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Abstract: Quantum teleportation cannot be achieved with certainty when using a partially
entangled resource; however, full-fidelity teleportation can be realized probabilistically, by allowing
the protocol to fail sometimes. We present two strategies for conclusive teleportation based on
generalized measurements: one involves a filtering operation applied by the receiver, while the other
uses non-orthogonal state discrimination performed by the sender. Both methods are optimal in
that they succeed with the maximum possible probability. Additionally, we study this maximal

probability in the general d-dimensional case.
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I. INTRODUCTION

In quantum information theory, quantum teleportation
[1] refers to the process of recreating an unknown quan-
tum state at a remote location by sending only classical
information. This is achieved through a shared, maxi-
mally entangled pair between the sender and the receiver.
The sender, Alice, has an unknown qubit |¢)) she wants
to send to the receiver, Bob:

) =alo+ 5 = (3) )

The coefficients a and 3 are unknown and satisfy |a|? +
|8]2 = 1. The qubit is expressed in the computational

basis: {|0> = ((13)7 1) = ((1))}

At the same time, Alice and Bob share one of the Bell
basis states {|<I)+>AB = %( 100) s +I11) 45 ), [ 97 ) 4 =

5 (100) 45 =11 45 ), [¥%) 45 = 5 (101) 45 +[10) 45 ).

[U) g = %( [01) 45 — |1O)AB)} Subscripts A and
B refer to Alice’s half and Bob’s half, respectively. To
teleport the qubit |¢) from Alice to Bob, it is combined
with the shared pair. The three-qubit system becomes:
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Here, the subscript C' indicates the system of the original
qubit to be teleported. This system belongs to Alice.
This state can be rearranged as a superposition of Bell
states, as shown in equation (2). From this form, it is
easy to see that if Alice measures her two-qubit sys-
tem CA in the Bell basis {|®")o4, |2 )oa, (¥ cus

U)o A}, each outcome occurs with equal probability,
and Bob’s half of the Bell pair then collapses to a ro-
tated version of |t)): {(%)B, (%) p (g)B, (jf)B}.
Alice sends the result of her measurement to Bob as
two classical bits. Using this information, Bob knows
which rotation to apply to his qubit via quantum gates

(1= (39) 2 = (45). X = (8). X2 = (95)}

Finally, he obtains the original qubit [¢); = () 5 on
his system, successfully completing the teleportation.

This protocol only works if Alice and Bob share a
maximally entangled state. If, instead, they share a
partially entangled state, Bob’s final state will not match
the original qubit. Let Alice and Bob share a general
entangled state:

IX)ap = al00) 45 +b[11) 45 (3)

This represents the most general entangled state (up to
a local change of basis) according to the Schmidt decom-
position, where a and b are both real and positive coeffi-
cients satisfying a? + b? = 1. Without loss of generality,
we assume a > b > 0. The special case a = b corresponds
to maximal entanglement. Similarly to before, the new
three-qubit system then becomes:

|Q>CAB = |¢>c |X>AB
o

= <B)c (a]00) 45 +b]11) 45)
! oty (zg)B 18 )y <a§/3)3 (4)

19 (52) +1)ea (;‘;ﬁ)B]

V2
This state can also be rewritten in terms of the Bell ba-
sis states. However, in this case, Bob’s state is no longer
a simple rotation of the original state [¢)). Alice’s mea-
surement in the Bell basis yields the outcomes |®*) each
with probability 3 (a?|a|? +b?|8|?), and the outcomes
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|W*) each with probability 3 (a?|8]? + b?|a/?). Depend-
ing on the outcome of Alice’s measurement, Bob’s qubit
is projected into one of the following unnormalized states
o) € {(%5),(%558), (‘;5), (_“ﬂ )}. Their norms relate
to the probabilities for Alice via p; = 3 | i) ||

Even after applying quantum gates {I, Z, X, XZ},
these states generally do not coincide with |¢), indicating
imperfect teleportation unless entanglement is maximal.
To achieve full fidelity, Bob can use an ancillary qubit
and a unitary transformation to convert his state |¢) to
a rotation of |1), as presented by Wan-Li Li et al. [2].

II. PROBABILISTIC TELEPORTATION

After Alice measures in the Bell basis, Bob’s state col-
lapses to one of the unnormalized states |¢;) with prob-
ability p; = 3 [l¢:)||°. He knows which state he has re-
ceived based on the information sent by Alice. To recover
the original state, Bob wants to transform |¢;) into the
original 1)) = (), however, this transformation cannot
be unitary while universal for all (Oﬁ‘) To apply such
a non-unitary operation, he appends an ancilla qubit in
a known state |0), and performs a unitary transforma-
tion on the extended space, followed by a measurement.
This comes at the cost of introducing a finite probability
of failure. Depending on the measurement outcome, the
procedure either succeeds, yielding the desired rotated
state, or fails, resulting in a complete loss of information.
Crucially, Bob is always able to determine whether the
recovery was successful. From the combined initial state:

1 1

100, 16) = 5100, (axl0) +bl1) ()
Where N2 = [[|¢)]|* = |as|® + |by|* is a normalization
constant and (k,n) = (a,£8) or (£8, @) represent all

possible states {|¢;)}. The unitary operator U acts as
follows:

(N (anl0) +n11)))

[ Zarl0) + 011 +|1>a\/1—f;am>]

[ (bk10) +bn|1>)+|1>a\/a2—b2n|l>}

Z\

Z\

(6)
The term proportional to |0),, indicating success, selec-
tively dampens the |0) component by a factor of g while
leaving the |1) component intact. It follows that the state
corresponding to |0), is, up to normalization, a rotation
of the original state |¢)). For example, the unnormal-
ized state |¢) = (%5) is mapped to b|y) = (ba) upon

successful recovery. The factor /1 — Z—z in the term pro-

portional to |1) , indicating failure, arises from the need
to preserve unitarity, ensuring normalization after mod-
ifying ax |0) to bk |0).
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The probabilities for each outcome are ﬁbQ for success
and j\}2 (a2 — b2) || for failure. Note that they both

depend on « and 7 (recall N2 = |ak|? + |bn|?); still, they
add up to 1. This dependence disappears when averaging
over all states |¢;) with probabilities p; = $N?. The
probabilities become 2b? for success, transforming the
state to a rotation of |): {(3),(5),(2),(2?)}; and
a? — b? for failure, with no information about |¢).

This unitary transformation can be explicitly written
as the following matrix:

Lo 1-8
0 10 0
U= 0 01 0 Q
Ji-Zoo b
in basis { [0), [0),10), [1),[1),[0),[1), 1) }.

Physmally, thls transformation can be interpreted as a
time evolution operator U (t) with evolution parameter ¢
such that cost = g for some t € [0, %] Hence, we write:

cost 0 0 —sint

0 10 O
V=10 01 o (8)
sint 0 0 cost
with a Hamiltonian H satisfying U(t) = e "%
000 —2
000 O
H= 000 O (9)
1t 00 O

The evolution combined with the measurement of the
ancilla qubit can be described by a Positive Operator-
Valued Measure (POVM) with Kraus operators:

b 0 0
Ko = (0 1> K=\ "2 g (10)

which correspond to the first two columns of U. This
leads to the decomposition:

U(10),16)) = 10), Kolo) + 1), Kile) ~ (11)

where K and K act only on |¢). The POVM elements
are given by A; = K:Ki:

b0 1-% 0
A Ay = - a? 12
=(50) a-(" o) o
with non-negative eigenvalues and summing up to the
identity operator: Ay + A1 = 1.

III. POVM: GENERALIZED MEASUREMENTS

A POVM represents the most general type of measure-
ment on a quantum state and is therefore also known as
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a generalized measurement. It can be understood as the
effective action on a subsystem arising from a projective
measurement performed on a larger, entangled system.
Formally, a POVM is a set of positive semi-definite Her-
mitian operators A; = AZT that satisfy the completeness
relation: ), A; = I, where I is the identity operator.
Positive semi-definiteness ensures that each operator’s
eigenvalues are non-negative, corresponding to real prob-
abilities, while the completeness relation guarantees that
the probabilities of all possible outcomes sum to 1.

Each POVM element A; represents a different out-
come, and can be decomposed as A; = KiJf K;, where
K; are the Kraus operators associated with the mea-
surement outcomes. This decomposition is not unique,
since for any unitary operator W, the Kraus opera-
tors M; = WK, lead to the same POVM elements:
MM, = KIWIWK, = K] K; = A,.

As stated by Neumark’s theorem, any POVM can
be implemented as a projective measurement on an ex-
tended Hilbert space. This is achieved by introducing
an ancillary system (ancilla) and performing a suitable
unitary transformation on the joint system, as previously
discussed. The dimension of the ancillary space must be
at least equal to the number of POVM elements, since
the outcomes correspond to projective measurements in
an orthonormal basis of the ancilla. More generally, given
a POVM {A;} with Kraus operators {K;}, one can con-
struct a unitary operator U whose first columns corre-
spond to the K;:

U=| K, (13)

with the remaining columns chosen to ensure that U is
unitary UTU = I. This construction is not unique but
does not affect the resulting POVM. This operator will
take an initial state |0), |¢) to a superposition, assigning
an ancillary state |7), to each outcome Kj [1)):

U( Z i),

where each operator K; acts only on |¢). Measuring
the ancilla in the orthonormal basis {|i),} will result
in a collapse to the corresponding K |¢) with probabil-
ity || K; 1) ||?, thereby realizing the generalized measure-
ment.

Ki|y) (14)

IV. CONCLUSIVE TELEPORTATION WITH
UNAMBIGUOUS STATE DISCRIMINATION

The use of generalized measurements enables the un-
ambiguous discrimination of non-orthogonal quantum
states, at the expense of introducing a finite probabil-
ity of inconclusive outcomes. This approach underlies an
alternative teleportation protocol using partially entan-
gled resources, introduced by Gilles Brassard et al. [3] as
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conclusive teleportation. In this process, Alice measures
in a non-orthogonal basis, then sends the information to
Bob, who applies the quantum gates as in the original
protocol. This contrasts with the prior method in which
Bob was responsible for the more complex state transfor-
mation.

Consider the three-qubit system from equation (4):

|1/)>c |X>AB

(g)c (@]00) o5 +b[11) 1)

;[(awom +b]11)c,) (“)

+ (al00)yp, —b[11) 0 y) O‘)
B

[
+ (b|01) s +al10)y ) <a>
( 8

+ (b]0L) oy —all0)py) a) ]

Now interpreted as a superposition of rotations of |¢).
We can name |®1) = a |00) +b|11), |P2) = a|00) —b]|11),
|¥1) = b|01) + a|10), and |¥) = b|01) — a|10), par-
alleling the Bell basis states. Alice aims to measure
over {\Cbl)CA, [P2)car 1) cas |\I/2>CA}. Although the
states { |®;) } and {|¥;) } are not mutually orthogonal
within their respective sets: <(I>l|‘I)j> #* 51’]’7 <\Ifl|\l’3> #+ 5,‘]',
the subspaces they occupy are orthogonal to each other:
(®;|¥;) = 0. Consequently, Alice can first perform a pro-
jective measurement to determine whether her two-qubit
state lies in the subspace spanned by {|00), |11)} or in
the subspace spanned by {|01), [10)}, effectively distin-
guishing between the |®;) and |¥;) states. Each outcome
occurs with equal probability. This can be implemented
by measuring a degenerate observable projecting onto
these two subspaces, for example, the parity operator
P =|00) (00| + |11) (11| — |01) (01| — |10) (10|. Once the
subspace is identified, Alice distinguishes between two
non-orthogonal states by performing a POVM for non-
orthogonal state discrimination conditioned on the first
outcome.

In general, for an ensemble of two non-orthogonal
states |t1), [12) with equal a priori probabilities and
overlap (11|19) # 0, the unambiguous state discrimina-
tion (USD) POVM is [4]:

Dcap =

™

1
A171+|<w1|w2>|‘¢2>< 2|

_ 1 IRNT (16)
= L+ [(¢1|2)] ) Wil

Ag=1—- 4, — A,

Where [1i) and |15 ) are states orthogonal to |t1) and
|th2), respectively. These operators satisfy A1 +As+ Ay =
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I, and have the properties A; [¢)2) = 0 and A [1);) = 0.
This implies that if the measurement outcome corre-
sponds to Aj, the state cannot be |1)2), and vice versa.
Since the ensemble contains only the two states, an out-
come A; corresponds to conclusively identifying |i1) and
an outcome As to conclusively identifying |t¢5), while an
outcome Ay indicates a failed discrimination. The pref-
actor m maximizes the probability of success (A;

or As) while ensuring that Ay is positive semi-definite.
This probability can be found to be 1 — [{¢1]12)].
Suppose Alice’s measurement yields the parity eigen-
value +1, meaning her state falls in the subspace spanned
by [00) = (§) and [11) = (9). The two states to dis-
criminate are |®1) = a]00) 4+ b|11) = (§) and |®;) =
al00) — b[11) = (%), with factor 1 + [(®1|®2)| =
1+ (a (00| +b(11])(a00) — b|11) )| = 1+ a2 —b* = 24
(remember a? + b% = 1 and a > b). We find orthogonal
states |®1) = (%) and |®3) = (%), since a and b are

real. The discrimination POVM be(éomes:

1 1 (% ab
A = = |93) (5| = —
1 2&2‘ 2>< 2| 2a2 ab CL2

1 b2 —ab
2a2 <—ab a? > (17)

1-% 0
A§’:I—A‘f—A§:< 0" 0)

These are all proportional to projectors, i.e., have rank
one. The probability of success is 1 — [(®1]|®P3)] = 1 —
(a® — b?) = 2b%.

To implement this POVM following Neumark’s theo-
rem, a simple choice for the corresponding Kraus opera-

tors is K = \/A:
1 b? ab
V2a \ab a?

1
K} = —|®3) (P | =
1 b2 —ab
V2a (—ab a? ) (18)

V2a
— /1 b2
Kg): I—A?—Ag)_< 1 a? O)

0 0

1
o _ 1 L1
A2 - 2(12 ‘(Pl > <¢1 | -

1
Ky = —=|01) (27| =

A corresponding unitary transformation acts as follows:

Z\ ), K |®)

=[1), KT |<1>>+|2>aKz @) +0), Kg' |®)

(19)

A projective measurement over {10),,[1),,[2),} col-
lapses the state to { K¢ |®), KT |®),K$ |®) }, with the
outcome |0), indicating failure. If |®) = |®;), then:

U(|0), |®1)) = |1), K |®1) + |0), K¢ |®1) 20)
= [1), V2b|®3) + |0), Va2 — b2 ]00)

Treball de Fi de Grau

where outcome |2), occurs with 0 probability. Similarly,
for |®) = |Ps):
U([0), [®2)) = 12), K3 |®2) +10), K [®2)
= |2), V2b|21) +10), Va2 — b2 |00)
with 0 probability for outcome [1),. In both cases, the

probability of success is (\/ib)2 = 2b2.
If instead, Alice measures the parity eigenvalue —1, the

(21)

POVM elements for the subspace spanned by |01) = ( )
and [10) = (9), discriminating between [¥) = b[01) +
al10) = (%) and [¥3) = b[01) — a]10) = (%,), with

factor 1+ |(¥1|Wq)| = 2a? are:

1 1 (a® ab
A‘II _ \I/J_ \IJJ_ _
1 2a2| 2>< 2| 2@2 ab b2

1 1 a® —ab
v 1y _
%—MWHWI2< ) (22)

ab b2
AY [ AV —AY — (O Ob2>
01-14%
where [Uf) = (%) and |¥3) = (). With the choice

K} = \/AY, the unitary transformation acts as:

U(|0), 1)) = [1), K7 [01) +(0), K¢ [1)
= [1), V2b|W5) +10), Va? — b*[10)
(23)
U(|0), [Us)) = [2), K3 [Us) +(0), Ky [Ws)

=[2), V20 |¥3) — |0), Va? — b? |10)

Yielding the same probability for success.

V. PROBABILITY OF SUCCESSFUL
TELEPORTATION IN HIGHER DIMENSIONS

Note that the probability of successful teleportation
for both schemes is given by 2b2. In actuality, this value
represents the maximum achievable probability for suc-
cessful conclusive teleportation with a partially entan-
gled state |x) = @|00) + b|11). Generalizing this result
to a d-dimensional Hilbert space, consider the partially
entangled state with Schmidt decomposition:

d—1
N =3 a i) (24)
i=0

with real, non-negative coefficients a;, normalized such
that >, a? = 1. The maximum probability of suc-
cessful teleportation in this case is given by pmax =
dmin;{a?}, as demonstrated by W. Son et al. [5]. For
the two-dimensional case, where a > b, this reduces to
dmin;{a?} = 2b®. Note that if any a; is zero, then the
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probability drops to 0, indicating that teleportation al-
ways fails in the absence of entanglement across all basis
states.

This upper limit for success can be understood by con-
sidering that perfect teleportation of an unknown quan-
tum state requires a maximally entangled resource, such
as the generalized Bell state |®T) = Z?;()l % |ig). To
achieve teleportation with certainty, Alice and Bob can
apply a POVM to convert their partially entangled state
|x) into the maximally entangled state |®T) with finite
probability, and with the outcome revealing whether the
conversion has failed. If successful, they can proceed as
in the original protocol.

This process is known as entanglement concentration,
in particular, for a single copy. As stated by Vidal’s
theorem [6], the maximal probability of success for such a
transformation is d min;{a?}, matching the teleportation
upper bound. It can be realized via a filtering operation
that rescales all coefficients a; to the smallest one, similar
to the one on equation (6). It acts as follows:

U(10), Ix)) = 10), FIx) + 1), VI = F2[x)  (25)

Where [ is the d x d identity operator and F' is a Kraus-
like operator that acts on any of the two sides of the
entangled pair (say, Alice’s side) defined by:

Fliy = Mnite} (26)

a;

As such, F|x) = Vdmin;{a;} |®T), converting |y) into a
maximally entangled state, up to normalization:

d—1

Flx) = Z min;i{aj}ai ity = mln{aj} Z |i3)

i=0 v i=0

_mln{aj}z\fm \/&mjin{aj}\qﬁ)

(27)

Since F' is Hermitian and all its eigenvalues lie in the in-
terval [0, 1], the operator I — F? has non-negative eigen-
values. This ensures that {Fz, I - F2} form a wvalid
POVM. It also ensures that v/I — F?2 is well defined and
that U is norm- prebervmg The probability of success is
given by ||F|x)||> = dmin;{a2}, since |®*) is normal-
ized, establishing an upper limit for the probability of
perfect teleportation with a partially entangled resource.

VI. CONCLUSIONS

In this paper, we have demonstrated that perfect tele-
portation cannot be achieved when the sender, Alice,
and the receiver, Bob, share only a partially entangled
pair. With such a resource, the best one can accomplish
is probabilistic teleportation, providing full fidelity upon
success in exchange for a finite probability of failure.

We have explored two methods for attaining conclusive
teleportation with partial entanglement. The main differ-
ence between the two methods lies in which party, Alice
or Bob, bears the additional complexity beyond the origi-
nal protocol. Both approaches rely on Positive Operator-
Valued Measures (POVM) or generalized measurements.
We have provided a general overview of POVMs and their
implementation with an ancillary system and a unitary
transformation, followed by a projective measurement on
the ancilla, following Neumark’s theorem.

In the first method, Alice measures in the Bell ba-
sis as in the standard scheme, and Bob applies a filter-
ing POVM to recover the original qubit from his altered
state. In contrast, in the second method, Alice performs
a non-orthogonal measurement on her two-qubit system
and, if successful, sends the information to Bob, leaving
him with a rotation of the original state along with the
knowledge to rotate it back.

Finally, we have shown that both protocols yield the
same maximal probability of success, as demonstrated by
a generalization to the d-dimensional case. We have illus-
trated this upper bound using a strategy of entanglement
concentration prior to any measurement on either side.
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Sobre la teleportacié quantica amb entrellacament parcial.
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Resum: La teleportacié quantica no es pot aconseguir amb certesa quan s’utilitza un recurs
parcialment entrellacat; tanmateix, es pot realitzar una teleportacié amb fidelitat completa de man-
era probabilistica, permetent que el protocol falli en algunes ocasions. Presentem dues estrategies
per a la teleportacié conclusiva basades en mesures generalitzades: una consisteix en una operacid
de filtratge aplicada pel receptor, mentre que D’altra utilitza la discriminacié d’estats no ortogonals
realitzada per ’emissor. Ambdds metodes sén optims, ja que tenen exit amb la maxima probabilitat
possible. A més, estudiem aquesta probabilitat maxima en el cas general de dimensié d.

Paraules clau: Teleportacié quantica, entrellagament parcial, mesures generalitzades, POVM
ODSs: 4.4, 9.5, 9.8

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducci6 de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles
3. Salut i benestar 12. Consum i produccié responsables
4. Educacié de qualitat X |[13. Accié climatica

5. Igualtat de genere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, justicia i institucions solides
8. Treball digne i creixement economic 17. Alianga pels objectius

9. Industria, innovacié, infraestructures|X

El contingut d’aquest TFG, part d’un grau universitari de Fisica, es relaciona amb 1’0ODS 4, i en particular amb la
fita 4.4, ja que contribueix a I’educacié a nivell universitari. També es pot relacionar amb I’ODS 9, fita 9.5, perque
aporta a la investigacié cientifica, 1 9.8, perque tracta sobre un protocol d’informacié i comunicacié.
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