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Abstract: General Relativity (GR) predicts that black holes have singularities in their interiors.
How they get resolved is a fundamental problem in theoretical physics. Regular black holes (RBHs)
are a class of spacetimes that achieve this by replacing the singularities in their interiors with regular
cores. In this work, we first present the general properties of RBHs and explain why they are difficult
to obtain as solutions to actual physical theories. Then, we review a recently proposed mechanism
for obtaining RBHs as solutions to GR coupled to infinite towers of higher-curvature corrections in
D ≥ 5 spacetime dimensions. As a new result in the literature, we construct a regular black hole
with four horizons in D = 8 for one of these theories. This represents the first example of this class
with more than two horizons.
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I. INTRODUCTION

Black holes represent some of the most fundamental
and mysterious objects in physics. A black hole is char-
acterized by the presence of an event horizon. This is a
spacetime boundary which causally disconnects its inte-
rior from its exterior: no object, not even light, which
goes through an event horizon can ever go back (at least
not classically). General relativity (GR) predicts that
the generic result of the gravitational collapse of ordinary
matter is a black hole which hides a spacetime singularity
in its interior [1]. A singularity is a region of spacetime
in which the gravitational field would become infinitely
intense and the very notions of space and time would
cease to make sense. As a consequence, spacetime singu-
larities are expected to be unphysical. Their resolution
within a theory of gravity beyond GR is one of the most
important challenges in theoretical physics.

One possibility is that black holes might not actually
contain singularities; instead, they could be regular ob-
jects. Regular black holes (RBHs) are characterized by
the presence of two or more horizons and the absence
of curvature singularities. For them, the near-singularity
region is replaced by a regular core where all physical
magnitudes remain finite. However, RBHs turn out to
be remarkably difficult to obtain as solutions to sensible
generalizations of GR.

RBHs have a long history, the first proposals dating
back to the 60’s of the previous century. These involved
ad hoc metrics, specifically customized to avoid singular-
ities but which did not satisfy any equations of motion.
Notable examples of this type include the models pro-
posed by Bardeen, Hayward, Dynmnikova and Sakharov
[2–5]. Consider for instance the Hayward black hole met-
ric. This is a static and spherically symmetric (SSS)
spacetime with metric

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) (1)

where

N(r) = 1 , f(r) = 1− mr2

r(D−1) + αm
. (2)

Naturally, this reduces to the D-dimensional
Schwarzschild spacetime when the parameter α vanishes,
as well as in the asymptotic region. On the other hand,
the singularity is replaced by a regular core. One finds

f(r)
r→∞
= 1− m

rD−3
+ · · · , f(r)

r→0
= 1− r2

α
+ · · · (3)

where it is apparent that the interior region is replaced
by a regular de Sitter core.

More recently, RBHs have been obtained as solutions of
GR coupled to non-linear electrodynamics—see e.g., [6].
Unfortunately, these require highly unusual and poorly
motivated Lagrangians, the solutions are non-generic,
and they require a certain degree of fine tuning between
the theory parameters and the physical properties of the
solutions.

On more general grounds, singularities are expected to
be resolved within a complete quantum theory of grav-
ity. Quantum gravity corrections to GR typically arise in
the form of infinite towers of higher-curvature corrections
to the Einstein-Hilbert action, weighted by some funda-
mental scale(s). For example, such kind of towers are
predicted by string theory, where the scale is related to
the fundamental string tension. Unfortunately, capturing
the effects of such towers within a top-down setup is very
challenging in general. Recently, a bottom-up approach
to capture these effects has been proposed in the context
of spherically symmetric black holes [7]. Notably, this
leads to a generic resolution of the Schwarzschild black
hole singularity in D ≥ 5 spacetime dimensions. In this
TFG, we review solutions of RBHs already discussed in
the literature and introduce some new cases using this
approach.

The rest of the document is organized as follows: in
section II we present the general properties of RBHs.
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FIG. 1: The metric function f(r) is represented for various
black hole models in D = 4. We plot the Dymnikova (blue
line), Bardeen (purple line) and Hayward (black line) solu-
tions, all of which are regular. We also plot the Schwarzschild
solution (red line). In all models, the mass M and character-
istic length l are set to identical values. In all cases there are
two horizons and the metric behaves as (5) near r = 0.

In section III we discuss the gravitational effective ac-
tion. Section IV introduces Quasi-topological gravities,
the framework in which we will work through the rest of
the TFG. In Subsection IV.A we explain the construc-
tion of RBH solutions for those theories. This includes
the previously known cases with two horizons, and a new
solution with four horizons in D = 8.

II. GENERAL PROPERTIES OF REGULAR
BLACK HOLES

RBHs replace the usual spacetime singularity by a reg-
ular core. By doing so, they eliminate the point where
GR predicts infinite curvature and replace it with a re-
gion where these quantities take finite values [8, 9].

This class of black holes has finite curvature invari-
ants everywhere, therefore avoiding the infinities of these
scalars associated with classical models. Any divergence
in curvature scalars indicates the presence of a true space-
time singularity. For example, consider the Kretschmann
invariant, defined as the contraction of two Riemann ten-
sors, K = RabcdR

abcd . The Kretschmann invariant for
the Schwarzschild and the previously introduced Hay-
ward metrics takes the following values close to r = 0

KSchwarzschild
r→0∼ r−2(D−1), KHayward

r→0∼ α−2 (4)

for an arbitrary D spacetime dimensions.
Generically, for static and spherically symmetric RBHs

characterized by a single metric function, the behavior of

f(r) near r = 0 in Schwarzschild coordinates reads

f = 1−O(r2) , (5)

which ensures the smoothness and regularity of the solu-
tion. At long distances, however, the metrics are usually
built such that they approach the Schwarzschild one. In
Fig. 1 we plot various proposed metrics describing RBHs.

RBHs have an outer event horizon, beyond which noth-
ing can escape, but they also possess an inner horizon,
where the metric is static again. The inner horizon sep-
arates the outside part of the event horizon interior from
the region with the regular core at the center. Inner hori-
zons are known to be potentially unstable under small
perturbations, giving rise to the so-called “mass-inflation
instabilities” [10, 11]. These would involve an infinite
blueshift of even tiny amounts of energy which crossed
it, leading to a breakdown of spacetime and, effectively,
to a spacetime singularity. However, in the absence of dy-
namical models in which RBHs arise as actual solutions,
it is difficult to address the existence and implications of
such putative instabilities. In fact, recent results suggest
that mass-inflation instabilities can be avoided by consid-
ering inner-extremal RBHs [12], namely, RBHs for which
the inner horizon has a vanishing surface gravity.

As mentioned earlier, finding RBHs as bona fide so-
lutions to gravitational theories has been an outstand-
ing challenge since the first ad hoc models were pro-
posed. While quantum gravity models are expected to re-
solve spacetime singularities, finding explicit mechanisms
which achieve this feature has remained completely out
of reach, both due to conceptual and technical reasons,
which we briefly comment on next.

III. QUANTUM GRAVITY AND
GRAVITATIONAL EFFECTIVE ACTION

GR is an incomplete theory. On the one hand, it pre-
dicts the existence of singularities and, on the other, it is
a classical theory, namely, it does not respect the princi-
ples of quantum mechanics.

Several candidates for a quantum theory of gravity
have been proposed in the literature. A prototypical ex-
ample is string theory, which at low energies predicts GR
coupled to various matter fields (in the form of a super-
gravity theory) as well as a series of corrections. These
corrections involve contractions of the Riemann tensor
and the rest of fields and can be organized in a series ex-
pansion of increasing higher-curvature terms. Restrict-
ing the discussion to the gravitational sector, the correc-
tions would read αR2+βR2

abcd+ · · · , where the couplings
(α, β,...) would be controlled by some fundamental scale,
such as the string tension [13]. In general, it is extremely
difficult to fully account for all these corrections and their
effects and the existing studies confine their analysis to
the study of the leading perturbative corrections.

Alternatively, we can pursue a bottom-up approach.
This involves using the gravitational effective action,
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which includes all diffeomorphism-invariant corrections
to the classical action up to field redefinitions [14]. In
this method, we expand the action as a series of terms,
again organized in powers of the curvature, where the
couplings are a priori unconstrained. One feature of this
method is that we can choose different equivalent bases
of invariants, as long as the couplings are considered per-
turbative corrections to Einstein gravity. A particularly
useful basis is provided by Quasi-topological (QT) grav-
ities, which we will discuss next [15].

IV. QUASI-TOPOLOGICAL GRAVITY BLACK
HOLES

Let us consider a general theory of gravity in D dimen-
sions, involving arbitrary contractions of the Riemann
tensor and the metric. The Lagrangian can be written
as L(gab, Rcdef ). The field equations for this theory can
be expressed as

P cde
a Rbcde −

1

2
gabL − 2∇c∇dPabcd = 0 , (6)

where P abcd ≡ ∂L/∂Rabcd. Consequently, the equations
of motion generally contain up to fourth-order deriva-
tives of gab, with the contributions involving more than
two derivatives arising from the last term. In Lovelock
theories [16], however, this term is absent, meaning that

∇aPabcd = 0 , (Lovelock) (7)

so the field equations remain second-order for any metric.
QT gravities [17–20] are a more general class of high-

curvature theories of gravity. Their defining property is
that their field equations involve up to two derivatives
when restricted to a general SSS metric (1), namely,

∇aPabcd|SSS = 0 , (Quasi-topological). (8)

Hence, Lovelock gravities are particular examples of QT
gravities. However, the latter exist at all curvature or-
ders for any dimension D ≥ 5, as opposed to Lovelock
theories, which only exist for n ≤ ⌊(D − 1)/2⌋.

The action of these QT gravities is constructed by in-
troducing an arbitrary number of terms into the Einstein-
Hilbert action, and it takes the following form

I =
1

16πG

∫
dDx

√
|g|

[
R+

nmax∑
n=2

αnZn

]
, (9)

where R is the Ricci scalar, αn represent arbitrary cou-
pling constants with dimensions of length2(n−1) and Zn

are the quasi-toplogical densitites of order n in curvature.
These are constructed from contractions of the Riemann
tensor and the metric. At each curvature order there
exist several possible QT densities, but all of them con-
tribute in the same way to the equations of motion of
SSS spacetimes, so it suffices to choose a single repre-
sentative at each order. Representatives of the densities

corresponding to the first five curvature orders can be
found in the Appendix.

Remarkably, there exists a recursive formula which al-
lows one to construct arbitrarily high order QT densities
taking the first five as seeds [21]. This reads

Zn+5 =
3(n+ 3)Z1Zn+4

D(D − 1)(n+ 1)
− 3(n+ 4)Z2Zn+3

D(D − 1)n
(10)

+
(n+ 3)(n+ 4)Z3Zn+2

D(D − 1)n(n+ 1)
. (11)

Applying the ansatz presented in (1) to the action (9),
it is possible to show that the full equations of motion of
the theory get drastically simplified and reduce to[22]:

dN

dr
= 0,

d

dr
[rD−1h(ψ)] = 0 , (12)

where :

h(ψ) ≡ ψ +

nmax∑
n=2

αnψ
n, ψ ≡ 1− f(r)

r2
. (13)

Consequently we will have that N(r) = 1 and that f(r)
is determined by the algebraic equation

h(ψ) =
m

rD−1
, (14)

where m is an integration constant, proportional to the
ADM mass. The simplicity of these equations allows us
to study QT black hole solutions beyond the perturbative
regime, which we do next.

A. Regular black holes

In this section we will explain how RBHs arise as so-
lutions to QT gravities when an infinite number of terms
is included in the action [7]. In the case of nmax = N ,
when a finite number of terms are added to the action,
the black hole core is dominated by the highest order con-
tribution and the metric function around r = 0 behaves
as follows:

f = 1−
(
m

αN

)1/N

r2−(D−1)/N + . . . (15)

For finite N , a curvature singularity exists at r = 0, but
as N becomes larger the singularity weakens. Remark-
ably, when N tends to infinity, the singularity completely
disappears, resulting in a de Sitter core and finite curva-
ture invariants everywhere. This phenomenon takes place
whenever the coupling constants of the theory satisfy cer-
tain mild and qualitative conditions. For instance, a set
of sufficient conditions reads

αn ≥ 0 ∀n, lim
n→∞

(αn)
1/n = C > 0 . (16)

The conditions essentially arise out of the necessity of
inverting (14) for all values of r, which requires h(ψ) to
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FIG. 2: The metric function f(r) presented in (17) is shown
for a regular black hole with two horizons in D = 5 with
m = 1, α = 0.03. The black line represents the regular so-
lution, while the blue ones represent the solution for nmax =
2, 3, 4, 5, 6, 7, 9. The red line corresponds to the Schwarzschild
black hole. The inset plot represents the Kretschmann invari-
ant of the solutions in a log-log scale. Observe that it is only
when nmax → ∞ that K remains finite at r = 0.

be a monotonic function whose range covers all positive
values.

As opposed to all known previous mechanisms, RBHs
arise in this context as the unique SSS solutions of the
corresponding theories and for generic values of the grav-
itational couplings. In fact, it has been shown that QT
theories satisfy a Birkhoff theorem, which means that
their RBHs are in fact their most general spherically sym-
metric solutions and that they describe the exterior of
any spherical matter distribution [21].

1. Regular black holes with two horizons

The first class of regular black holes that we explore
are those characterized by two horizons. They can be
constructed using (13) when the sum goes to infinity.

Following the work in [7], we now examine a solution
of a regular black hole when we consider αn = nαn−1.
We obtain it by evaluating the sum in (13) and solving
(14). The metric function is

f(r) = 1− 2mr2

2αm+ rD−1 +
√
r2(D−1) + 4αmrD−1

. (17)

As shown in Fig. 2, the Schwarzschild solution diverges
at r = 0, while the solution for the regular black hole
and the case with N finite (provided N > 2) tend to 1.
We observe that both the Schwarzschild solution and the
solution for finite N exhibit a curvature singularity at the
origin, while in the regular one the curvature invariant
tends towards a constant value, as illustrated in the inset
plot.

2. Regular black holes with four horizons

We will now examine a variant of RBH solutions with
four horizons in D = 8, using the same method we used
for two horizons, and confirm that these solutions are reg-
ular. This is the first time a RBH with four horizons has
been presented using the purely gravitational models in-
troduced earlier in (9) and the first RBH with more than
two horizons embedded in an actual gravitational theory.
In order to obtain four horizons, we extend the sum in
(13) to nmax = 4, yielding the following expression:

ψ + α2ψ
2 + α3ψ

3 + α4ψ
4 =

m

r7
. (18)

In order to determine the range values of the parame-
ters, we use that f(rh) = 0 at the horizons. Therefore,
we solve (18) with ψ = 1/r2 and look for theories for
which this has four positive roots. We find an instance
for the following values: m = 0.108, α2 = −1, α3 = 2

5 ,
α4 = 0.001, but note that additional solutions with four
horizons can be found by continuously varying the above
values of the mass and the rest of parameters.

With these choices we obtain a black hole with four
horizons. However, it is not regular because its behavior
near r = 0 is not like f = 1 − O(r2). In order to con-
struct a regular solution, we need to add to (18) a sum
from n = 5 to infinity. We can do so by using Hayward-
type couplings, namely, αn = αn−1 with α = 0.00023.
Consequently, we would need to solve

ψ + α2ψ
2 + α3ψ

3 + α4ψ
4 +

αψ5

1− αψ
=
m

r7
(19)

in order to find f(r), which cannot be done explicitly.
We plot it in Fig. 3. Near r = 0, it behaves as

f(r)
r→0
= 1− 100000

23
r2 +O(r9) ,

and it has four positive roots corresponding to the
four horizons. It also behaves asymptotically like a
Schwarzschild black hole,

f(r)
r→∞
= 1− 27

250
r−5 +O(r−12) .

V. CONCLUSIONS

In this TFG, we have introduced RBHs and reviewed a
proposed mechanism to obtain them as generic solutions
to purely gravitational theories which involve correcting
GR by infinite towers of higher-curvature corrections of
the Quasi-topological class. We have then applied this
method to construct a RBH solution with two horizons
in general D as well as another one with four horizons in
D = 8, which is the first of this kind. Naturally, it would
be interesting to perform a full exploration of the general
conditions under which multiple-horizon black holes may
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FIG. 3: The f(r) is represented for a RBH with four horizons
in D = 8, utilizing the previously specified parameter values
(blue line). We also plot the Schwarzschild black hole of the
same mass (red line). The inset plot provides a zoomed-in
view of the function near r = 0.

exist in each spacetime dimension while maintaining the
solutions’ regularity.

It is known that black holes are formed from the col-
lapse of matter according to GR, but in this TFG we have
not considered how this takes place for RBHs within QT
theories. Such analysis was performed in [21] in the case
of two-horizon RBHs and it would be interesting to re-
peat it in the multiple-horizon case, where new phenom-
ena may arise due to the expected intricate structure of
the corresponding effective potentials for collapsing shells
or stars.

Finally, we have stated several times that QT gravities
are only defined in dimensions larger than four. From a
mathematical perspective, this is because QT densities
do not exist in D = 4. It would be interesting to in-
vestigate if a similar mechanism to resolve singularities
could be found in D = 4 using a different class of higher-
curvature modifications to Einstein gravity.

Acknowledgments

First, I would like to thank my advisor, Dr. Pablo
Bueno, for his help and guidance through the entire jour-
ney. I would also want to thank my parents and my
friends. Without their support, this would not have been
possible.

[1] J. M. M. Senovilla, Singularity Theorems and Their Con-
sequences, Gen. Rel. Grav. 30 (1998), 701

[2] J. Bardeen, Non-singular general relativistic gravitational
collapse, in Proceedings of the 5th International Confer-
ence on Gravitation and the Theory of Relativity, p. 87,
Sept., (1968)

[3] S. A. Hayward, Formation and evaporation of regu-
lar black holes, Phys. Rev. Lett. 50 (2006) 031103 [gr-
qc/0506126]

[4] I. Dymnikova, Vacuum nonsingular black hole, Gen. Rel.
Grav. 24 (1992) 235-242

[5] A. D. Sakharov, Nachal’naia stadija rasshirenija Vse-
lennoj i vozniknovenije neodnorodnosti raspredelenija
veshchestva, Sov. Phys. JETP 22 (1966) 241

[6] E. Ayon-Beato and A. Garcia, Regular black hole in gen-
eral relativity coupled to nonlinear electrodynamics, Phys.
Rev. Lett. 80 (1998) 5056–5059 [gr-qc/9911046]

[7] P. Bueno, P. A. Cano and R. A. Hennigar, Regular Black
Holes From Pure Gravity, Phys. Lett. B 861 (2025),
139260 [2403.04827]

[8] C. Lan, H. Yang, Y. Guo and Y. G. Miao, Regular black
holes: A short topic review, Int. J. Theor. Phys. 62
(2023) no.9, 202 [2303.11696]

[9] A. Bonanno and F. Saueressig, Stability properties of Reg-
ular Black Holes (2022) [2211.09192]

[10] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio
and M. Visser, On the viability of regular black holes,
JHEP 07 (2018) 023 [1805.02675]

[11] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio
and M. Visser, Inner horizon instability and the unsta-
ble cores of regular black holes, JHEP 05 (2021) 132

[2101.05006]
[12] F. Di Filippo, I. Kolář and D. Kubiznak, Inner-extremal

regular black holes from pure gravity (2024) [2404.07058]
[13] L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lüst

and A. Riotto, Aspects of Quadratic Gravity, Fortsch.
Phys. 64 (2016) no.2-3, 176-189

[14] S. Endlich, V. Gorbenko, J. Huang and L. Senatore, An
effective formalism for testing extensions to General Rel-
ativity with gravitational waves, JHEP 09 (2017), 122

[15] P. Bueno, P. A. Cano, J. Moreno and Á. Mur-
cia, All higher-curvature gravities as Generalized quasi-
topological gravities, JHEP 11 (2019) 062 [1906.00987]

[16] D. Lovelock, The Einstein tensor and its generalizations,
J. Math. Phys. 12 (1971) 498-501.

[17] J. Oliva and S. Ray, A new cubic theory of gravity in
five dimensions: Black hole, Birkhoff’s theorem and C-
function, Class. Quant. Grav. 27 (2010), 225002

[18] R. C. Myers and B. Robinson, Black Holes in Quasi-
topological Gravity, JHEP 08 (2010) 067 [1003.5357]

[19] P. Bueno, P. A. Cano and R. A. Hennigar, (Generalized)
quasi-topological gravities at all orders, Class. Quant.
Grav 37 (2020) no. 1 015002 [1909.07983]

[20] P. Bueno, P. A. Cano, R. A. Hennigar, M. Lu and
J. Moreno, Generalized quasi-topological gravities: the
whole shebang, Class. Quant. Grav. 40 (2023) no. 1
015004 [2203.05589]

[21] P. Bueno, P. A. Cano, R. A. Hennigar and Á. J. Murcia,
Dynamical Formation of Regular Black Holes, Phys. Rev.
Lett. 134 (2025) no.18, 181401 [2412.02742]

[22] See e.g., appendix A of [7]

Treball de Fi de Grau 5 Barcelona, June 2025

http://arxiv.org/abs/gr-qc/0506126
http://arxiv.org/abs/gr-qc/0506126
https://arxiv.org/abs/gr-qc/9911046
https://arxiv.org/abs/2403.04827
https://arxiv.org/abs/2303.11696
https://arxiv.org/abs/2211.09192
https://arxiv.org/abs/1805.02675
https://arxiv.org/abs/2101.05006
https://arxiv.org/abs/2404.07058
https://arxiv.org/abs/1906.00987
https://arxiv.org/abs/1003.5357
https://arxiv.org/abs/1909.07983
https://arxiv.org/abs/2203.05589
https://arxiv.org/abs/2412.02742


Regular Black Holes Roger Picañol Narbona

Forats Negres Regulars

Author: Roger Picañol Narbona, rpicanna7@alumnes.ub.edu
Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Dr. Pablo Bueno Gómez, pablobueno@ub.edu

Resum: La Relativitat General (RG) prediu que els forats negres tenen singularitats en els seus
interiors. La seva resolució presenta un problema fonamental en la física teòrica. Els forats negres
regulars són una classe d’espaitemps que ho aconsegueixen substituint les singularitats dels seus
interiors per nuclis regulars. En aquest document primer es presenten les propietats generals dels
forats negres regulars i s’explica per què és difícil obtenir-los com a solucions de teories físiques.
Després, revisem un mecanisme proposat recentment per a obtenir aquest tipus de forats negres
com a solucions de RG amb una torre infinita de correccions d’alta curvatura en D ≥ 5 dimensions
espaitemporals. Com a resultat nou en la literatura, hem construït un forat negre regular amb quatre
horitzons en D = 8 per a una d’aquestes teories. Aquest representa el primer exemple d’aquesta
classe amb més de dos horitzons.
Paraules clau: Relativitat General, Forats Negres, Singularitats de l’Espaitemps, Curvatura,
Horitzó d’Esdeveniments.
ODSs: ODS 4 - Educació de Qualitat.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats
2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar 12. Consum i producció responsables
4. Educació de qualitat X 13. Acció climàtica
5. Igualtat de gènere 14. Vida submarina
6. Aigua neta i sanejament 15. Vida terrestre
7. Energia neta i sostenible 16. Pau, justícia i institucions sòlides
8. Treball digne i creixement econòmic 17. Aliança pels objectius
9. Indústria, innovació, infraestructures

El contingut d’aquest TFG es pot relacionar amb l’ODS 4, d’educació de qualitat, ja que contribueix a l’eduació
universitària en el camp de física fonamental.
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Appendix A: Quasi-topological densities

Let Zn denote the densities constructed from n-th order curvature invariants. Wabcd denotes the Weyl curvature
tensor and Zab the traceless part of the Ricci curvature tensor. The first five densities read:

Z(1) = R ,

Z(2) =
1

(D − 2)

[
W abcdWabcd

D − 3
− 4ZabZ

ab

D − 2

]
+

Z2
(1)

D(D − 1)
,

Z(3) =
24

(D − 2)(D − 3)

[
Wac

bdZa
bZ

c
d

(D − 2)2
− WacdeW

bcdeZa
b

(D − 2)(D − 4)
+

2(D − 3)Za
bZ

b
cZ

c
a

3(D − 2)3
+

(2D − 3)W ab
cdW

cd
efW

ef
ab

12(D((D − 9)D + 26
)
− 22)

]

+
3Z(1)Z(2)

D(D − 1)
−

2Z3
(1)

D2(D − 1)2
,

Z(4) =
96

(D − 2)2(D − 3)

[
(D − 1)(WabcdW

abcd)2

8D(D − 2)2(D − 3)
−

(2D − 3)Zf
e Z

e
fWabcdW

abcd

4(D − 1)(D − 2)2
− 2WabcdW

cefgW d
efgZ

ab

D(D − 3)(D − 4)

− 4ZacZdeW
bdceZb

a

(D − 2)2(D − 4)
+

(D2 − 3D + 3)(Zb
aZ

a
b )

2

D(D − 1)(D − 2)3
− Zb

aZ
c
bZ

d
cZ

a
d

(D − 2)3
+

(2D − 1)WabcdW
aecfZbdZef

D(D − 2)(D − 3)

]

+
4Z(1)Z(3) − 3Z2

(2)

D(D − 1)
,

Z(5) =
960(D − 1)

(D − 2)4(D − 3)2

[
(D − 2)WghijW

ghijWab
cdWcd

efWef
ab

40D(D3 − 9D2 + 26D − 22)
+

4(D − 3)Zb
aZ

c
bZ

d
cZ

e
dZ

a
e

5(D − 1)(D − 2)2(D − 4)

− (3D − 1)W ghijWghijWacdeW
bcdeZa

b

10D(D − 1)2(D − 4)
− 4(D − 3)(D2 − 2D + 2)Zb

aZ
a
bZ

d
cZ

e
dZ

c
e

5D(D − 1)2(D − 2)2(D − 4)

− (D − 3)(3D − 1)(D2 + 2D − 4)W ghijWghijZ
d
cZ

e
dZ

c
e

10D(D − 1)2(D + 1)(D − 2)2(D − 4)
+

(5D2 − 7D + 6)Zh
gZ

g
hWabcdZ

acZbd

10D(D − 1)2(D − 2)
)

+
(D − 2)(D − 3)(15D5 − 184D4 + 527D3 − 800D2 + 472D − 88)Wab

cdWcd
efWef

abZh
gZ

g
h

40D(D − 1)2(D − 4)(D5 − 15D4 + 91D3 − 277D2 + 418D − 242)

−
2(3D − 1)ZabWabcdZ

efWe
c
f
gZd

g

D(D2 − 1)(D − 4)
− Zb

aZ
c
bZcdZefW

eafd

(D − 1)(D − 2)
+

(D − 3)WacdeW
bcdeZa

bZ
d
cZ

c
d

5D(D − 1)2(D − 4)

− (D − 2)(D − 3)(3D − 2)Za
bZ

b
cWdaefW

efghWgh
dc

4(D − 1)2(D − 4)(D2 − 6D + 11)
+
WghijW

ghijZacZbdWabcd

20D(D − 1)2

]

+
5Z(1)Z(4) − 2Z(2)Z(3)

D(D − 1)
+

6Z(1)Z2
(2) − 8Z2

(1)Z(3)

D2(D − 1)2
.
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