
Universitat de Barcelona

Fundamental Principles of Data Science Master’s
Thesis

Regularization-Based Machine
Unlearning

Author:
Arnau Jutglar Puig

Supervisors:
Nahuel Statuto, Julio C. S.

Jacques Junior

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

June 30, 2025

http://www.ub.edu
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Regularization-Based Machine Unlearning

by Arnau Jutglar Puig

This work treats the unlearning problem in machine learning (ML). This is the process
to make ML models forget some subset of their training data. We restrict this study
to deep learning architectures.

We propose a metric to assess different unlearning algorithms. We design a new
unlearning algorithm, Regret, and compare its performance with respect to Fine-
tuning and our implementation of Fanchuan. We test them on four datasets and two
different architectures.

The experiments reveal that Regret outperforms Fine-tuning by a small margin.
Moreover, our implementation of Fanchuan is the best-performing algorithm and sur-
passes the other two clearly.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1
1.1 Problem definition . 1
1.2 Motivation . 1
1.3 Work purpose and hypothesis . 2
1.4 Thesis organization . 2

2 Related work 3
2.1 Analytical definition of unlearning . 3
2.2 Approaches to measure unlearning . 3
2.3 Existent unlearning algorithms . 5

2.3.1 Retraining on the retain set . 5
2.3.2 Fine-tuning . 5

2.4 State of the art models . 5
2.4.1 Fanchuan . 6

3 Proposed model 7
3.1 Our proposal: the Regret algorithm for neural networks 7
3.2 Defining our metrics . 10

4 Methodology 11
4.1 Datasets construction . 11
4.2 Setting the original learning rate . 12
4.3 Setting the number of epochs . 12
4.4 Managing uncertainty . 13
4.5 Hyperparameter optimization . 14
4.6 Fanchuan optimization . 14
4.7 Final evaluation . 15

5 Experiments 17
5.1 R2 datasets . 17

5.1.1 Considered datasets . 17
5.1.2 Chosen architecture . 18
5.1.3 Initial experiment on the moons dataset 18

Original and baseline models 19
Models optimization results . 20
Final results on the moons dataset 20

5.1.4 Experiments on the circles and spirals datasets 22
Original and baseline models 23
Models optimization results . 24

vi

5.1.5 Final results . 24
5.2 MNIST dataset . 27

5.2.1 The MNIST dataset . 27
5.2.2 Chosen architecture . 28
5.2.3 Original and baseline models 28

Models optimization results . 30
5.2.4 Final results . 30

6 Conclusion and discussion 33
6.1 Conclusions . 33
6.2 Discussion . 33

6.2.1 Limitations of this work . 33
6.2.2 Experimental framework . 34
6.2.3 Metrics definition . 34
6.2.4 Unlearning features . 35
6.2.5 Future work . 35

A Models optimization 37
A.1 Moons dataset . 37

A.1.1 Optimizing Fine-tuning . 37
A.1.2 Optimizing Regret . 39
A.1.3 Optimizing Fanchuan . 41

A.2 Circles dataset . 43
A.2.1 Optimizing Fine-tuning . 43
A.2.2 Optimizing Regret . 45
A.2.3 Optimizing Fanchuan . 47

A.3 Spirals dataset . 49
A.3.1 Optimizing Fine-tuning . 49
A.3.2 Optimizing Regret . 51
A.3.3 Optimizing Fanchuan . 53

A.4 MNIST dataset . 55
A.4.1 Optimizing Fine-tuning . 55
A.4.2 Optimizing Regret . 57
A.4.3 Optimizing Fanchuan . 59

B Studying C dependencies 61
B.1 On the moons dataset . 61
B.2 On the circles dataset . 65
B.3 On the spirals dataset . 68
B.4 On the MNIST dataset . 71

C Source code repository URL 75

Bibliography 77

vii

Acknowledgements
Vull expressar el meu agraïment a l’Eudald i al Marc pel suport que m’han donat
mentre desenvolupava aquest treball. També vull donar les gràcies a en Julio Jacques
i a en Nahuel Statuto pels seus consells i guia en aquesta feina.

1

Chapter 1

Introduction

In this section we explain what unlearning (cf. [7]) means in the context of machine
learning and why it is relevant. We proceed to justify what motivates this work and
what are we trying to achieve: a performant unlearning algorithm that does not rely
on an initial erase 1 phase. We end by stating our hypothesis and clarifying the
purpose of this work.

1.1 Problem definition

In the last ten years, there has been a surge in the usage of Deep Learning techniques
to develop artificial intelligence tools. These artifacts rely on heavy loads of data col-
lected from various sources, some of them may be sensitive to privacy issues related
to their owners. For instance, an image processing model might have been trained
on photographs involving minors obtained automatically, and their parents may sub-
sequently request their removal. A generative AI model might have been trained on
works of art of an artist which afterwards wants its works to not be present in the
model’s database anymore. These are just some examples that lead to consider the
unlearning problem on neural networks.

But why unlearning? Of course if some data needs to be removed from the train-
ing set, one could always just do it and then train the model again on this retain set.
However, for large models, this is unfeasible both for time and economical constraints.
For instance, OpenAI’s GPT-3 model’s training required 3.64× 103 PF-days of com-
putational effort and is estimated to have cost between 2 and 4 million dollars (see
[3]). Then, it is evident that some method is needed to make the models look as if
they had been retrained with only the retain set but at a fraction of cost. Unlearning
in the context of deep learning refers to this process.

1.2 Motivation

Most state of the art unlearning algorithms2, as Fanchuan (cf. Chapter 2 §2.4.1),
Kookmin (cf. [10]) or Seif (cf. [10]), rely on an initial phase of destruction followed
by a repair one. This has the drawback that the models are operational only after
some repair steps have been made and the network’s weights have converged again.
If the removal of some training samples were a legal requirement for the model to be
kept up and running and the model was large enough, this would be a handicap for
its developers, meaning that they would not have it usable after an extended period
and a large cost.

1We explain what erase phase means in Chapter 2, §2.4
2Existing approaches will be explained in further detail in Chapter 2, §2.4.

2 Chapter 1. Introduction

The Fine-tuning algorithm (cf. Chapter 2, §2.3.2) produces functional models at
every step of the process. But it is slower. In contrast, the algorithm we are going to
propose does not rely on destroy-and-repair, and we designed it with the intent that
it is faster than Fine-tuning. This is why we consider it worthy of investigation.

1.3 Work purpose and hypothesis

We define a new unlearning alogirthm. Our hypothesis is that this system works
better than the Fine-tuning schema and can be generalized to complex neural network
models. If this were the case, given the fact that it is not based on a prior erase phase,
it could be of further interest in the realm of deep learning unlearning. The purpose
of this work is to contrast our hypothesis.

1.4 Thesis organization

This thesis is organized around four main chapters plus the conclusions. In Chapter
2, we analytically define the unlearning concept. Later, we expose some approaches
of other studies to assess the fitness of unlearning algorithms. We end this Chapter
by reviewing some important unlearning algorithms and explaining in detail the two
that we will use to compare our proposal against.

In Chapter 3, we introduce and motivate our unlearning algorithm. This is followed
by the definition of the metrics that we will use to evaluate the models during our
experiments. Chapter 4 sets the methodology that will define the framework under
which the different unlearning models will be evaluated. It thoroughly explains and
justifies the decisions that we have taken in this regard.

Finally, Chapter 5 reports the experiments that were conducted. For each of
them, it introduces the dataset, the model architecture, the baselines against which
each algorithm was assessed and the final evaluation. The main matter ends with
Chapter 6, in which we report the final conclusions of this project and introduce some
relevant discussions that arose during the development of this thesis.

The thesis is complemented with three appendices. Appendix A details the opti-
mization process that we conducted for each algorithm before the final comparison.
Appendix B recovers some additional experiments that were performed to do the opti-
mization process with the due diligence but that did not alter the original parameters
choice. Finally, Appendix C informs how to access the source code developed for this
work.

3

Chapter 2

Related work

This chapter formally defines machine unlearning. We introduce different approaches
to measuring unlearning that are treated in previous studies. Two basic unlearn-
ing mechanisms are explained. This section ends with a detailed explanation of the
Fanchuan unlearning algorithm.

2.1 Analytical definition of unlearning

We devote this section to explaining the basic setting of a machine learning problem
and the subsequent unlearning process.

Definition 1 Let X be a set of possible datasets, and M a family of models. A
machine learning algorithm is a map L : X →M.

Although technically M is a family of models and a particular element M ∈ M
is a model, we often refer to M as the model and say that once M is determined by
L(X), the model has learned X ∈ X .

The definition of an unlearning process is a little more complicated.

Definition 2 Let X ∈ X be a dataset and MX = L(X) be the resulting model. Let
U ⊂ X a subset of X which we will call the forget set, and X \ U the retain set.
Finally, let MX\U = L(X \ U) be the model that has learned the retain set.

An unlearning algorithm is a map U : (X,U,MX) 7→ M ′
X\U with the intent that

MX\U ∼M ′
X\U .

In this work, we will refer to MX as the original model, MX\U the baseline model
and M ′

X\U the unlearned model.

Note that the unlearning algorithm gets as input the dataset, the forget set and
the learned model 1. This definition relies on a similarity notion between models that
can be defined in various ways.

2.2 Approaches to measure unlearning

We will restrict the study of machine unlearning to deep learning models. Then,
the learning process is not deterministic. It depends on weights initialization, that
tends to be random and tends to rely on optimization algorithms that are variants of
stochastic gradient descent. Then, the algorithm defines a probability law overM.

1In general terms, the unlearning algorithm is a function on all the data plus the subset that we
want to remove. However, each particular algorithm may depend on different subsets of this data.
For instance, some models depend only on the retain set, while others also require the forget set.

4 Chapter 2. Related work

Conversely, for unlearning algorithms we have similar uncertainty concerns. There
are two main sources of uncertainty here: the original model and the optimization
algorithm used in the unlearning process. Overall, this defines a new probability law
overM.

The fitness of an unlearning algorithm depends on the similarity between the two
distributions P (L(X \ U) ∈ V) and P (U(X,U,L(X)) ∈ V) for any V ∈ M. Aiming
to match the probability distribution P (U(X,U,L(X))), known as exact machine un-
learning (cf. [7]), is very challenging, which leads to the consideration of approximate
machine unlearning. In approximate machine unlearning, we intend to get a distri-
bution which is close to the distribution obtained by training from zero on the retain
dataset.

Nonetheless, critical to the study of machine unlearning is that it is very difficult
to study these distributions. First, they are prone to have no known analytical expres-
sion. Secondly, they are supported on very high-dimensional manifolds. For instance,
a simple deep learning architecture to work with very small images may easily contain
a number of parameters of the order of 106. Studying a distribution over R100000 is
highly complex. Thirdly, the direct simulation of the distribution by taking a high
number of samples is very computationally expensive since each sample requires train-
ing a model. Note that the weights determine the output, but the converse is not true
in general.

In the light of the previously exposed complexity, several studies introduce different
evaluation frameworks. We list next some approaches.

• l2 distance: Based on measuring the distribution of the l2 distance between
the weights of U(X,U,L(X)) and L(X \ U) (cf. [13]).

• KL divergence: Based on computing empirical approximations of the distri-
butions of P (L(X \ U)) and P (U(X,U,L(X))) and then using KL-divergence
as a metric over the distributions space (cf. [6]).

• (ε, δ)-unlearning on the weights: Establishes a uniform affine bound be-
tween the two distributions P (L(X \U)) and P (U(X,U,L(X))) (cf. [7]). Fixed
a dataset X, a forget set U and a learning algorithm L, an unlearning algorithm
U is (ε, δ)-unlearning with respect to the weights if ∀V ⊂M

P (U(X,U,L(X)) ∈ V) ≤ eεP (L(X \ U) ∈ V) + δ, and
P (L(X \ U) ∈ V) ≤ eεP (U(X,U,L(X)) ∈ V) + δ

• (ε, δ)-unlearning on the outputs: Once a model is trained, it defines a
function from the input space to the output space. Let W be, a measurable
subset of functions from the input space to the output space, defined by the
values they take, not by its parameters (cf. [8]). A model M belongs to W if it
takes the same values as another element of W , ignoring the weights of M and
the functional expression of such element. Fixed a dataset X, a forget set U
and a learning algorithm L; an unlearning algorithm U is (ε, δ)-unlearning with
respect to the output if ∀W

P (U(X,U,L(X)) ∈W) ≤ eεP (L(X \ U) ∈W) + δ, and
P (L(X \ U) ∈W) ≤ eεP (U(X,U,L(X)) ∈W) + δ

2.3. Existent unlearning algorithms 5

• Score based: Some works construct a score based on the model’s outputs. They
compare different unlearning algorithms based on the probability distribution for
the score that they generate (cf. [10]). This score may incorporate a comparison
on the accuracy of the baseline and the unlearned model as long as a forget
quality measure. This is the approach that we will take later in this work since
its compromise between information and computational complexity matches our
resources availability.

2.3 Existent unlearning algorithms

2.3.1 Retraining on the retain set

Retraining the model from scratch on the retain set can be seen as an unlearning
model. It is involved in the evaluation of other unlearning algorithms since it serves
as a baseline. It is an exact machine unlearning algorithm by definition, but it is
naive since the whole information the model had learned is lost and has to retrain
from zero. The computational saving of any unlearning algorithm is seen as compared
to this option.

2.3.2 Fine-tuning

We refer by Fine-tuning to the unlearning algorithm consisting on doing extra epochs
with the same loss as used in the training step but only with the retain set. Despite
there is no explicit pushing towards changing the model performance on the forget
set, the inherent inductive bias of neural networks yields the model to simplify its
predictions on such subset in a manner that has been experimentally proven to be
close to how the model would behave without having seen it. The drawback of this
method is that it does not rely on anything else than on this inductive bias and thus
may not be fast enough.

2.4 State of the art models

In 2023, Google Research and collaborators organized the first machine unlearning
challenge (cf. [10]). This competition was hosted on Kaggle. Participants were given
a pretrained ResNet-18 age prediction model based on face images. Their goal was
to propose unlearning algorithm to make the model forget a given forget set. The
proposals were evaluated based on three key criteria. First, models were assessed
according to their utility, which was measured by comparing their accuracy (both on
retrain and test set) with respect to that one of the baseline. Secondly, the forget
quality was measured by estimating the ε value defined as in §2.2. Finally, efficiency
took its role by refusing any submission that exceeded 20% of the time it took to
retrain the model on the retain set. For a detailed explanation of how this score was
produced, please refer to [10].

We now proceed to explain the unlearning strategy which attained the top posi-
tion in this unlearning challenge, Fanchuan. For two more examples on state of the
art unlearning algorithms that rely on an erase phase followed by a repair one, see
Kookmin and Seif (cf. [10]).

6 Chapter 2. Related work

2.4.1 Fanchuan

The Fanchuan unlearning algorithm was the winner of the Google competition. For
the first epoch, it focuses on minimizing the KL-divergence between its predictions on
the forget set U and the uniform distribution. Formally, if the predictions lie on the
manifold Y : minKL[M(xU), U(Y)] where xU can be seen as random variable taking
per values batches of U uniformly.

Afterwards, it spends the remaining epochs iteratively applying the following two
steps. Firstly, maximizing the contrastive loss between its predictions for batches
of the forget set and the retain set: max contrastive(M(xU),M(xR)), xR ⊂ X \ U .
Secondly, minimizing cross entropy loss over the retain set between its predictions and
the real ones: minMSE(M(xR), y).

Algorithm 1 Fanchuan
1: Input: Forget dataset U , retain dataset X \U , original model weights θ, original

model Mθ, temperature coefficient t, KL divergence learning rate α1, contrastive
loss learning rate α2, cross entropy learning rate α3, number of epochs N , batch
size B.

2: Output: unlearned model.
3: for x, y in U (batches of size B) do ▷ KL divergence step.
4: ypred ←Mθ(x)
5: L ← KL(ypred, uniform)
6: θ ← θ − α1∇L
7: end for
8: for epoch in {1, ..., N} do
9: for xu, yu in U and xr, yr in X \ U (batches of size B) do

10: ypred-u ←Mθ(xu) ▷ Contrastive loss step.
11: ypred-r ←Mθ(xr)
12: L ← mean(LogSoftmax(1t ypred-u · yTpred-r))
13: θ ← θ + α2∇L
14: end for
15: for x, y in X \ U (batches of size B) do ▷ Cross entropy step.
16: ypred ←Mθ(x)
17: L ← CE(ypred, y)
18: θ ← θ − α3∇L
19: end for
20: end for
21: return Mθ

7

Chapter 3

Proposed model

In this chapter, we detail the unlearning algorithm we are proposing and visually
explaining the intuition behind its construction. Next, we introduce the metrics we
have defined and we will use to later assess and compare this model.

3.1 Our proposal: the Regret algorithm for neural net-
works

Our unlearning algorithm consists on performing several epochs aimed at minimizing
the following loss:

CE(M(x), y) + Ce−∥θ0−θ∥2

over the retain set. We denote by θ0 the initial weights and by θ the current
weights. Both θ and θ0 can be chosen as the weights of all the layers or only of some
of them. The first term of this loss makes the model to keep the parameters that
minimize the cross entropy on the retain set, so to keep the parameters that make
good predictions on it. However, the second term penalizes the parameters that are
close to the original ones. Therefore, our intention is for the parameters to move away
from the original ones (the ones that kept information of both X and U) to ones that
keep doing good predictions on X \ U but that are different to the previous ones.

It is designed for neural networks. It depends on the C parameter and on the
choice of layers. Two major interesting parts of this construction are the following.
First, it does not need an initial erase phase, so one has functional models throughout
all the unlearning process. And second, it only needs the retain set, not the forget.
And therefore, the forget set can be removed from the database whithout having to
wait for the model to have successfully unlearned. See algorithm 2 for the pseudocode
explanation of the algorithm.

8 Chapter 3. Proposed model

Algorithm 2 Regret
1: Input: Retain dataset X \ U , original model’s weights θ, original model Mθ,

parameter C, learning rate α, number of epochs N , batch size B.
2: Output: unlearned model.
3: θ0 ← θ
4: for epoch in {1, ..., N} do
5: for x, y in X \ U (batches of size B) do
6: l1 ← CE(Mθ(x), y)
7: l2 ← C · e∥θ0−θ∥2

8: L ← l1 + l2
9: θ ← θ − α∇L

10: end for
11: end for
12: return Mθ

To get a visual intuition on the idea behind this construction, let’s observe the
following case. We present a very simple dataset of points in R2 belonging to two
different classes. We try to classify it by fitting a line x2 = ax1+ b, so that the model
only depends on the two parameters a and b and can be visualized. The dataset is
designed to be separated by a line which we refer to by old line. Then, a few samples
are removed to construct the retain dataset so that it can also be separated by another
line denoted by new line and by any line in between these two.

Figure 3.1: The original and retain dataset. From left to right: the
original dataset and the retain dataset. Points are colored according
to the class they belong to. A blue line shows the original separation.
A red line shows a new valid separation that has been used to remove

the forget set.

We suppose that our model gets trained on the original dataset, so in the a, b-plane
it is represented by the blue dot. Then, we want it to forget the points we removed as
if it had only seen the retain set. In Figure 3.2 we represent the logistic loss given at
each point (a, b) without any regularization term. We can see in it that the original
model is no longer the optimal one (the optimal is the point towards all the arrows
face), but since it is not committing any explicit error, the magnitude of both the loss

3.1. Our proposal: the Regret algorithm for neural networks 9

and the gradient is very small. If we continued training on the retain dataset from
the blue point, it would evolve very slowly and possible attain convergence before it
arrives to the line one would consider natural given only the retain set.

Figure 3.2: The unregularized loss. Values are shown on the a, b-
plane. A point (a, b) corresponds to a model x2 = ax1+ b. a is plotted
on the horizontal axis and b on the vertical one. The left figure shows
the value of the loss. The right figure shows the magnitude of the
gradient of the loss with respect to (a, b) together with the gradients
of the loss with respect to (a, b) all normalized to the same length to

show the direction that a learning curve would follow.

In figure 3.3 we represent the logistic loss plus the regularization loss at each point
(a, b). The regularization loss adds a penalization around the original model, and
forces the model to quickly distantiate from it while still evolving towards minimizing
the logistic loss.

Figure 3.3: The regularized loss. Values are shown on the a, b-plane.
A point (a, b) corresponds to a model x2 = ax1 + b. a is plotted on
the horizontal axis and b on the vertical one. The left figure shows the
value of the loss. The right figure shows the magnitude of the gradient
of the loss with respect to (a, b) together with the gradients of the loss
with respect to (a, b) all normalized to the same length to show the

direction that a learning curve would follow.

10 Chapter 3. Proposed model

As we just said, the layers to which we compute the regularization are a parameter
of this algorithm. In this work, we opt to apply it to all the layers to not impose any
extra limitation that could impact the model performance. The interest of studying
the impact of choosing some subset of layers is discussed in Chapter 6, §6.2.5.

3.2 Defining our metrics

As seen in §2.2, there is no standard way to measure the fitness of an unlearning
algorithm. Therefore, together with our proposed algorithm, we introduce the metrics
that we will use in our experiments.

Our metrics are defined in order to capture our two concerns. The first one being
that the unlearned model keeps making good predictions. And the second one, that
the model has unlearned the forget set. We consider that the model has not learned
a subset of the data if it predicts on it similarly as the baseline does. These two
concerns will be respectively captured by the two following definitions. First, let X
be the train set, U be the forget set (so X \ U is the retain set), YX\U the real labels
of X \U , MX the original model, MX\U the baseline model and M ′

X\U the unlearned
model.

Definition 3 We define the utility of the unlearned model as

u =
CE(M ′

X\U (X \ U), YX\U)

CE(MX\U (X \ U), YX\U)

There are several things to notice about this definition. Firstly, it is only defined
if CE(MX\U (X \ U), YX\U) ̸= 0, but it is a reasonably easy to satisfy assumption.
Secondly, it is defined in this way because we would expect the unlearned model’s
accuracy to diminish once we force it through an unlearning process, so that this
fraction would be between 0 and 1. And thirdly, that the previous might not always
be the case, and so the utility can be greater than 1.

Definition 4 We define the forgetting of the unlearned model as

f = 1− 1√
2|U |

∑
xi∈U

∥M ′
X\U (xi)−MX\U (xi)∥2

The reasoning behind this definition is to create a number between 0 and 1 that
measures how close are the predictions of the unlearned model to the ones of the
baseline model over the forget set. We want them to be as similar as possible, and the
forgetting value will be higher the more close the two predictions are over the whole
forget set.

The overall metric should result of a compromise between the previous two. This
guides the next definition.

Definition 5 We define the metric of the unlearned model as

m = u · f

where u and f are its corresponding utility and forget, respectively.

Finally, please note that in these definitions, we are only mentioning the train,
retain and forget dataset, while, in practice, there are validation and test datasets
as well that add a bit of complexity. In our experiments, we will detail over which
specific set was every metric computed.

11

Chapter 4

Methodology

This chapter is devoted to define a clear methodology that we will follow throughout
our experiments.

The purpose of the comparison experiments is defined next. A good way to start
to understand an unlearning algorithm is to see how it behaves in comparison to
other ones. That is: is it worse than the most basic one? Does it achieve a similar
performance than the state-of-the-art ones? Does it fall in-between? Thus, the idea
of setting a testing framework to compare them appears naturally. The simplest
unlearning algorithm is naturally defined: it is the Fine-tuning algorithm. Any deep
learning model can use it since it means to continue applying its learning algorithm
just on a smaller subset. As a consequence, it can be set as the lower bound of
the acceptable performances of unlearning algorithms: any unlearning algorithm that
performs worse than the Fine-tuning will hardly be worthy of further investigation.

However, when it comes to compare to more sophisticated algorithms, things get
more complicated. As an example, let’s consider the Fanchuan model (defined in
Chapter 2 §2.4.1). Suppose we set a framework, we test our model against it and it
turns out to outperform Fanchuan. We could not extract from this experiment the
conclusion that our model beat a state-of-the-art model. This is because Fanchuan, as
long as other existent unlearning algorithms, were designed for a specific context (e.g.,
dataset, architecture and evaluation metrics). It may be the case that these models
are generalizable to other situations and can work in different datasets, as it may
not. Moreover, as explained in §4.6, we will not try to optimize Fanchuan over all its
hyperparameter space, only on a subset of it. Therefore, a consistent way to address
this issue is to think the following: we are trying to find a model that outperforms
ours. If we manage to do so, we will have set an upper bound for it. If we do not, that
will simply mean that we could not find a model that outperformed ours, not that
it does not exist. It is by following this idea that we will compare the Regret model
to the Fine-tuning and the Fanchuan ones. If our model turns to be better than our
implementation and optimization of the Fanchuan algorithm, we will not extract the
conclusion that our model is better than it.

4.1 Datasets construction

In this section we explain how given an arbitrary dataset, we split it into different
subsets that will serve different purposes as training, validation and test. The rules
explained here are followed across all the considered datasets and are therefore inde-
pendent to each particular instance of them.

For each dataset, 5 subsets will be constructed in the following way. Let D = (X, y)
be an arbitrary dataset. Let F denote the forget rule. F will be constructed in a
semantical way. This is, it won’t be a particular set of points of the dataset. Rather,
it will denote a semantical region. In the case of a dataset whose X part lies in R2, F

12 Chapter 4. Methodology

could mean to forget the X region {(x1, x2) ∈ R2 : x21+x22 < 2} and its corresponding
y part. Another example could be a whole class y0 and would therefore mean the
region {(X, y) : y = y0}. With this approach, since F is not defined with a particular
subset of points, but with a general rule, it can extend to different sets to create the
retain-train set and the retain-validation set. Given any S ⊂ D, let F (S) represent
the dataset resulting of applying the forget rule F to the subdataset S.

1. Dtest ⊂ D is selected randomly with |Dtest| = 0.2|D|.

2. We randomly split D \Dtest = Dtrain ⊔Dval, with |Dtrain| = 0.7|D \Dtest| and
|Dval| = 0.3|D \Dtest|.

3. The retain-train dataset is Dretain-train = Dtrain \F (Dtrain), the retain-validation
dataset is Dretain-val = Dval \ F (Dval).

4. We still need a subdataset over which compute the forget metric, and this will
be Dforget = F (Dtrain).

For each dataset, we will choose an architecture, which will be shared through
all the unlearning algorithms we will consider. An original model will be trained on
Dtrain, and validated on Dval. The validation dataset will be used for early stopping.
A baseline model will be trained on Dretain-train, and validated on Dretain-val. During all
our experiments, Dretain-val is only used to prevent the baseline model from overfitting.
These original and baseline models will be shared across all algorithms for the same
dataset.

4.2 Setting the original learning rate

By original learning rate we refer to the learning rate used by the original and baseline
models. This learning rate will have a strong influence on the original number of
training epochs: a higher learning rate will tend to require less training epochs and
vice-versa. Therefore, the setting of the original learning rate has an impact on the
maximum performance that the unlearning algorithms can attain. The good news
are that such impact is homogeneous over all of them, so it does not affect their
comparison. As a consequence, the initial learning rate is not trivially determined
but neither is it analyzed with the same level of detail as the learning rates of the
unlearning models.

It is set following the next methodology for each architecture and dataset. We
plot the validation loss curves of the original model across different training epochs,
starting on a low learning rate that still yields to convergence, until a high learning
rate that starts to create uneven jumps indicating instability. These curves often
follow a monotonous pattern of being steeper as the learning rate increases up until
they start to show irregularity. The final learning rate is selected as the one from the
set {10−n}n∈N ∪ {5 · 10−n}n∈N that is the steepest while still not showing irregular
jumps.

4.3 Setting the number of epochs

The original model will be limited to train for a certain number of epochs for each
dataset. In the end, the original model will train for such number of epochs if it did
not converge or less if it did and hence the training was ended due to early stopping.
This final number of epochs will determine for how long can be the unlearning model

4.4. Managing uncertainty 13

trained. The number of epochs through which the unlearning algorithms will be
allowed to train will be set by a fraction of the original epochs. Both the number
of original epochs and the fraction of unlearn epochs will be specified when each
experiment is introduced.

The early stopping mechanism is defined as follows. At each epoch during the
learning process, the validation loss is computed over the validation set (respectively,
the retain-validation set). If this validation loss does not improve for 50 epochs in a
row, the learning process is stopped.

Note that for each epoch, the Fanchuan algorithm iterates through the train
dataset and then through the forget dataset. Still, we can consider this to be just
one epoch comparable to the Fine-tuning and Regret ones since the forget size is pre-
sumed to be minimal with respect to the train size. And it is actually the case for our
experiments. Therefore, all algorithms are allowed to run for the exact same number
of epochs.

4.4 Managing uncertainty

The learning process is not deterministic. It depends on weights initialization, which
determine to which local minimum can the model converge. This source of uncertainty
has been mitigated by always initializing the weights’ matrices to orthogonal matrices
and the weights’ bias terms following a N (0, 1) distribution.

Also, most deep learning algorithms, and certainly the ones we use, rely on stochas-
tic gradient descent, which obviously has a random component. As a consequence,
(X,L,M) do not determine MX but rather a probability distribution overM. In the
problem of machine unlearning, there are two added main sources of uncertainty: the
baseline and the unlearned model.

Let’s analyze them one by one. First, let us explain why we think that the original
model, at least for these experiments, can be considered as something fix. For the
datasets and architectures that we are considering, it is easy and relatively fast to
achieve convergence. So almost all original models will converge to making the same
predictions.

Now, let’s focus on the baseline source of uncertainty. The baselines have not seen
any sample in the forget region, so they may classify them differently as they have no
reason to converged. Baselines behave qualitatively differently depending on whether
the given dataset contains two classes or more. We next discuss each case. In the
case of a dataset containing only two classes, when samples of a class are removed
on a region, the model tends to shift its predictions on such region towards the other
class. Since there is only one direction away from the original prediction, all baselines
follow a similar pattern. Therefore, in these cases, a single baseline was considered.
In contrast, for datasets containing more than two classes, there are several directions
in which predictions can evolve once a model does not see a certain class. This
was observed by experimental data, where different baselines showed a completely
different distribution of predictions over the class they had not seen during training.
As a consequence, several baselines were selected to compute the metrics on. They
were selected randomly without any filter to try to be the most faithful to the true
underlying distribution of baseline models given the retain and forget data. In the
case that several baselines are considered, the metric of a model will be assessed over
all the baselines and the metric evaluated at each pair of baseline and unlearned model
will be considered as an observation of the metric distribution.

14 Chapter 4. Methodology

Finally, unlearn models show a high variability. In the previous cases, what was
limiting variability was convergence. However, when running unlearn models, there
may not be convergence on the forget set, as we explained in the preceding section.
Moreover, there might also not be convergence on the retain set since we are limiting
the number of epochs through which they can train, oftenly before convergence. We
have consistently executed every unlearn algorithm for several times, to try to capture
the distribution of outcomes.

4.5 Hyperparameter optimization

The unlearning algorithms that we will consider depend on different parameters. Be-
fore comparing the probability distributions that each of them produce, we aim to
determine the optimal parameters for each. We are trying to optimize a distribution,
and this requires to define an order in the corresponding space of distributions. This
is what this section is for.

Following notation of definition 2 in Chapter 2 §2.1, let U be an unlearning algo-
rithm that depends on a parameter (or a tuple of parameters) ω ∈ Ω. Denote by Uω
the algorithm whose parameter is set to ω. Let m denote the metric, so that m(Mω)
is the metric value that an unlearned model Mω attains in an experiment and consider
it as a random variable. Let E be the expectation operator, so that E[m(Mω)] is the
expected value of the metrics of that model.

We set the following order in the space of metrics random variables. We consider
that the distribution of metrics achieved by an unlearning algorithm set by param-
eter ω1 is lower than the distribution given by the same unlearning algorithm with
parameter ω2 if

E[m(Uω1(X,U,MX))] < E[m(Uω2(X,U,MX))]

In plain words: for each unlearning algorithm on each dataset, we will choose the
parameters that make it achieve the greatest expected value for the metric. For this
optimization step, the utility will be computed on the validation set.

For what we explained in §4.2, it is evident that the learning rate plays a key role
on any deep learning problem. The unlearning algorithms we will consider depend
on different losses and different optimization processes, so their dependence on the
learning rate is entirely different. It would not be fair to fix a learning rate and
analyze all the models on it, nor would it be to choose a different one for each of them
without justification. Therefore, before analyzing any model on a dataset, we start
by analyzing its dependence on the learning rate. Then, it is for its best learning rate
for which it is compared against the other ones.

We now list the parameters which we will optimize for for each algorithm. For the
Fine-tuning model, just the learning rate. For the Regret model, the learning rate
and the C parameter. For the Fanchuan model, see the next section.

4.6 Fanchuan optimization

The Fanchuan algorithm has an intrincate unlearning process which depends on several
parameters. Optimizing through all of them is far beyond what our resources allow
us. Here, we describe the rules we have followed for this optimization process.

The Fanchuan algorithm depends on four parameters:

• The learning rate for the KL-divergence step (αKL).

4.7. Final evaluation 15

• The learning rate for the cross-entropy minimization steps (αCE).

• The learning rate for the contrastive loss maximization steps (αCL).

• The temperature coefficient to control the contrastive loss maximization steps
(t).

The learning rates dependencies have been simplified by the following law:{
αKL = 1.25αCE
αCL = 0.075αKL.

Which means to keep the same proportions between them as in the original
Fanchuan implementation (cf. [4]). We fix t = 1.15, as in the original implemen-
tation (cf. [4]) for the Google challenge. This leads to only optimize across α.

This means that for Fanchuan, following the previous notation, we are not opti-
mizing over Ω but over a subset of it. So, if we can make the Fanchuan model better
than ours even if t is fixed and the learning rates are simplified, we will have found
an upper bound. If not, it may or may not be attained by optimizing across Ω.

4.7 Final evaluation

Once the algorithms’ hyperparameters have been optimized over the validation set,
they are tested according to the metric whose accuracy part is measured over the test
set. The number of samples that are generated will be specified in the corresponding
Final results section of each dataset.

17

Chapter 5

Experiments

This section is devoted to detailing the experimental results. We conduct experi-
ments to compare the performance of Fine-tuning, Regret and Fanchuan over four
datasets using two architectures. For each dataset, each experiment report begins by
explaining the dataset and showing the five subsets considered. Then, we describe
the architecture used. We create the original and baseline models and report the
parameters used for their training along with the deliberation process for choosing
them. The optimization process under which each unlearning algorithm undergoes is
detailed in Appendix A. In this chapter we list the optimal parameters configuration
found for each case. Finally, we report the results on test data by which we assess the
performance of the models.

5.1 R2 datasets

5.1.1 Considered datasets

In this section we shall investigate how does our unlearning algorithm behave for
simple datasets consisting of points on R2 with their associated binary label. We
choose these datasets for the initial experiment for their high interpretability since they
allow the model’s predictions evolution to be visualized. They are simple, visualizable
and interpretable, and we expect them to provide us with some intuition to generalize
in more complex and non visualizable datasets. Also, they require less computational
effort, we will be able to generate more samples of the studied distributions. Each
dataset is comprised of 2000 points.

Figure 5.1: The three datasets we considered. From left two right,
they are referred to by the respective names moons, circles and spirals.

Each point is colored according to the class it belongs to.

18 Chapter 5. Experiments

5.1.2 Chosen architecture

For these datasets we choose an architecture consting on four fully connected layers
since it is simple and still is able to learn the data’s underlying pattern. Between each
layer, the ReLU activation function is used. The final layer outputs a two dimensional
logits function which is passed through a softmax function to become the predicted
probability for each class. We append next the summary table of the model, which
shows precisely the number of parameters of each layer, their shape and the order in
which they are called, together with some additional information about the model.

--
Layer (type) Output Shape Param #

==
Linear-1 [-1, 5] 15

ReLU-2 [-1, 5] 0
Linear-3 [-1, 10] 60

ReLU-4 [-1, 10] 0
Linear-5 [-1, 15] 165

ReLU-6 [-1, 15] 0
Linear-7 [-1, 2] 32

Softmax-8 [-1, 2] 0
==
Total params: 272
Trainable params: 272
Non-trainable params: 0
--
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 0.00
--

5.1.3 Initial experiment on the moons dataset

For our initial experiment, we choose the moons dataset. We proceed to visualize its
corresponding subsets. Figure 5.2 shows, in this order, the train set, the validation
set, the retain-train together with the forget set, the retain-validation set and the test
set.

The retain-train and forget set are plotted together, circles represent the retain
points and lighter crosses the forget ones.

Figure 5.2: The complete moons dataset. From left to right. The
train set. The validation set. The retain-train set with the forget set

marked by paler crosses. The validation-retain set. The test set.

For the moons dataset, the original epochs are limited to 100. The unlearn epochs
will be given by 20% of the final original epochs.

5.1. R2 datasets 19

Original and baseline models

The epochs during which the original model was trained will constrain the upcomming
experiments, and since they directly depend on the learning rate, the latter cannot
be set arbitrarily. Figure 5.3 shows the evolution along the number of epochs of the
validation loss of the original model, for different learning rates (lr). As expected,
there is a trade-off between speed and stability. According to these results, a learning
rate of 0.005 is considered adequate.

Figure 5.3: Validation loss dependency on the learning rate for the
original model on the moons dataset. On the horizontal axis: the
epochs count. On the vertical axis, the validation loss. A different line
plots the validation loss evolution across epochs, its color represent the

learning rate that is used, shown in the legend.

A training for a maximum of 100 epochs and a learning rate of 0.005 yielded the
original and baseline models given in figure 5.4. None of them early-stopped. This
set the unlearn epochs to 20.

20 Chapter 5. Experiments

Figure 5.4: The original and baseline models for the moons dataset.
From left to right: the original and the baseline model. The model’s
decision boundary is plotted overlapped with the train set for the orig-
inal model and the retain and forget set for the baseline one. Each
region is colored according to the model’s predictions on it, following

the same colormap as the data points.

Models optimization results

The unlearning algorithms Fine-tuning, Regret and Fanchuan have been optimized
according to the methodology detailed in Chapter 4, §4.5 for the moons dataset given
the original and baseline models generated in §5.1.3. Each corresponding optimization
process is reported in Appendix A, §A.1. The optimization process was performed
using only validation data, not the test set. The optimal parameters found for each
model are listed in Table 5.1.

Algorithm Parameter name Optimal value

Fine-tuning learning rate 10−1

Regret learning rate 10−3

C 1
Fanchuan learning rate 5× 10−2

Table 5.1: Optimal parameters for Fine-tuning, Regret and
Fanchuan algorithms on the moons dataset. They have been mea-

sured on validation data.

Final results on the moons dataset

Using the optimal configurations detailed in §5.1.3, we now show the results attained
on the test dataset. For testing on the moons dataset, a hundred models were gener-
ated for each algorithm.

5.1. R2 datasets 21

algorithm metric forget utility

Fine-tuning 0.72 ± 0.24 0.77 ± 0.24 0.93 ± 0.15
regret 0.83 ± 0.12 0.81 ± 0.13 1.02 ± 0.02

fanchuan 0.87 ± 0.02 0.88 ± 0.03 0.99 ± 0.01

Table 5.2: Mean and standard deviation of metric, forget, utility,
grouped by algorithm for the moons dataset. Each value is given by

its mean ± the observed standard deviation.

For this dataset, the Fanchuan model outperformed the Regret one, while the
latter outperformed Fine-tuning. We can see on the distributions shown in Figure
5.5 that for each metric, the distributions of the Fanchuan algorithm show the lower
spread, followed by the Regret’ ones. The Fine-tuning algorithm shows the largest
spread, indicating a high variability in the output, probably due to its requirement of
too high learning rates since it is slower than the other two algorithms. The spread in
the Fine-tuning algorithm makes it achieve a relatively low average value. The greater
spread on the left tail of the Regret algorithm distribution compared to Fanchuan also
makes its average value to be lower. These spreads indicate slowliness because they
are given by the algorithms requiring learning rates too high due to not being able to
reach good metrics within the unlearn epochs limit. The best overall distribution is
obtained by the Fanchuan algorithm.

22 Chapter 5. Experiments

Figure 5.5: The metrics distribution for each model on the moons
dataset for test subset. Columns represent, from left to right, the
metric, forget and utility. Rows represent, from top to bottom, the
Fine-tuning, the Regret and the Fanchuan models. Each graph repre-
sents the density of the histogram of the corresponding results attained
on the test, together with a line showing the approximate density curve

obtained by Kernel Density Estimation.

5.1.4 Experiments on the circles and spirals datasets

We now proceed to extend the experiments on the other two toy datasets. Our
intention is to see if the patterns seen in the previous section are mantained in different
(though similar) datasets. For these two datasets, the original learning epochs will be
limited to 300. The number of unlearn epochs will be 20% of the final original epochs.

Figure 5.6: The complete circles dataset. From left to right. The
train set. The validation set. The retain-train set with the forget set

marked by paler crosses. The validation-retain set. The test set.

5.1. R2 datasets 23

Figure 5.7: The complete spirals dataset. From left to right. The
train set. The validation set. The retain-train set with the forget set

marked by paler crosses. The validation-retain set. The test set.

Original and baseline models

To start, we compute the validation loss by epochs for different learning rates to select
an appropriate one for each dataset.

(a) On the circles dataset. (b) On the spirals dataset.

Figure 5.8: Validation loss dependency on the learning rate for the
original model on the circles and spirals dataset. On the horizontal
axis: the epochs count. On the vertical axis, the validation loss. A
different line plots the validation loss evolution across epochs, its color

represent the learning rate that was used, shown in the legend.

Based on results shown in Figure 5.8a, a learning rate of 0.002 was selected for the
baseline and original model. They were then trained for a maximum of 300 epochs and
early stopped after 156 epochs. This set the unlearn epochs limit to 30. Conversely,
based on figure 5.8b, the selected learning rate was 0.002. The model was allowed to
train for 300 epochs and did not early stopped. This set the unlearn epochs bound to
60.

24 Chapter 5. Experiments

(a) On the circles dataset. (b) On the spirals dataset.

Figure 5.9: The original and baseline models for the circles dataset.
From left to right: the original and the baseline model. The model’s
decision boundary is plotted overlapped with the train set for the orig-
inal model and the retain and forget set for the baseline one. Each
region is colored according to the model’s predictions on it, following

the same colormap as the data points.

We show in Figure 5.9 the original and baseline models of the circles and spirals
datasets. We observe that the circle baseline, due to not seeing the right half of the
inner blue points, contracts a little bit the right half of the decision boundary towards
the left. The spirals baseline ends the red spiral right where the forget set starts.

Models optimization results

The unlearning algorithms Fine-tuning, Regret and Fanchuan have been optimized
according to the methodology detailed in Chapter 4, §4.5 for the circles and spirals
datasets given the original and baseline models generated in §5.1.4. Each correspond-
ing optimization process is reported in Appendix A, §A.2 and §A.3 for the circles
and spirals datasets, respectively. The optimization process was performed using only
validation data, not the test set. The optimal parameters found for each model are
listed in Table 5.3.

Dataset Algorithm Parameter name Optimal value

Circles Fine-tuning learning rate 10−2

Regret learning rate 10−4

C 1
Fanchuan learning rate 10−2

Spirals Fine-tuning learning rate 2× 10−2

Regret learning rate 2× 10−2

C 1
Fanchuan learning rate 5× 10−3

Table 5.3: Optimal parameters for Fine-tuning, Regret and
Fanchuan algorithms on the circles and spirals datasets. They have

been measured on validation data.

5.1.5 Final results

Using the parameters that revealed optimal for the validation dataset, we proceed to
compute the results on the test dataset. For testing on both the circles and spirals
datasets, a hundred samples were generated for each algorithm.

5.1. R2 datasets 25

Table 5.4: Mean and standard deviation of metric, forget, utility,
grouped by algorithm for the circles and spirals datasets. Each value

is given by its mean ± the observed standard deviation.

Dataset Algorithm Metric Forget Utiliy

Circles Fine-tuning 0.84 ± 0.06 0.82 ± 0.07 1.02 ± 0.04
Regret 0.91 ± 0.02 0.86 ± 0.02 1.06 ± 0.01

Fanchuan 0.86 ± 0.04 0.85 ± 0.03 1.01 ± 0.04
Spirals Fine-tuning 0.84 ± 0.15 0.87 ± 0.14 0.97 ± 0.08

Regret 0.84 ± 0.13 0.94 ± 0.07 0.90 ± 0.12
Fanchuan 0.95 ± 0.01 0.95 ± 0.01 1.00 ± 0.00

Figure 5.10: The metrics distribution for each model on the cir-
cles dataset for test subset. Columns represent, from left to right,
the metric, forget and utility. Rows represent, from top to bottom,
the Fine-tuning, the Regret and the Fanchuan models. Each graph
represents the density of the histogram of the corresponding results
attained on the test, together with a line showing the approximate

density curve obtained by Kernel Density Estimation.

26 Chapter 5. Experiments

Figure 5.11: The metrics distribution for each model on the spi-
rals dataset for test subset. Columns represent, from left to right,
the metric, forget and utility. Rows represent, from top to bottom,
the Fine-tuning, the Regret and the Fanchuan models. Each graph
represents the density of the histogram of the corresponding results
attained on the test, together with a line showing the approximate

density curve obtained by Kernel Density Estimation.

For the circles dataset, the Regret algorithm attains the highest average metric at
a value of 0.91. As Figure 5.16 shows, the distribution of the metric and forget are
relatively similar between the Regret and Fanchuan models. The utility, however, is
more similar between the Fanchuan and Fine-tuning models, showing a wide spread.
The Regret distribution of the three metrics shows a narrow concentration, indicating
that it could achieve a fine unlearning within the epochs limit and therefore was able
to use a adequate learning rate yielding low uncertainty.

When it comes to the spirals dataset, we observe a different pattern. In it, the
Fine-tuning and Regret algorithms presented a similar behaviour, with very high
distribution spreads indicating high variability. In contrast, the Fanchuan model
presents a very centralized distribution for the three metrics. This indicates that
the latter algorithm can achieve correct unlearnings within the unlearn epochs limits
while using adequate small learning rates, while the two former ones need to rely on
too high learning rates yielding high instability.

In conclusion, the Regret model outperforms the Fine-tuning in both datasets.
For the Circles dataset, the Regret model outperforms Fanchuan. And for Spirals,
Fanchuan outperforms the Regret model.

5.2. MNIST dataset 27

5.2 MNIST dataset

5.2.1 The MNIST dataset

The MNIST dataset consists of 70000 pictures of hand-written digits between 0 and 9,
together with the true digit they represent. For the reader to gain more insight on this
dataset, Figure 5.12 illustrates five samples of this dataset, showing the handwritten
digit image and its corresponding label. In Table 5.5 we show the digits distribution
across each set constructed as indicated in the methodology given by Chapter 4, §4.1.

Figure 5.12: Some samples from the MNIST dataset. Each image is
shown with its true label on top.

For the reader to gain more insight on this dataset, table 5.5 shows the digits
distribution across each set.

Set 0 1 2 3 4 5 6 7 8 9 Total

Train 10% 11% 10% 10% 10% 9% 10% 10% 10% 10% 60000
Val 11% 12% 11% 10% 10% 9% 10% 10% 9% 10% 5000

Retain Train 11% 12% 11% 11% 11% 10% 0% 12% 11% 11% 54082
Retain Val 12% 13% 12% 11% 11% 10% 0% 11% 10% 11% 4502

Forget 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 5918
Test 9% 11% 10% 11% 10% 9% 9% 11% 10% 10% 5000

Table 5.5: Labels distribution across the complete MNIST dataset.
Each column represents a possible label: the digits between 0 and
9. Top right-end column gives the total number of samples. Each
row, from top to bottom, the train, validation, retain train set, retain-
validation set, forget set and test set. The relative frequencies of each

label on each dataset are shown in % values.

Training the architecture presented in §5.2.2 on an image dataset with so many
samples as MNIST is very computationally expensive. Since the number of epochs
through which the original model was trained on will determine the number of epochs
for the unlearning algorithms, we were forced to keep this number low enough so we
could run our experiments with enough samples to capture the distribution. For this
reason, the original learning epochs were limited to 100 for this dataset. This number
of epochs was experimentally checked to be enough for the model to learn the MNIST
dataset (see Figure 5.14). The fraction of unlearn epochs was given by 10% of the
original epochs. This fraction was lower than with the R2 datasets for computational
limitations.

28 Chapter 5. Experiments

5.2.2 Chosen architecture

We now detail the architecture used for the MNIST dataset. It comprises convolu-
tional layers, max pooling layers, flattening layers and fully connected layers. All
convolutional layers have padding 1, stride 1 and kernel size 3× 3. The ReLU activa-
tion function is used again. The final layer outputs a ten dimensional logits function
which is passed through a softmax function to become the predicted probability for
each class. As indicated in Chapter 3, §3.1, all unlearning algorithms —including
Regret— will be applied to all the layers with trainable parameters, both the fully
connected and the convolutional layers.

We append next the summary table of the model which shows precisely the number
of parameters of each layer, their shape and the order in which they are called, together
with some additional information about the model.

--
Layer (type) Output Shape Param #

==
Conv2d-1 [-1, 32, 28, 28] 320

ReLU-2 [-1, 32, 28, 28] 0
Conv2d-3 [-1, 64, 28, 28] 18,496

ReLU-4 [-1, 64, 28, 28] 0
MaxPool2d-5 [-1, 64, 14, 14] 0

Conv2d-6 [-1, 64, 14, 14] 36,928
ReLU-7 [-1, 64, 14, 14] 0

Conv2d-8 [-1, 64, 14, 14] 36,928
ReLU-9 [-1, 64, 14, 14] 0

MaxPool2d-10 [-1, 64, 7, 7] 0
Linear-11 [-1, 10] 31,370

ReLU-12 [-1, 10] 0
Linear-13 [-1, 10] 110

ReLU-14 [-1, 10] 0
Linear-15 [-1, 10] 110

Softmax-16 [-1, 10] 0
==
Total params: 124,262
Trainable params: 124,262
Non-trainable params: 0
--
Input size (MB): 0.00
Forward/backward pass size (MB): 1.65
Params size (MB): 0.47
Estimated Total Size (MB): 2.13
--

5.2.3 Original and baseline models

We start running several models for 100 epochs and different learning rates. We plot
the error on the validation sets in figure 5.13. According to these results, a learning
rate of 10−4 was selected. The original model was trained for 100 epochs and did not
early-stop. Its confusion matrix is shown in figure 5.14.

5.2. MNIST dataset 29

Figure 5.13: Validation loss dependency on the learning rate for the
original model on the MNIST dataset. On the horizontal axis: the
epochs count. On the vertical axis, the validation loss. A different line
plots the validation loss evolution across epochs, its color represents

the learning rate that was used, shown in the legend.

Figure 5.14: The original model for the MNIST dataset. We plot the
confusion matrix of the model, with the real labels on the horizontal

axis and the predicted ones on the vertical one.

For the MNIST dataset, there are several directions in which predictions can evolve
once a model does not see a certain class. This was observed by experimental data,
where different baselines showed a completely different distribution of predictions over
the class they had not seen during training. As a consequence, 6 baselines were selected
to compute the metrics on. They were selected randomly without any filter to try to
be the most faithful to the true underlying distribution of baseline models given the
retain and forget data. Their confusion matrices are shown in figure 5.15.

30 Chapter 5. Experiments

Figure 5.15: The baseline models for the MNIST dataset. For each
one of the six baselines, we plot the confusion matrix with the same

format as in Figure 5.14.

Models optimization results

The unlearning algorithms Fine-tuning, Regret and Fanchuan have been optimized
according to the methodology detailed in Chapter 4, §4.5 for the MNIST dataset given
the original and baseline models generated in §5.2.3. Each corresponding optimization
process is reported in Appendix A, §A.4. The optimization process was performed
using only validation data, not the test set. The optimal parameters found for each
model are listed in Table 5.6.

Algorithm Parameter name Optimal value

Fine-tuning learning rate 10−3

Regret learning rate 10−3

C 1
Fanchuan learning rate 10−2

Table 5.6: Optimal parameters for Fine-tuning, Regret and
Fanchuan algorithms on the MNIST dataset. They have been mea-

sured on validation data.

5.2.4 Final results

Using the optimal hyperparameters found in the preceding sections, we proceed to
give the final results achieved over the test set for the MNIST dataset. To test on
the MNIST dataset, 30 samples were generated for each algorithm. We create less
unlearn models than for the R2 datasets for computational limitations.

5.2. MNIST dataset 31

Figure 5.16: The metrics distribution for each model on the MNIST
dataset for test subset. Columns represent, from left to right, the
metric, forget and utility. Rows represent, from top to bottom, the
Fine-tuning, the Regret and the Fanchuan models. Each graph repre-
sents the density of the histogram of the corresponding results attained
on the test, together with a line showing the approximate density curve

obtained by Kernel Density Estimation.

Table 5.7: Mean and standard deviation of metric, forget, utility,
grouped by algorithm for the MNIST dataset on the test set. Each

value is given by its mean ± the observed standard deviation.

Algorithm Metric Forget Utility

Fine-tuning 0.36 ± 0.11 0.38 ± 0.12 0.94 ± 0.04
Regret 0.36 ± 0.09 0.38 ± 0.09 0.92 ± 0.04
Fanchuan 0.50 ± 0.05 0.51 ± 0.05 0.97 ± 0.01

This final evaluation shows that the Fanchuan model outperformed the Regret
one. The Regret algorithm performed very similarly than Fine-tuning.

The Regret metric and forget distributions are less spreaded than the Fine-tuning
ones, despite being centered around the same value. In contrast, the utility distribu-
tion is more concentrated and shifted to the right for Fine-tuning than for Regret.
Overall, these two algorithms show an even performance on the MNIST dataset. Both
the large spread they present plus the worsen of the predictions over classes different
than the forget class (6) shown in Figures A.20 and A.22 indicate that these models

32 Chapter 5. Experiments

were not able to reach correct unlearnings within the limit of unlearn epochs, and
hence required too high learning rates that produced high instability. As with the
R2 datasets, what these spreaded distributions indicate is that these two models are
slow.

In contrast, Fanchuan achieves much better results, with greater means and sub-
stantially lower variances than the other two algorithms. This low deviation together
with the observation in Figure A.24 that no substantial worsen of predictive power
appears for retain classes, indicates that the model could achieve correct unlearning
within the epochs limit and so used adequate low learning rates. This in turn indicates
that this model is faster than the other two.

33

Chapter 6

Conclusion and discussion

This final chapter is dedicated to synthetize this work and to provide a global conclu-
sion that summarizes our understanding of the Regret model. Finally, we conclude
this work with some open discussions.

6.1 Conclusions

In this work, we retrieved the problem of machine unlearning as presented in the re-
lated literature, gave a formal definition of it and recovered the different assessment
methods used by scientists on this field. We then examined different unlearning meth-
ods, including several state of the art ones. In them, we observed a pattern: an erase
phase followed by a repair one. This led us to propose a new unlearning model that
did not rely on this method: the Regret algorithm.

We proposed our metrics and an evaluation framework for unlearning problems.
We implemented three unlearning algorithms: Fine-tuning, Regret and Fanchuan. We
have thoroughly tested them on three R2 datasets using an architecture consisting on
fully connected layers. Moreover, we also tested them on the MNIST dataset, using a
more complex architecture involving convolutional and pooling layers, together with
fully connected ones. We have therefore tested them on four different datasets and
two architectures.

The results varied within different datasets but overall we can conclude that the
Regret algorithm produces a metric distribution that is more shifted towards greater
values with still a lower spread than the Fine-tuning method. The gain was greater
on the R2 datasets. It was less clear on the MNIST dataset, but in this dataset, due
to its computational complexity, a substantial smaller sample of results was taken,
resulting into a less statistically informative conclusion.

Our implementation of the Fanchuan algorithm, although it was not designed for
dealing with these datasets or be evaluated with our metrics, nor optimized through
all its parameters, greatly outperformed the Regret algorithm (and therefore Fine-
tuning). This implies that although Regret is better than Fine-tuning, it does not
compare with the state of the art models.

6.2 Discussion

6.2.1 Limitations of this work

We faced important computational limitations for carrying out these experiments.
They were conducted on a computer whose key specifications are listed next. CPU:
Intel i7-14700KF, RAM: 16 GB, GPU: Nvidia GeForce RTX 4060.

This made the experiments for the R2 datasets extremely time consuming. De-
spite training a single model on such datasets is relatively fast, the random nature

34 Chapter 6. Conclusion and discussion

of these experiments required the training of not one but several (e.g., 81,920 models
were needed to be trained to conduct the experiment reported in Annex B, §B.1).
The code was optimized to use GPU acceleration and parallel multiprocessing, which
substantially decreased the runtime. Still, these experiments took even days to finish.

For the MNIST experiments, things got more complicated. Parallel computing
was unfeasible since the model and the data were very heavy and consumed all GPU’s
resources. So only one model could be trained at a time. Therefore, these experiments
had to be more limited reducing both the domain points in which they could be
assessed and also the number of samples that were generated to approximate the
probability distribution. This notably impacted the quality of the optimization process
conducted for the models.

6.2.2 Experimental framework

The experiments were defined by limiting the number of unlearning epochs to 20% or
10% of the training epochs of the original model. This being set, the models were free
to optimize their hyperparameters according to the expectancy of their metric. This
made the slower algorithms to require greater learning epochs, making the optimiza-
tion process unstable, yielding a wide variability of results and potentially ending up
in catastrophic unlearning. This is not a major concern, since when evaluating them,
we have penalized wide spreads in the distribution.

Determining which learning rate is excessive is very complicated to formalize.
Even more complicated is to do so when one is dealing with different loss functions,
since a shared learning rate would not guarantee that. If, in contrast, one opts for
normalizing all gradients to length 1 before multiplying by the learning rate, this
would make gradients be of equal length no matter how close they are to a local
optimum, slowing the optimization at far points and impeding convergence at close
points.

Another way to construct the experiments would be as follows. Instead of fixing
the number of epochs and then evaluate which metric is attained, we could have
let each model to train until it is early stopped, and then evaluate both the metric
attained and the number of epochs required. However, this approach also has its
limitations. It may be a little inconsistent with some existing literature, since in these
unlearning experiments, unlearning algorithms that require too many epochs tend
to be discarded (cf. [10], where unlearning time is cut-off at 20% of the retain-from-
scratch time). Also, if the models are penalized for the number of epochs they require,
they might also opt for high learning rates, since this would trigger the early-stopping
mechanism before.

6.2.3 Metrics definition

During the experiments, it has been observed that it is optimal for some algorithms to
choose high learning rates for their positive impact on the forget despite their negative
impact on the utility. However, this does not align with the user preferences, which
are only to sacrifice the minimal utility necessary to predict on the forget set as if the
model was not trained with it.

There may be different interesting approaches to mitigate this issue. On one
hand, the final metric could be reformulated to give more importance to utility than
to forget. On the other hand, the very utility measure could be formualted at the
light of the following. It is not the same the loss of accuracy on the forget set than
on the retain set. A loss of accuracy on the forget set is natural and may indicate a

6.2. Discussion 35

good unlearning of it. In contrast, a loss of accuracy on the retain set can indicate a
potential model destruction, which should be avoided at all costs.

6.2.4 Unlearning features

Unlearning convolutional neural networks as the architecture used for the MNIST
dataset is conceptually more complicated than dealing with simple fully connected
neural networks for points datasets. It is so because these architectures, at least
with simple constructions as our architecture, can be split into two phases: a feature
construction phase plus a classification phase. It is unclear if the unlearning procedure
should be applied to all the layers or just to the classification layers.

The first approach may indeed produce a model whose weights are closer than
the baseline’s ones, since it would also be able to change the convolutional weights.
The second option, in contrast, may be of interest if we accept the idea that the
construction of features depends on the dataset and not of the particular samples, so
that if a model has to forget a subset, it should only forget how to classify it, still
obtaining the same features of it. In this work, we have opted for the first approach
since we thought is was simpler and with less potential impact on the fairness of the
comparison experiments. With this impact we mean that it could be the case that
an unlearning algorithm affects more some kind of layers while another one alters a
different type of layers; then, fixing a subset of layers might benefit some algorithms
in detriment of anothers.

6.2.5 Future work

As future work, we highlight two interesting areas to study regarding the Regret al-
gorithm. Firstly, it is the study of the impact of selecting a certain subset of layers
instead of all of them. Lastly, it could be of interest to study if the Regret’s regular-
ization loss can be reformulated in a manner which is model and dataset-agnostic.

37

Appendix A

Models optimization

This chapter details the optimization process performed to all three unlearning algo-
rithms for each considered dataset. Fine-tuning and Fanchuan are optimized across
the learning rate. Regret is optimized across both the learning rate and the C pa-
rameter. The optimization across C for the Regret model is reported in Annex B.
For the optimal parameters configuration, the best and worst unlearned models of
each algorithm are displayed, showing their decision boundary in case of R2 datasets
or their confusion matrix for MNIST, together with their metric, forget and utility
curves across the unlearn epochs.

A.1 Moons dataset

A.1.1 Optimizing Fine-tuning

The different unlearning algorithms are very sensitive to the chosen learning rate.
Since they rely on different loss functions and optimization processes, it might be
unfair to compare them using a given learning rate. Instead, we will compute their
performance for different learning rates, and compare the best setting of each one.

The basic Fine-tuning model, as figure A.1 shows, has its best performance with
learning rates quite high (of order 10−1). Thus, for the range of learning rates
(0, 10−1), there is a trade-off between performance and stability. As pointed in Chap-
ter 4, §4.5, during this optimization stage, the utility part of the metric is computed
over the validation set.

38 Appendix A. Models optimization

Figure A.1: The Fine-tuning model performance by learning rate
for the moons dataset. From left to right, the values corresponding
to metric, forget and utility. Horizontal axis represents the learning
rate being used. The vertical axis represents the respective value.
The bold line represents the average observed value. The pale band
around it shows the spread of the observations. For each learning rate,
the vertical distance between the blue line and each end of the band
around it is the standard deviation observed. Forget is computed over

the forget set and utility over the validation set.

In table A.1 we list the metrics values with its uncertainty (± one standard devi-
ation) for a few learning rates. The Fine-tuning model achieves its best metric for a
learning rate of 10−1 at a value of 0.75± 0.20.

Learning Rate Metric Forget Utility

0.001 0.25 ± 0.00 0.23 ± 0.00 1.08 ± 0.00
0.005 0.37 ± 0.07 0.34 ± 0.06 1.07 ± 0.00
0.010 0.44 ± 0.10 0.42 ± 0.10 1.07 ± 0.01
0.050 0.72 ± 0.20 0.70 ± 0.20 1.02 ± 0.06
0.100 0.75 ± 0.20 0.81 ± 0.19 0.94 ± 0.13
0.500 0.39 ± 0.23 0.66 ± 0.36 0.59 ± 0.11

Table A.1: Performance metrics by learning rate for the Fine-tuning
model and moons dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

For the learning rate that attained the best average result (10−1), we show in
figure A.2 the plots to compare the best and the worst models produced by the Fine-
tuning algorithm. We plot them together with the original model and the baseline to
facilitate comparison. On the right hand, we plot the metrics evolution per epochs.

A.1. Moons dataset 39

Figure A.2: The Fine-tuning best and worst models for a learning
rate of 0.1 on the moons dataset. Above, the best performance ob-
served at this learning rate. Below, the worst. For each case, from left
to right we show: the original model, the baseline model, the unlearned
model and the corresponding metrics evolution’s curves per epoch.

As we can see, for such high learning rate, the Fine-tuning model can achieve a
good result, but is very volatile and can also destroy the model. This can be attributed
to the fact that this algorithm is not fast enough and cannot reach the optimal weights
for the unlearn problems with a reasonable learning rate within the unlearn epochs
limit. It then opts for higher learning rates to compensate this slowliness, but at the
expense of higher uncertainty.

A.1.2 Optimizing Regret

The regret model depends on both the learning rate and the C parameter. To reduce
complexity, we will start by fixing C = 1 and analyzing its learning rate-dependency.

40 Appendix A. Models optimization

Figure A.3: The regret model performance by learning rate for the
moons dataset. From left to right, the values corresponding to metric,
forget and utility. Horizontal axis represents the learning rate being
used. The vertical axis represents the respective value. The bold line
represents the average observed value. The pale band around it shows
the spread of the observations. For each learning rate, the vertical
distance between the blue line and each end of the band around it is
the standard deviation observed. Forget is computed over the forget

set and utility over the validation set.

Table A.2 shows the impact of several learning rates on the metrics. For this
setting, the regret algorithm achieves its maximum metric for a learning rate of 10−3

with a value of 0.83 ± 0.09. Note that compared with the Fine-tuning model, this
metric is 11% higher while its variability is 55% lower.

Learning Rate Metric Forget Utility

0.00001 0.25 ± 0.00 0.23 ± 0.00 1.08 ± 0.00
0.00005 0.36 ± 0.07 0.33 ± 0.07 1.07 ± 0.00
0.00010 0.60 ± 0.17 0.57 ± 0.17 1.05 ± 0.02
0.00050 0.83 ± 0.10 0.81 ± 0.10 1.03 ± 0.01
0.00100 0.83 ± 0.09 0.81 ± 0.10 1.03 ± 0.01
0.00500 0.81 ± 0.09 0.79 ± 0.10 1.03 ± 0.01
0.01000 0.77 ± 0.10 0.75 ± 0.10 1.03 ± 0.01
0.05000 0.81 ± 0.15 0.80 ± 0.16 1.01 ± 0.05
0.10000 0.72 ± 0.25 0.81 ± 0.24 0.87 ± 0.15
0.50000 0.35 ± 0.25 0.59 ± 0.39 0.58 ± 0.10

Table A.2: Performance metrics by learning rate for the Regret
model and moons dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

Figure A.4 shows the best and worst regret models for C = 1 and a learning
rate of 10−3. As we can clearly see, the regret model can attain good results with a
lower relative learning rate, compared to the Fine-tuning model. Therefore, with this
learning rate, the algorithm is more stable and does not menace with destroying the
model and still achieves better results.

A.1. Moons dataset 41

Figure A.4: The Regret (C = 1) best and worst models for a learning
rate of 0.001 on the moons dataset. Above, the best performance
observed at this learning rate. Below, the worst. For each case, from
left to right we show: the original model, the baseline model, the
unlearned model and the corresponding metrics evolution’s curves per

epoch.

The C dependency has been calculated in §B.1. The conclusion of this experiment
is to keep C = 1 and the previously found learning rate.

A.1.3 Optimizing Fanchuan

According to the methodology defined in Chapter 4, §4.6, Fanchuan is optimized over
the learning rate. We proceed to show its dependence on this parameter.

42 Appendix A. Models optimization

Figure A.5: The Fanchuan model performance by learning rate for
the moons dataset. From left to right, the values corresponding to
metric, forget and utility. Horizontal axis represents the learning rate
being used. The vertical axis represents the respective value. The
bold line represents the average observed value. The pale band around
it shows the spread of the observations. For each learning rate, the
vertical distance between the blue line and each end of the band around
it is the standard deviation observed. Forget is computed over the

forget set and utility over the validation set.

The metrics curves over the learning rate are smoother than the ones of Fine-
tuning and Regret and present a lower variance.

lr metric

1.0× 10−5 0.25 ± 0.00
5.0× 10−5 0.25 ± 0.00
1.0× 10−4 0.25 ± 0.00
5.0× 10−4 0.25 ± 0.00
1.0× 10−3 0.25 ± 0.00
5.0× 10−3 0.26 ± 0.00
1.0× 10−2 0.52 ± 0.01
5.0× 10−2 0.87 ± 0.02
1.0× 10−1 0.86 ± 0.03
5.0× 10−1 0.81 ± 0.08
1.0× 100 0.77 ± 0.12

Table A.3: Performance metrics by learning rate for the Fanchuan
model and moons dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

Based on these results, the best learning rate seems to be 0.05. We proceed to
show in figure A.6 the best and worst Fanchuan models for this configuration.

A.2. Circles dataset 43

Figure A.6: The Fanchuan best and worst models for a learning
rate of 0.05. Above, the best performance observed at this learning
rate. Below, the worst. For each case, from left to right we show:
the original model, the baseline model, the unlearned model and the

corresponding metrics evolution’s curves per epoch.

We can appreciate that the difference between the best and the worst case for the
optimal learning rate differ mostly on their performance on the forget dataset, but the
worst case still yielded a correct model. This is aligned with the lower uncertainty that
this model generates at the optimal parameters. Also, it is worth noticing that the
decision boundary after the application of the Fanchuan algorithm reflects a higher
entropy, probably being the consequence of the initial step aimed at replicating a
uniform distribution over the forget set.

A.2 Circles dataset

A.2.1 Optimizing Fine-tuning

We proceed to compute the Fine-tuning model’s dependency on the learning rate for
the circles dataset.

44 Appendix A. Models optimization

Figure A.7: The Fine-tuning model performance by learning rate
for the circles dataset. From left to right, the values corresponding
to metric, forget and utility. Horizontal axis represents the learning
rate being used. The vertical axis represents the respective value.
The bold line represents the average observed value. The pale band
around it shows the spread of the observations. For each learning rate,
the vertical distance between the blue line and each end of the band
around it is the standard deviation observed. Forget is computed over

the forget set and utility over the validation set.

lr metric forget utility

1.0× 10−4 0.37 ± 0.00 0.30 ± 0.00 1.23 ± 0.00
5.0× 10−4 0.45 ± 0.02 0.38 ± 0.02 1.20 ± 0.01
1.0× 10−3 0.72 ± 0.03 0.66 ± 0.04 1.09 ± 0.01
5.0× 10−3 0.82 ± 0.05 0.80 ± 0.06 1.03 ± 0.03
1.0× 10−2 0.83 ± 0.06 0.82 ± 0.08 1.01 ± 0.04
5.0× 10−2 0.53 ± 0.04 0.85 ± 0.01 0.62 ± 0.04
1.0× 10−1 0.51 ± 0.06 0.84 ± 0.10 0.61 ± 0.01
5.0× 10−1 0.45 ± 0.16 0.73 ± 0.26 0.62 ± 0.03

Table A.4: Performance metrics by learning rate for the Fine-tuning
model and circles dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

Based on the results shown in figure A.7 and table A.4, the peak performance is
attained for a learning rate of 0.01 at a value of 0.83± 0.06 on the circles dataset.

Figure A.8 shows the best and worst performances of the Fine-tuning model with
this learning rate on the circles dataset.

A.2. Circles dataset 45

Figure A.8: The Fine-tuning best and worst models for a learning
rate of 0.01 on the circles dataset. Above, the best performance ob-
served at this learning rate. Below, the worst. For each case, from left
to right we show: the original model, the baseline model, the unlearned
model and the corresponding metrics evolution’s curves per epoch.

For this dataset, Figure A.8 shows that the worst case for the optimal parameter of
the Fine-tuning algorithm did not yield any model destruction. The worst executions
simply show an incomplete unlearning of the forget set.

A.2.2 Optimizing Regret

Starting by a fixed C = 1, Figure A.9 and Table A.5 show its dependency on the
learning rate for the circles dataset.

46 Appendix A. Models optimization

Figure A.9: The regret model performance by learning rate for the
circles dataset. From left to right, the values corresponding to metric,
forget and utility. Horizontal axis represents the learning rate being
used. The vertical axis represents the respective value. The bold line
represents the average observed value. The pale band around it shows
the spread of the observations. For each learning rate, the vertical
distance between the blue line and each end of the band around it is
the standard deviation observed. Forget is computed over the forget

set and utility over the validation set.

lr metric forget utility

1.0× 10−5 0.24 ± 0.00 0.19 ± 0.00 1.26 ± 0.00
5.0× 10−5 0.57 ± 0.02 0.50 ± 0.02 1.14 ± 0.01
1.0× 10−4 0.88 ± 0.02 0.86 ± 0.02 1.03 ± 0.01
5.0× 10−4 0.86 ± 0.02 0.87 ± 0.02 0.99 ± 0.01
1.0× 10−3 0.82 ± 0.02 0.83 ± 0.03 1.00 ± 0.02
5.0× 10−3 0.78 ± 0.06 0.76 ± 0.07 1.02 ± 0.04
1.0× 10−2 0.80 ± 0.08 0.79 ± 0.10 1.02 ± 0.05
5.0× 10−2 0.52 ± 0.06 0.84 ± 0.07 0.62 ± 0.04
1.0× 10−1 0.51 ± 0.06 0.84 ± 0.10 0.61 ± 0.01
5.0× 10−1 0.44 ± 0.16 0.71 ± 0.27 0.63 ± 0.03

Table A.5: Performance metrics by learning rate for the Regret
model and circles dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

Figure A.9 shows that the performance of the Regret model on the learning rate
seems to present two local optimal points for the circles dataset. However, the one
attained at a lower learning rate is preferable because it has a higher expected value
and substantially less uncertainty. It is for learning rates higher than this one that
the variance starts to progressively increase, indicating too high learning rates. Its
best performance on the circles dataset is hereby attained at a learning rate of 0.0001
at a metric of 0.88± 0.02.

A.2. Circles dataset 47

Figure A.10: The Regret (C = 1) best and worst models for a learn-
ing rate of 0.0001 on the circles dataset. Above, the best performance
observed at this learning rate. Below, the worst. For each case, from
left to right we show: the original model, the baseline model, the un-
learned model and the corresponding metrics evolution’s curves per

epoch.

The best and worst unlearned models for the circles dataset shown in Figure A.10
show little difference, which is consistent with the low variance observed in the curves
presented in Figure A.9.

An experiment has been conducted to determine the Regret algorithm’s depen-
dency on the C parameter for the circles dataset. The results are reported in §B.2.
In this case, the conclusion was to keep C = 1.

A.2.3 Optimizing Fanchuan

We start by computing the Fanchuan’s dependency on the learning rate.

48 Appendix A. Models optimization

Figure A.11: The Fanchuan model performance by learning rate
for the circles dataset. From left to right, the values corresponding
to metric, forget and utility. Horizontal axis represents the learning
rate being used. The vertical axis represents the respective value.
The bold line represents the average observed value. The pale band
around it shows the spread of the observations. For each learning rate,
the vertical distance between the blue line and each end of the band
around it is the standard deviation observed. Forget is computed over

the forget set and utility over the validation set.

lr metric forget utility

1.0× 10−5 0.24 ± 0.00 0.19 ± 0.00 1.26 ± 0.00
5.0× 10−5 0.28 ± 0.00 0.22 ± 0.00 1.26 ± 0.00
1.0× 10−4 0.34 ± 0.00 0.27 ± 0.00 1.24 ± 0.00
5.0× 10−4 0.39 ± 0.01 0.32 ± 0.01 1.23 ± 0.01
1.0× 10−3 0.46 ± 0.05 0.38 ± 0.05 1.20 ± 0.02
5.0× 10−3 0.77 ± 0.05 0.73 ± 0.06 1.06 ± 0.03
1.0× 10−2 0.86 ± 0.02 0.85 ± 0.03 1.01 ± 0.03
5.0× 10−2 0.76 ± 0.10 0.86 ± 0.03 0.88 ± 0.10
1.0× 10−1 0.59 ± 0.10 0.85 ± 0.02 0.69 ± 0.11
5.0× 10−1 0.50 ± 0.02 0.82 ± 0.04 0.61 ± 0.01
1.0× 100 0.46 ± 0.03 0.75 ± 0.05 0.61 ± 0.01

Table A.6: Performance metrics by learning rate for the Fanchuan
model and circles dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

Figure A.11 shows a single optimal value which also generates low variance. Learn-
ing rates higher than the optimal one produce higher variance, indicating that they
are excessively high. The peak performance is achieved for a learning rate of 10−2.

A.3. Spirals dataset 49

Figure A.12: The Fanchuan best and worst models for a learning rate
of 0.01 on the circles dataset. Above, the best performance observed
at this learning rate. Below, the worst. For each case, from left to
right we show: the original model, the baseline model, the unlearned
model and the corresponding metrics evolution’s curves per epoch.

The low variance for the optimal learning rate shown in Figure A.11 is reflected
on the unlearned models shown in Figure A.12, where the worst model does not differ
much from the best execution. As observed in §A.1.3, the Fanchuan algorithm also
produced a relatively high entropy in the decision boundary for this dataset.

A.3 Spirals dataset

A.3.1 Optimizing Fine-tuning

This section evaluates Fine-tuning model’s dependency on the learning rate for the
spirals dataset.

50 Appendix A. Models optimization

Figure A.13: The Fine-tuning model performance by learning rate
for the spirals dataset. From left to right, the values corresponding
to metric, forget and utility. Horizontal axis represents the learning
rate being used. The vertical axis represents the respective value.
The bold line represents the average observed value. The pale band
around it shows the spread of the observations. For each learning rate,
the vertical distance between the blue line and each end of the band
around it is the standard deviation observed. Forget is computed over

the forget set and utility over the validation set.

lr metric forget utility

1.0× 10−4 0.07 ± 0.00 0.06 ± 0.00 1.14 ± 0.00
5.0× 10−4 0.21 ± 0.01 0.18 ± 0.01 1.13 ± 0.00
1.0× 10−3 0.26 ± 0.04 0.24 ± 0.03 1.11 ± 0.01
5.0× 10−3 0.36 ± 0.15 0.33 ± 0.15 1.10 ± 0.04
1.0× 10−2 0.50 ± 0.20 0.47 ± 0.21 1.08 ± 0.04
5.0× 10−2 0.51 ± 0.13 0.88 ± 0.25 0.58 ± 0.04
1.0× 10−1 0.49 ± 0.17 0.86 ± 0.31 0.58 ± 0.03
5.0× 10−1 0.41 ± 0.25 0.72 ± 0.43 0.58 ± 0.02

Table A.7: Performance metrics by learning rate for the Fine-tuning
model and spirals dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

A visual exploration of the metric curve of figure A.13 shows that there is a
substantial peak which is so concentrated that it is not reflected in the table. In the
light of the above, the data was manually explored and the best argument turned out
to be a learning rate of around 0.02. At such value, the metric was 0.91± 0.06.

Figure A.14 shows the best and worst performances of the Fine-tuning algorithm
with the optimal learning rate on the spirals dataset.

A.3. Spirals dataset 51

Figure A.14: The Fine-tuning best and worst models for a learning
rate of 0.02 on the spirals dataset. Above, the best performance ob-
served at this learning rate. Below, the worst. For each case, from left
to right we show: the original model, the baseline model, the unlearned
model and the corresponding metrics evolution’s curves per epoch.

For this dataset, similarly than in §A.2.1, Figure A.14 shows that the worst case for
the optimal parameter of the Fine-tuning algorithm did not ended in model destruction
but in an incomplete unlearning of the forget set.

A.3.2 Optimizing Regret

We proceed to study the Regret’s dependency on the learning rate for the spirals
dataset. Figure A.15 and Table A.8 show the results of this experiment.

52 Appendix A. Models optimization

Figure A.15: The regret model performance by learning rate for the
spirals dataset. From left to right, the values corresponding to metric,
forget and utility. Horizontal axis represents the learning rate being
used. The vertical axis represents the respective value. The bold line
represents the average observed value. The pale band around it shows
the spread of the observations. For each learning rate, the vertical
distance between the blue line and each end of the band around it is
the standard deviation observed. Forget is computed over the forget

set and utility over the validation set.

lr metric forget utility

1.0× 10−5 0.27 ± 0.03 0.24 ± 0.03 1.11 ± 0.01
5.0× 10−5 0.65 ± 0.11 0.62 ± 0.12 1.05 ± 0.02
1.0× 10−4 0.67 ± 0.12 0.64 ± 0.12 1.06 ± 0.02
5.0× 10−4 0.68 ± 0.11 0.64 ± 0.12 1.06 ± 0.02
1.0× 10−3 0.67 ± 0.10 0.63 ± 0.11 1.06 ± 0.02
5.0× 10−3 0.72 ± 0.13 0.69 ± 0.14 1.05 ± 0.03
1.0× 10−2 0.80 ± 0.12 0.78 ± 0.12 1.03 ± 0.05
5.0× 10−2 0.51 ± 0.14 0.88 ± 0.26 0.58 ± 0.04
1.0× 10−1 0.49 ± 0.17 0.86 ± 0.31 0.58 ± 0.03
5.0× 10−1 0.46 ± 0.21 0.81 ± 0.37 0.57 ± 0.01

Table A.8: Performance metrics by learning rate for the Regret
model and spirals dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

We see in Figure A.15 a narrow peak after a learning rate of 10−2. A manual
exploration of the data file reveals that the best performing learning rate was 0.02.

A.3. Spirals dataset 53

Figure A.16: The Regret (C = 1) best and worst models for a learn-
ing rate of 0.01913 on the spirals dataset. Above, the best performance
observed at this learning rate. Below, the worst. For each case, from
left to right we show: the original model, the baseline model, the un-
learned model and the corresponding metrics evolution’s curves per

epoch.

The worst model for the spirals dataset, shown in Figure A.16 shows model de-
struction while the best one really fits the retain dataset. This is consistent with the
high spread shown in Figure A.15.

An experiment has been conducted to determine the Regret algorithm’s depen-
dency on the C parameter for this dataset. The results are reported in §B.3. In this
case, the conclusion was to keep C = 1.

A.3.3 Optimizing Fanchuan

This section details the optimization process for the Fanchuan algorithm with respect
to the learning rate for the spirals dataset.

54 Appendix A. Models optimization

Figure A.17: The Fanchuan model performance by learning rate
for the spirals dataset. From left to right, the values corresponding
to metric, forget and utility. Horizontal axis represents the learning
rate being used. The vertical axis represents the respective value.
The bold line represents the average observed value. The pale band
around it shows the spread of the observations. For each learning rate,
the vertical distance between the blue line and each end of the band
around it is the standard deviation observed. Forget is computed over

the forget set and utility over the validation set.

lr metric forget utility

1.0× 10−5 0.03 ± 0.00 0.02 ± 0.00 1.15 ± 0.00
5.0× 10−5 0.03 ± 0.00 0.02 ± 0.00 1.15 ± 0.00
1.0× 10−4 0.03 ± 0.00 0.02 ± 0.00 1.15 ± 0.00
5.0× 10−4 0.03 ± 0.00 0.03 ± 0.00 1.15 ± 0.00
1.0× 10−3 0.07 ± 0.00 0.06 ± 0.00 1.15 ± 0.00
5.0× 10−3 0.94 ± 0.02 0.95 ± 0.01 1.00 ± 0.02
1.0× 10−2 0.92 ± 0.07 0.98 ± 0.03 0.94 ± 0.06
5.0× 10−2 0.60 ± 0.08 0.84 ± 0.07 0.71 ± 0.05
1.0× 10−1 0.50 ± 0.07 0.73 ± 0.08 0.68 ± 0.04
5.0× 10−1 0.37 ± 0.05 0.64 ± 0.09 0.57 ± 0.01
1.0× 100 0.37 ± 0.06 0.64 ± 0.11 0.57 ± 0.01

Table A.9: Performance metrics by learning rate for the Fanchuan
model and spirals dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

Similarly to the results seen in §A.2.3, the Fanchuan algorithm yields smoother
learning rate-dependencies and substantially lower variances compared to Fine-tuning
and Regret. The optimal learning rate generates low variance and learning rates
higher than this one produce higher deviations. The best performance is attained for
a learning rate of 5× 10−3.

A.4. MNIST dataset 55

Figure A.18: The Fanchuan best and worst models for a learning rate
of 0.005 on the spirals dataset. Above, the best performance observed
at this learning rate. Below, the worst. For each case, from left to
right we show: the original model, the baseline model, the unlearned
model and the corresponding metrics evolution’s curves per epoch.

The best and worst models for the optimal learning rate presented in Figure A.18
show a similar behaviour than the ones reported in §A.2.3, with low difference between
them, aligned with the curves seen in Figure A.17. Also, as in the moons and circles
executions of the Fanchuan algorithm, the decision boundary presents high entropy,
meaning that the model is uncertain about its predictions on a band around this
decision frontier.

A.4 MNIST dataset

A.4.1 Optimizing Fine-tuning

We start by studying the dependence on the learning rate by the Fine-tuning model.
Since the MNIST optimization is much more costly, we cannot compute a curve as
in the toy datasets section. We will plot the mean metrics with their associated
confidence ranges for the learning rates in {10−n}8n=1.

56 Appendix A. Models optimization

Figure A.19: The Fine-tuning model performance by learning rate
for the MNIST dataset. From left to right, the values corresponding to
metric, forget and utility. Horizontal axis represents the learning rate
being used. The vertical axis represents the respective value. For each
considered learning rate, each metrics value is represented by a dot on
the observed average value together with confidence bars representing
one standard deviation above and below. Forget is computed over the

forget set and utility over the validation set.

lr metric forget utility

1.0× 10−8 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−7 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−6 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−5 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−4 0.10 ± 0.04 0.09 ± 0.04 1.10 ± 0.00
1.0× 10−3 0.30 ± 0.13 0.33 ± 0.13 0.88 ± 0.08
1.0× 10−2 0.01 ± 0.02 0.11 ± 0.14 0.11 ± 0.01
1.0× 10−1 0.01 ± 0.02 0.08 ± 0.13 0.11 ± 0.01

Table A.10: Performance metrics by learning rate for the Fine-tuning
model and MNIST dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

In this limited set of learning rates, the optimal one seems to be 10−3. For this
learning rate, we show in figure A.20 the best and worst results obtained for it. Note
that we now plot the evolution of forget and metric with confidence bands since they
depend on not one but 6 baselines.

A.4. MNIST dataset 57

Figure A.20: The Fine-tuning best and worst models for a learning
rate of 0.001 on the MNIST dataset. Above, the best performance
observed at this learning rate. Below, the worst. For each case, from
left to right we show: the original model, the baseline model, the
unlearned model and the corresponding metrics evolution’s curves per

epoch.

A.4.2 Optimizing Regret

Setting C = 1, we start by computing its dependency on the learning rate.

Figure A.21: The Regret model (C = 1) performance by learning
rate for the MNIST dataset. From left to right, the values correspond-
ing to metric, forget and utility. Horizontal axis represents the learning
rate being used. The vertical axis represents the respective value. For
each considered learning rate, each metrics value is represented by a
dot on the observed average value together with confidence bars repre-
senting one standard deviation above and below. Forget is computed

over the forget set and utility over the validation set.

58 Appendix A. Models optimization

lr metric forget utility

1.0× 10−8 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−7 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−6 0.02 ± 0.01 0.02 ± 0.01 1.11 ± 0.00
1.0× 10−5 0.02 ± 0.00 0.02 ± 0.00 1.11 ± 0.00
1.0× 10−4 0.14 ± 0.05 0.13 ± 0.04 1.10 ± 0.01
1.0× 10−3 0.40 ± 0.10 0.42 ± 0.09 0.93 ± 0.04
1.0× 10−2 0.01 ± 0.01 0.08 ± 0.12 0.12 ± 0.01
1.0× 10−1 0.01 ± 0.01 0.10 ± 0.12 0.11 ± 0.01

Table A.11: Performance metrics by learning rate for regret model
and MNIST dataset. For each metric, the values are given by their ob-
served mean ± their observed standard deviation. Forget is computed

over the forget set and utility over the validation set.

This experiment indicates that the best learning rate may be 10−3. Figure A.22
shows the best and worst performances attained at this learning rate for this experi-
ment.

Figure A.22: The Regret (C = 1) best and worst models for a learn-
ing rate of 0.001 on the MNIST dataset. Above, the best performance
observed at this learning rate. Below, the worst. For each case, from
left to right we show: the original model, the baseline model, the un-
learned model and the corresponding metrics evolution’s curves per

epoch.

An experiment has been conducted to determine the dependency on the C param-
eter and is reported in §B.4. It did not find substantial evidence sustaining that any
C value different than 1 would improve the results, so the original C = 1 value was
kept.

A.4. MNIST dataset 59

A.4.3 Optimizing Fanchuan

We now turn our attention to the Fanchuan model. We analyze its dependency on
the learning rate and display it in Figure A.23 and Table A.12.

Figure A.23: The Fanchuan model performance by learning rate for
the MNIST dataset. From left to right, the values corresponding to
metric, forget and utility. Horizontal axis represents the learning rate
being used. The vertical axis represents the respective value. For each
considered learning rate, each metrics value is represented by a dot on
the observed average value together with confidence bars representing
one standard deviation above and below. Forget is computed over the

forget set and utility over the validation set.

lr metric forget utility

1.0× 10−8 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−7 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−6 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−5 0.01 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−4 0.02 ± 0.00 0.01 ± 0.00 1.11 ± 0.00
1.0× 10−3 0.47 ± 0.03 0.47 ± 0.03 1.00 ± 0.00
1.0× 10−2 0.50 ± 0.06 0.52 ± 0.07 0.97 ± 0.01
1.0× 10−1 0.08 ± 0.04 0.36 ± 0.03 0.21 ± 0.11

Table A.12: Performance metrics by learning rate for the Fanchuan
model and MNIST dataset. For each metric, the values are given by
their observed mean ± their observed standard deviation. Forget is

computed over the forget set and utility over the validation set.

This indicates that the optimal learning rate for this discretization is 10−2. Figure
A.24 shows the best and worst performance attained by the Fanchuan model with this
learning rate in our experiment.

60 Appendix A. Models optimization

Figure A.24: The Fanchuan best and worst models for a learning rate
of 0.01 on the MNIST dataset. Above, the best performance observed
at this learning rate. Below, the worst. For each case, from left to
right we show: the original model, the baseline model, the unlearned
model and the corresponding metrics evolution’s curves per epoch.

61

Appendix B

Studying C dependencies

This chapter analyses the dependency of the Regret model on its C parameter for
each dataset.

B.1 On the moons dataset

We now proceed to calculate the dependency on both the learning rate and the C
parameter. Results will be shown in a heatmap and a table.

Figure B.1: Regret model’s metric across C and learning rate on the
moons dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

62 Appendix B. Studying C dependencies

Figure B.2: Regret model’s forget across C and learning rate on the
moons dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

Figure B.3: Regret model’s utility across C and learning rate on the
moons dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

In the three Figures B.1, B.2 and B.3, we observe an assymptotic behaviour as C
increases above 103. Uncertainty increases as the learning rate surpasses 10−1. The
utility heatmap represented in Figure B.3 follows an opposite pattern as the forget
heatmap of Figure B.2. As expected, higher C’s improve the forget at the expense of

B.1. On the moons dataset 63

lowering the utility. It is interesting to notice the lower region on which both forget
and utility realize good enough values resulting in the best area for the overall metric
since it reaches the best compromise between the former two. Next, Table B.1 reports
the exact average and standard deviation values at some points.

64 Appendix B. Studying C dependencies

lr C metric

1.0× 10−5 0 0.25 ± 0.00
1.0× 10−2 0.25 ± 0.00
1.0× 100 0.25 ± 0.00
5.0× 101 0.25 ± 0.00
1.0× 102 0.25 ± 0.00
5.0× 102 0.25 ± 0.00
1.0× 103 0.25 ± 0.00
1.0× 104 0.25 ± 0.00
1.0× 106 0.25 ± 0.00

5.0× 10−5 0 0.25 ± 0.00
1.0× 10−2 0.26 ± 0.02
1.0× 100 0.35 ± 0.09
5.0× 101 0.35 ± 0.09
1.0× 102 0.35 ± 0.09
5.0× 102 0.35 ± 0.09
1.0× 103 0.35 ± 0.09
1.0× 104 0.35 ± 0.09
1.0× 106 0.35 ± 0.09

1.0× 10−4 0 0.25 ± 0.00
1.0× 10−2 0.44 ± 0.14
1.0× 100 0.56 ± 0.21
5.0× 101 0.55 ± 0.21
1.0× 102 0.55 ± 0.21
5.0× 102 0.55 ± 0.21
1.0× 103 0.56 ± 0.21
1.0× 104 0.56 ± 0.21
1.0× 106 0.56 ± 0.21

5.0× 10−4 0 0.25 ± 0.00
1.0× 10−2 0.68 ± 0.23
1.0× 100 0.76 ± 0.19
5.0× 101 0.71 ± 0.20
1.0× 102 0.68 ± 0.20
5.0× 102 0.67 ± 0.19
1.0× 103 0.67 ± 0.19
1.0× 104 0.67 ± 0.19
1.0× 106 0.67 ± 0.19

1.0× 10−3 0 0.25 ± 0.00
1.0× 10−2 0.71 ± 0.24
1.0× 100 0.76 ± 0.19
5.0× 101 0.78 ± 0.21
1.0× 102 0.74 ± 0.19
5.0× 102 0.70 ± 0.19
1.0× 103 0.69 ± 0.19
1.0× 104 0.69 ± 0.19
1.0× 106 0.69 ± 0.19

Table B.1: Mean
and standard devia-
tion of metric grouped

by lr, C

lr C metric

5.0× 10−3 0 0.36 ± 0.08
1.0× 10−2 0.76 ± 0.21
1.0× 100 0.77 ± 0.16
5.0× 101 0.80 ± 0.20
1.0× 102 0.78 ± 0.21
5.0× 102 0.76 ± 0.22
1.0× 103 0.74 ± 0.21
1.0× 104 0.71 ± 0.19
1.0× 106 0.70 ± 0.19

1.0× 10−2 0 0.47 ± 0.15
1.0× 10−2 0.78 ± 0.14
1.0× 100 0.75 ± 0.11
5.0× 101 0.82 ± 0.22
1.0× 102 0.82 ± 0.22
5.0× 102 0.77 ± 0.21
1.0× 103 0.76 ± 0.22
1.0× 104 0.70 ± 0.19
1.0× 106 0.69 ± 0.19

5.0× 10−2 0 0.74 ± 0.20
1.0× 10−2 0.83 ± 0.12
1.0× 100 0.85 ± 0.10
5.0× 101 0.79 ± 0.25
1.0× 102 0.81 ± 0.24
5.0× 102 0.80 ± 0.23
1.0× 103 0.79 ± 0.23
1.0× 104 0.76 ± 0.22
1.0× 106 0.73 ± 0.22

1.0× 10−1 0 0.76 ± 0.22
1.0× 10−2 0.81 ± 0.15
1.0× 100 0.75 ± 0.21
5.0× 101 0.77 ± 0.24
1.0× 102 0.75 ± 0.23
5.0× 102 0.76 ± 0.23
1.0× 103 0.75 ± 0.23
1.0× 104 0.73 ± 0.23
1.0× 106 0.73 ± 0.23

5.0× 10−1 0 0.39 ± 0.24
1.0× 10−2 0.35 ± 0.30
1.0× 100 0.41 ± 0.22
5.0× 101 0.40 ± 0.21
1.0× 102 0.39 ± 0.24
5.0× 102 0.41 ± 0.23
1.0× 103 0.45 ± 0.24
1.0× 104 0.37 ± 0.29
1.0× 106 0.48 ± 0.21

Table B.2: (contin-
ues) for the Regret
model on the moons

dataset.

B.2. On the circles dataset 65

These results suggest that a configuration close to the optimum in the studied
region is given by a learning rate of 0.05 and C = 1 (see Table B.1, second column,
row corresponding to 5.0×10−2). Since the optimal C turns to be 1, this is the selected
C but the learning rate is chosen according to the results given in table A.2 given in
Chapter 5, §A.1.2. We do so because in this grid-search experiment we generate 10
samples for each configuration. In contrast, the experiment reported in Chapter 5,
§A.1.2 trains 100 models for each configuration. Therefore, we are more confident of
these later results. This leads to a final learning rate of 0.001 and thus to the model
configuration shown in figure A.4.

B.2 On the circles dataset

We now present the heatmaps showing the relation between the metrics and both the
learning rate and the C parameter for the circles dataset.

Figure B.4: Regret model’s metric across C and learning rate on the
circles dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

66 Appendix B. Studying C dependencies

Figure B.5: Regret model’s forget across C and learning rate on the
circles dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

Figure B.6: Regret model’s utility across C and learning rate on the
circles dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

These plots show a similar pattern as the ones given in §B.1 despite it is not evident
at first sight due to the different scale used by the colormap. For the metric, we observe
again an assymptotic behaviour for C values bigger than 103. It also presents the same
reverse relation between utility and forget and also a region comprised in the bottom
which shows a good compromise between forget and utility and where the metric
attains its best values.

B.2. On the circles dataset 67

lr C metric

1.0× 10−5 0 0.23 ± 0.00
1.0× 10−2 0.23 ± 0.00
1.0× 100 0.24 ± 0.00
5.0× 101 0.39 ± 0.02
1.0× 102 0.40 ± 0.02
5.0× 102 0.36 ± 0.09
1.0× 103 0.38 ± 0.13
1.0× 104 0.38 ± 0.16
1.0× 106 0.37 ± 0.15

5.0× 10−5 0 0.33 ± 0.00
1.0× 10−2 0.33 ± 0.00
1.0× 100 0.57 ± 0.01
5.0× 101 0.73 ± 0.03
1.0× 102 0.68 ± 0.05
5.0× 102 0.52 ± 0.17
1.0× 103 0.48 ± 0.19
1.0× 104 0.46 ± 0.18
1.0× 106 0.46 ± 0.18

1.0× 10−4 0 0.37 ± 0.00
1.0× 10−2 0.37 ± 0.00
1.0× 100 0.88 ± 0.02
5.0× 101 0.63 ± 0.04
1.0× 102 0.61 ± 0.05
5.0× 102 0.49 ± 0.15
1.0× 103 0.48 ± 0.15
1.0× 104 0.47 ± 0.16
1.0× 106 0.47 ± 0.16

5.0× 10−4 0 0.46 ± 0.02
1.0× 10−2 0.52 ± 0.08
1.0× 100 0.86 ± 0.03
5.0× 101 0.61 ± 0.06
1.0× 102 0.54 ± 0.09
5.0× 102 0.49 ± 0.13
1.0× 103 0.49 ± 0.13
1.0× 104 0.49 ± 0.13
1.0× 106 0.49 ± 0.13

1.0× 10−3 0 0.72 ± 0.04
1.0× 10−2 0.73 ± 0.03
1.0× 100 0.82 ± 0.03
5.0× 101 0.61 ± 0.09
1.0× 102 0.55 ± 0.09
5.0× 102 0.50 ± 0.12
1.0× 103 0.49 ± 0.12
1.0× 104 0.49 ± 0.13
1.0× 106 0.49 ± 0.13

Table B.3: Mean
and standard devia-
tion of metric grouped

by lr, C

lr C metric

5.0× 10−3 0 0.82 ± 0.05
1.0× 10−2 0.82 ± 0.04
1.0× 100 0.77 ± 0.06
5.0× 101 0.63 ± 0.11
1.0× 102 0.55 ± 0.07
5.0× 102 0.52 ± 0.09
1.0× 103 0.52 ± 0.10
1.0× 104 0.50 ± 0.12
1.0× 106 0.49 ± 0.12

1.0× 10−2 0 0.83 ± 0.06
1.0× 10−2 0.83 ± 0.08
1.0× 100 0.80 ± 0.07
5.0× 101 0.63 ± 0.13
1.0× 102 0.58 ± 0.09
5.0× 102 0.53 ± 0.07
1.0× 103 0.53 ± 0.09
1.0× 104 0.50 ± 0.11
1.0× 106 0.49 ± 0.12

5.0× 10−2 0 0.54 ± 0.08
1.0× 10−2 0.53 ± 0.06
1.0× 100 0.53 ± 0.07
5.0× 101 0.52 ± 0.05
1.0× 102 0.52 ± 0.05
5.0× 102 0.53 ± 0.07
1.0× 103 0.53 ± 0.08
1.0× 104 0.51 ± 0.08
1.0× 106 0.50 ± 0.08

1.0× 10−1 0 0.51 ± 0.04
1.0× 10−2 0.51 ± 0.07
1.0× 100 0.51 ± 0.04
5.0× 101 0.51 ± 0.04
1.0× 102 0.51 ± 0.04
5.0× 102 0.52 ± 0.04
1.0× 103 0.52 ± 0.06
1.0× 104 0.51 ± 0.08
1.0× 106 0.50 ± 0.07

5.0× 10−1 0 0.44 ± 0.16
1.0× 10−2 0.44 ± 0.16
1.0× 100 0.44 ± 0.16
5.0× 101 0.44 ± 0.16
1.0× 102 0.44 ± 0.16
5.0× 102 0.44 ± 0.16
1.0× 103 0.44 ± 0.16
1.0× 104 0.44 ± 0.16
1.0× 106 0.44 ± 0.16

Table B.4: (contin-
ues) for the Regret
model on the circles

dataset.

68 Appendix B. Studying C dependencies

On the light of the results shown in figure B.4 and table B.3 (first column, row
corresponding to lr = 1.0× 10−4), the best combination of learning rate and C seems
10−4 and 1, respectively. Since the optimal C parameter given in this grid search
experiment is C = 1, we will keep this parameter and the learning rate as decided in
the corresponding section. This decision regarding the learning rate is motivated by
the reasoning exposed in §B.1.

B.3 On the spirals dataset

Figure B.7: Regret model’s metric across C and learning rate on the
spirals dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

B.3. On the spirals dataset 69

Figure B.8: Regret model’s forget across C and learning rate on the
spirals dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

Figure B.9: Regret model’s utility across C and learning rate on the
spirals dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

A visual exploration on Figures B.7, B.8 and B.9 reveals the same patterns discussed
in §B.1 and B.2.

70 Appendix B. Studying C dependencies

lr C metric

1.0× 10−5 0 0.03 ± 0.00
1.0× 10−2 0.04 ± 0.00
1.0× 100 0.27 ± 0.03
5.0× 101 0.20 ± 0.09
1.0× 102 0.19 ± 0.09
5.0× 102 0.20 ± 0.10
1.0× 103 0.20 ± 0.10
1.0× 104 0.20 ± 0.10
1.0× 106 0.20 ± 0.10

5.0× 10−5 0 0.04 ± 0.00
1.0× 10−2 0.51 ± 0.01
1.0× 100 0.65 ± 0.12
5.0× 101 0.49 ± 0.14
1.0× 102 0.48 ± 0.14
5.0× 102 0.49 ± 0.13
1.0× 103 0.48 ± 0.13
1.0× 104 0.48 ± 0.13
1.0× 106 0.48 ± 0.13

1.0× 10−4 0 0.07 ± 0.00
1.0× 10−2 0.65 ± 0.02
1.0× 100 0.66 ± 0.14
5.0× 101 0.52 ± 0.12
1.0× 102 0.51 ± 0.12
5.0× 102 0.50 ± 0.10
1.0× 103 0.50 ± 0.11
1.0× 104 0.50 ± 0.11
1.0× 106 0.50 ± 0.11

5.0× 10−4 0 0.21 ± 0.01
1.0× 10−2 0.65 ± 0.07
1.0× 100 0.67 ± 0.11
5.0× 101 0.59 ± 0.10
1.0× 102 0.57 ± 0.07
5.0× 102 0.54 ± 0.08
1.0× 103 0.53 ± 0.08
1.0× 104 0.52 ± 0.08
1.0× 106 0.52 ± 0.08

1.0× 10−3 0 0.28 ± 0.03
1.0× 10−2 0.66 ± 0.11
1.0× 100 0.67 ± 0.11
5.0× 101 0.60 ± 0.10
1.0× 102 0.57 ± 0.11
5.0× 102 0.54 ± 0.08
1.0× 103 0.53 ± 0.08
1.0× 104 0.52 ± 0.08
1.0× 106 0.52 ± 0.08

Table B.5: Mean
and standard devia-
tion of metric grouped

by lr, C

lr C metric

5.0× 10−3 0 0.38 ± 0.20
1.0× 10−2 0.67 ± 0.10
1.0× 100 0.71 ± 0.13
5.0× 101 0.75 ± 0.18
1.0× 102 0.67 ± 0.14
5.0× 102 0.59 ± 0.06
1.0× 103 0.56 ± 0.07
1.0× 104 0.54 ± 0.06
1.0× 106 0.53 ± 0.08

1.0× 10−2 0 0.49 ± 0.14
1.0× 10−2 0.76 ± 0.16
1.0× 100 0.80 ± 0.11
5.0× 101 0.68 ± 0.16
1.0× 102 0.65 ± 0.15
5.0× 102 0.57 ± 0.08
1.0× 103 0.58 ± 0.06
1.0× 104 0.55 ± 0.08
1.0× 106 0.53 ± 0.08

5.0× 10−2 0 0.45 ± 0.16
1.0× 10−2 0.42 ± 0.20
1.0× 100 0.54 ± 0.06
5.0× 101 0.54 ± 0.07
1.0× 102 0.56 ± 0.00
5.0× 102 0.55 ± 0.04
1.0× 103 0.54 ± 0.05
1.0× 104 0.53 ± 0.12
1.0× 106 0.57 ± 0.01

1.0× 10−1 0 0.56 ± 0.00
1.0× 10−2 0.52 ± 0.14
1.0× 100 0.52 ± 0.15
5.0× 101 0.56 ± 0.00
1.0× 102 0.56 ± 0.00
5.0× 102 0.55 ± 0.05
1.0× 103 0.56 ± 0.00
1.0× 104 0.54 ± 0.08
1.0× 106 0.57 ± 0.01

5.0× 10−1 0 0.50 ± 0.16
1.0× 10−2 0.50 ± 0.16
1.0× 100 0.50 ± 0.16
5.0× 101 0.50 ± 0.16
1.0× 102 0.50 ± 0.16
5.0× 102 0.50 ± 0.16
1.0× 103 0.50 ± 0.16
1.0× 104 0.50 ± 0.16
1.0× 106 0.50 ± 0.16

Table B.6: (contin-
ues) for the Regret
model on the spirals

dataset.

B.4. On the MNIST dataset 71

In Figure B.7 and Table B.5 (second column, row corresponding to lr = 1.0 ×
10−2) we observe that the best combination of learning rate and C appears to be
10−2 and 1, respectively. Since the optimal C parameter given in this grid search
experiment is C = 1, we will keep this parameter and the learning rate as decided in
the corresponding section, following the reasoning expressed in §B.1.

B.4 On the MNIST dataset

We compute in this section the dependency on both the learning rate and the C
parameter for the Regret model on the MNIST dataset.

Figure B.10: Regret model’s metric across C and learning rate on the
MNIST dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

Figure B.11: Regret model’s forget across C and learning rate on the
MNIST dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

72 Appendix B. Studying C dependencies

Figure B.12: Regret model’s utility across C and learning rate on the
MNIST dataset. From left to right: the mean value and the standard
deviation. For each plot, the horizontal axis represents the learning
rate and the vertical line represents the C parameter. Each point
on this heatmap corresponds to the respective observed value for the

combination (learning rate, C).

Possibly due to the substantially lower frequency at which we sample both the
learning rate and the C parameter due to the computational expense of training the
MNIST models, we do not observe the previous patterns very clearly. What we can
see is that, for the studied values, the learning rate here has a critical impact on the
metrics, much more than the C parameter. Low learning rates yield better utilities
than high learning rates. A learning rate of 10−3 results in the best compromise
between utility and forget.

lr C metric

1.0× 10−6 1.0× 10−4 0.01 ± 0.00
1.0× 10−2 0.01 ± 0.00
1.0× 100 0.02 ± 0.01
1.0× 102 0.10 ± 0.08
1.0× 104 0.08 ± 0.02

1.0× 10−5 1.0× 10−4 0.02 ± 0.00
1.0× 10−2 0.02 ± 0.00
1.0× 100 0.02 ± 0.01
1.0× 102 0.06 ± 0.04
1.0× 104 0.10 ± 0.08

1.0× 10−4 1.0× 10−4 0.15 ± 0.06
1.0× 10−2 0.13 ± 0.05
1.0× 100 0.15 ± 0.04
1.0× 102 0.23 ± 0.07
1.0× 104 0.14 ± 0.11

Table B.7: Mean
and standard devia-
tion of metric grouped

by lr, C

lr C metric

1.0× 10−3 1.0× 10−4 0.33 ± 0.07
1.0× 10−2 0.34 ± 0.06
1.0× 100 0.32 ± 0.09
1.0× 102 0.38 ± 0.12
1.0× 104 0.37 ± 0.08

1.0× 10−2 1.0× 10−4 0.00 ± 0.00
1.0× 10−2 0.00 ± 0.00
1.0× 100 0.02 ± 0.02
1.0× 102 0.02 ± 0.01
1.0× 104 0.02 ± 0.02

1.0× 10−1 1.0× 10−4 0.01 ± 0.01
1.0× 10−2 0.01 ± 0.01
1.0× 100 0.01 ± 0.01
1.0× 102 0.01 ± 0.01
1.0× 104 0.00 ± 0.00

Table B.8: (contin-
ues) for the Regret
model on the MNIST

dataset.

This experiment reveals that all learning rates different than 10−3 perform worse
for any C. Therefore, the dependence of C reduces to studying it with the learning

B.4. On the MNIST dataset 73

rate fixed to 10−3. The consequent results are shown in figure B.13 and table B.7.

Figure B.13: Regret model’s performance across C for a learning
rate of 10−3 on the MNIST dataset. From left to right, the values
corresponding to metric, forget and utility. Horizontal axis represents
the learning rate being used. The vertical axis represents the respective
value. For each considered C value, each metrics value is represented
by a dot on the observed average value together with confidence bars

representing one standard deviation above and below.

C metric forget utility

1.0× 10−10 0.39 ± 0.06 0.42 ± 0.06 0.93 ± 0.03
1.0× 10−8 0.38 ± 0.08 0.40 ± 0.08 0.96 ± 0.01
1.0× 10−6 0.39 ± 0.05 0.42 ± 0.05 0.94 ± 0.02
1.0× 10−4 0.37 ± 0.08 0.40 ± 0.08 0.94 ± 0.03
1.0× 10−2 0.39 ± 0.07 0.42 ± 0.08 0.93 ± 0.04
1.0× 100 0.32 ± 0.10 0.34 ± 0.10 0.93 ± 0.05
1.0× 102 0.37 ± 0.08 0.39 ± 0.08 0.95 ± 0.02
1.0× 104 0.37 ± 0.10 0.38 ± 0.10 0.95 ± 0.04
1.0× 106 0.38 ± 0.16 0.40 ± 0.14 0.92 ± 0.18
1.0× 108 0.24 ± 0.08 0.32 ± 0.07 0.74 ± 0.20
1.0× 1010 0.15 ± 0.13 0.25 ± 0.11 0.52 ± 0.26

Table B.9: Performance metrics by C for the Regret model and
MNIST dataset. For each metric, the values are given by their observed

mean ± their observed standard deviation.

From this experiment we can extract that the performance worsens for extremely
big learning rates. However, the same is not observed for extremely small learning
rates. Based on the previous results for the toy datasets and the fact that for C = 0
we recover the Fine-tuning model, which had a lower average metric, we conclude
that this is likely due to numerical instability. In terms of optimizing the model, there
does not seem to be any clear optimal C value for this discretization, so we keep the
original C = 1 value.

75

Appendix C

Source code repository URL

All the code used to generate this thesis can be found at the GitHub repository with
the following URL: https://github.com/arnauJutglar/MFPDS_TFM_UNLEARNING.

https://github.com/arnauJutglar/MFPDS_TFM_UNLEARNING

77

Bibliography

[1] Lucas Bourtoule et al. “Machine Unlearning”. In: arXiv preprint arXiv:1912.
03817 (2020).

[2] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: arXiv
preprint arXiv:2005.14165 (2020).

[3] Katharina Buchholz. ChatGPT training cost estimation. https://www.forbes.
com / sites / katharinabuchholz / 2024 / 08 / 23 / the - extreme - cost - of -
training-ai-models/. Accessed: 2025-02-13. 2024.

[4] Fanchuan implementation for Google’s Unlearning Challenge. https://www.
kaggle.com/code/fanchuan/2nd- place- machine- unlearning- solution.
Accessed: 2025-02-10.

[5] Antonio A. Ginart et al. “Making AI Forget You: Data Deletion in Machine
Learning”. In: arXiv preprint arXiv:1907.05012 (2019).

[6] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. “Eternal Sunshine of
the Spotless Net: Selective Forgetting in Deep Networks”. In: arXiv preprint
arXiv:1911.04933 (2020).

[7] Thanh Tam Nguyen et al. “A Survey of Machine Unlearning”. In: arXiv preprint
arXiv:2209.02299 (2024).

[8] Subhodip panda2023 and Prathosh AP. “FAST: Feature Aware Similarity Thresh-
olding for Weak Unlearning in Black-Box Generative Models”. In: arXiv preprint
arXiv:2312.14895v1 (2023).

[9] Anvith Thudi et al. “Unrolling SGD: Understanding Factors Influencing Machine
Unlearning”. In: arXiv preprint arXiv:2109.13398 (2022).

[10] Eleni Triantafillou et al. “Are we making progress in unlearning? Findings from
the first NeurIPS unlearning competition”. In: arXiv preprint arXiv:2406.09073
(2024).

[11] Pablo Noriega Vázquez. Machine unlearning: el arte de olvidar en la era de
la Inteligencia Artificial. https://hdl.handle.net/2445/216709. Accessed:
2025-01-16.

[12] Weiqi Wang et al. “Machine Unlearning: A Comprehensive Survey”. In: arXiv
preprint arXiv:2405.07406 (2024).

[13] Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. “DeltaGrad: Rapid re-
training of machine learning models”. In: arXiv preprint arXiv:2006. 14755
(2020).

https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://www.forbes.com/sites/katharinabuchholz/2024/08/23/the-extreme-cost-of-training-ai-models/
https://www.kaggle.com/code/fanchuan/2nd-place-machine-unlearning-solution
https://www.kaggle.com/code/fanchuan/2nd-place-machine-unlearning-solution
https://hdl.handle.net/2445/216709

	Abstract
	Acknowledgements
	Introduction
	Problem definition
	Motivation
	Work purpose and hypothesis
	Thesis organization

	Related work
	Analytical definition of unlearning
	Approaches to measure unlearning
	Existent unlearning algorithms
	Retraining on the retain set
	Fine-tuning

	State of the art models
	Fanchuan

	Proposed model
	Our proposal: the Regret algorithm for neural networks
	Defining our metrics

	Methodology
	Datasets construction
	Setting the original learning rate
	Setting the number of epochs
	Managing uncertainty
	Hyperparameter optimization
	Fanchuan optimization
	Final evaluation

	Experiments
	R2 datasets
	Considered datasets
	Chosen architecture
	Initial experiment on the moons dataset
	Original and baseline models
	Models optimization results
	Final results on the moons dataset

	Experiments on the circles and spirals datasets
	Original and baseline models
	Models optimization results

	Final results

	MNIST dataset
	The MNIST dataset
	Chosen architecture
	Original and baseline models
	Models optimization results

	Final results

	Conclusion and discussion
	Conclusions
	Discussion
	Limitations of this work
	Experimental framework
	Metrics definition
	Unlearning features
	Future work

	Models optimization
	Moons dataset
	Optimizing Fine-tuning
	Optimizing Regret
	Optimizing Fanchuan

	Circles dataset
	Optimizing Fine-tuning
	Optimizing Regret
	Optimizing Fanchuan

	Spirals dataset
	Optimizing Fine-tuning
	Optimizing Regret
	Optimizing Fanchuan

	MNIST dataset
	Optimizing Fine-tuning
	Optimizing Regret
	Optimizing Fanchuan

	Studying C dependencies
	On the moons dataset
	On the circles dataset
	On the spirals dataset
	On the MNIST dataset

	Source code repository URL
	Bibliography

