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Abstract: In this work, coherent states and their properties have been studied. It has been shown
that the electric field of a coherent state resembles the classical solution of Maxwell equations. The
phase of a coherent state has been studied, showing that in the asymptotic limit of average photon
numbers, a coherent state has a well-defined phase. Finally, the squeezed state of the vacuum has
been studied, showing it is related to the Lie group SU(1,1), both for 1 and 2 modes of oscillation,
and has a smaller uncertainty in one of the quadratures than a coherent state.
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I. INTRODUCTION

Coherent states were introduced by Glauber in [1] who
showed that they provide an adequate means for a quan-
tum description of coherent laser light beams. It turns
out that a coherent state is a quantum superposition of
states with different number of photons, which has no
classical counterpart whatsoever. Yet, the expectation
value of the electric field in a coherent state is the ex-
pression of the classical monochromatic wave solution of
the Maxwell equations. Moreover, for a large number of
the photon mean value, the coherent state (i.e., the laser
beam) has a well defined phase, as will be discussed be-
low following the work of [2]. Squeezed states are also
superpositions of states with different photon numbers.
These states have less uncertainty in a quadrature than
a coherent state and are related to the group of dilations,
either by one mode or by two, as will be discussed follow-
ing [4], [6] and [3]. Throughout this work, we will restrict
to the study of one mode of oscillation, unless the latter
part of the work. We will work in natural units ℏ = 1

II. GLAUBER COHERENT STATES

Coherent states may be defined as the eigenstates
of the annihilation operator of the quantum oscillator,
which means

â |α⟩ = α |α⟩ . (1)

Let q̂ and p̂ be operators such that [q̂, p̂] = i. These op-
erators are the so-called quadratures of the optical phase
space. The quadrature operators are defined by:

q̂ =
â+ â†√

2

p̂ = i

(
â† − â√

2

)
.

(2)

The operators â and â† are the annihilation and creation
operators for the quadratures q̂ and p̂.

Now we define the coherent states by

|α⟩ = D̂(α) |0⟩ , (3)

where D̂(α) is the displacement operator in the optical
phase space

D̂(α) = eαâ
†−α∗â. (4)

The coherent states are defined to be displaced forms of
the ground state |0⟩ by an amount α ∈ C
To find the form of |α⟩ we use the Baker-Campbell-

Hausdorff formula to express D̂(α) as a product of expo-
nential operators

D̂(α) = e
−1
2 |α2|eαâ

†
e−α∗â, (5)

since [â, â†] = 1.
As â |0⟩ = 0, equation (3) can be expressed as

|α⟩ = D̂(α) |0⟩ = e
−1
2 |α2|eαâ

†
|0⟩ (6)

= e
−1
2 |α2|

∑
n

(α)n√
n!

|n⟩ , (7)

given that |n⟩ = (n!)−1/2(â†)n |0⟩.
Now the expectation value for the number of photons

for a coherent state

⟨N̂⟩ = ⟨α| â†â |α⟩ = ⟨α|α∗α |α⟩ = |α|2

⟨N̂2⟩ = ⟨α| â†ââ†â |α⟩ = |α|2(⟨α| â†â |α⟩+ 1) = |α|4 + |α|2,

and

∆N̂ =

√
⟨N̂2⟩ − ⟨N̂⟩

2
= |α|.

From these expressions, one can extract that the prob-
ability of finding n photons in a coherent state | ⟨n|α⟩ |2
follows a Poisson distribution with variance equal to ⟨N̂⟩
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| ⟨n|α⟩ |2 =
|α|2

n!
e−|α|2 =

⟨N̂⟩
n

n!
e−⟨N̂⟩. (8)

.
Since the number states |n⟩ evolve with the Hamilto-

nian Ĥ = ωN̂ as |n⟩t = e−iwnt |n⟩, the time evolution in
the Schrödinger picture for a coherent state will be

|α⟩t = e−
1
2 |α

2|
∑
n

(αe−iwt)n√
n!

|n⟩ = |α(t)⟩ , (9)

where we have defined α(t) ≡ αe−iwt Now we can see

that the fluctuations ∆N̂ are not time dependent.

∆N̂2(t) = |α(t)|2 = |α|2 = ∆N̂2. (10)

A. ELECTRIC FIELD OF A COHERENT STATE

The expression for the one mode contribution to the
electric field using quantum field formalism is

E⃗(x⃗) = i

√
ω

2V

(
e⃗k⃗e

ik⃗x⃗â− e⃗∗
k⃗
e−ik⃗x⃗â†

)
, (11)

where e⃗k⃗ is the polarization vector, perpendicular to the

mode of oscillation, i.e. k⃗ · e⃗k⃗ = 0.
It can be seen that the expectation value for the electric

field for any photon number state |n⟩

⟨n|E⃗(x⃗)|n⟩ = 0.

However, averaging using a coherent state, the electric
field not only doesn’t vanish, but becomes a plane wave.

⟨α(t)|E⃗(x⃗)|α(t)⟩ = ⟨α(t)| i
√

ω

2V

(
e⃗k⃗e

ik⃗x⃗â− h.c.
)
|α(t)⟩

Using our definition (1) and using basic complex algebra
since α(t) = |α|eiϕe−iωt

⟨α(t)|E⃗(x⃗)|α(t)⟩ = i

√
ω

2V

(
e⃗k⃗e

ik⃗x⃗α(t)− c.c.
)

=

√
2ω

V
|α| sin(k⃗x⃗− ωt+ ϕ)e⃗k⃗.

(12)

It can also be seen, as e⃗k⃗ · e⃗∗
k⃗
= 1

⟨α(t)|E⃗2(x⃗)|α(t)⟩ = ω

2V

(
(1 + 4|α|2 sin2(k⃗x⃗− ωt+ ϕ)

)
,

(13)
which leads to a constant and time independent uncer-
tainty

(∆E⃗)2 =
ω

2V
. (14)

From these results, one extracts that coherent states re-
sembles the classical solution for Maxwell equations.

III. PHASE OPERATOR

Since we have characterized the coherent states as dis-
placed forms of the ground state, and we have related the
amplitude of that displacement to the expected number
of photons, we now try to get insight on the phase of that
displacement on the optical phase space.

A. Number and phase operators

Following [2], we consider the operators defined as

(êiϕ)† = â†(N̂ + 1)−1/2, êiϕ = (N̂ + 1)−1/2â. (15)

It should be noted that these operators do not corre-
spond to an exponential of some operator, but are a
definition which will help us to later define operators
which are indeed hermitian.

The operator êiϕ is the conjugate operator for the num-
ber operator, as it can be seen that

êiϕN̂(êiϕ)† = N̂ + 1. (16)

This is shown by

êiϕN̂(êiϕ)† = (N̂ + 1)−1/2ââ†ââ†(N̂ + 1)−1/2, (17)

which is

êiϕN̂(êiϕ)† = (N̂ + 1)−1/2(N̂ + 1)2(N̂ + 1)−1/2 = N̂ + 1.
(18)

In analogy with the momentum and position operators,

the operator êiϕ displaces by a discrete unit the number
operator, as the latter has a discrete spectrum.

These operators satisfy the relation êiϕ(êiϕ)† = I but are
not unitary, as (êiϕ)†êiϕ ̸= I. This is shown using that

(êiϕ)† acts on the number states as the raising operator
without the prefactor

(ê−ϕ)† |n⟩ = |n+ 1⟩ , êiϕ |n⟩ = |n− 1⟩ . (19)

Then, the operators can be written in this form

(êiϕ)† = |1⟩ ⟨0|+ |2⟩ ⟨1|+ |3⟩ ⟨2|+ ...

êiϕ = |0⟩ ⟨1|+ |1⟩ ⟨2|+ |2⟩ ⟨3|+ ...
(20)

So the product

(êiϕ)†êiϕ = |1⟩ ⟨1|+ |2⟩ ⟨2|+ ... |n⟩ ⟨n| = I− |0⟩ ⟨0| (21)

is clearly not equal to the identity.
Equation (21) shows that the existence of a state |ψ⟩

such that â |ψ⟩ = 0, the so-called ground state, is what

makes the operator êiϕ not unitary. Were these operators
unitary, then the displacement on the number operator

would have been given by a hermitian phase operator ϕ̂.
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Nevertheless, we try to find an eigenvector for the op-

erator êiϕ with an eigenvalue eiθ, that is

êiϕ |θ⟩ = eiθ |θ⟩ .

As the operator êiϕ acts on the number states like the
lowering operator, the state |θ⟩ might be defined by

|θ⟩ = 1√
2π

∑
n

einθ |n⟩ . (22)

Now applying the phase operator to our state we find

êiϕ |θ⟩ = 1√
2π

∞∑
n=1

einθ |n− 1⟩

=
1√
2π
eiθ
∑
m

eimθ |m⟩ = eiθ |θ⟩ .
(23)

B. Phase on a coherent state

Although the phase operator has been shown not to
correspond to a hermitian operator, applied to a coherent
state with large number of photons, i.e. |α|2 → ∞, the
contribution of the ground state becomes ignorable.

Overlapping |θ⟩ with |α⟩

⟨θ|α⟩ = 1√
2π

∑
n

e−|α|2/2 (αe
−iθ)n√
n!

. (24)

Now since α = |α|eiδ

⟨θ|α⟩ =
∑
n

1√
2π

√
e−|α|2 (α)

2n

n!
ein(δ−θ). (25)

We can now identify the term inside the square root as
a Poisson distribution of variance |α|, so the probability
distribution | ⟨θ|α⟩ |2 follows a Poisson distribution.
For very large values of its variance, a Poisson distri-

bution can be approximated as a Gaussian distribution.
With some work, equation (25) can be expressed as

⟨θ|α⟩ ≃ 1√
2π

1

(2π|α|2)1/4
ei|α|

2(δ−θ)
√
4π|α|2e−|α|2(δ−θ)2 .

(26)
The probability distribution | ⟨θ|α⟩ |2 then becomes

| ⟨θ|α⟩ |2 ≃
√

2|α|2
π

e−2|α|2(θ−δ)2 , (27)

which is a Gaussian distribution with variance ∆θ = 1
2|α| .

Notice the product of the uncertainties

∆N∆θ = |α| 1

2|α|
=

1

2

satisfies the Heisenberg uncertainty principle with the
equality sign.

In the limit |α|2 >> 1 the dispersion in phase decreases
and the probability density becomes a Dirac delta δ(θ −
δ), thus the phase of a coherent state with large number
of photons becomes asymptotically well-defined.
This can be understood as that in the limit |α|2 → ∞

the projection of a coherent state on the ground state
tends to 0

⟨0|α⟩ = e−
1
2 |α|

2

→ 0. (28)

Now recalling the product (21), applying it to a coherent
state, with the limit |α| >> 1:

(êiϕ)†êiϕ |α⟩ = I |α⟩ − |0⟩ ⟨0|α⟩ ≃ I |α⟩ . (29)

So the product, for the limit of |α| >> 1 behaves like the
identity when applied on a coherent state, thus asymp-
totically solving our problems with the definition (15).
On physical grounds, we are satisfied, but mathemati-

cally, this is not formal, as the operators êiϕ and (êiϕ)†

remain not to be unitary, so we introduce the cosine op-
erator

ĉos(ϕ) =
1

2

(
êiϕ + (êiϕ)†

)
, (30)

which is clearly hermitian. This operator has eigenvec-
tors |cos(θ)⟩ with eigenvalues cos(θ).

The operator ĉos(ϕ) acts on the number states as

ĉos(ϕ) |n⟩ = 1

2
(|n+ 1⟩+ |n− 1⟩) . (31)

Now the uncertainty for ĉos(ϕ) operator acting on the
coherent states can be calculated as well.

∆ĉos(ϕ) =

√
⟨α|ĉos(ϕ)

2
|α⟩ − ⟨α|ĉos(ϕ)|α⟩

2
(32)

Using equation (31) and following [5], it is found that in
the limit |α|2 >> 1

∆ĉos(ϕ) =

(
1− 1

8|α|2
+ ...

)
sin(θ)

2|α|
≃ sin(θ)

2|α|
. (33)

This shows that in this limit, the uncertainty product
becomes

∆ĉos(ϕ)∆N̂ ≃ sin(θ)

2|α|
|α| = sin(θ)

2
, (34)

which gives us a similar result than the one obtained with
our less formal procedure.

IV. SQUEEZED STATES

Coherent states are states that satisfy the uncertainty
relation for the quadratures with the equality sign, as
is widely known, that is: ∆p̂ = ∆q̂ = 1

2 . But in the
Heisenberg uncertainty principle there are no constraints
to the uncertainty ∆p̂ being less than 1

2 , this is ∆p̂ <
1
2 as

long as the uncertainty of the other quadrature satisfies
∆p̂∆q̂ = 1

4 . The states that satisfy this property are the
squeezed states
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A. Squeezed states and SU(1,1)

Consider the scaling transformation on a general wave-
function

ψ(x) −→ ψ̃(x) =
√
λψ(λx). (35)

This transformation preserves the normalization∫
dx|ψ̃(x)|2 =

∫
dxλ|ψ(λx)|2 =

∫
du|ψ(u)|2.

Now let λ = 1 + δλ such that δλ is an infinitesimal pa-
rameter. Then the transformation yields

ψ̃(x) =

(
1 +

δλ
2

)
ψ(x+ δλx). (36)

Expanding to and only considering first order terms in
δλ

ψ̃(x) =

(
1 +

δλ
2

)(
ψ(x) + δλx

d

dx
(ψ(x)

)
.

= ψ(x) + iδλ

(
− i

2
+ x(−i d

dx
)

)
ψ(x),

(37)

and using the definition of the momentum operator and
[X̂, P̂ ] = −i

ψ̃(x) =

(
I+ iδλ

(
1

2
[X̂, P̂ ] + X̂P̂

))
ψ(x), (38)

which can be expressed as

ψ̃(x) =
(
I+ iδλĜ+O(δ2λ)

)
ψ(x) (39)

with Ĝ = X̂P̂+P̂ X̂
2 .

This shows that the scaling transformation is generated
by the operator Ĝ

Ĝ =
â2 − (â†)2

2i
.

Now, equation (39) can be expressed as

ψ̃(x) = eiλĜψ(x) = Ŝ(λ)ψ(x) = e
1
2λ(â

2−(â†)2)ψ(x).
(40)

In analogy with the angular momentum and the rota-
tions, the operator Ĝ generates the scaling transforma-
tions on the Hilbert space of the wavefunctions.

This operator eiλĜ = Ŝ(λ), applied to the creation and
destruction operators, acts as(

ŜâŜ†

Ŝâ†Ŝ†

)
=

(
cosh(λ) sinh(λ)
sinh (λ) cosh(λ)

)(
â
â†

)
(41)

where it turns out that the matrix is an element of the
SU(1,1) group, detailed in the appendix.

Equation (41) can be proved using the decomposition
of the exponential operators, detailed in the appendix.
Now consider the operators

K̂0 = â†â+
1

2
, K̂+ =

1

2
(â†)2, K̂− = −1

2
â2. (42)

These operators have the same commutation rules of the
SU(1,1) generators

[K̂+, K̂−] = K̂0, [K̂0, K̂−] = −2K̂−, [K̂0, K̂+] = 2K̂+

(43)

The operators K̂0, K̂+K̂− are a representation of the
SU(1,1) Lie algebra.

The operator Ŝ(λ) is the exponential of the difference of

K̂− and K̂+, i.e.

Ŝ(λ) = eλ(K̂−−K̂+). (44)

Perelomov, in [3] took advantage of this property and
derived

Ŝ(λ) =
1√

cosh(λ)
× e−(â†)2 tanh (λ)×

e−(â†â ln(coshλ) × eâ
2 tanh (λ).

(45)

Applying this operator on the ground state, we define the
squeezed vacuum

|s⟩ = Ŝ(λ) |0⟩ . (46)

Now, with the help of equation (45) we obtain the form
of the squeezed vacuum on Fock’s basis

|s⟩ = 1√
cosh(λ)

∑
n

(tanh(λ))n
1√
(2n)!

|2n⟩ . (47)

B. Properties of the squeezed vacuum

Now that we have derived an expression for the
squeezed vacuum, we can have a look at its properties.
The uncertainty for the quadratures will be determined
by

(∆q̂)2 = ⟨q̂2⟩ − ⟨q̂⟩2 . (48)

Now we need to evaluate the term

⟨s|â|s⟩ = ⟨0|Ŝ†(λ)âŜ(λ)|0⟩ . (49)

Following a procedure similar to that used to derive equa-
tion (41), we find

⟨0|Ŝ†(λ)âŜ(λ)|0⟩ = ⟨0|
(
â cosh(λ)− â† sinh(λ)

)
|0⟩ .

(50)
So the contribution to the uncertainty of the terms ⟨s|â|s⟩
and ⟨s|â†|s⟩ will be equal to 0. By consequence, the cal-
culation of uncertainty of the quadrature will be reduced
to

(∆q̂)2 = ⟨q̂2⟩ = ⟨s|

(
(â†)2 + â2 + 2N̂ + 1

2

)
|s⟩ . (51)
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Using the unitarity of the squeeze operator

⟨s|(â†)2|s⟩ = ⟨0|Ŝ†(λ)â†Ŝ(λ)Ŝ†(λ)â†Ŝ(λ)|0⟩ . (52)

Using (50), equation (52) becomes

⟨s|(â†)2|s⟩ = sinh(λ) cosh(λ). (53)

Similarly

⟨s|â2|s⟩ = sinh(λ) cosh(λ). (54)

Now using a parallel reasoning to the one used in (52)

⟨s|N̂ |s⟩ = ⟨0|Ŝ†(λ)â†Ŝ(λ)Ŝ†(λ)âŜ(λ)|0⟩ , (55)

in which only the term ⟨0| sinh2(λ)ââ†|0⟩ survives. These
results give

(∆q̂)2 =
1

4
e−2λ (56)

This shows that the uncertainty on the quadrature be-
comes squeezed by a factor e−λ with respect to the un-
certainty for a coherent state.
By an almost identical derivation, the (∆p)2

(∆p̂)2 =
1

4
e2λ (57)

Now for the conjugate quadrature, the uncertainty is en-
larged by a factor eλ with respect to the uncertainty for
a coherent state in order to preserve the Heisenberg un-
certainty principle.
It should be noted that for the squeezed vacuum the un-
certainty relation is satisfied with the equality sign as
well ∆q̂∆p̂ = 1

4 .
The parameter λ which is taken to be real, can appear
in the literature to be a complex number, although this
changes nothing in squeezing terms, as the squeezing de-
pends on its amplitude |λ|.

C. Two mode squeezed states

Throughout the entirety of this work we have only con-
sidered one mode quantum states, but for this section will
be worth considering a two mode state. The two mode
squeezing operator is defined as:

Ŝ(ζ) = e
1
2 (ζâb̂−ζâ†b̂†). (58)

With â, â† and b̂, b̂† being the annihilation and creation
operators for two different modes.
Now considering the operators defined by

K̂+ = â†b̂†, K̂− = âb̂

K̂0 = (â†â+ b̂†b̂+ 1).
(59)

These operators are also a representation of the SU(1,1)
algebra. Following a similar reasoning as that for the
state of one mode

Ŝ(ζ) =
1

cosh(ζ)
× e−â†b̂† tanh (ζ)×

e−(â†â+b̂†b̂) ln(cosh (ζ)) × e(âb̂ tanh (ζ).

(60)

The two mode squeeze operator in the form of (60) ap-
plied to the two mode vacuum gives us the expression
shown in [6]

|s⟩ = 1

cosh (ζ)

∑
n

(tanh ζ)neinθ |n⟩a ⊗ |n⟩b . (61)

V. CONCLUSIONS

Coherent states are quantum superpositions of differ-
ent number states, and although they do not have any
classical analogy, coherent states have an electric field
analog to a plane electromagnetic wave. We have stud-
ied the phase and the cosine operators and related them
to coherent states by showing that have an asymptoti-
cally well-defined phase in the limit for large expected
number of photons.
Moreover, we have studied states with smaller uncer-
tainties on a quadrature than the coherent states, the
squeezed states, and shown that these states have a rela-
tion with the Lie Group SU(1,1), either for one mode or
two modes of oscillation.
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1 i 2 modes d’oscil·lació, i que té una incertesa menor en les quadratures que un estat coherent.
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9. Indústria, innovació, infraestructures
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VII. APPENDIX

A. The Baker-Campbell-Hausdorff formula

The B-C-H formula is

exp X̂ exp Ŷ = exp(Ŷ + [X̂, Ŷ ] +
1

2!
[X̂, [X̂, Ŷ ]] + ...) (62)

The decomposition of the exponential operators reads as

eX̂Ôe−X̂ = Ô + [X̂, Ô] +
1

2!
[X̂, [X̂, Ô]] + ... (63)

B. SU(1,1) group

The group SU(1,1) has for elements the matrices M that satisfy

M

(
1 0

0 −1

)
M† =

(
1 0

0 −1

)
(64)

that is, the matrices M that have the form

M =

(
u v

v∗ u∗

)
(65)

with det(M) = 1, which means |u|2 − |v|2 = 1
This group has for generators

Λ1 =

(
1 0

0 −1

)
, Λ2 =

(
0 1

−1 0

)
, Λ3 =

(
0 1

1 0

)
(66)

Now forming lineal combinations we get the operators

Λ+ =
iΛ2 + Λ1

2
=

(
0 1

0 0

)
, Λ− =

iΛ2 − Λ1

2
=

(
0 0

−1 0

)

with their commutation rules

[Λ+,Λ] = Λ0, [Λ0,Λ+] = 2Λ+, [Λ+,Λ−] = −2Λ− (67)

C. Characterization of the eigenvalues and eigenvectors for ĉos(ϕ)

Following Susskind and Glogower, we expand |cos(θ)⟩ in the number representation i.e |cos(θ)⟩ =
∑

n Cn |n⟩ Now
the eigenvalue equation reads as

2ĉos(ϕ) |cos(θ)⟩ =
∑
n

(Cn |n+ 1⟩+ Cn |n− 1⟩) = 2λ
∑
n

Cn |n⟩ (68)

This gives us the recursive relation

C1 = 2λC0, Cn + Cn+2 = 2λCn+1 (69)

The general solution for the second equation can be proposed to be a power series

Cn = Aρn +Bρ−n (70)
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Since the operator ĉos(ϕ) is hermitian, the eigenvalue λ must be real. Following the first equation ρ + 1
ρ = 2λ, and

imposing λ ∈ R, we find

Im

(
ρ+

1

ρ

)
= sin(θ)

(
|ρ| − 1

|ρ|

)
= 0 ⇒ |ρ|2 = 1 (71)

Notice how the condition |ρ|2 = 1 grants us that the coefficient Cn stays bounded and does not diverge. Now let
ρ = eiθ. Then the eigenvalue λ = cos(θ), and inserting this into the recursion relation we get

|cos(θ)⟩ =
∑
n

sin(n+ 1)θ |n⟩ (72)
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