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Abstract: In this work we employ a Gaussian Processes method to obtain a non-parametric
description of the Equation of State (EoS) of cold dense matter that allows for rapid calculations
and gives an estimation of the uncertainty of the theoretical model and related observables. The
calculations are based on results derived in a Bruckner-Hartree-Fock approach. The non-parametric
EoS is then used to study asymmetric β-stable neutron star matter, obtaining its composition,
the pressure and the energy density at different baryonic densities. By solving the Tolman-
Oppenheimer-Volkoff equations, we also determine the stellar structure parameters. Our results for
the non-parametric EoS are consistent with those obtained with a traditional power-law fit to the
data.
Keywords: Neutron Stars, Dense Matter, Gaussian Processes, Beta Equilibrium
SDGs: Industry, innovation and infrastructure, quality education

I. INTRODUCTION

Calculating the Equation of State (EoS) of dense nu-
clear matter is a fundamental problem of modern nuclear
physics. Its correct determination is a key ingredient to
understand the properties of neutron stars (NSs) such as
their masses and radii[1]. Theoretically, the EoS can be
obtained in different frameworks [1, 2]. Particularly in-
teresting are the so called microscopic ones that are built
up directly from the bare nucleon-nucleon (NN) interac-
tion. Despite their accuracy, these methods are compu-
tationally expensive, which require the use of sophisti-
cated parametric fits and interpolation techniques. Re-
cently, non-parametric fitting procedures have been avail-
able with the development of Gaussian Processes (GPs)
[3], allowing us to obtain a regression of some given data
without the need to provide a particular functional form.
In this work we will explore the usefulness of this pro-
cedure to reproduce an EoS for dense matter based on
the results of a microscopic calculation that employed
the Brueckner–Hartree–Fock (BHF) method [4]. We will
compare the GPs results with the ones that we get from
fitting the data to a parametric model commonly used in
the literature. With the obtained EoSs we will be able to
calculate the composition of NSs and consequently some
of their properties.

II. GAUSSIAN PROCESSES

A GP is a probabilistic model that performs a regres-
sion to some data while also estimating how uncertain
the predictions are. Imagine we are given some set of ob-
served data {(x1, y1), (x2, y2), ..., (xn, yn)}. Rather than
assuming a specific analytical to fit these data points, like
linear or polynomial models, GPs will treat our data as
coming from a smooth relation, y(x), that we are trying
to figure out. In order to do so, this method assumes that

the collections of possible functions that could represent
our data is normally distributed (N ). Thus, a GP repre-
sents a multivariate normal distribution over all possible
functions. In the same way that the normal distribution
for a random variable is fully described by its mean value
and its standard deviation, which measures the disper-
sion of points in the distribution, the multivariate nor-
mal distribution is also described by a mean function µ
(which in this work will be assumed to be zero) and by
what is called the covariance function K, also known as a
kernel, which relates one observation to another. Going
back to our given data set, the GP will thus provide a
normal distribution N over the given values y and some
function values y∗ measured at the test points x∗:[

y
y∗

]
∼ N

(
0,

[
K(x, x) + σ2I K(x, x∗)

K(x∗, x) K(x∗, x∗) + σ2I

])
, (1)

where σ2 is the added noise variance. Intuitively, in order
to obtain a smooth function, we would want the points
that are nearby to be related with each other and not
with the ones that are very far away. This is why in this
present work the correlation between two points, xi and
xj , is expressed with the Square Exponential Kernel [3]:

Kij = α exp (−β|xi − xj |2), (2)

where α and β are the so called hyperparameters of the
kernel. The parameter α is related with the vertical scale
over which the function is varying, and the parameter β
controls the rate of variation of the function. In this
work, we have used a Python library called gptools in
order to find the distribution that better fits the data us-
ing this method, as we will see in further sections. Using
advanced machine learning techniques, this library pro-
vides the optimal values for the hyperparameters of the
covariance function. The use of this method can have
numerous advantages. First of all, as we have mentioned
before, GPs are non-parametric, meaning they do not as-
sume a fixed form for the function and can be adapted
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to the data. Secondly, GPs provide not only predictions
but they also estimate the uncertainty, which can be very
useful in scientific modelling.

III. EQUATION OF STATE OF DENSE
MATTER

In a neutron star, nucleons are subjected to extreme
densities. As a consequence, their interaction is not lim-
ited to a simple pairwise nucleon-nucleon (NN) force,
which is often modeled using realistic potential models
such as Argonne V18 (AV18)[4], but multi-body forces
(such as three-body forces) start to be important. Thus,
to obtain the EoS of infinite nuclear matter, one has
to solve a complicated many-body problem. One of
the most widely used methods in the literature is the
Brueckner-Hartree-Fock (BHF) approximation. In this
method, the key goal is to describe the interactions be-
tween nucleons beyond the simple Hartree-Fock approx-
imation, which only accounts for the average field pro-
duced by the surrounding nucleons. The BHF method
improves on this by including correlations between the
nucleons that arise from realistic NN interactions. The
resulting effective interaction between two nucleons in
the BHF approximation is represented by the G-matrix,
obtained from the solution of the following equation:

G(ω)(N1,N2,N3,N4) = V(N1,N2,N3,N4) +

+
∑

Ni,Nj

V(N1,N2,Ni,Nj)

QNi,Nj

ω − ENi
− ENj

G(ω)(Ni,Nj ,N3,N4),

(3)

known as the Bethe-Goldstone equation [4]. The param-
eter ω is the energy of the interacting pair, also known
as starting energy and Q is the Pauli operator, which
prevents the transitions to intermediate nucleon states
that are already occupied. In the BHF approximation,
the single particle potential energy UNi

can be written as
the sum of the different pair interactions between the dif-
ferent species (neutrons and protons in the present work):

UNi
(k⃗) =

= Re
∑
Nj

∑
k⃗′

nNj
(|⃗k′|)⟨k⃗, k⃗′|G(ENi

(k⃗) + ENj
(k⃗′))|⃗k, k⃗′⟩,

(4)

where nNj
(|⃗k′|) represents the occupation number of the

state with a momentum k⃗′ for the j-th species. We need
to perform a sum of the matrix elements over all occupied
momentum states in order to obtain the single particle
energy contributions from the G–matrix. Finally, to ob-
tain the EoS, we need to find the total energy per particle,
which is given by:

E

A
=

1

A

∑
Ni

∑
k⃗

nNi(|⃗k|)

(
k2

2MNi

+
UNi(k⃗)

2

)
, (5)

a b c d

SNM 151.50 1.73 -52.77 0.45

PNM 44.44 0.53 207.03 1.95

TABLE I: Optimal parameters for the model in the Eq.(8) for
symmetric nuclear matter and pure neutron matter.

where A is the total number of nucleons. For simplicity,
in this section we will use natural units. As a starting
point in this work, we will use results obtained in the
BHF framework using the realistic Argonne V18 interac-
tion for symmetric nuclear matter (SNM) and pure neu-
tron matter (PNM) for 12 different densities in the range
of 0.05 fm−3 up to 1 fm−3 [4]. With the aim of obtaining
the energy per particle for an arbitrary composition, we
approximate the energy per particle by means of a Taylor
expansion around the symmetric case, where the particle
fraction xi ≡ ρi/ρ for protons and neutrons is the same,
xp = xn = 1/2. Thus, one can compute the energy per
particle for a certain fraction of protons as:

E

A
(ρ, xp) =

E

A
(ρ, xp = 1/2) + 4S(ρ)(xp − 1/2)2. (6)

The symmetry energy, denoted as S(ρ), is a term that
arises from the difference in the energy contributions
from neutrons and protons in the system, and it quan-
tifies the energy cost of breaking the symmetry between
neutron and proton populations [5] . Knowing the energy
per particle for the SNM case (xp = 1/2) and the PNM
case (xp = 0), the symmetry energy can be defined as a
function of the baryonic density ρ:

S(ρ) =
E

A
(ρ, xp = 0)− E

A
(ρ, xp = 1/2). (7)

Given the data, our objective is to estimate an EoS that
accurately represents the system’s behaviour. To achieve
this, we will employ two different methods. First, we will
perform a regression using the GP method, as outlined
in Section II. For comparison, we will also fit the data
into the model

E

A
(ρ)Fit = aρb + cρd, (8)

commonly utilized in literature. In Table I we display
the optimal values for the parameters a, b, c, d that are
obtained using the least square method. Fig. 1 shows
the results obtained with the two models (red curve - GP,
blue curve - power law fit) for SNM and PNM along with
the exact results obtained in the BHF framework (black
dots). Both methods reproduce the data rather well.
Furthermore, the saturation densities found for both
methods are ρ0(GP) = 0.18 fm−3 and ρ0(Fit) = 0.15 fm−3,
which are coherent with the typical values for nuclear
matter around ρ0 ∼ 0.16 fm−3.
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FIG. 1: Energy per particle of symmetric nuclear matter
(SNM) and pure neutron matter (PNM) as a function of
the baryonic density, computed using the GP method (red
curve) and by fitting the data to the power-law model shown
in Eq.(8) (blue curve). The grey band represents the uncer-
tainty obtained in the GPs.

IV. BETA STABLE NEUTRON STAR MATTER

In the neutron star core, matter is expected to be com-
posed of homogeneous nuclear matter and leptons in beta
equilibrium. This balance ensures that all weak interac-
tion processes are equilibrated. Inside the star, the neu-
tron decay reaction:

n → p+ e− + ν̄e

is Pauli blocked since the the lowest levels of the proton
and neutron Fermi seas are occupied [4]. That decay is
balanced with the electron capture reaction:

p+ e− → n+ νe.

Neutrinos can escape freely since their mean free path is
usually larger than the radius of the neutron star. Hence,
while the baryonic number is conserved,

ρ = ρp + ρn, (9)

the leptonic number is not. In terms of the chemical
potentials, the equilibrium condition can be written as:

µn = µp + µe. (10)

The definition of the chemical potential using the energy
per particle is:

µi =
∂(EAρ)

∂ρi
. (11)

From this expression and employing Eq.(6) it can be
shown that µn − µp = 4S(ρ)(1 − 2xp). Assuming ul-

tralativistic electrons with µe = ℏckFe
= ℏc(3π2ρxp)

1/3,
where ℏkFe

is the Fermi momentum of the electrons, the
β−equilibrium condition can be written as:

ℏc(3π2ρxp)
1/3 = 4S(ρ)(1− 2xp). (12)

At extremely high densities, the available energy is suffi-
cient to produce particles heavier than electrons, such as
muons. Thus, when the chemical potential of the elec-
tron equals the rest mass energy of the muon, E0,µ =
mµc

2 = 105.65MeV, this species will appear in matter.
In weak equilibrium with no neutrinos, the chemical po-
tential of the two leptonic species will be equal: µe = µµ

[4]. Taking the muons into account we must consequently
consider the following new expressions for the charge bal-
ance and the chemical potentials for the muons and the
electrons, respectively:

µe = µµ =
√
mµ

2c4 + (ℏckFµ
)2. (13)

ρp = ρe + ρµ. (14)

Imposing the β−equilibrium condition we can rewrite the
charge balance as follows:

(ℏc)33π2xpρ =

= [4S(ρ)(1− 2xp)]
3
+ {[4S(ρ)(1− 2xp)]

2 −m2
µc

4}3/2
(15)

Solving this equation for xp, the other particle fractions
can be automatically computed using Eqs.(9), (12), (13)
and (14). The results of the composition of the neutron
star core is shown in Fig. 2. The upper panel represents
the results obtained with GP, while the lower panel rep-
resents the results obtained with the power-law fit. Both
approaches predict that matter is dominated by neutrons
and the amount of protons does not surpass 30% of the
nuclear matter, even at very high densities.
The energy density for the baryons is readily obtained,
including the nucleon rest mass energy, from Eq.(6):

εB =

[
E

A
(ρ, xp = 1/2) + 4(xp − 1/2)S(ρ) +mNc2

]
ρ, (16)

where mN = (mp +mn)/2 is the average nucleon mass.
The pressure can then be computed according to the re-
lation:

PB = ρ
∂εB
∂ρ

− εB . (17)
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FIG. 2: Particle fractions of the protons, neutrons, muons
and electrons in neutron star matter as a function of the bary-
onic density computed with values of the energy per particle
E/A(ρ) obtained with GP interpolation and with the fit.

To obtain the energy density of the leptons we must add
their single particle energies up to the highest occupied
state:

εl =
1

π2

∫ kFl

0

√
m2

l c
4 + (ℏck)2 k2 dk, (18)

which gives rise to the following result:

εl =
(mlc

2)4

(ℏc)38π2

[
xFl

(1 + 2x2
Fl
)
√
1 + x2

Fl
− lnxFl

+

+
√

1 + x2
Fl

] (19)

with
xFl

=
ℏc(3π2ρxl)

1/3

mlc2
. (20)

Similarly, the pressure is given by:

Pl =
3hcρ4/3

8

(
3

8π

)1/3
[

1

x4
Fl

[
xFl

√
1 + x2

Fl

(
2x2

Fl

3
− 1

)
+

+ lnxFl
+
√

1 + x2
Fl

]]
.

(21)

FIG. 3: Total pressure of matter in beta equilibrium as a func-
tion of the total energy density computed using GP interpo-
lation (red curve) and by fitting the data into the traditional
model shown by Eq.(8) (blue curve).

Thus, the total energy density and the total pressure will
be, respectively:

ε = εB + εe + εµ, P = PB + Pe + Pµ. (22)

The results obtained for the pressure as a function of the
energy density computed with the GP and the power-
law fit are presented in Fig. 3. It is important to note
that the values for the fit have been extrapolated to a
density value of ρ = 1.5 fm−3. In this high-density region,
the parametric fitting procedure seems to do a better
extrapolation, indicating that for the particular problem
in this work the GP method does not appear to be the
preferred regression procedure. However, we must keep
in mind that the study of the nuclear EoS is not only
needed at zero temperature. For instance, to describe
supernova explosions or the merger of NSs, a larger range
of temperatures, from 0 to 100 MeV, would be needed.
In those conditions, the usefulness of GPs might prove
more evident.

V. TOV EQUATIONS

The Tolman Oppenheimer Volkoff (TOV) equations

dP (r)

dr
= −Gm(r)ε(r)

r2

(
1 +

P (r)

ε(r)

)(
1 +

4πr3P (r)

m(r)

)
,

(23)

dm(r)

dr
= 4πr2ε(r) (24)

describe the structure of an isotropic, spherically sym-
metric star in static gravitational equilibrium, within the
general relativity framework [6]. Eq.(23) describes the
evolution of the pressure in the star, and is obtained by
imposing hydrostatic equilibrium. Eq.(24) describes the
growth of the enclosed mass as one moves outwards from
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FIG. 4: Mass (in units of the solar mass, M⊙) and radius
(in km) for the family of neutron stars obtained using the
EoS determined from the GP interpolation and the para-
metric fit. The thin horizontal bands indicate two of the
heaviest observed masses M = 1.97 ± 0.04M⊙ and M =
2.01± 0.04M⊙[8]. We also include the Miller analysis of the
NICER PSR J0740+6620 mass-radius measurement.

the centre to the surface of the neutron star. In order to
obtain the numerical solution to these coupled equations
we have employed a Python module called TOVsolver [7]
that proceeds as follows. Firstly, given the model of the
EoS of the core, the module provides an EoS for the crust
that serves as a low density extrapolation for the one we
have provided. Secondly, a particular value of the central
density, ρ0, is selected which defines the initial P (ρ0) and
ε(ρ0) at the centre of the star (r = 0) . Using small radial
steps, the pressure and the enclosed mass are computed
at every radius r, until the surface of the star, namely
the radius R for which P = 0, is reached. Note that the
EoS is not calculated at every pressure that is needed
in the integration process, so a linear interpolation for
the energy density is performed. Since the EoS is not
calculated at every step, using interpolation methods is
mandatory. One can then obtain the energy density cor-

responding to a specific pressure value and follow once
again the steps described before. Varying the initial cen-
tral density of the star, a family of stars with different
masses and radii is obtained. The results are shown in
Fig. 4. As we can see, the maximum mass for the fit is
M = 1.8M⊙ when the central density is ρc = 1.48 fm−3.
We are unable to determine the maximum mass for the
GPs case because we cannot extrapolate the calculations
to higher densities.

VI. CONCLUSIONS

In this work we have obtained the equation of state
of dense matter with a Gaussian Processes regression,
based on Brueckner Hartree Fock calculations that use
the realistic Argonne V18 nuclear force. We showed that
the regression reproduces the results of the numerically
costly microscopic calculation with a good precision. In
addition it gives an estimation of the uncertainty in the
regression procedure. To show the usefulness of the ob-
tained EoS, different properties of the neutron stars have
been computed. In particular, we showed the composi-
tion of the neutron star, as well as the mass-radius rela-
tion. For a comparison, all of the analysis has been also
done with a traditional power law fit of the microscopic
results and we have observed that the results from the
two approaches are consistent. However, the GP pro-
cedure does not seem necessary for the chosen problem
since the fit yields very good results and allows us to ex-
trapolate. Even so, this work has allowed us to become
familiar with the GP method, which we can improve in
the future and apply it also to study the EoS in the con-
text of violent astrophysical events, such as supernova
explosions or binary neutron star mergers, which require
a regression to a much larger data set, covering a wide
range of temperatures. In this case, the use of typical
parametric methods might not be as straightforward as
in the present analysis.
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Resum: En aquest treball utilitzem un mètode de processos gaussians per obtenir una descripció
no paramètrica de l’Equació d’Estat (EoS) de la matèria freda i densa, que permet càlculs ràpids i
proporciona una estimació de la incertesa del model teòric i dels observables associats. Els càlculs
es basen en resultats derivats a partir de la teoria de Brueckner-Hartree-Fock. L’Equació d’Estat
no paramètrica s’utilitza per estudiar la matèria de neutrons asimètrica i β−estable, obtenint-ne la
composició, la pressió i la densitat d’energia per a diferents valors de la densitat bariònica. Resolent
les equacions de Tolman-Oppenheimer-Volkoff, també determinem els paràmetres de l’estructura
estel·lar. Els nostres resultats per a l’Equació d’Estat no paramètrica són consistents amb els
obtinguts mitjançant un ajust tradicional segons una llei de potències.
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