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Abstract: Spontaneous photon emission by atoms is a fundamental quantum process with sig-
nificant implications for quantum technologies. We study the dynamics of N laser-driven two-level
atoms interacting with the electromagnetic vacuum and spontaneously emitting photons. Although
the framework of master equations for the density matrix provides a rigorous description of this
process, its computational cost scales exponentially as ∼ 22N . As an alternative, we implement the
quantum jump method, a stochastic approach based on averaging over quantum trajectories. We
begin with the case of a single atom and then extend the analysis to a chain of closely spaced atoms,
focusing on the error scaling in the stochastic method. By comparing computational performance,
we find that the quantum jump approach becomes increasingly advantageous for larger systems.
These results establish quantum trajectories as a reliable and efficient tool for simulating collective
spontaneous emission in complex quantum systems.
Keywords: Atom-light interactions, electric dipole moment, decay rate, Hamiltonian, Monte
Carlo simulation, density matrix
SDGs: Quality education; Affordable and Clean Energy; Industry, innovation and infrastructure

I. INTRODUCTION

Spontaneous photon emission is one of the most funda-
mental quantum processes, arising from the interaction
between a quantum emitter and the vacuum fluctuations
of the electromagnetic field. Control over this process
is crucial in quantum technologies. For instance, tailor-
ing decay rates enables the creation of on-demand single-
photon sources for quantum communication, and extends
qubit coherence in quantum computing [1].

The rate at which an excited atom decays depends
on several factors, including the strength of its electric
dipole transition and the density of available electromag-
netic modes at the transition frequency. When a second
atom is placed nearby, the decay dynamics can be signif-
icantly altered due to the indirect interaction mediated
by the shared vacuum field. This interaction leads to col-
lective radiative effects such as superradiance (enhanced
emission) and subradiance (suppressed emission) [2, 3].

Modeling the dynamics of such systems, especially
when extended to many atoms, is highly nontrivial, due
to the high number of photonic and atomic degrees of
freedom involved. For many-body dipole–dipole coupled
systems, one typically employs a density-matrix master
equation which rigorously describes the open-system evo-
lution of the atomic ensemble [4]. However, even under
the simple assumption of atoms at fixed positions (ne-
glecting motion), the size of the Hilbert increases expo-
nentially with the number of atoms. This scaling severely
limits the applicability of exact numerical methods based
on the density matrix formalism.

To address this challenge, we explore an alternative
approach based on the quantum jump (or quantum tra-
jectories) formalism. This method, developed in parallel
by several groups [5, 6], provides a stochastic unraveling
of the master equation in terms of individual quantum

trajectories, offering a conceptually intuitive and com-
putationally efficient framework. In particular, quantum
jump simulations scale more favorably for systems with
many atoms and can reveal dynamical features, such as
intermittent emission and correlations, that are obscured
in ensemble-averaged treatments.
In this work, we apply the quantum jump formalism

to obtain the dynamics of a system of atoms undergoing
spontaneous photon emission and driven by a laser field.
We first analyse the case of a single atom, and then ex-
tend the study to an atomic chain where dipole–dipole
interactions play a significant role. We focus on analysing
the error performed by the stochastic unraveling com-
pared to exact integration of the master equation.

II. THEORETICAL FRAMEWORK

A. Lindblad Master Equation for a Single Atom

We consider a quantum system consisting of a single
atom that can only occupy two energy levels (a two-level
atom): the ground state |g⟩ and the excited state |e⟩.
This atom interacts both with the set of modes of the
quantized electromagnetic field in its ground state and
with a classical, monochromatic laser field. On the one
hand, the interaction with the vacuum is responsible for
the phenomenon of spontaneous emission and therefore
introduces dissipation and irreversibility into the system.
On the other hand, the classical field can excite the atom.
It is the fact that the laser has a well-defined frequency,
close to a single atomic transition, that justifies the two-
level atom approximation.
The light field (or more precisely, the continuum of

vacuum photon modes) has an effectively infinite number
of degrees of freedom, making it impossible to track its
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dynamics in detail. A standard approach in quantum
optics is to treat the atomic system as an open quantum
system, coupled to an external bath corresponding to the
light field. In this case, the system does not follow a
unitary evolution governed by the Schrödinger equation.
Instead, a more general description based on the atomic
density matrix must be adopted.

By tracing out the photonic degrees of freedom and
under the Born-Markov approximation [4], it is possible
to arrive to a differential equation only depending on the
atomic reduced density matrix, known as the Lindblad
master equation (from now on ℏ = 1):

∂tρ = −i [H0, ρ] + L(ρ). (1)

Here, the first term is unitary and describes the co-
herent dynamics of the system (it is essentially the
Schrödinger–von Neumann equation). The Hamiltonian
H0 describes the atom–laser coupling, which can be writ-
ten in the rotating wave approximation as:

H0 = −δ σ+σ− +
Ω

2
(σ+ + σ−), (2)

where σ+ = |e⟩ ⟨g| and σ− = (σ+)† = |g⟩ ⟨e| correspond,
respecively, to the creation and anihilation operators of
an atomic excitation. The parameter δ = ωL − ωA is
the detuning between the laser and atomic frequencies
and Ω = −dE0 is the Rabi frequency and characterizes
the coupling between the atomic dipole d and the laser
electric field (the strength of the atom–field coupling).

In contrast, the second term of the master equation
corresponds to the Lindblad dissipator, which renders
the dynamics non-unitary and represents the interaction
with the external photonic bath. For a single atom in free
space and interacting with the electromagnetic vacuum
it acquires the following form:

L(ρ) = Γ

2

(
2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) , (3)

where Γ = d2ω3
0/3πc

3ϵ0 is the spontaneous decay rate,
i.e., the probability per unit time that the system under-
goes a spontaneous transition from |e⟩ to |g⟩.

B. Lindblad Master Equation for N Atoms

When several atoms couple to the same radiation
mode, this induces coherent dipole-dipole interactions
between the atoms and collective spontaneous photon
emission. Following the same procedure as for a single
atom, a master equation of the Lindblad form Eq. (1)
can be derived [7], now with:

H0 = −δ

N∑
i=1

σ+
i σ

−
i +

Ω

2

N∑
i=1

(σ+
i + σ−

i ) +

N∑
i,j=1
i̸=j

Jijσ
+
i σ

−
j ,

L(ρ) =
N∑

i,j=1

Γij

2

(
2σ−

j ρσ
+
i − σ+

i σ
−
j ρ− ρσ+

i σ
−
j

)
. (4)

Here the operators σ+
i and σ−

i correspond to the creation
and anihilation operators of a single excitation of the i-th
atom. The couplings Jij = ℜ[Gij ] and Γij = −2ℑ[Gij ]
are determined by the real and imaginary parts of the
Green’s function propagator, which dictates how the pho-
ton propagates between two atoms at distance rij . In the
case of a chain of atoms transversally polarized with elec-
tric dipole moment transverse to the chain axis, it takes
the simple form G(r) = (3Γeikr/4k3r3)(k2r2 +3ikr− 3).

C. Quantum Jump Approach

We present here an alternative approach using a wave
function treatment to describe the atomic system. The
apparent incompatibility between such a wave function
approach and the inherent irreversibility of the sponta-
neous process we are dealing with is lifted by introducing
repeated gedanken measurements on the atomic system
simulating the detection of the spontaneously emitted
photons. The random result of each of these measure-
ments determines the atomic state afterward and is at
the origin of the irreversibility.

Let us begin by rewriting Eq. (1) in the following form:

∂tρ = −i [Heff , ρ]∗ + Γσ−ρσ+, (5)

where we define the effective non-Hermitian Hamiltonian
as Heff ≡ H0 − iΓ2σ

+σ− and the commutator [A,B]∗ ≡
A ·B −B† ·A†.
We now assume that all spontaneously emitted pho-

tons are detected with a perfect photon counter, and
we perform a measurement at time t + dt to determine
whether a photon has been emitted. Depending on the
outcome of this measurement (either 0 or 1 detected pho-
tons), the system’s wave function |Ψ(t+ dt)⟩ is projected
accordingly, resulting either in a quantum jump to the
ground state or a no-jump evolution.
The probability that a spontaneous emission occurs

during the infinitesimal time interval dt is given by dp =
Γ|ce|2dt, where ce is the excited-state amplitude of the
wave function |Ψ(t)⟩. Numerically, in order to mimic
the randomness of the measurement result, we choose a
random number ϵ uniformly distributed between 0 and
1. The two possible cases ϵ > dp and ϵ < dp correspond,
respectively, to the detection of 0 and 1 photon.
In the case where no photon is detected (that is, no

quantum jump occurs), the system evolves under the
action of the non-Hermitian Hamiltonian Heff. This
non-unitary evolution leads to a gradual decrease in
the norm of the wave function, reflecting the probabil-
ity loss due to possible emission. The state evolves as
|Ψ(t+ dt)⟩ = exp (−iHeffdt) |Ψ(t)⟩, which must then be
normalized. On the other hand, if a photon is detected
during dt, this implies that the atom has spontaneously
decayed from the excited state to the ground state. In
this case, the wave function undergoes a quantum jump
and collapses to |Ψ(t+ dt)⟩ = |g⟩ . These two possible
evolutions define the stochastic dynamics of the system
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under continuous photodetection, forming the basis of
the quantum jump formalism.

This method can be directly generalized to the
N atom case, replacing H0 by the expression in
Eq. (4). Also, there are now N independent decay
channels described by the operators Ok =

∑
i V

k
i σ−

i ,
k ∈ {1, · · · , N}, where V k

i are the coefficients of the
eigenstates of the Γij matrix. Once the photon emission
takes place, the atoms are projected to one of the states
|Ψ(t+ δt)⟩ = Ok |Ψ(t)⟩ with probability proportional to

pk = ⟨Ψ(t)|O†
kOk |Ψ(t)⟩, and normalized to 1 [8].

Error quantification.– In order to compare both
methods, we can use the trace distance, a quantitative
measure of the distinguishability between two quantum
states. Given two density matrices ρ and σ, the trace
distance is defined as

T (ρ, σ) =
1

2
Tr

[√
(ρ− σ)†(ρ− σ)

]
. (6)

Physically, the trace distance quantifies the maximum
difference in measurement outcome probabilities between
the two states under optimal measurement. A value of
T (ρ, σ) close to 0 indicates that the states are experimen-
tally indistinguishable, while a value of T (ρ, σ) close to 1
means that they are perfectly distinguishable.

We choose ρ = ρjump =
∑Ntraj

i=1 |Ψ⟩i ⟨Ψ|i /Ntraj as
the state obtained over many quantum jump trajecto-
ries (here |Ψ⟩i denotes the state obtained within a single
trajectory i), while σ = ρexact is the state computed by
direct integration of the master equation. Hence, a small
trace distance between ρjump and ρexact proves that the
quantum trajectories method faithfully reproduces the
dynamics predicted by the master equation.

III. RESULTS

A. Single-atom Population Dynamics

The Lindblad master equation Eq. (1) yields for each
density matrix component a set of differential equations,
commonly known as the Optical Bloch Equations (OBE):

∂tρee = i
Ω

2
(ρge − ρeg) + Γρee, (7)

∂tρge = i
Ω

2
(ρgg − ρee)−

(
iδ +

Γ

2

)
ρge, (8)

and ∂tρgg = −∂tρee, ∂tρeg = (∂tρge)
∗.

Using the fourth-order Runge-Kutta method, we can
numerically solve the OBEs exactly and observe the
evolution of, for example, the excited-state population
ρee = ⟨n̂⟩, where n̂ = σ+σ− is the excitation number
operator. This is shown in Fig. 1, for different values of
the system parameters δ/Ω and Γ/Ω.

To begin with, we consider the role of the detuning
δ. As the system moves away from resonance (δ = 0),
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FIG. 1: Time evolution of the excited state population ρee
for different values of detuning δ and decay rate Γ in units of
Rabi frequency Ω.

the excitation probability is expected to decrease, since
the laser becomes less effective at driving transitions. In
addition, the population oscillates with a renormalized
frequency

√
Ω2 + δ2/4. In parallel, we also explore the

influence of the decay rate Γ, which leads to a damping
in the oscillations. Increasing Γ reduces the population
of the excited state and leads to faster relaxation towards
the ground state.
Next, we may ask whether the wave function approach

yields similar behavior. To investigate this, we employ a
Monte Carlo method; that is, we generate a large num-
ber of individual stochastic trajectories of the system, as
explained in Sec. II C. We define the average excitation
number over Ntraj different simulated trajectories as:

⟨n̂⟩av =
1

Ntraj

Ntraj∑
i=1

⟨n̂⟩i , (9)

and evaluate the estandard deviation of the mean as:

∆ ⟨n̂⟩av =
1√

Ntraj(Ntraj − 1)

Ntraj∑
i=1

[
⟨n̂⟩2i − ⟨n̂⟩2av

]
. (10)

This corresponds to the standard deviation of a single
trajectory divided by

√
Ntraj.

Having qualitatively verified that the wave function
approach reproduces the same behavior as the solution
of the master equation, we now aim to quantify the
error introduced by this alternative method and how
it depends on the number of trajectories used. Since
the exact time-dependent density matrix is known from
solving the OBEs, we can compute the trace distance
T (ρjump, ρexact) as defined before and for different num-
ber of trajectories.
In Fig. 4, we show T (ρjump, ρexact) for a single atom

as a function of the number of trajectories (solid red cir-
cles), in logarithmic scale for both axis, together with the
many-body case results that will be studied later. The
results clearly exhibit a power-law decrease in error with
the number of trajectories, following a 1/

√
Ntraj scaling.

This behavior is expected due to the statistical nature of
the wave function approach. Assuming each trajectory
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FIG. 2: Time evolution of the excited state population of a
two-level atom: (a) driven and initially in the ground state
(Γ/Ω = 0.2, δ/Ω = 0.1), and (b) undriven and initially in the
excited state (Ω = 0). The excited state population ⟨n̂⟩ = ρee
from the master equation (solid black line) is compared with
the trajectories average ⟨n̂⟩av (full circles), for the number of
trajectories Ntraj indicated in the legend. The error bars rep-
resent the calculated standard deviation of the mean. Addi-
tionally, three sample trajectories are shown in each subplot,
illustrating individual quantum jumps.

is independent, and according to the central limit theo-
rem, the error in the mean value of an observable must
decrease proportionally to 1/

√
Ntraj, as in typical Monte

Carlo methods.

B. Many-body Population Dynamics

Similarly to the single-atom case, we can verify if the
wave function approach accurately captures the time evo-
lution of the system in the many-body case. In Fig. 3, we
plot over time the ensemble average excitation number,

⟨n̂⟩av, defined in Eq. (9) now with n̂ =
∑N

j=1 σ
+
j σ

−
j . This

represents the average over all trajectories of the quan-
tum mechanically expected value of the number of ex-
cited atoms. We can see that the quantum jump method
successfully reproduces the expected behavior of the sys-
tem. In contrast to the single-atom results shown in
Fig. 2, where quantum jumps manifest as discrete transi-
tions between just two levels, here each event signals the
decay of one atom from the excited to the ground state,
and the overall dynamics arise from the accumulation of
these individual processes.

In addition, we investigate how the error evolves as a
function of the number of trajectories Ntraj used, and if
this dependence is influenced by the atom number N .
Fig. 4 shows that, as N increases, the value of the trace

FIG. 3: Time evolution of the average excitation number for
N = 3 two-level atoms: (a) driven and initially all atoms in
the ground state (Γ/Ω = 0.2, δ/Ω = 0.1), and (b) undriven
and initially all atoms in the excited state (Ω = 0). Results
from the master equation ⟨n̂⟩ (solid black line) are compared
with the trajectories average ⟨n̂⟩av (full circles), for the num-
ber of trajectories Ntraj indicated in the legend. The error
bars represent the calculated standard deviation of the mean.
Additionally, three sample trajectories are shown in each sub-
plot, illustrating individual quantum jumps.

distance also increases. While we still observe an ap-
proximate power-law scaling ∼ 1/

√
Ntraj in the error,

deviations from this trend become more pronounced as
the system size increases. This is possibly due to the nu-
merical inaccuracy of the solver for the unitary evolution
(Runge-Kutta method), as we expect the error will in-
crease as the Hilbert space dimension increases. It could
in principle be reduced by decreasing the tolerance error
in the integration method.

Another comparison that can be made between the
two approaches concerns the computation time required
by each method as a function of the number of atoms
in the system. In Fig. 5 we observe that initially, the
quantum jump method is significantly slower than the
exact approach. However, for a system of N two-level
atoms, the Hilbert space has dimension 2N , and thus the
density matrix involves 22N elements. This leads to a
computational cost that scales exponentially with ∼ 22N

for the exact master equation approach. In contrast,
each individual quantum trajectory requires the time
evolution of a wave function of size 2N , resulting in
a milder scaling, ∼ 2N . Therefore, as the number of
atoms increases, the difference in computational cost
between the two methods decreases, eventually reaching
a point where the quantum jump approach becomes
computationally more efficient than the exact method.
However, we note that the number of trajectories Ntraj
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FIG. 4: Trace distance T (ρjump, ρexact) between the exact den-
sity matrix and the one reconstructed from quantum jump
simulations, as a function of the number of trajectories, for

different N . A clear power-law decrease (∼ N
−1/2
traj ) in the er-

ror is observed as the number of trajectories increases, while
the trace distance increases with larger N .
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FIG. 5: Scaling of computation time with atom number N
using the density matrix formalism and the wave function
approach. Both methods were simulated using 50 time steps;
100 trajectories were used for the wave function approach.
Simulations were performed on a 4-core machine.

required to achieve a given level of accuracy also affects
the overall cost of the jump approach. As the trace

distance decreases as ∼ 1/
√

Ntraj, improving precision
demands more simulations. Consequently, the crossover
point where the quantum jump method becomes advan-
tageous shifts towards higher atom numbers as stricter
accuracy requirements are imposed.

IV. CONCLUSIONS

In this work, we explored the dynamics of open quan-
tum systems through the case of laser driven two-level
atoms coupled to the electromagnetic vacuum. Using
the Lindblad master equation formalism, we modeled the
dissipative and coherent dynamics of the system both
in the single-atom case and in the many-body regime,
where collective effects became relevant. We also imple-
mented and analyzed the quantum jump approach as an
alternative numerical method to simulate open quantum
systems. Despite its stochastic nature, we showed that
the trajectory-averaged dynamics obtained via quantum
jumps reproduced the results of the exact master equa-
tion with high fidelity. Specifically, we used the trace dis-
tance as a quantitative measure of agreement between the
two methods, and confirmed that the error decreased as
1/
√

Ntraj, consistent with the expected scaling of Monte
Carlo methods. We also found that the trace distance
between the quantum trajectories and the exact result
increased with the number of atoms, but the 1/

√
Ntraj

scaling remained approximately valid.
Finally, we compared the computational efficiency of

both approaches. Although direct integration of the mas-
ter equation was initially more efficient, we find that
for sufficiently large systems, the quantum jump ap-
proach became computationally advantageous, offering
a scalable method for simulating the dynamics of open
many-body quantum systems. These results validated
the quantum jump method as a reliable and efficient al-
ternative for solving Lindblad-type master equations.
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Resum: L’emissió espontània de fotons per part dels àtoms és un procés quàntic fonamental
amb implicacions importants per a les tecnologies quàntiques. Estudiem la dinàmica de N àtoms de
dos nivells excitats per làser que interactuen amb el buit electromagnètic. Tot i que el formalisme
d’equacions mestra per a la matriu de densitat proporciona una descripció rigorosa d’aquest procés,
el seu cost computacional escala exponencialment com ∼ 22N . Com a alternativa, implementem el
mètode de salts quàntics, un enfocament estocàstic basat en la mitjana sobre trajectòries quàntiques.
Comencem pel cas d’un sol àtom i després estenem l’anàlisi a una cadena d’àtoms pròxims entre si,
centrant-nos en l’escalat de l’error del mètode estocàstic. En comparar el rendiment computacional,
trobem que l’enfocament de salts quàntics esdevé progressivament més avantatjós per a sistemes
més grans. Aquests resultats estableixen les trajectòries quàntiques com una eina fiable i eficient
per simular l’emissió espontània col·lectiva en sistemes quàntics complexos.
Paraules clau: Interaccions entre àtoms i llum, moment dipolar elèctric, ritme de decäıment,
Hamiltonià, simulació de Monte Carlo, matriu densitat
ODSs: Educació de qualitat; Energia neta i sostenible; Indústria, innovació, infraestructures

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

En primer lloc, aquest treball contribueix a l’ODS 4: Educació de qualitat, ja que fomenta la formació en ciència
fonamental i, per tant, contribueix a l’educació a nivell universitari. En segon lloc, la recerca sobre dinàmiques
d’emissió espontània i control quàntic pot tenir aplicacions futures en el desenvolupament de sistemes de comunicació
i computació més eficients energèticament, en sintonia amb l’ODS 7: Energia neta i sostenible. Finalment, també
es pot relacionar amb l’ODS 9: Indústria, innovació i infraestructures, ja que podria contribuir al desenvolupament
d’eines computacionals avançades que podrien ser essencials en el disseny de noves tecnologies quàntiques.

Mètode de Salts Quàntics per a la Dinàmica Atòmica Induïda i Dissipativa

Una distància de traça petita entre
les matrius densitat dels dos
mètodes indica que les trajectòries
quàntiques reprodueixen fidelment
la dinàmica predita per l’equació
mestra.

La dinàmica obtinguda
mitjançant salts quàntics
reprodueix els resultats de
l’equació mestra exacta
amb gran fidelitat.
Per a sistemes prou grans,
els salts quàntics són
avantatjosos des del punt
de vista computacional.

1  À T O M

M É S  D ’ 1
À T O M

M A T R I U  D E N S I T A T

Estudiem la dinàmica d’àtoms de dos nivells excitats
per làser que interactuen amb el buit electromagnètic.

Descripció utilitzada típicament
per a descriure sistemes
oberts a partir d’una equació
mestra per a la matriu densitat:

Q U È  S ’ E S T U D I A ?

S A L T S  Q U À N T I C S

C O N C L U S I O N SD I S T À N C I A  D E  T R A Ç A

Mètode alternatiu: Enfocament
estocàstic basat en la mitjana
sobre trajectòries quàntiques. 

O B J E C T I U  T R E B A L L :

Avaluar i demostrar l’eficiència
i la fiabilitat d’aquest mètode Definim la distància de

traça com:
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