) , (A1)

in the interval τ = (0, β) and subjected to the bound-
ary conditions xfl(0) = xfl(β) = x0. In order to make
the problem numerically simpler, we make some slight
modifications to the approach.

Let us first prove that the solution of Eq. (A1) sub-
jected to xfl(0) = xfl(β) = x0 automatically implies that
ẋfl(β/2) = 0.
We define an auxiliary function, x̃fl(τ) := xfl(β − τ).

For values of τ in (0, β), the variable β − τ must also be
in the same interval. So the domain of the new function
is the same as the original. From Eq. (A1), we have

m¨̃xfl(τ) = mẍfl(β − τ) = V ′(xfl(β − τ)) = V ′(x̃fl(τ)) ,
(A2)

that is, x̃fl(τ) is also solution of the same differential
equation (this is nothing but the invariance of the equa-
tions of motion under temporal translations and reflec-
tion). Finally, x̃fl(0) = xfl(β) = x0 and x̃fl(β) = xfl(0) =
x0. Since the solution of a second-order differential equa-
tion with two boundary conditions is unique, and both
solutions (fluctons) satisfy the same equation with the
same conditions in the same interval, they must be the
same function: x̃fl(τ) = xfl(τ), or

xfl(τ) = xfl(β − τ) , (A3)

which shows its symmetry around the midpoint τ = β/2.
From this condition, we arrive at

ẋfl(τ) = −ẋfl(β − τ) , (A4)

which is the antisymmetry property of the velocity
around β/2. Substituting τ = β/2, one obtains
ẋfl(β/2) = −ẋfl(β/2), which implies the condition that
we were trying to prove, ẋfl(β/2) = 0.
In view of this, we transform the second-order ordi-

nary differential equation into a system of two first-order
ordinary differential equations via the introduction of
vfl(τ) := ẋfl(τ),{

ẋfl(τ) = vfl(τ) ,

v̇fl(τ) =
1
mV

′(xfl(τ)) ,
(A5)

where the mixed boundary conditions are xfl(β) = x0
and vfl(β/2) = 0.

Although the probability distribution P (x0) is a func-
tion of the observation point, x0, it is much easier to leave
it unfixed and instead start at the value xext := x(β/2).
Now, we can solve the differential equation from τ =

β/2 to τ = β using the initial conditions xfl(β/2) = xext

and vfl(β/2) = 0. Once we have computed the values in
this interval, we can obtain the ones in (0, β/2) using the
symmetry condition in Eq. (A3). With this method, the
value of x0 will be determined a posteriori, as the value
x0 = x(β).
The numerical implementation uses a finite difference

approximation for both derivatives,{
ẋ(τ) ≈ x(τ+h)−x(τ−h)

2h

v̇(τ) ≈ v(τ+h)−v(τ−h)
2h ,

(A6)

from which we obtain an algorithm to solve the differen-
tial equation numerically,{

xfl(τ + h) ≈ xfl(τ − h) + 2hvfl(τ)

vfl(τ + h) ≈ vfl(τ − h) + 2h
m V ′(xfl(τ))

(A7)

where h is the time step that determines the numerical
precision of the method.
Given a number of steps n, we define h := β/n. We

have used n = 50 for the calculation of the fluctons in
Fig. 1, n = 1000 for the results of the AHO potential in
Fig. 2 and n = 100 for Figs. 3 and 4.
Once the numerical flucton has been calculated, we can

obtain the probability density function in Eq. (14). Both
numerical integrals needed in the action in Eq. (8) and
for the normalization of P (x) as in Eq. (14) have been
computed using the trapezoidal rule.

B. Numerical application of Gel’fand-Yaglom
method

As seen in Sec. II C, the Gel’fand Yaglom method re-
quires to solve the differential equation in Eq. (19),[

−m d2

dτ2
+ V ′′(xfl(τ))

]
ψ(τ) = 0 . (A8)

For example, for the AHO potential, this equation
takes the particular form

mψ̈(τ) =
(
mω2 + 6g2xfl(τ)

2
)
ψ(τ) (A9)

with the initial conditions ψ(0) = 0 and ψ̇(0) = 1. Notice
that in Eq. (A9), the flucton path, xfl(τ), is a complicated
function of τ which is known numerically. Even employ-
ing the analytical solution found in [10] for the flucton
of the AHO, the resulting differential equation is highly
intricate and we only hope to obtain a numerical solution.
In order to solve this equation, we introduce ϕ(τ) :=

ψ̇(τ) and formally use the same method of finite differ-
ence approximation as in the previous section,{
ψ(τ + h) ≈ ψ(τ − h) + 2hϕ(τ)

ϕ(τ + h) ≈ ϕ(τ − h) + 2h
m

(
mω2 + 6g2xfl(τ)

2
)
ψ(τ)

(A10)
We start the method at τ = 0 and run it until we reach

τ = β. The determinant of the differential operator in
Eq. (15) is given as the value ψ(β).
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C. Solution of 3D spherical harmonic oscillator

As stated in Sec. III B, the simplest, exactly-solvable
potential for the two-body problem is the 3D spherically-
symmetric HO potential,

V (r) =
1

2
µω2r2 , (A11)

where µ is the reduced mass of the two-body system and
r is the radial variable, taking values in (0,∞). In the
case of two identical particles, µ = m/2, where m is their
individual mass.

In this situation, the analytical solution of the equation
of motion

µr̈fl(τ) = V ′(rfl(τ)) = µω2rfl(τ) , (A12)

for rfl(0) = rfl(β) = r0 is really easy to obtain,

rfl(τ) = r0
e(β−τ)ω + eτω

eβω + 1
. (A13)

From this analytical expression, we proceed as detailed
in Sec. II B by computing the Euclidean action and the
probability distribution, P̃ (r). We normalize it so that∫ ∞

0

drP (r) = 1 (A14)

and finally arrive at the probability density function,

P (r) =
4√
π
[µω tanh(ωβ/2)]

3/2
r2e−µωr2 tanh(ωβ/2) .

(A15)
This is the analytical result for P (r) using the flucton

solution (or zeroth-order approximation in the semiclas-
sical expansion). It is easy to see that in this case, the
second-order contribution is a constant (and therefore
can be absorbed in the normalization), and that higher
orders vanish. Therefore, we expect this expression to be
the exact analytical solution for the thermal 3D HO case.

In Fig. 5, we observe an excellent agreement between
the probability density function obtained from our nu-
merical flucton and the analytical result in Eq. (A15),
demonstrating that our code works properly.

On the other hand, we can alternatively approach P (r)
using the spectral decomposition in Eq. (9) with the
known wavefunctions of the 3D HO potential. The equiv-
alent expression in spherical coordinates is (we have in-
tegrated over the angles using the spherical harmonics)

P (r) =
1∑

n,l e
−En,lβ

∑
n,l

(2l + 1)r2(Rn,l(r))
2e−En,lβ ,

(A16)
with l = 0, 1, 2, 3... (with degeneracy gl = 2l + 1) and

n = l, l + 2, l + 4, l + 6...
The eigenvalues (energies) of the exact solutions of the

3D spherical HO from the Schrödinger equation are

En = ω

(
n+

3

2

)
, (A17)

FIG. 5. Symbols: P (r) obtained from the numerical flucton
path solution of the 3D HO for three different values of β.
Lines: analytical solutions of P (r) obtained from the analyt-
ical flucton, and given in Eq. (A15).

and the eigenfunctions,

Rn,l(r) =

[(
n−l
2

)
!
(
n+l
2

)
! 2n+l+2

(n+ l + 1)!
√
πα2l+3

]1/2

rle−
r2

α2 L
l+ 1

2
n−l
2

(
r2

α2

)
,

(A18)

where α = 1/
√
µω, and the L

l+ 1
2

n−l
2

(
r2

α2

)
are the general-

ized Laguerre polynomials. Eqs. (A17), (A16) and (A18)
have been extracted from the book Quantum Mechanics,
vol. 1 by A. Messiah, North Holland Publishing Com-
pany, Amsterdam (1967).
It seems impressive that Eq. (A15) should be equal to

Eq. (A16). While we were not able to analytically prove
the equality between them, we have numerically checked
the agreement to a very high precision for different values
of m,ω and β = 1/T . This can be seen in Fig. 6 for m =
ω = 1, where we observe a precise alignment between the
numerical P (r) obtained from the flucton path and the
solution given by Eq. (A16), where the energy level sum
has been carried out up to high enough values of n and
l.

FIG. 6. Symbols: P (r) obtained from the numerical flucton
path solution of the 3D HO for three different values of β.
Lines: analytical solutions of P (r) obtained from the solution
of the Schrödinger equation.
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