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Abstract

Simulating complex quantum systems remains a critical challenge, as conventional quantum techniques–
such as those based on the Suzuki–Trotter decomposition—often result in deep circuits that demand
substantial computational resources. Quantum Generative Adversarial Networks (QGANs) offer a
promising alternative by learning the time evolution of target Hamiltonian using significantly fewer
gates. However, standard QGAN architectures commonly suffer from unstable convergence and learn-
ing plateaus in the loss landscape, which hinder training and prevent the generator from achieving
high-fidelity solutions.

To address these limitations, we propose augmenting the generator with an ancilla qubit, expanding the
learning space, and providing additional degrees of freedom that enable training to progress when the
model becomes trapped in certain regions of the loss landscape. In this work, we investigate the effect
of incorporating an ancilla under various connectivity topologies and at different stages of training, in
order to perturb the optimization landscape and aid the generator overcome problematic training cases

Simulation results demonstrate that ancilla-assisted QGANs successfully escape learning plateaus and
other non-convergent behaviours, particularly when the ancilla’s connectivity links distant regions of
the ansatz. Notably, the optimized fidelity overall improves when the ancilla is introduced mid-way
through the training.
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1 Introduction
In recent years, quantum computing [1]–[3] has emerged and drawn considerable attention from re-
searchers. This new computation paradigm exploits the properties of quantum mechanics to perform
certain tasks substantially faster than classical computers [4], for example, simulating the dynam-
ics of complex quantum systems, which requires computing the time evolution from its Hamiltonian
complex interactions. This is inefficient on classical computers, because the degrees of freedom grow
exponentially with system size. As Feynman said [1]; “Nature isn’t classical, dammit, and if you want
to make a simulation of nature, you’d better make it quantum mechanical”.

Despite this interest, simulating complex quantum systems remains a critical challenge. Conven-
tional quantum techniques are based on the Suzuki-Trotter decomposition [5], [6], which breaks the
system Hamiltonian H into its different terms applied individually several times, in short Trotter
steps. In some cases, an accurate simulation demands many Trotter steps, inflating the gate counts
and circuit depth, an acute limitation for the current noisy intermediate-scale quantum (NISQ) devices
[7], [8], where gate errors and decoherence with time are non-negligible.

While several methods exist, we spotlight a way to learn the time evolution UH(t) = e−iHt directly
with Quantum Generative Adversarial Networks (QGANs) [9]–[11]. Instead of synthesizing UH(t) by
long sequences of two-body gates, QGANs train a generator parametrized circuit to reproduce the
effect of UH(t) while a discriminator tries to distinguish between them, driving both gradients. In
practice, this can compress Hamiltonian evolutions into much shallower ansatzes. A striking example
is shown in Ref. [12], where a 3-qubit Heisenberg time-evolution circuit that requires ∼ 1.19 × 104

gates by standard decomposition-based methods was well-approximated by 52 gates in a QGAN.
Despite these advantages, QGANs also inherit some variational circuits pathologies: unstable

convergence, vanishing gradients, and extended learning plateaus where parameters stagnate. These
effects are well documented in QGAN surveys [11], and are worsened by the expressivity–trainability
trade-off: very deep models become susceptible to learning plateaus due to a large number of redundant
parameters, but shallow models become untrainable and cannot reach high fidelities [13].

Another limitation of current QGAN schemes is that the generator has the same system size as
the target Hamiltonian to learn, and therefore needs to explore its entire Hilbert space to find a single
solution. However, it has been shown that two distinct Hamiltonians can generate identical dynamics
in a smaller subspace [14]. Therefore, expanding the generator learning space, for example, with an
ancilla qubit, leaves more room to learn the now reduced Hamiltonian time evolution.

This thesis, therefore, aims to improve the training of QGANs when learning the time evolution of
target Hamiltonians by expanding the generator’s space. More concretely, we ask whether a minimal
architectural change to the generator—adding an ancilla qubit—can expand the learning space in a
way to overcome learning plateaus and thereby improve convergence and final fidelity?

Organization of the thesis. The structure of the next chapters will be as follows: Chapter 2, re-
views the necessary background: simulation of Hamiltonians [13], [15]; quantum machine learning[16],
[17]; QGANs[9], [10], its known issues and some solutions [11]; like the quantum Wasserstein GANs
(qWGANs) [12], and finally introduce the Choi states [18], [19] for learning unitaries. Chapter 3
then specifies the ancilla-assisted proposal from this thesis. Chapter 4 contains the details of how we
implemented the QGANs training simulations and our ancilla proposal, and introduces the metrics
we will use for the results evaluation. Chapter 5 presents the simulation results, showing how the
ancilla does not improve fidelity when added from the start, whereas adding it to plateaus or other
non-convergent cases helps training progress, while highlighting the importance of this ancilla connec-
tivity and characteristics. Finally, Chapter 6 concludes our work, summarizing our findings, outlining
the limitations of the study, as well as the future possible research directions initiated by this work.
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2 Background
2.1 Simulating Complex Hamiltonian Dynamics

To simulate the dynamics of a quantum system, we must reproduce the time evolution UH(t) =
e−iHt generated by its Hamiltonian H. While classical computers can work with arbitrary operators,
Hamiltonian time evolution included, their cost scales exponentially with system size (Hilbert-space
dimension 2n for n qubits), making dynamics beyond ∼50 components effectively intractable [15]. On
the other hand, quantum devices can work with such Hilbert spaces in an efficient native way, since
their minimal processing units, the qubits, are made to work and exploit the properties of quantum
mechanics. Quantum hardware is advancing rapidly, with several companies claiming to be close to
demonstrating practically useful speed-ups, for some very specific tasks [15], [20]–[23].

On quantum devices, especially in the NISQ era [7], [8], the available gates are typically limited
to one- and two-qubit rotations, generated by Pauli matrices σki acting on qubit i,

RXi(θ) = e−iσxi θ/2, RYi(θ) = e−iσyi θ/2, RZi(θ) = e−iσzi θ/2

RXiXj (θ) = e−iσxi σ
x
j θ/2, RYiYj (θ) = e−iσyi σ

y
j θ/2, RZiZj (θ) = e−iσzi σ

z
j θ/2

. (2.1)

Consider the dynamics of an N -qubit model with nearest-neighbor Ising and transverse-field terms,

UZZ+X(t) = e−iHZZ+X t with HZZ+X = a
N−1∑
i=1

σzi σ
z
i+1 + b

N∑
i=1

σxi (2.2)

The parts HX = ∑N
i σ

x
i and HZZ = ∑N−1

i σzi σ
z
i+1, each one by itself, decompose into parallel one-

and two-qubit gates which can be directly applied,

UX(t) = e−iHX t =
N∏
i=1

e−iσxi t =
N∏
i=1

RXi(2t) ,

UZZ(t) = e−iHZZt =
N−1∏
i=1

e−iσzi σ
z
i+1t =

N−1∏
i=1

RZiZi+1(2t) .
(2.3)

However, when such terms are combined, e−it(A+B) ̸= e−itAe−itB for noncommuting A,B, and the
Baker–Campbell–Hausdorff [24] or Zassenhaus [25] expansions produce an infinite series of nested
commutators. A standard workaround is the Suzuki–Trotter product formula [5], [6],

e−i(A+B)t = lim
n→∞

(
e−iA t

n e−iB t
n

)n
= e−iA t

n e−iB t
n (n). . . e−iA t

n e−iB t
n +O(tn+1), (2.4)

where each repeated term is called a “Trotter step”, containing the different terms for shorter times,
yielding implementable gate sequences at the price of a circuit depth and gate count overhead, that
grows with the required number n of Trotter steps, which for acceptable approximations in complex
Hamiltonians can become large. Although several tailored variants exist, all share the same funda-
mental problem. For our HZZ+X = aHZZ + bHX example this gives

UZZ+X(t) = lim
n→∞

(
e−iHZZ atn e−iHX bt

n

)n
= lim

n→∞

(
UZZ (at/n) UX (bt/n)

)n
, (2.5)

i.e., many short “Trotter steps” alternating two-qubit and one-qubit layers. On NISQ devices, each
gate incurs a fixed non-negligible noise independent of its effective simulation time; thus, large n
accumulates errors and reduces fidelity. These limitations motivate the study of alternatives that
avoid such deep decompositions for simulating complex Hamiltonians (systems).

One such approach is quantum generative adversarial networks (QGANs) [9]–[11]; a quantum
machine learning (QML) framework, which can compress dynamics into much shallower ansatzes [12].
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2. Background

2.2 Quantum Machine Learning as a solution
QML studies how quantum devices can process and learn patterns from data more efficiently than
classical models in specific tasks [16], [17]. In the near term, most practical approaches are hybrid: a
parameterized quantum circuit (PQC) prepares a state; classical optimization updates circuit param-
eters based on a cost computed from quantum measurements. This exploits native quantum resources
(superposition, entanglement, interference) while relying on mature classical optimizers [7], [8].

(i) Parameterized ansatz. PQCs are built from one- and two-qubit rotations arranged to respect
hardware connectivity; problem-inspired or hardware-efficient ansatzes are common. (ii) Objectives
and gradients. Costs are expectation values of observables or distances between states. Gradients are
evaluated with parameter-shift rules [26], enabling end-to-end training on NISQ hardware.

As with classical deep models, PQCs face optimization challenges: noise, limited connectivity, and
barren plateaus (vanishing gradients) can hinder convergence. Robust and smooth objectives that
supply more informative gradients can mitigate this over long runs [8], [13].

2.3 QGANs: formulation and training

QGANs [9]–[11] are a two–player (adversarial) game [27] between a parameterized quantum circuit, the
generator G(θ), and a parametrized measurement operator, the discriminator D(ϕ). The generator
aims to prepare a state ψG/ρG that approximates a target state ψT /ρT produced by a fixed (or
unknown) process T , while the discriminator attempts to tell them apart, providing learning signals
for both. Using the “vanilla” total variation objective, leads to the minimax program [28]:

min
G/θ

max
D/ϕ

Tr[Dϕ(ρT − ρG)] = EρT [Dϕ]− EρG [Dϕ] ≡ L(ρT , ρG, Dϕ) (2.6)

where we abused the notation of Eρ[D] := Tr(Dρ), which refers to the expectation of the outcome
of measuring operator D, on quantum state ρ. Training alternates updates of D/ϕ and G/θ, moving
on the loss landscape L(ρT , ρG, Dϕ) via ascent and descent, respectively; Algorithm 1 outlines the
steps. In idealized settings, this procedure targets a Nash equilibrium where the generator’s state
is indistinguishable from the target (L = 0), with a learning that always converges. Intuitively,
G(θ) increases EρG [Dϕ], i.e., steers ρG toward the discriminator’s direction, while Dϕ maximizes
EρT [Dϕ] − EρG [Dϕ], approximating the optimal discriminator between ρT and ρG, trying to return
their trace distance Tr |ρT − ρG|, which is equivalent to steering away from ρG, at the same time that
tries approaching ρT . The process ends when both the generated state ρG and the discriminator Dϕ

converge into the target state ρT direction.
In practice, the generator parametrization and finite capacity make the optimization nontrivial,

and runs may encounter local minima, barren plateaus, long oscillations, or other non-convergent
behaviors that stagnate the training. Figure 2.1a shows an example of a basic QGAN scheme.

Figure 2.1: a) Basic QGAN scheme, depicting the target time evolution acting on the initial state, the generator, which
is composed of repeated layers, also acting in the initial state, and the discriminator receiving the outputs of both.
b) Example of 3-qubit, generator layer, with single-qubit rotations RX and RZ , followed by two-qubit rotations RZZ ,
each of them parametrized by an angle determining the magnitude of the rotation, and c) Time evolution of the target
Hamiltonian HZZZ , where the magnitude is determined by t.
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2. Background

In dynamics simulation, both T and G(θ) are implemented as quantum circuits (Fig. 2.1b-c):
UT (t) = e−iHt realizes the time evolution of a target Hamiltonian H, and UG(θ) is the generator
ansatz. Given an initial state |ψ0⟩, they transform it into the following states:

ρT = |ψT ⟩ ⟨ψT | with |ψT ⟩ = UT (t) |ψ0⟩ , and ρG = |ψG⟩ ⟨ψG| with |ψG⟩ = UG(θ) |ψ0⟩ , (2.7)

to discriminate by measuring some observables on them, EρT [Dϕ] and EρG [Dϕ], producing the scalar
loss L(ρT , ρG, Dϕ) used to update ϕ and θ via gradient methods. In practice, UG(θ) is typically a
shallow, hardware-efficient ansatz, and measurements are restricted to device-compatible forms.

Algorithm 1 Basic QGAN training pseudocode
Require: iterations Iters; dis steps ndis; gen steps ngen; fidelity threshold F ⋆; time evolution t; target

Hamiltonian T , generator ansatz G; discriminator measure basis D; initial state ψ0; learnin rate η
1: Initialize random generator parameters θ (of the hardware-efficient ansatz)
2: Initialize random discriminator parameters ϕ (of the operator to measure)
3: Initialize target channel UT (t) (from the Hamiltonian time evolution)
4: Prepare generator state ψG ← UG(θ)(ψ0)
5: Prepare target state ψT ← UT (t)(ψ0)
6: for i← 1 to Iters do
7: for c← 1 to ndis do ▷ Discriminator update(s)
8: Compute the Loss gradient: ∇̂ϕL(ψG, ψT ;Dϕ)← Eq. (2.6)
9: Update Discriminator going up the gradient ϕ← ϕ+ η∇̂ϕL

10: end for
11: for c← 1 to ngen do ▷ Generator update(s)
12: Compute the Loss gradient: ∇̂θL(ψG, ψT ;Dϕ)← Eq. (2.6)
13: Update Generator going down the gradient θ ← θ − η∇̂θL
14: end for
15: Estimate fidelity Fi; if Fi ≥ F ⋆ then break
16: end for
17: return Final trained parameters and training curves: θ, ϕ, {Fj}Itersj=1

2.3.1 Training pathologies and mitigations

Although QGANs can achieve high fidelities, are theoretically very robust with ensured convergences,
and enjoy bounded maximum loss (trace distance), which allows training the discriminator until opti-
mality, adversarial training remains challenging. Typical pathologies include: (i) vanishing gradients
[29] when one component (generated state, discriminator, or target) is far from the others; (ii) mode
collapse [30], where G reproduces only a subset of the target modes, (iii) non-convergence/oscillations
between the two players; (iv) the need for common support between ψT and ψG (⟨ψT |ψG⟩ ̸= 0) to
define meaningful distances; and (v) limited generator capacity [9], leading to local Nash equilibria far
from the desired solution. These issues are compounded by noise, restricted connectivity, and barren
plateaus arising from parameter redundancy in deep models [11], [13].

Mitigations include (i) well-conditioned objectives that yield informative gradients even when sup-
ports are disjoint or one component is weak, and (ii) gradient penalties [31] or Lipschitz constraints on
the discriminator to ensure differentiability. Such techniques have been studied and applied to charac-
terization of analog pulses, learning random distributions, and learning pure/mixed states [28], [32]–
[41]. A particularly effective approach that includes both are quantum Wasserstein GANs (qWGANs).

2.3.2 Quantum Wasserstein GANs

Replacing total variation in Eq. (2.6) with the Earth-Mover/Wasserstein-1 distance [42] yields (i)
smoother optimization with more stable, informative gradients; (ii) tolerance to disjoint supports; (iii)
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2. Background

empirically reduced mode collapse; and (iv) a non-negative objective that encourages the generated
state ρG to directly reduce the distance to ρT , instead of only pursuing the discriminatorDϕ. Moreover,
qWGANs admit a dual formulation with efficiently measurable observables and a regularizer term
ensuring differentiability, addressing many issues of the original QGANs [11], [12], [43].

The classical Wasserstein-1 loss encodes the minimum “cost” of transporting one distribution into
another (amount of “dirt” moved, times the moving distance) [43], [44], the quantum version is more
general, although the same intuition holds. Using it in our model, the objective becomes:

min
G/θ

min
π∈HT⊗HG

Tr(πC) = Eπ[C] s.t. TrHT
(π) = ρG, TrHG

(π) = ρT (2.8)

with a cost matrix C acting on HT ⊗HG. A common choice is C = 1
2(I ⊗ I − SWAP), where SWAP

is the swap operator that interchanges states: SWAP(ψx ⊗ ψy) = ψy ⊗ ψx, which leads to a quantum
semimetric qW (ρT , ρG) [12] satisfying:

1. qW (ρT , ρG) ≥ 0 2. qW (ρT , ρG) = qW (ρG, ρT ) 3. qW (ρT , ρG) = 0 iff ρT = ρG. (2.9)

In this view, training also alternates: the discriminator step seeks a joint state π that minimizes
Eπ[C]. With C = 1

2(I ⊗ I − SWAP), the objective is (up to constants) −Tr[π SWAP], so the dis-
criminator effectively searches for a purification of (ρT , ρG) within a larger joint state π whose two
marginals resemble each other as much as possible (maximizing the SWAP overlap). The generator
step then updates θ so that ρG approaches ρT while remaining consistent with the current joint state.
Although this intuition is useful, directly optimizing over purifications is inconvenient to implement
as a measurement-based discriminator. A more practical—and common—approach is the equivalent
dual (min–max) formulation, which also resembles our previous QGAN expression more [12]:

min
G

max
ϕ,ψ

Tr(ρT Dψ)− Tr(ρGDϕ) ≡ EρT [Dψ]− EρG [Dϕ] (2.10)

s.t. IT ⊗Dϕ −Dψ ⊗ IG ⪯ C, Dψ ∈ HT , Dϕ ∈ HG,

where two measurement operators Dψ (on the target space) and Dϕ (on the generator space) are
constrained jointly by C. This dual objective, although less intuitive, is “just” a difference of expec-
tations, easy to implement, and the constraint ensuring differentiability.

Regularized qWGAN. The constraint can be enforced by a gradient penalty [31] via an additive
regularizer ξR [12], yielding the final objective used in our study:

min
G

max
ϕ,ψ

EρT [Dψ]− EρG [Dϕ]− EρT⊗ρG [ξR] ≡ LW (ρT , ρG, Dψ, Dϕ)

with ξR = λ

e
exp

(−C − IT ⊗Dϕ +Dψ ⊗ IG
λ

)
≈ e

−C
2λ e

−Dψ
λ ⊗ e

Dϕ
λ e

−C
2λ

(2.11)

where in the last step, we have slightly relaxed the regularization, for an easier implementation [12].

Direct estimation of gradients. To be efficient in implementing this loss function, we can directly
implement its gradient in the QGAN process. To do so, first we show precisely how our components
depend on the optimization parameters, splitting most of them into tensors of Pauli matrices:

ρ0 = |ψ0⟩ ⟨ψ0| , ρG = UG(θ)ρ0U
†
G(θ), UG(θ) =

∏
j

eiθjgj/2 (2.12)

Dϕ =
∑
k

αkAk, Dψ =
∑
l

βlBl, ξR =
∑
q

rqRq (2.13)

where gj , Ak and Bl are Pauli matrices, and Rq is a combination of SWAPs and/or Pauli matrices
[12]. The parameters of the generator are all the gates θj ’s (with a quantity given by the number of
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2. Background

layers times gates per layer) and the parameters of the discriminator αk and βl are the coefficients
defining each measurement basis (four each, one for each possible Pauli matrix). Leaving the directly
applicable gradients of the loss function LW in Eq. (2.11), respect the optimization parameters, as:

∂ LW
∂αk

= Tr[ρGAk]− Tr
[
(ρg ⊗ ρT )(IT ⊗Ak)R

λ

]
(2.14)

∂ LW
∂βl

= Tr[ρTBl]− Tr
[
(ρg ⊗ ρT )(Bl ⊗ IG)R

λ

]
(2.15)

∂ LW
∂θj

=
∂ Tr

[
DϕUG(θ)ρ0U

†
G(θ)

]
∂θj

−
∂ Tr

[
ξR(UG(θ)ρ0U

†
G(θ)⊗ ρT )

]
∂θj

(2.16)

where the pending gates derivatives can be done with well-known techniques, like parameter-shift [26].

2.3.3 Simulating the full unitary via Choi states

Training on a single initial state |ψ0⟩ learns only one trajectory of the entire unitary evolution. To
learn the entire unitary channel UT , one may augment the initial state (e.g., noise, batch sam-
pling) [45], but such schemes do not guarantee full-channel learning. A principled alternative employs
the Choi–Jamiołkowski isomorphism [18], [19]. We consider the maximally entangled state

|Ω⟩ = 1√
d

d−1∑
i=0
|i⟩ |i⟩ , d = 2n, (2.17)

and construct the Choi state, which encodes the channel effect on all elements of a complete basis,
therefore containing the same information as the full unitary (as its Choi matrix):

|ΦT ⟩ = (I ⊗ UT ) |Ω⟩ = 1√
d

d−1∑
i=0
|i⟩ ⊗ UT |i⟩ , |ΦG⟩ = (I ⊗ UG) |Ω⟩ = 1√

d

d−1∑
i=0
|i⟩ ⊗ UG |i⟩ .

Where the overlap between these Choi states equals the (squared, normalized) process fidelity:

Fproc =
∣∣∣⟨Ω| (I ⊗ U †

GUT ) |Ω⟩
∣∣∣2 = 1

d2

∣∣∣∣∣∣
d−1∑
i,j=0
⟨i|j⟩ ⟨i|U †

GUT |j⟩

∣∣∣∣∣∣
2

= 1
d2

∣∣∣Tr
[
U †
GUT

]∣∣∣2 ,
which equals 1 iff UG and UT differ by a global phase. Thus training on Choi states is equivalent to
learning the full unitary channel, at the cost of doubling the qubit count. This approach is natural
for Hamiltonian simulation and has been successfully used in qWGANs for circuit approximation [12].
Figure 2.2b-c sketches the standard and Choi-state QGAN set-up used here, and then introduces this
thesis proposal, adding an ancilla to aid the generator, with what we continue in the next chapter.

a) b)

Figure 2.2: a) Standard QGAN, which trains to simulate the target state |ψT ⟩ (time evolution applied to a single initial
state |ψ0⟩), with the generator’s state |ψG⟩, and b) QGAN’s Choi state ((U ⊗ I) |Ω⟩) setup, which learns the entire
time-evolution unitary, where red represents lines that are originally entangled.
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3 Ancilla-assisted QGANs
3.1 Motivation
Although qWGANs alleviate many issues of the original QGAN formulation, several pathologies persist
in practice—most notably learning plateaus, oscillatory behaviours, and limited generator capacity.

Standard QGAN generators typically match the system size of the target and must explore the
full system Hilbert space to recover a single solution. Yet distinct Hamiltonians can induce identical
dynamics within a restricted subspace [14]. This suggests that extending the generator’s Hilbert space
with an ancilla qubit can introduce degrees of freedom that ease optimization while ultimately repro-
ducing the same system-level unitary. Related ideas—introducing auxiliary degrees of freedom—are
common in quantum simulation and algorithm design (e.g., gadget construction [46]).

Motivated by these observations, we propose augmenting the QGAN generator with a single ancilla.
Intuitively, the ancilla (i) enlarges the trainable space and (ii) can bridge distant regions of a hardware-
efficient ansatz, perturbing otherwise flat loss landscapes and helping resume progress from plateaus
(Fig. 3.1). We study several ancilla–system connectivity patterns of varying complexity and assess
when to introduce the ancilla (from the start, after detecting stagnation, or at a fixed mid-training
iteration), with an eye toward near-term realizations on NISQ devices with constrained connectivity
(e.g., heavy-hex, square lattices) [7], [8].

Figure 3.1: a) Example of fidelity versus iterations in a stuck learning plateau, b) example of escaping a plateau, by
adding an ancilla qubit with starting gate angles set to 0, where the fidelity changes slowly, and c) example of escaping
a plateau by adding an ancilla with randomized gate angles, where at first instance the fidelity drops, since the ancilla
gates, has moved from its initial state, to which is being compared against.

3.2 Model

Let S denote the n-qubit system (so dimHS = N) and let A be a single-qubit ancilla initialized
in |0⟩A. The target channel UT acts unitarily on S, while the generator with ancilla, UGA(θ), acts
unitarily on S⊗A instead, with its effective action on the system S alone, obtained by tracing out A,
being described by a completely positive and trace-preserving (CPTP) map EG, rather than a unitary:

EG( · ) = TrA
[
UGA

(
( · )⊗ |0⟩⟨0|A

)
U †
GA

]
= ŨG(·)Ũ †

G + Ũmix(·)Ũ †
mix. (3.1)

where ŨG = ⟨0|UGA |0⟩A is the subspace block in which the ancilla starts and remains in |0⟩A, and
Ũmix = ⟨1|UGA |0⟩A collects the off-diagonal block (leakage), where the ancilla transitions to |1⟩A.

Proposal: Ancilla through generator, compared at discriminator. We propose adding an
ancilla to the generator, initialized at |0⟩A, coupling it to the original system qubits, via (one- and) two-
qubit gates appended after each original layer, yielding enlarged layers for UGA. Then pass the coupled
generator output state |ψGA⟩, to the discriminator, where it will be compared against the original tar-
get state and an idle reference ancilla accompanying it, originating from UT ⊗ IA (Fig. 3.2b). Training
thus encourages the generator’s ancilla to disentangle, while driving |ψGA⟩ toward ∼ |ψT ⟩ ⊗ |0⟩A,
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3. Quantum Generative Adversarial Networks (QGANs)

steering with it ŨG and Ũmix towards UT and 0 respectively (Fig. 3.2a). In this way, EG can initially
exploit a larger non-unitary parameter manifold, while training guides it towards disentangling the
ancilla and reducing the CPTP map back to a unitary that implements UT in S.

To formalize this, consider the Choi-style initial state (Section 2.3.3), augmented with an extra ancilla:
∣∣Ω′〉 = 1√

d

d−1∑
i=0
|i⟩ |i⟩ |0⟩A . (3.2)

Let T ′ (resp. G′) denote the Choi copy space for the target (resp. generator) half. The fidelity between
the target state (IA⊗UT⊗IT ′) |Ω′⟩ and the generator state (UGA⊗IG′) |Ω′⟩ is

∣∣∣〈Ω′∣∣ (UGA⊗IG′
)†(
IA⊗UT⊗IT ′

) ∣∣Ω′〉∣∣∣2 = 1
d2

∣∣∣∣∣∣
d−1∑
i,j=0
⟨i|j⟩ ⟨i, 0|U †

GA(IA⊗UT ) |j, 0⟩

∣∣∣∣∣∣
2

= (3.3)

= 1
d2

∣∣∣∣∣
d−1∑
i=0
⟨i, 0|U †

GA(IA⊗UT ) |i, 0⟩
∣∣∣∣∣
2

= 1
d2

∣∣∣∣∣
d−1∑
i=0
⟨i| Ũ †

GUT |i⟩
∣∣∣∣∣
2

= 1
d2

∣∣∣Tr
[
Ũ †
GUT

]∣∣∣2 ,
This fidelity equals 1 iff ŨG = eiφUT for some global phase φ, and there is no leakage, i.e., Ũmix =
0. Equivalently, UGA is block-diagonal in the ancilla basis with the |0⟩ ⟨0|A block equal (up to a
phase) to UT (Fig. 3.2a). Consequently, our proposal leverages the enlarged parameter space of the
generator–ancilla unitary UGA early in training, but then is explicitly driven towards returning a
disentangled |0⟩A ancilla, and correctly simulating the desired UT in the corresponding system S.

a)
b)

Figure 3.2: a) Schematic learning process: the enlarged generator UGA is driven so that its |0⟩ ⟨0|A subspace matches UT
and its off-diagonal (leakage) terms vanish (white marks the zero-valued blocks); a residual non-trained unitary Uextra
remains in the |1⟩ ⟨1|A subspace. b) Setup sketch, adding the ancilla on top of the Choi state: the ancilla traverses only
the generator, while the target carries an idle reference ancilla; then both outputs are compared at the discriminator.

3.3 Connectivity, NISQ considerations and costs
We evaluate several ancilla–system couplings, together with other characteristics, such as whether its
angles should be randomized at the start, if it should contain one-qubit gates as well, etc. Some of
those connectivities will provide non-local shortcuts in the ansatz original connectivity, which should
aid plateaus escape. The goal would be to achieve that with a connectivity that at the same time,
is efficiently implementable on common NISQ topologies (e.g., heavy-hex), where topologies are not
only a line, but have qubits with > 2 connections every certain qubits. Resource-wise, adding one
qubit doubles the system size and simulation cost, and also adds degrees of freedom, which might not
always be positive, due to possible parameter redundancies in deep ansataz. So the timing of ancilla
insertion (e.g., at start, only after stagnation is detected, or at a fixed mid-run iteration) is critical.
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4 Methodology
4.1 Simulations

The simulations here are based on the Python implementation used in Ref. [12] for training qWGANs.
The code has been fully refactored and tested to (i) support the addition of an ancilla qubit, (ii)
generalize to arbitrary target Hamiltonians and generator ansatzes, and (iii) improve performance,
organization, and data generation, so that larger-scale studies of ancilla insertion are feasible.

The generator UG(θ) is treated as a parametrized quantum circuit (given an ansatz), whose pa-
rameters θ are updated during training, the target UT (t) is implemented as a fixed circuit obtained by
exponentiating the specified Hamiltonian H; and the discriminator is represented by two measurement
directions Dϕ, Dψ (Pauli-vector axes ϕ, ψ) used to measure the generated and target states respectively.
We compute Eq. (2.14) explicit gradients of the dual quantum Wasserstein loss in Eq. (2.11), including
the regularization term that ensures differentiability. All the matrix operations are implemented with
NumPy [47] and SciPy [48]. An overview of the workflow appears in Algorithm 2.

Algorithm 2 qWGAN complete training with Choi states (parameters details on sec. 4.3)
Require: epochs Epochs, iterations per epoch Iter; dis steps ndis; gen steps ngen; fidelity threshold

F ⋆; time evolution t; target Hamiltonian H, generator ansatz G, generator layers nG; discriminator
measure basis D; learning rates ηG, ηD; momentum coeff βG, βD; log and plots path dir

1: Initialize random generator parameters θ (of the hardware-efficient ansatz)
2: Initialize random discriminators parameters ϕ, ψ (of the operators axis to measure)
3: Initialize generator and discriminator optimzers vG, vD,ϕ, vD,ψ ← 0, 0, 0
4: Prepare generator state ψG ← Choi state of (UG(θ) = ∏nG

j Gj(θ))
5: Prepare target state ψT ← Choi state of (UT (t) = e−iHt)
6: for e← 1 to Epochs do
7: for i← 1 to Iters do
8: for 1 to ndis do ▷ Discriminator update(s)
9: for Ω in ψ, ϕ do ▷ Update both measure axis

10: Compute discriminator loss gradient: ∇̂ΩLW (ψT , ψG;Dψ, Dϕ)← Eq. (2.14)
11: Compute and add regularizer gradient: ∇̂ΩL′

W ← ∇̂ΩLW + ∇̂Ωξr
12: Update optimizer momentum: vD,Ω ← βDvD,Ω + (1− βD)∇̂Ω L′

W

13: Update discriminator parameters: Ω← Ω− ηDvD,Ω
14: end for
15: Regenerate discriminator operators Dψ, Dϕ

16: end for
17: for 1 to ngen do ▷ Generator update(s)
18: Compute generator loss gradient: ∇̂ΩLW (ψT , ψG;Dψ, Dϕ)← Eq. (2.16)
19: Compute and add regularizer gradient: ∇̂θL′

W ← ∇̂θLW + ∇̂θξr
20: Update optimizer momentum: vG ← βGvG + (1− βG)∇̂θ L′

W

21: Update generator parameters: θ ← θ − ηGvG
22: Regenerate generator state: ψG ← Choi state of UG(θ)
23: end for
24: Compute and store fidelity and cost: F ′

e·Iters+i,L′
We·Iters+i ← F,LW

25: end for
26: Plot current training curves (dir, {F ′

j ,L′
Wj}

e·Iters
j=1 ) if F ≥ F ⋆ then break

27: end for
28: return Final trained parameters and training curves: θ , ψ, ϕ, {Fj ,LWj}

Epochs·Iters
j=1
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4. Metodology

4.2 Metrics to evaluate results
In this section, we introduce the three main metrics that we will use during Chapter 5, for analyzing
the simulation results. Then we evaluate and show how the metrics perform.

The first metric to introduce, from where we will build the other two, is the best fidelity (Fbest),
which gives us information about a single training repetition, considering its fidelity F = |⟨ψG|ψT ⟩|2
at each i iteration Fi, and returns the maximum one at any point. The second metric is the average
best fidelity (Favg,best), for when we have run multiple training repetitions (e.g., N), for which we just
average the Fbest,j of each repetition j. Finally, the last one, the success rate (Srate), basically counts
the number of runs that have passed a certain fidelity threshold (F ∗):

Fbest = max
i

(Fi) , Favg,best = 1
N

N∑
j=0

Fbest,j , Srate = count
j

(Fbest,j > F ∗). (4.1)

It is important to recognize that the last metric (success rate) works as a binary classification (passes
the fidelity threshold or no), where all unsuccessful cases contribute equally, no matter the best fidelity
they have reached (e.g., a 10% best fidelity, counts equally towards the success rate, as a 95% one,
since none passed the 99% threshold), so we must exercise caution in its use, as it can be misleading,
returning very low vales, in cases, where almost all the results are just below the threshold (e.g., a
case where 100 repetitions end up with a best fidelity of 98%, would return a success rate of 0%, and
another case, where 95 repetitions end up with a best fidelity of 20%, but 5 have a 99%, would return
a higher success rate). It is also sensitive to statistical deviations; since for cases where only a few
successful cases are obtained, it can fluctuate significantly (a few repetitions passing the threshold,
versus not passing it, change its value a lot). The second metric, the average best fidelity, doesn’t have
these problems, since each repetition contributes with its weight, making it a more robust indicator.

To see if these metrics correctly reflect how good or bad a training has been, let us check if
the training, and therefore the metrics we defined, get better results the longer (more epochs) we
train. In Fig. 4.1, we train a qWGAN against the ZZZ target Hamiltonian, defined in Eq. (4.2),
for different numbers of epochs, seeing that the average best fidelity (Favg,best) increases with them,
and even recognizing how it gets bounded towards the end. Finally, mention how the success rate
(Srate) becomes non-zero and increases with the epochs, having a noticeable jump at 20 epochs (of
300 iterations each).

a) b)

Figure 4.1: a) Evolution of the fidelity through time in a training instance. The green circle indicates the value of
the Fbest, b) Metrics in the case where HZZZ is targeted for different values of training epochs. Showing in gray dots,
precisely the Fbest for each of the repetitions. Then in green and red, the Favg,best and Srate respectively.
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4. Metodology

4.3 Simulation Parameters
We now summarize the key simulation parameters used for the results in Chapter 5, what they mean,
their default values (unless stated otherwise), and where those values came from:

Training parameters:

• epochs (Epochs): number of training epochs (default: 20).
• iterations_epoch (Iters): iterations per epoch (default: 300).
• max_fidelity (F ∗): early-stop fidelity threshold (default: 0.99).
• steps_gen/dis (n): discriminator/generator updates per iteration (default: 1).
• system_size (N): number of system qubits, excluding Choi state and ancilla (default: 3).

Generator/Target parameters

• gen_layers (nG): number of generator-ansatz layers (default: 3).
• gen_ansatz (G): generator ansatz unitary (default: nearest-neighbour GZZ,X,Z(θ)).
• target_hamiltonian (H): target Hamiltonian terms (default: three-body HZZZ ≡ ZZZ).
• target_evolution_time (t): time to evolve with the target Hamiltonian (default: 1).

Optimizer parameters

• l_rate (η): coefficient controlling how much the gradient modifies our parameters (default: 0.01).
• momentum_coeff (β): coefficient about resistance to change learning directions (default: 0.9).

For our study, the generator ansatz GZZ,X,Z , and the Hamiltonian ZZZ (represented in Figure 2.1)
dynamics are given by:

UG(θ) =
layers∏
j

GZZ,X,Z(θ) =
layers∏
j

(
N−1∏
i

RZiZi+1(θ)
N∏
i

RZ(θ)i
N∏
i

RX(θ)i

)

UT (t) = e−iZZZt = e−i
(∑N−2

i
σziσzi+1σzi+2

)
t =

N−2∏
i

RZiZi+1Zi+2(2t).

(4.2)

Therefore, unless stated otherwise, our simulations will use a fixed-number of total training iterations
(6000), training once the discriminator and the generator in each, with an early stop criterion at
target fidelity > 0.99, focusing primarily on learning dynamics generated by a three-body ZZZ target
Hamiltonian using a two-body hardware-efficient ansatz shown in Fig. 2.1, with three layers.

The previous default values, were choosen after evaluating the defined metrics (Favg,best, Srate)
against sweeps of each of the parameters. (i) Increasing epochs improves both metrics, with a marked
gain between 10 and 20 epochs; corresponding to simulation times which start to be at the limit of
what allows us to collect statistically significant data, we therefore set epochs = 20. (ii) Varying
the generator/discriminator step ratio (correcting the iterations, for comparing the same number of
updates) produced minor differences, so we use the 1–1 setting of Ref. [12]. (iii) Each generator layer
added increases the average best fidelity (Favg,best) by 6% approximately, and doubles the success
rate (Srate), as seen in Fig. 4.2, but it also increases the training time; therefore we use three layers
where the success rate (Srate) already is non-zero. (iv) Learning-rate and momentum sweeps of the
optimizer showed only mild improvements towards larger learning rates; we therefore retain the values
of Ref. [12]. Under these settings and on a 2024 Mac mini with an M4 Pro chip and 64GB of RAM,
each training run (repetition) required approximately 7 minutes with the ancilla enabled and about 3
minutes without it, with the results from the thesis taking around 800 hours of computational time,
split across several computers.
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4. Metodology

Figure 4.2: Results of QGAn training against the ZZZ target Hamiltonian, for different numbers of layers in the
generator. Showing in gray dots the best fidelity (Fbest) achieved for each repetition (100 in each Hamiltonian), in green
the average (Favg,best) of each case, and in red the success rate (Srate).

4.4 Adding the ancilla, methodology
To add an ancilla, we extend the generator circuit with one additional qubit and couple it to the system
according to the chosen topology (Fig. 4.3), leaving existing parameters unchanged. The discriminator
is extended by two qubits: one to receive the generator’s ancilla output and one reference qubit (kept
idle alongside the target) so that the discriminator can compare the ancilla’s final state to its initial
state, encouraging the ancilla to return to its input state while the system learns UT autonomously.
Upon ancilla insertion, discriminator parameters are reinitialized.

Figure 4.3: New layers in the generator, after adding the different ancilla topologies that will be employed during the
Section 5. a) “Disconnected” or “Diconn.”, where the ancilla is not coupled anywhere, b) “Ansatz” where the ancilla
connects to a single qubit, following the ansatz pattern, c) “Short Bridge”, where the ancilla connects to the first and
second qubits, d) “Bridge”, where the ancilla connects the first and last qubit, and e) “Total”, where the ancilla connects
to all the rest of qubits.

Besides the topologies defined here (Fig. 4.3), we will also use “NoRand” and “No1Q” variations,
which mean, respectively, to start with the ancilla gates angles at zero (not randomized), and for the
ancilla to not contain 1-qubit gates, only the 2-qubit connections.
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5 Results
This chapter reports simulation results obtained by systematically varying (i) the ancilla–system
connectivity (topology) and (ii) the timing of ancilla insertion. Unless otherwise noted, experiments
use a fixed training budget of 6000 iterations with an early stop at target fidelity F > 0.99. The
default setting learns the dynamics of a three-body ZZZ target Hamiltonian with a three-layer, two-
local hardware-efficient generator ansatz. We will start analyzing how the different ancilla topologies
help when added from the start of the training. Then we move to study whether adding the ancilla in
problematic cases that do not converge in the designated number of iterations, helps them converge.
Finally, given the two previous results we move into studying the addition of the ancilla midway
through the training at a fixed moment, and see if this strategy helps us achieve better performance,
with the metrics average best fidelitiy (Favg,best) and success rate (Srate), described in Eq. (4.1).

5.1 Ancilla present from the start
We first assess adding a single ancilla qubit from the beginning of training, giving the extra degrees
of freedom directly from the start. For targets of the form HaXZX+bZZ ≡ aXZX + bZZ:

aXZX + bZZ ≡ a
N−2∑
i

σxi σ
z
i+1σ

x
i+2 + b

N−1∑
i

σzi σ
z
i+1, → UT (t) = e−i(aXZX+bZZ)t ,

we compare “bridge” and “total” ancilla topologies (Fig. 4.3d-e). As shown in Fig. 5.1, adding the
ancilla from the outset does not improve performance and can degrade it for simpler targets.

Figure 5.1: Results of adding the ancilla qubit in “bridge” and “total” topology to three target Hamiltonians of the form
a XZX + b ZZ, for different a, b’s. Showing in gray dots the best fidelity (Fbest) achieved for each repetition (100 in
each Hamiltonian), and in green the average (Favg,best) of all those repetitions for each Hamiltonian.

We then fix the target to ZZZ and survey a broader set of topologies. Figure 5.2 shows that
average gains are small; the best cases (“bridge”/“total”) yield only a modest increase in average best
fidelity (Favg,best) (about +3.5%), while changes in success rate (Srate) are noisy owing to threshold
effects when the number of successful runs is small. This lack of improvements could be explained by
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the fact that, even though in principle expanding the parameters can be used for escaping plateaus,
when unnecessary, it also might make the appearances of plateaus easier due to parameter redundancy.
Overall, early inclusion of the ancilla adds extra parameters without clear benefit, thereby increasing
resource demands (simulation time and qubit count) with limited payoff.

Figure 5.2: Results of adding the ancilla qubit in distinct topologies to the ZZZ target Hamiltonians. Showing in gray
dots the best fidelity (Fbest) achieved in each repetition (100 for each case), in green the average (Favg,best) of all the
repetitions, and in red the success rate (Srate, fid> 0.99) of each ancilla topology.

5.2 Ancilla insertion in non-convergent runs
We next introduce the ancilla only in difficult runs that fail to reach F > 0.99 within the budget, not
penalizing (adding redundancy) the ones that will be successful already, and using fewer resources at
the same time. Two distinct failure cases are considered: (i) clear learning plateaus (flat fidelity traces)
and (ii) other non-convergent (e.g., oscillatory) behaviour. For each problematic case, we insert an
ancilla with randomized angles and repeat 15 times per instance to estimate variability.

5.2.1 Escaping learning plateaus

Twelve plateaued trajectories (examples in Fig. 5.3) were used as seeds.

Figure 5.3: Examples of learning plateaus after 3000 total iterations.

As summarized in Fig. 5.4, simple couplings (such as; “disconected”, “disconnected No1Q”, “ansatz”,
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“bridge no1Q” and “short bridge”) do not lift the plateau; by contrast, topologies that connect distant
parts of the ansatz (“bridge” and “total”) raise the average best fidelity (Favg,best) by approximately
+6%, and only the “total” topology also increases the success rate (Srate) by about +13%. These
improvements also outperform a trivial discard-and-restart strategy tried, where we start from scratch
with a new training, which only achieves a 65.7% average best fidelity and a 10.7% success rate.

Figure 5.4: Results of adding the ancilla qubit, for twelve stuck plateaus, in distinct topologies to the ZZZ target
Hamiltonian. The light green dots indicate the average best fidelity for each plateau (> 10 repetitions in each), the
darker green dots show the total average of each ancilla topology, the light red dots show the average success rate
(fid> 0.99) of each plateau, and the dark red dots show the total success rate of each ancilla topology. The control case,
where nothing is changed in the run, is indicated in blue.

Detailed views of the two best performing plateaus, which both start near 47.7% fidelity, show
that, after “bridge” insertion, runs typically jump to a small set of higher plateaus, improving average
best fidelity (Favg,best) by roughly +18.5% and +30%, respectively (Fig. 5.5).

Figure 5.5: Two trapped plateaus at 47.7% fidelity escape when adding a randomly initialized ancilla qubit in “bridge”
topology, showing in gray the best fidelity Fbest in each repetition (100 each), and in green the average Favg,best.
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5.2.2 Escaping other non-convergent runs

We repeat the protocol on eight other non-convergent cases, but which have not plateaued (e.g.,
oscillatory loss/fidelity; Fig. 5.6).

Figure 5.6: Example of non-convergent trainings after 3000 total iterations, which are not learning plateaus.

Results in Fig. 5.7 mirror the plateau findings but with larger margins: “bridge”/“total” topologies
yield an average best fidelity (Favg,best) gain of about +16%. Success-rate (Srate) is higher in general
due to some controls eventually converging with additional iterations, but the “total” topology still
improves over the baseline (+6.7%). These improvements again outperform the same trivial discard-
and-restart strategy from before, but now by a much bigger margin. These results indicate that the
ancilla, rather than just helping in the plateau stuck cases, also aids oscillations and restores progress
in otherwise unstable trainings.

Figure 5.7: Results of adding the ancilla qubit, for eight non-convergent non-plateaud cases, in distinct topologies to the
ZZZ target Hamiltonian. Showing in gray dots the best fidelity (Fbest) achieved for all the repetitions (> 100 for each
case), in green the average (Favg,best) of all those repetitions for each ancilla topology, in red the success rate (Srate,
fid> 0.99) of each ancilla topology. Finally, in blue, the control case where nothing is changed to the run, and it just
continues to run for the same epochs as the rest.
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5.3 Midrun ancilla insertion
The ancilla does not help when added from the start, but it does help when manually added to the
non-convergent cases (stuck, oscillations, etc). Here, we consider adding the ancilla at a fixed moment
mid-run, when the cases that converge fast won’t get (negatively) affected, but the non-convergent
cases remain, and can be aided.

We evaluate the following unconditional protocol: insert automatically the ancilla at the midpoint
of training, without manually checking its state. As shown in Fig. 5.8, mid-run insertions of the ancilla
in “bridge” and “total” topologies, with randomized gate angles, improves both the average best fidelity
(Favg,best) and the success rate (Srate) for the ZZZ target. Notably, the “bridge” topology already
offers better results, while remaining practical on common NISQ devices layouts (e.g., heavy-hex),
avoiding the gates overhead that a fully connected ancilla would induce in the logical-to-physical qubit
mapping and routing [49], [50] quantum devices need before execution, to fit more complex quantum
circuits into their limited connectivities. Conversely, initializing ancilla gates at zero (“NoRand”)
yields little to no benefit.

Figure 5.8: Results of adding the ancilla qubit mid-run, for a ZZZ target Hamiltonian, and different ancilla topologies.
Two cases start with ancilla qubit gates angle set to zero (“NoRand”) and the other two initialize them randomly
(“Rand”). In gray we show the best fidelity (Fbest) reached in each repetition (100 each case), in green the average
(Favg,best) of each case, and in red its success rate (Srate).
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6 Discussion
This thesis investigated whether ancilla-assisted QGANs can improve the learning of Hamiltonian
dynamics compared with standard QGAN baselines. Previously, it has been shown that QGANs, and,
in particular, Wasserstein QGANs (qWGANs), can learn to simulate a target nontrivial Hamiltonian
time-evolution with far fewer gates than Suzuki-Trotter decompositions based methods, often resulting
in substantial circuit overhead and resource demands that are unacceptable for NISQ devices. At the
same time, the QGAN literature highlights practical training issues, including instability and plateaus
[11], which motivate architectural innovations.

Therefore, we asked: can a minimal architectural change, adding a single ancilla qubit to the
QGAN, expand the learning space sufficiently to overcome learning plateaus and thereby improve
convergence and final fidelity when learning the time evolution generated by a target Hamiltonian?

Short answer: yes. The ancilla helps primarily in runs that show non-convergent behaviours (e.g.,
plateaus, oscillations), especially when inserted midway through training and connected in a “bridge”
or “total” topology with its own single-qubit rotations and a randomized initialization of its angles;
adding it from the start yields, at best, marginal average gains.

In our ancilla-assisted QGAN study, we systematically varied (i) ancilla connectivity topologies
(e.g., bridge connections that link two distant regions of the ansatz, or total connections that link ev-
erything), and (ii) when the ancilla is introduced (from the start, or only after a non-convergent case
has been identified, or at a fixed mid-training point), to study the learning of the full dynamics gener-
ated by three-body target Hamiltonians via their Choi state, employing a parameterized general-axis
expectation-value as discriminator, and using three layers of two-body hardware-efficient ansatzes as
a generator, both of which we added the ancilla when required.

6.1 Conclusions
We observed that the ancilla-assisted variants consistently helped in non-convergent runs, improving
convergence and final fidelity. Importantly, they outperformed a naïve discard-and-restart strategy,
which discards runs and restarts from scratch:

• Escaping learning plateaus. The ancilla-assisted variant reliably helped escape plateaus,
resuming progress to higher fidelities, confirming that the ancilla beneficially perturbs the land-
scape, although escaped runs sometimes became trapped in subsequent plateaus.

• Stabilizing non-convergent runs. In runs characterized by non-convergent behaviours of
the loss/fidelity, like oscillations, or up and down steps, etc, inserting the ancilla damped these
dynamics, and led to more straightforward convergences and higher fidelities.

Another important finding is that not all the ways to use the ancilla helped equally (or at all), and
since the ancilla can be a costly resource, doubling simulation time and memory usage, and consuming
scarce qubits on NISQ devices, we should be mindful about how and when to use it:

• Connectivity matters. When the ancilla connects otherwise distant regions of the hardware-
efficient generator ansatz (bridge and total topologies), training results improved; for simpler
topologies, they did not. This fact indicates that the ancilla qubit acts as a mediator, allowing
distant qubits to communicate in fewer steps than through the original hardware-efficient ansatz.
Interestingly, in the end, the ancilla must return to its initial state (to achieve a fidelity ∼ 1),
so it cannot have a direct effect on the final achieved generator, only as an intermediary of the
other original qubits during the intermediate training steps. This effect is expected to be more
influential for larger systems, where the separation of qubits at the hardware-efficient ansatzes
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is larger, and the bridge structure may be more influential. Notably, the simple bridge topology,
which can be efficiently implemented in many NISQ devices with limited connectivity (e.g.,
heavy-hex), we found helps considerably. Thus, it is more efficient than using the more complex
“total” connectivity, which might add a big overhead of SWAP gates [49], [50].

• Shape and initialization matters. Other conditions were also necessary to see improvements,
specifically, the ancilla required its own single-qubit gates in addition to the two-qubit couplings.
Moreover, a zero-angle initialization of its gates did not help, whereas a randomized one did.

• Timing matters. Adding the ancilla from the beginning produced only small average gains;
by contrast, introducing it midway through training consistently improved the average best
fidelity and success rate. We conjecture that this works because it aids the non-convergent cases
(plateaus or odd oscillations) that remain training, while not affecting the ones that converge
fast by themselves before the addition.

Taken together, these results suggest that training with the baseline generator first, and once stagna-
tion is detected, or after a preset fraction of the total iterations, injecting an ancilla with a total/bridge
topology (bridge for a more NISQ-friendly approach), with single-qubit gates and randomized angles,
improves the training of QGANs on Hamiltonian dynamics in problematic cases. This strategy is
simple to implement, compatible with standard QGANs, and specifically targets the empirically chal-
lenging regimes (plateaus and non-convergent oscillations).

Viewed more broadly, ancilla-assisted QGANs provide a simple, low-cost lever to reshape the op-
timization landscape in a favorable way, without the need to redesign the entire model. Acting as a
training catalyst for the difficult cases when learning complex Hamiltonian dynamics.

6.2 Limitations of the study
Our conclusions must be interpreted in light of the study’s scope:

• Size limitations. Experiments were only conducted on small systems (e.g., three-qubit targets).
Although we expect that an ancilla joining even further sections in bigger systems should perform
better, the actual scaling behaviour for larger Hilbert spaces, more complex Hamiltonians (k-
body with k ≥ 4), and deeper ansatzes remains to be tested.

• Limited targets and generators. We have only worked with 6 different target Hamiltonians,
from which only the ZZZ case was studied extensively. We have limited ourselves to a single
ansatz for the generator. Under this limitation, it remains to be seen whether the conclusions
drawn from the present simulation results can be generalized to different Hamiltonian systems.

• Fixed training parameters. After analysing the parameters for shallow circuits, we fixed the
total training iterations, the fidelity stopping criterion, the type of optimizer, and its parameter
values. With improved computational power in the future, it remains to be tested whether it
works equally well, worse, or better for deeper circuits.

• Fixed loss function. We have to consider that we only used a single loss function during all
the results analysis, the Wasserstein distance of order 1. This choice is based on the knowledge
of QGAN pathologies from previous studies. It is not known whether our results may differ
for other loss functions introduced to address other problems of QGAN, which may handle
multi-qubit distances differently.
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6. Discussion

6.3 Further Developments
In light of the previous limitations, several improvements are natural:

• Improve code efficiency. Develop a more efficient code implementation for matrix operations
and gradient descent, to handle larger system sizes, memory, and speed-wise. This would enable
studying how much the ancilla help scales with the system size (qubit count), and the target
complexity (k-body terms with larger k). It is interesting, since we expect that an ancilla
connecting further regions of the ansatz, would get better results. This would also allow us to
broaden the sets of models/configurations to study in a realistic timeframe, partially solving
the first three limitations of the study. We are already working on migrating the code to use
PennyLane [51], for this reason.

• Hyper-tune the optimizer. Explore alternative optimizers, hyperparameter tuning, and
adaptive schedulers to reduce the number of iterations required for high fidelity, further sharp-
ening comparisons and accelerating data generation across models.

Other directions that arise directly from this work include:

• Optimal ancilla insertion. Finding the optimal ancilla insertion time (e.g., at a different
percentage of the total training iterations, or triggered by a slope threshold that detects stagna-
tion), is a natural continuation of the final obtained results. Since we only tried at exactly the
middle of the run, and already got an improvement.

• Comparison against other techniques. Another extension would be to benchmark the
gains against other classical or quantum heuristics, such as random parameter perturbations
when stuck, multiple parallel starts, or improved initial ansatz connectivity.

• Study plateau distributions. For some targets (e.g., the ZZZ Hamiltonian), stuck runs
clustered around discrete fidelities (e.g., 47.7%, 72%, 95%), whereas the Ising case showed a
more homogeneous pattern. Understanding why these structures arise may be key to further
improving final fidelities.

Finally, another potentially impactful direction is:

• Projecting the ancilla qubit. Post-selecting on an ancilla measurement implements a non-unitary
map while learning a unitary evolution. This enlarges the effective solution space and can ease
convergence, at the cost of a success probability p < 1 when deploying the learned generator (the
ancilla outcome certifies whether a run “succeeds”). Interleaving projections during training (a
Zeno-like guidance) could also constrain learning to favourable subspaces. In addition, excluding
the ancilla from the discriminator’s input reduces its dimension, which in our implementation
nearly halves the training runtime.

Code is publicly available on: https://github.com/ayaka-usui/qgan_subspace
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