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A fundamental challenge in quantum entanglement is determining whether
a given bipartite quantum state is separable or entangled, a problem known
to be computationally intractable in general. This thesis focuses on bipartite
systems of the form C2 ⊗ CN , consisting of a qubit and a qudit, which offer a
rich yet tractable setting for studying entanglement.

The central objective of this thesis is to investigate the maximal Schmidt
number that an entangled quantum state can attain in CN ⊗CN systems. The
Schmidt number is a bona fide measure of entanglement in bipartite systems.
Here, we investigate how this measure of entanglement correlates with the struc-
ture of separable states in C2 ⊗ CN .

To achieve this, the work combines analytical and numerical tools. Here, we
examine structured quantum states, constructing families of states with com-
putable or bounded Schmidt number, and apply criteria to assess their entan-
glement. In particular, we focus on the study of those entangled states that are
positive under partial transposition (PPT), also denoted as bound entangled
states. By integrating the above approaches, we provide a better characteriza-
tion of entanglement in low-dimensional bipartite systems and we offer novel
insights on how to classify quantum states according to their Schmidt number.

Overall, this study advances the characterization of quantum correlations in
CN ⊗ CN systems for a particular family of states, but offers a foundation for
future investigations into entanglement quantification and separability criteria
in generic states.
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1 Introduction
This master’s thesis investigates the maximal Schmidt number of a given bipartite quan-
tum state in CN ⊗ CN , and its relationship to PPT constraints. The importance of our
study comes from the fact that quantum entanglement is a fundamental resource in quan-
tum information science, enabling applications in quantum communication, computing,
and cryptography, among others. However, identifying whether a given quantum state is
separable or not is, in general, a complex task.

A mixed state ρAB of a bipartite composite system acting in HA ⊗ HB, is said to be
separable, if it can be written as a convex combination of tensor products of density matri-
ces ρiA⊗ ρiB. The state is called entangled if it cannot be written as a convex combination
of tensor products of density matrices. Computationally, the separability problem has
been classified as an NP-hard problem (1), thus it is at least as difficult as the hardest
problems in the complexity class NP, meaning that it might not have a solution that can
be verified in polynomial time. This computational intractability has motivated a wide
range of partial results and criteria that attempt to characterize entanglement in specific
settings or provide necessary or sufficient conditions for some restricted class of states.

In this thesis, we focus on bipartite quantum systems of the form C2 ⊗ CN - that is,
systems consisting of a qubit and a qudit. This setting, despite its apparent simplicity, is
both foundational and nontrivial: the structure of entanglement in several complex scenar-
ios reduces to the analysis of separability/entanglement of the above form.

A key quantitative measure of entanglement in bipartite systems is the so-called Schmidt
number of a mixed state. The Schmidt number generalizes the notion of the Schmidt rank
of pure states to mixed states. The Schmidt rank of a pure bipartite state indicates how
many degrees of freedom are entangled between subsystems. The Schmidt number captures
how much entanglement is present in a mixed state by describing the minimal Schmidt rank
required across all possible decompositions of the mixed state into pure states. The Schmidt
number is, therefore, the smallest of the largest Schmidt ranks needed to achieve a given
mixed state, computed over all possible decompositions. In this way, it represents the min-
imal Schmidt rank that is needed, no matter how the state is written as a mixture of pure
states. Obviously, such min-max optimization is extremely difficult to compute, so gen-
erally speaking, it is not easy to determine the Schmidt number of a given bipartite system.

Thus, separable states are exactly those with Schmidt number one, but entangled states
can have a range of all possible Schmidt numbers, from two up to the smallest local Hilbert
space dimension in the bipartite setting.

Studying the Schmidt number, therefore, allows us to classify entangled states more finely,
distinguishing, for example, those that are low-dimensional in their entanglement from
those whose correlations genuinely span over the full dimension of the smallest associated
Hilbert space. This distinction is not only mathematically natural, but it is also opera-
tionally relevant. Several quantum information protocols require entanglement of a certain
type of Schmidt number to offer an advantage (2) (3)(4).

Understanding how the Schmidt number behaves under various constraints and structural
assumptions is an important path in entanglement theory. In particular, a central objec-
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tive of this thesis is to investigate how the maximal Schmidt number that a quantum state
can possess in CN ⊗ CN correlates with the structure of separable and entangled states in
C2⊗CN . While entangled states that are NPT, that is, not positive under partial transpo-
sition, can attain maximal Schmidt number, there is strong evidence that states that are
PPT entangled cannot have maximal Schmidt number.

This investigation involves several complementary approaches. First, it examines struc-
tured quantum states, in particular, we focus on symmetric states. The symmetry em-
bedded in such states involves specific coherence patterns or diagonal components, which
simplifies the understanding of their entanglement properties. It also involves constructing
and studying families of states for which the Schmidt number can be explicitly computed
or bounded. In addition, the work develops or applies methods to determine whether a
state is separable or possesses a high Schmidt number, making use of both analytic criteria
and numerical algorithms.

This master’s thesis is structured as follows. In the next section, we provide the math-
ematical preliminaries needed for this work. First, we introduce generic definitions con-
cerning pure and mixed states, and some properties of matrices. Then, we focus on a set
of theorems whose importance will become relevant when dealing with bipartite systems
of the form C2⊗CN . We move then to the notions of completely positive maps, as well as
the so-called k-positive maps. We end the mathematical section by introducing the Choi
decomposition and the relation between the Choi decomposition of a map and the Schmidt
number of a system. In Section 3, we apply some of the concepts we have introduced to
analyze the Schmidt number of symmetric states in C4⊗C4. In Section 4, we present our
conclusions and list some open questions for future research.

2 Mathematical preliminaries
Here, we introduce the mathematical framework and essential concepts that will be used
throughout the thesis. Our goal is to establish the language and knowledge basis to ana-
lyze entanglement rigorously. Our work is focused on bipartite quantum systems in finite
systems, with particular attention to linear algebraic and theoretical tools to support the
study of quantum entanglement.

2.1 Quantum states and entanglement
In quantum theory, the state of an isolated physical system is represented by a normalized
vector |ψ⟩ which lives in a Hilbert space H , that is, a complex vector space with an inner
product ⟨ψ|ψ⟩ such that the norm defined by |ψ| =

√
⟨ψ|ψ⟩ turns H into a complete

metric space. For our purposes, we will focus on finite-dimensional complex Hilbert spaces
Cm, whose elements are complex-valued column vectors of size m.

When dealing with composite systems, which are systems made up of two or more par-
ties, we describe each subsystem with its own Hilbert space. For example: if one party
is described by the space HA = Cm and the other HB = Cn, then the total system is
described by the tensor product of these two spaces, HAB = HA ⊗HB. The space HAB

contains all possible states of the joint system and gives rise to certain quantum phenomena
like entanglement, where the state of the whole system cannot be described as a product
state.
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In general, there exist two types of quantum states: pure and mixed states. A pure
state is described by a single vector |ψ⟩ in a Hilbert space. However, when we do not have
complete information about the system, or when the system is part of a larger entangled
system, we must use a more general object: a mixed state.

Definition 1. A mixed state is a convex combination of pure states, represented as:

ρ =
∑
i

pi |ψi⟩⟨ψi| (1)

where each |ψi⟩ is a pure state, pi ≥ 0, and ∑i pi = 1.

A quantum state is generally represented by an operator called the density matrix or
density operator, denoted by ρ. Mathematically, this is a linear operator acting on H that
satisfies two properties:

1. It is positive semidefinite, that is, all its eigenvalues are non-negative.

2. It has unit trace: Tr(ρ) = 1.

Density operators, ρ ∈ B(H ), are bounded operators acting on H , and also mixed states
are described by density matrices that are positive semidefinite and have unit trace. Notice
that in a finite Hilbert space, all positive operators are necessarily Hermitian, so ρ = ρ†.
Two important concepts that help us understand how an operator behaves are its range
and kernel.

Definition 2. The kernel of ρ, with ρ being hermitian, is defined as K{ρ} = {|ψ⟩ ∈H :
ρ |ψ⟩ = 0}, meaning is the subspace spanned by the eigenvectors with zero eigenvalue.

Definition 3. The range of ρ is defined as R{ρ} = {|ψ⟩ ∈ H : ∃ |ϕ⟩ ; ρ |ψ⟩ = |ϕ⟩}, if ρ
is hermitian then the subspace of H is spanned by the eigenvectors of ρ with eigenvalue
λ > 0.

Having introduced the concepts of range and kernel of a matrix, which help describe
the internal structure of a quantum state, we now turn our attention to bipartite systems.
We formally define first what a separable/entangled state is and introduce one of the most
important operations used in the study of entanglement: the partial transposition.

Definition 4. Let ρ be a density matrix acting on the bipartite Hilbert space HAB. Then
ρ is called separable when it can be written as a convex combination of product states:

ρ =
∑
i

piρ
i
A ⊗ ρiB (2)

where each pi ≥ 0, ∑i pi = 1 and, each ρiA and ρiB is a valid density matrix on the
subsystems HA and HB, respectively.

Definition 5. A quantum state ρ is said to be entangled if it is not separable, that is, it
cannot be written in the form:

ρ ̸=
∑
i

piρ
i
A ⊗ ρiB. (3)
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Let ρ be a bipartite quantum state acting on H = HA ⊗HB, and let {|i⟩} and {|j⟩}
be orthonormal bases for HA and HB, respectively. Then ρ can be represented in this
product basis as:

ρ =
∑
ijkl

ρijkl |i⟩⟨k| ⊗ |j⟩⟨l| . (4)

Definition 6. The partial tranpose of ρ with respect to the first subsystem A, denoted
ρTA, is defined by tranposing only the indices associated with A:

ρTA =
∑
ijkl

ρijkl |k⟩⟨i| ⊗ |j⟩⟨l| . (5)

The same definition applies to partial tranposition concerning subsystem B, denoted
ρTB , where only the second factor is transposed.

Partial transposition plays a central role in the Peres-Horodecki criterion for separabil-
ity. First, Peres stated the following:

Theorem 1. (5) If ρ is separable the ρTA ≥ 0 and ρTB = (ρTA)T ≥ 0.

This works for arbitrary dimensions, though it is only valid in the given direction.
Lately, the only if direction was proposed by Horodecki and is only valid in special cases:

Theorem 2. (6) In C2 ⊗ C2 or C2 ⊗ C3 ρ is separable iff ρTA ≥ 0.

The Peres-Horodecki criterion gives a powerful necessary and sufficient condition for
detecting entanglement via the partial transposition. Thus, this criterion says that sepa-
rability implies PPT, and that NPT implies entanglement. However, this criterion is not
completely useful for higher dimensions; we know there exist entangled states with positive
partial transposition, known as bound entangled states.

To get a better understanding of entanglement, it is helpful to first consider pure states,
where a complete characterization of entanglement is done thanks to the Schmidt decom-
position.

Definition 7. Let |ψ⟩ ∈ HA ⊗HB be a pure state. Then there exist orthonormal basis
{|ei⟩} for HA and {|fi⟩} for HB such that

|ψ⟩ =
r∑
i=1

λi |ei⟩ ⊗ |fi⟩ , (6)

where λi > 0, and r is the Schmidt rank of |ψ⟩. The Schmidt rank is a measure of
entanglement; a value of r = 1 indicates that the state is separable, and for r > 1 the state
is entangled.

While the Schmidt decomposition is a complete tool for pure state entanglement de-
tection, the situation for mixed states is more complex. In this case, one needs to analyze
the structure of the support of the state, its kernel, and its partial transpose, often in
terms of how they interact with product vectors. To extend the intuition of the Schmidt
decomposition to mixed states, we need to introduce the notion of the Schmidt number.

The Schmidt number is a tool used to quantify the entanglement present in a quantum
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state. For bipartite systems is called the Schmidt rank, which applies to pure states. Specif-
ically, for a bipartite quantum state ρAB, the Schmidt number, denoted as SN(ρAB), is
defined as the minimum, over all pure state ensembles that result in ρAB of the maximal
Schmidt rank of the pure states in the ensembles. Formally,

Definition 8. SN(ρAB) = inf
{pi,|ψi⟩}

max
i

SR(|ψi⟩) where SR(|ψi⟩) denotes the Schmidt rank

of the pure state |ψi⟩.

A mixed state ρAB is entangled if and only if its Schmidt number is greater than one.
Beyond merely detecting entanglement, the Schmidt number also reflects the minimal local
Hilbert space dimensions required to prepare the state using local operations and classical
communication (LOCC)(7).

In practice, computing the Schmidt number of a state is highly nontrivial due to the need
to minimize over an infinite number of possible decompositions of the state. Nonetheless,
various mathematical techniques have been developed to estimate or bound the Schmidt
number in specific cases. Among the most studied are bipartite systems of the form C2⊗CN ,
where the reduced dimensionality on one party makes it possible to derive explicit struc-
tural results. The following lemmas are built on this fact and provide essential tools for
analyzing separability and entanglement in such systems.

Now, we consider positive partial transpose (PPT) states. The following lemma helps
to construct product vectors orthogonal to given ones and reduce the rank while preserv-
ing the PPT property.

Lemma 1. (8) Let ρ be a PPT state in C2 ⊗ CN such that ρ |e, f⟩ = 0. Then there exists
a unit vector |ê⟩ ⊥ |e⟩ such that

ρ = ρ′ + Λ |ê, f⟩⟨ê, f | , (7)

where
ρ′ ≥ 0, (ρ′)TA ≥ 0, ⟨e|ê⟩ = 0 (8)

and
r{ρ′} = r{ρ} − 1 r{(ρ′)TA} = r{ρTA} − 1 (9)

Lemma 2. (8) Every 2-dimensional subspace of C2 ⊗ C2 contains a product vector.

Definition 9. A bipartite quantum state ρ is called an edge state if:

• ρ is entangled and has positive partial transpose (PPT),

• there exists no product vector |e, f⟩ ∈ R(ρ) such that |e∗, f⟩ ∈ R(ρTA).

Equivalently, an edge state is a PPT entangled state from which it is impossible to subtract
any projector onto a product vector while preserving positivity and the PPT property. To
clarify the explanation, figure 1 helps to visualize the concept of edge state.

In other words, edge states lie on the boundary of the set of PPT states: any infinites-
imal subtraction of a product state results in a state that is no longer PPT. This makes
them extreme examples of bound entanglement.
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Figure 1: Representation of the quantum states differentiating those that are separable, PPT-entangled
and NPT-entangled. Also notice that the orange line represents de edge states. Source: From the
author.

Lemma 3. (8) If ρ is a PPT state, i.e. ρTA ≥ 0, acting in C2 ⊗ C2 and r{ρ} = 2 then ρ
is separable.

This last lemma may well suggest that the PPT states fulfilling that conditions are a
mixture of product states; no bound entangled states exist with such low rank. As the
rank increases, we need more conditions to prove separability.

2.2 Symmetric subspace
In the study of the separability problem, known to be NP-hard (9) in general, it is often
advantageous to restrict attention to subspaces exhibiting additional structure. One par-
ticularly useful choice is the symmetric subspace, which arises naturally in the context of
systems composed of indistinguishable bosonic particles.

Formally, let H = (Cd)⊗N denote the Hilbert space of N d-dimensional subsystems.

Definition 10. The symmetric subspace SymN (Cd) is defined as the subspace of H
consisting of all vectors |ψ⟩ that are invariant under the action of the symmetric group SN ,
i.e.,

SymN (Cd) := {|ψ⟩ ∈H |Uπ |ψ⟩ = |ψ⟩ ∀π ∈ SN} (10)

where Uπ is the unitary operator implementing the permutation π on tensor factors.

Working within the symmetric subspace offers two key advantages for the separability
problem.

One is a dimensional reduction where the dimension of SymN (Cd) is

dim SymN (Cd) =
(
N + d− 1
d− 1

)
, (11)

which is significantly smaller than dN for N > 1, thereby reducing the complexity of com-
putations.
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Moreover, an enhanced structure is achieved given that the states in SymN (Cd) admit
a basis of what are the so-called Dicke states and can be described by a reduced set of
parameters, enabling more systematic and partially analytic approaches to entanglement
analysis.

Definition 11. Dicke states define a complete orthonormal basis for the symmetric subspace.
For the bipartite case they are defined as follows:

|Dii⟩ = |ii⟩ and |Di⟩ = |ij⟩+ |ji⟩√
2

, (12)

where i ̸= j = 0, 1, · · · , n− 1. From the definition we get that |Dij⟩ = |Dji⟩.

Another useful definition is the diagonal symmetric state.

Definition 12. A diagonal symmetric state ρDS is defined as a state which is diagonal in
the Dicke basis. For bipartite systems ρDS is expressed as

ρDS =
n∑

i≤j=0
pij |Dij⟩⟨Dij | (13)

where pij form a probability distribution.

This class of states is particularly tractable because its high degree of symmetry al-
lows a complete characterization of separability in low dimensions via the positive partial
transpose (PPT) criterion. Specifically, it has been shown the following:

Theorem 3. (10) Let ρ be a DS state acting on Cd ⊗ Cd, with d ≤ 4.

ρ is separable ⇐⇒ ρ is PPT. (14)

For d ≥ 5, the equivalence between separability and the PPT condition no longer
holds: there exist PPT diagonal symmetric states that are entangled. Nevertheless, in
the d = 2, 3, 4 cases, this equivalence provides an efficient separability check within the
symmetric subspace, turning the otherwise NP-hard problem into a tractable one for this
special class.

2.3 Quantum maps, k-positive maps and witnesses
Up to this point, we have focused on states within Hilbert spaces and operators that act
on them. Now, we take a step further by introducing maps, also known as superoperators,
which act on these operators themselves, transforming one operator into another within
the Hilbert space framework.

The following are some formal definitions to characterize a map.

Definition 13. A map Λ : B(HA)→ B(HB) is called linear and self-adjoint if:

• It is linear, meaning that for any operators O1, O2 and scalasrs α, β ∈ C,

Λ(αO1 + βO2) = αΛ(O1) + βΛ(O2). (15)
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• It maps Hermitian operators to Hermitian operators, i.e., for any O ∈ B(HA),

Λ(O†) = Λ(O)† (16)

Definition 14. A linear map Λ is called trace-preserving if for all operators O ∈ B(HA),

Tr(Λ(O)) = Tr(O). (17)

Definition 15. A linear, self-adjoint map Λ is called positive if it maps positive semidefinite
operators to positive semidefinite operators. That is, for any ρ ∈ B(HA) with ρ ≥ 0,

Λ(ρ) ≥ 0. (18)

Definition 16. A positive linear map Λ is said to be completely positive if, for any auxiliary
Hilbert space HA, the extended map

Λ′ = 11A ⊗ Λ : B(HA ⊗HB)→ B(HA ⊗HC) (19)

is also a positive map.

Definition 17. A map Λ is called k-positive if the extended map 11k ⊗Λ, where 11k denotes
the identity map on a k-dimensional Hilbert space,

Λ′ = 11k ⊗ Λ : B(Ck ⊗HB)→ B(Ck ⊗HC) (20)

is positive, that is, it maps positive semidefinite operators to positive semidefinite operators.

Beyond these foundational definitions, we now turn the focus on one of the key uses of
quantum maps: entanglement detection. In particular, positive but not completely posi-
tive maps play a crucial role in this context. In fact, if no k-positive map detects a given
state ρAB it follows that SN(ρAB) ≤ k.

Definition 18. A bipartite state ρAB ∈ D(HA⊗HB) is entangled if and only if there exists
a positive map Λ : B(HB →HC) such that the extended map 11⊗ Λ acts non-positively on
ρAB, that is,

(11⊗ Λ)(ρAB) ≱ 0. (21)

This criterion generalizes when considering the Schmidt number of a quantum state.
In particular, the concept of k-positivity allows for a hierarchy of entanglement detection.
A state has a Schmidt number greater than k if and only if there exists a k-positive (but
not completely positive) map capable of revealing this.

Theorem 4. Let ρAB ∈ D(HA ⊗HB) be a quantum state and SN(ρAB) > k if and only
if there exists a k-positive map Λ : B(HB ⊗HC) such that

(11A ⊗ Λ)(ρAB) ≱ 0. (22)
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2.4 Characterizing entanglement in the PPT set via Schmidt Number
Given a mixed quantum state ρ, one fundamental question is whether the state is entangled
or not. For pure states, this can be answered by examining the Schmidt decomposition;
however, for mixed states, the situation is more subtle. One powerful approach to address
this question involves the use of entanglement witnesses.

Definition 19. An entanglement witness W is a Hermitian operator constructed such that:

• Tr(Wσ) ≥ 0 for all separable states σ.

• there exists at least one entangled ρ such that Tr(Wρ) < 0.

Among these witnesses, a notable class is the set of decomposable witnesses, which can
be expressed in the form:

W = aP + (1− a)QTB (23)

where P,Q ≥ 0. However, decomposable witnesses cannot detect PPT entangled states.
Such states are often referred to as bound entangled states and require more sophisticated
tools for their detection. Also, witnesses who can detect PPT states are non-decomposable,
meaning they can not be written as in equation (23).

Analogously to the construction of entanglement witnesses for the detection of entangle-
ment, a new concept called k-Schmidt witnesses (k-SW) can be defined to detect whether a
state has a Schmidt number greater than k. These witnesses are tailored to identify states
that cannot be decomposed into mixtures of pure states with Schmidt rank at most k, thus
providing a powerful tool for certifying high-dimensional entanglement.

These are generalizations of standard entanglement witnesses shaped to detect whether
a state’s Schmidt number exceeds a given threshold. Formally, a k-Schmidt witness is a
Hermitian operator Wk satisfying:

• Tr(Wkσ) ≥ 0 for all states σ with Schmidt number less than k,

• but there exists at least one state ρ with SN(ρ) ≥ k such that Tr(Wkρ) < 0.

Thus, k-SWs allows us to verify that a given state is not just entangled, but possesses a
Schmidt number of at least k.

Theorem 5. A state ρ ∈ D(HA ⊗HB) has Schmidt number at least k, i.e., SN(ρ) ≥ k, if
and only if there exists a k-Schmidt witness Wk such that

Tr(Wkρ) < 0. (24)

2.5 Choi isomorphisim
Note the striking similarity between Theorem 5 and the earlier criterion involving k-positive
maps. These two tools are not only analogous but mathematically interconnected. In
particular, the Choi matrix of a k-positive map serves as a (k+1)-Schmidt witness. The
Choi matrix associated with a map Λ : B(HA ⊗HB) is defined as:

JΛ =
dA−1∑
i,j=0

|i⟩⟨j| ⊗ Λ(|i⟩⟨j|), (25)
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Figure 2: Schematic overview of the Choi-Jamiołkowski isomorphism and its applications in entanglement
detection. Source: From the author.

where {|i⟩} is an orthonormal basis for HA. This matrix encodes the action of Λ and
provides a bridge between the algebraic structure of positive maps and the geometric char-
acterization of entanglement via Schmidt number witnesses. A visualization of this can be
seen in figure 2.

We are particularly interested in analyzing the Schmidt number of PPT entangled states.
Recall that if a bipartite quantum state has a negative partial transpose, the state is NPT,
it is necessarily entangled. However, detecting entanglement in PPT states is a much more
delicate task, as no efficient general method exists for certifying entanglement in such cases.

Despite this difficulty, the tools introduced earlier, namely k-positive maps and k-Schmidt
witnesses, can still be employed to bound the Schmidt number of PPT states. Neverthe-
less, for these methods to be effective in the PPT region, they must satisfy an additional
structural condition: they must be non-decomposable.

In the context of quantum maps, a map Λ is said to be non-decomposable if it cannot
be written as

Λ ̸= E1 + E2 ◦ T (26)

where E1 and E2 are completely positive maps, and T denotes the transposition map. Only
such non-decomposable maps are capable of detecting the entanglement of PPT states.

Similarly, for a k-Schmidt witness Wk to detect a PPT entangled state, it must also be
non-decomposable. That is, it must not be expressed in the form:

Wk ̸= P +QTB (27)

where PQ ≥ 0, as we have seen in the previous section.

2.6 The Choi decomposition
Now we turn to the question of whether it is possible to find bounds on the Schmidt number
(SN) of PPT states by analyzing the structure of k-postivie maps. First, we introduce the
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concept of the trivial lifting of a linear map.

Definition 20. Let Λ : B(Cn)→ B(Cm) be a linear map and let I ⊂ {0, 1, · · · , n− 1} be a
set with |I| = p. The I-trivial lifting of Λ, denoted ΛI : B(Cn+p)→ B(Cm), is defined by:

ΛI(|i⟩⟨j|) = 0 (28)

whenever i ∈ I or j ∈ I.

Intuitively, a trivial lifting increases the input dimension of the original map Λ, but
acts trivially (i.e., vanishes) on specific indices in the set I. This action is also reflected in
the Choi matrix JΛI

, which can be obtained from the Choi matrix JΛ by inserting blocks of
zero rows and columns corresponding to indices in I. Explicitly, ⟨ij| JΛI

|kl⟩ = 0 whenever
j ∈ I or l ∈ I. As an important remark, the trivial lifting is not unique, giving freedom to
choose which indices to add or eliminate depending on the desired final dimensions, this
lets us tackle the problems from the simplest cases.

A crucial feature of this construction is that the k-positivity and decomposability of the
original map Λ are preserved under the action of the trivial lifting.

This notion leads to a powerful result known as the Choi decomposition, which provides a
way to decompose any k-positive map into a sum involving a completely positive map and
a trivial lifting of a positive map:

Theorem 6. (11) Let 2 ≤ k ≤ n and n ≤ m. Then any k-positive map Λ : B(Cn)→ B(Cm)
can be written as:

Λ = E + ΦI , (29)

where E is a completely positive map and ΦI is the I-trivial lifting of a positive map
Φ : B(Cn−k+1)→ B(Cm), for any subset I ⊂ {0, 1, · · · , n− 1} with |I| = k − 1.

Consequently, such a decomposition exists for any choice of the index set I of the
appropriate size; this non-uniqueness gives substantial flexibility when applying the de-
composition. While it was previously known that at least one suitable index set I always
exists, it has now been shown that Choi decompositions are possible for all such sets, pro-
viding greater freedom in structural analysis.

This decomposition plays a key role in studying the decomposability of k-positive maps by
reducing the question to the decomposability of positive maps in lower dimensions. For
example, consider a 2-positive map Λ : B(C3)→ B(C3). Applying the Choi decomposition
yields:

Λ = E + ΦI , (30)

where ΦI is a trivial lifting of a positive map Φ : B(C2) → B(C3). It is known that all
positive maps from B(C2) to B(C3) are decomposable, implying that ΦI and hence Λ are
also decomposable. As a result, all 2-positive maps Λ : B(C3)→ B(C3) are decomposable.
This, in turn, implies that all PPT states of two qutrits(C3 ⊗ C3) have Schmidt number
strictly less than three.

A similar conclusion was previously established for two-qubit PPT states, where the max-
imal Schmidt number(which is 2 in this case) cannot be attained, meaning all two-qubit
PPT states are separable. These results naturally lead to the broader question:
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Can PPT states in Cd ⊗ Cd ever achieve the maximal Schmidt number d?

To approach this question, one strategy is to investigate whether all (d-1)-positive maps
from B(Cd)→ B(Cd) are decomposable.

Focusing on the next open case, let us consider d = 4, i.e., PPT states in C4 ⊗ C4. The
question now becomes: Are all 3-positive maps Λ : B(C4)→ B(C4) decomposable?
Applying the Choi decomposition, we obtain Λ = E + ΦI , where ΦI is a trivial lifting of
a positive map Φ : B(C2) → B(C4). However, in this case, there exists positive maps Φ
on these dimensions that are non-decomposable. Consequently, no general conclusion can
be drawn about the decomposability of Λ, and therefore, the question of whether all PPT
states in C4 ⊗ C4 have Schmidt number less than 4 remains open.

Thanks to the duality between k-positive maps and k-SW, an analogue of the Choi
decomposition can also be formulated for the latter:

Theorem 7. (12) Let 3 ≤ k ≤ n, and n ≤ m. Then any k-Schmidt witness Wk ∈
B(Cn ⊗ Cm) can be decomposed as:

Wk = P +WI , (31)

where P ≥ 0 is a positive semidefinite operator, and WI is an I-trivial lifting of an
entanglement witness W ∈ B(Cn−k+2 ⊗ Cm), for any subset I ⊂ {0, 1, · · · , n − 1} with
|I| = k − 2.

This decomposition mirrors the structure of theorem 6 for k-positive maps, and pro-
vides an effective technique to analyze k-SW in terms of lower-dimensional entanglement
witnesses extended via trivial lifting.

2.6.1 Limits of detection using Choi-type decompositions

For further understanding of Schmidt number detection, especially in the context of PPT
states, it becomes necessary to develop a stronger criterion with more restrictive conditions
than previously discussed. The key insight underlying this refinement is that the Choi de-
composition of a k-positive map (and by duality, of a k-Schmidt witness) is not unique.

Theorem 8. Let Wk ∈ B(Cn ⊗ Cm) with n ≤ m be a k-Schmidt witness, 2 ≤ k ≤ n, and
let ρ ∈ D(Cn ⊗ Cm). If there exists a Choi-type decomposition

Wk = P +WI , (32)

where P ≥ 0 and WI is an I-trivial lifting, such that

Tr(WIρ) ≥ 0. (33)

then ρ is not detected by Wk; i.e.,

Tr(Wkρ) ≥ 0. (34)

This result has an important consequence: to show that a state ρ is not detected by
any n-Schmidt witness (i.e., it does not have maximal Schmidt number), it is sufficient
to exhibit one Choi decomposition such that the corresponding lifted operator WI fails to
detect ρ. In particular, detection by Wk requires that Tr(WIρ) < 0 for all such decompo-
sitions, but this condition alone is necessary but not sufficient for detection.
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To make this criterion more explicit, consider a state ρ ∈ D(Cn ⊗ Cm), with n ≤ m,
represented in block form as:

ρ =
n−1∑
i,j=0
|i⟩⟨j| ⊗Xij , Xij ∈ B(Cm). (35)

Let Wn be an n-Schmidt witness with a Choi-type decomposition Wn = P +WI , where
|I| = n− 2. Then, there exists exactly two indices {r0, r1} ⊂ {0, · · · , n− 1} such that the
nonzero part of the trivial lifting WI acts only on the subspace spanned by {|r0⟩ , |r1⟩}. In
this case, we can write:

WI =
1∑

i,j=0
|i⟩⟨j| ⊗Ari,rj , (36)

and the expectation value becomes:

Tr(WIρ) = Tr(WIY ) (37)

where Y ∈ B(C2 ⊗ Cm) is the principal submatrix:

Y =
1∑

i,j=0
|i⟩⟨j| ⊗Xri,rj . (38)

Thus, to conclude that ρ is not detected by any n-Schmidt witness (and hence SN(ρ) <
n), it suffices to find a pair of indices {r0, r1} such that the corresponding submatrix Y is
separable in C2 ⊗ Cm.

This provides a practical and geometrically intuitive method: If at least one of the 2x2
principal submatrices is separable, then the original state cannot have maximal Schmidt
number. Moreover, all of these submatrices will be PPT if the intial state is also PPT.

3 Results: Applications in the symmetric subspace Cd ⊗ Cd

Here in this section we focus on how the different techniques we have presented in the
previous sections can allow us to bound the Schmidt number of PPT-Entangled states
in the symmetric subspace; i.e., determine whether PPT-bound states in the symmetric
subspace can have maximal Schmidt Number.

3.1 Case S(C3 ⊗ C3)
In S(Cd ⊗ Cd) for d ≤ 4, coherences give rise to PPT bound states.

Recently, it has been found that the only edge states that exist in S(C3 ⊗ C3) belong
to the following family of states:

ρ = ρDS + α |D00⟩⟨D12|+ β |D11⟩⟨D02|+ γ |D22⟩⟨D01| (39)

where ρDS is a PPT diagonal symmetric state, and α, β, γ are complex coefficients such
that ρ keeps being PPT (13).
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To tackle whether these states have maximal Schmidt number, i.e., find whether any
3-SN witness will be able to detect any state, we have to perform the trivial lifting once,
allowing us to erase one of the three indices. Applying the trivial lifting to index 2, we end
up with the following state that lives in C2 ⊗ C3:

ρ′ =



p00 0 0 0 0 α√
2

0 p01 0 p01 0 0
0 0 p02 0 β√

2 0
0 p01 0 p01 0 0
0 0 β∗

√
2 0 p11 0

α∗
√

2 0 0 0 0 p12


(40)

It can easily be seen that ρ′ is PPT due to it being a principal minor of ρ. Combining this
with the fact that all maps in C2 ⊗ C3 are decomposable (and therefore all entanglement
witnesses are decomposable too)(14), no PPT states in C2 ⊗ C3 will be detected.
Consequently, the state ρ′ is separable and therefore ρ does not have maximal SN. This
provides a proof of separability based solely on the structure of symmetric product vectors
and the known necessary conditions for entanglement in S(C3 ⊗ C3).

We would like to point out that the result that symmetric bipartite qutrit states can-
not have maximal SN was already known, but we have wanted to include this alternative
way of showing it, as it is quite instructive to show how we will use the trivial lifting in
the following sections.

3.2 Case S(C4 ⊗ C4)
Now, we turn to the first non-trivial case; i.e., the states in S(C4 ⊗ C4). We will tackle
those that have recently been identified as PPT entangled states (13).

Since our main question is whether these states can achieve maximal SN (4-SN witnesses),
we apply the trivial lifting twice, to two of their indices, allowing us to map the problem
to the study of states ρ′ supported on C2 ⊗ C4.

This analysis focuses on specific matrix constructions that have special symmetries, and
we identify whether we can find a respective ρ′ from those initial states that is separable
and therefore will not be detected by any trivial lifting of an entanglement witness.

Now we will proceed to, by means of applying the trivial lifting twice, reduce the dif-
ferent families of PPT-bound states reported in (13) to just five ρ′ that live in C2 ⊗ C4.
For ease of reading, we will proceed to erase in all cases the indices 2 and 3, eventhough
any other choice is analogous and leads to the same states under a trivial re-labeling of
indices.

The 4 initial families that get reduced to the same ρ′
1 are:

• Case 1: ρ = ρDS + α |Dii⟩⟨Djk|+ β |Djj⟩⟨Dkl|+ γ |Dll⟩⟨Dik|.

• Case 2: ρ = ρDS + α |Dii⟩⟨Djk|+ β |Djj⟩⟨Dil|+ γ |Dkk⟩⟨Djl|+ δ |Dll⟩⟨Dik|.

• Case 3: ρ = ρDS + α |Dii⟩⟨Djk|+ β |Djj⟩⟨Dkl|+ γ |Dkl⟩⟨Dij |.

• Case 4: ρ = ρDS + α |Dii⟩⟨Djk|+ β |Dkk⟩⟨Dil|+ γ |Dkl⟩⟨Dij |+ δ |Dll⟩⟨Dik|
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where {i, j, k, l} = {0, 1, 2, 3} but i ̸= j ̸= k ̸= l. Performing the trivial lifting, these
families lead to:

ρ′
1 = ρD + p01(|01⟩⟨10|+ |10⟩⟨01|) + α |D00⟩⟨D12|+ h.c. (41)

Where ρD corresponds to a diagonal matrix in the computational basis with weights pij
and h.c. means the hermitian conjugate.

Next, we have a familly that get reduced to two coherence terms instead of one. The
initial familly being:

• Case 5: ρ = ρDS+α |Dii⟩⟨Djk|+β |Djj⟩⟨Dil|+γ |Dkk⟩⟨Dil|+δ |Dll⟩⟨Djk|+η |Dij⟩⟨Dkl|

If we erase the same indices as before, we obtain the following:

ρ′
2 = ρD + p01(|01⟩⟨10|+ |10⟩⟨01|) + α |D00⟩⟨D12|+ β |D03⟩⟨D11|+ h.c (42)

Next, we have the following families:

• Case 6: ρ = ρDS + α |Dik⟩⟨Djl|+ β |Dij⟩⟨Dkl|

• Case 7: ρ = ρDS + α |Dik⟩⟨Djl|+ β |Dij⟩⟨Dkl|+ γ |Dkk⟩⟨Dil|

which leads to:

ρ′
3 = ρD + p01(|01⟩⟨10|+ |10⟩⟨01|) + α |D02⟩⟨D13|+ h.c (43)

Now, we present the cases that get reduced to 2 coherence terms of the same type as
the last case presented:

• Case 8: ρ = ρDS + α |Dik⟩⟨Djl|+ β |Dil⟩⟨Djk|+ γ |Dij⟩⟨Dkl|.

• Case 9: ρ = ρDS + |Dij⟩⟨Dkl|+ α |Dik⟩⟨Djl|+ β |Dil⟩⟨Djk|+ γ |Dkk⟩⟨Djl|.

Getting the following ρ′
4:

ρ′
4 = ρD + p01(|01⟩⟨10|+ |10⟩⟨01|) + α |D02⟩⟨D13|+ β |D03⟩⟨D12|+ h.c (44)

Finally, the last family:

• Case 10: ρ = ρDS + α |Dii⟩⟨Djk|+ γ |Dkk⟩⟨Djl|+ β |Dik⟩⟨Djl|+ δ |Dkl⟩⟨Dij |

which leads to:

ρ′
5 = ρD + p01(|01⟩⟨10|+ |10⟩⟨01|) + α |D00⟩⟨D12|+ β |D02⟩⟨D13|+ h.c (45)

In the following subsections, we will proceed to show analytically for most cases that ρ′
i

are separable and, in the case that analytics are not enough, we will show some numerical
results that point towards the fact that this last family is indeed also separable.
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3.2.1 First approach: Analytical searching for product vectors on the kernel

As a first step to find if there exists some values for the parameters of these matrices such
that they are separable we used some concepts defined in section 2 and a new lemma that
will be introduced here.

The idea was to find a product vector on the kernel of these matrices such that we can
get two of the matrix rows reduced to all 0s getting a new matrix, ρS′

2,3, that lives in
C2 ⊗ C3. Then, we would apply Horodecki’s theorem 2 in which we only have to find that
(ρS′

2,3)TA ≥ 0 to proof that ρS′
2,3 is separable. Then, by applying the following lemma:

Lemma 4. (8) If ρ is supported in C2 ⊗ CN and there exists a product vector in K{ρ}
then ρ = ρ̃+ ρs, where ρs is a projector on a product state vector and

1. r(ρ̃) = r(ρ)− 1 and r(ρ̃TA) = r(ρTA)− 1.

2. ρ̃ is supported on C2 ⊗ CN−1.

3. ρ̃ is separable iff ρ is separable.

Since the separability properties are preserved from C2⊗CN−1 to C2⊗CN because the
kernel structure and decomposition into product states remain compatible, meaning that
ρS2,3 would also be separable.

However, we couldn’t find any product vector unless some diagonal entries pij = 0, which is
not admissible in our framework. These pij terms correspond to the weights of the diagonal
separable part ρDS , and setting them to zero would either violate positivity or eliminate
parts of the state we wish to preserve.

This setback implies that the kernel of ρS2,3 does not contain any product vector when
all pij > 0. As a result, we cannot apply the range reduction lemma to decompose ρ as
ρ = ρ̃ + ρs. This limitation then motivates the need for alternative approaches like the
following one, which consists of analytically building our states from product vectors and
proving that our final states are separable by construction.

Result 1. As a first approach to determine the separability of these matrices, we attempted
to apply Lemma 4 using a technique based on the existence of product vectors in the
kernel. The idea was to reduce the matrices to a smaller system, C2 ⊗ C3, where we know
Horodecki’s theorem (2) guarantees separability if positivity under partial transposition.
However, we found no product vector existed in the kernel when all diagonal terms pij > 0,
which is required to preserve positivity and the structure of the state. Consequently, the
range-reduction lemma cannot be applied, and we can not find any decomposition of our
state into a product vector state.

3.2.2 Second approach: Analytical separable construction

In this section, we will show that there exists a separable construction that allows us to
recover states ρ′

1, ρ
′
2, ρ

′
3, ρ

′
5.

Given a product vector state of one party, the most general form it can have is the following
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(10):

|Φ⟩ =
d−1∑
j=0

∑
b

ϕbj
∑
w

eiwf(j)aj |j⟩ (46)

where bj is a binary vector, ϕ a phase, w a n-th root of 1 and aj a complex coefficient such
that

∑d−1
j=0 |aj |2 = 1. If instead we have two parties, |Φ1⟩ ∈ Cd1 and |Φ2⟩ ∈ Cd2 , then:

|Φ1,Φ2⟩ =
d1−1∑
j=0

d2−1∑
k=0

∑
b

∑
w

ϕ
bj

1 ϕ
bk
2 e

iw1f(j)eiw2g(k)ajak |jk⟩ (47)

These states are pure states, but if we consider a mixed state and two vectors a ∈ C2 and
b ∈ C4, we will have the following:

ρ =
∑
j,k,r,s

∑
v

∑
w

ϕ
vj

1 (ϕ∗
1)vrϕvk

2 (ϕ∗
2)vseiw1(f(j)−f(r))eiw2(g(k)−g(s))ajbkarbs |jk⟩⟨rs| (48)

Having presented this separable construction, our first step is to find the conditions under
which this construction gives us back a state of the same form as ρ′

i. For simplicity, we will
take w1 = w2 = w, ϕ1 = ϕ2 = 1 and f(j) = g(j) and our construction will be reduced to:

ρ =
∑
j,k,r,s

∑
w

eiw(f(j)+f(k)−f(r)−f(s))ajbkarbs |jk⟩⟨rs| = (49)

=
∑
j,k,r,s

ajbkarbs

(∑
w

eiw(f(j)+f(k)−f(r)−f(s)) |jk⟩⟨rs|
)

(50)

where the sum over w is a geometric sum; rewritting is as:

ρ =
∑
j,k,r,s

ajbkarbsδf(j)+f(k),f(r)+f(s) |jk⟩⟨rs| (51)

Let’s now define the following:

f(0) = a, f(1) = b, f(2) = c and f(3) = d (52)

It can be seen that the different kets and bras will have the corresponding values in one
side of the Dirac’s delta term:

|00⟩ → 2a (53)
|01⟩ → a+ b (54)
|02⟩ → a+ c (55)
|03⟩ → a+ d (56)
|10⟩ → a+ b (57)
|11⟩ → 2b (58)
|12⟩ → b+ c (59)
|13⟩ → b+ d (60)

and, therefore, the only terms that will survive in this construction will correspond to those
where the sum in the bras is the same as that in the kets. Firstly, it can be easily seen that
the diagonal terms and the terms corresponding to |01⟩⟨10| and h.c. will trivially appear.
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Having seen this, we can now proceed to look at which coherences will appear. For ρ′
1, we

want only the term |00⟩⟨12| to survive, so we will need the following two conditions:

2a = b+ c and b+ c ̸= a+ c (61)

For example, for the following values

f(0) = 1, f(1) = 0, f(2) = 2 and f(3) = 25 (62)

We are able to recover matrices with the same structure as in ρ′
1 with this separable

construction. Now, the only thing left to check is that this construction reaches the PPT-
NPT border; i.e., that all PPT states of the form of ρ′

1 can be obtained with this separable
construction. Let’s begin by look at its partial transpose:

ρ1 =



p00 0 0 0 0 0 α√
2 0

0 p01 0 0 p01 0 0 0
0 0 p02 0 0 0 0 0
0 0 0 p03 0 0 0 0
0 p01 0 0 p01 0 0 0
0 0 0 0 0 p11 0 0
α∗
√

2 0 0 0 0 0 p12 0
0 0 0 0 0 0 0 p13


, ρTA

1 =



p00 0 0 0 0 p01 0 0
0 p01 0 0 0 0 0 0
0 0 p02 0 α∗

√
2 0 0 0

0 0 0 p03 0 0 0 0
0 0 α√

2 0 p01 0 0 0
p01 0 0 0 0 p11 0 0
0 0 0 0 0 0 p12 0
0 0 0 0 0 0 0 p13


If we decompose ρTA

1 as a direct sum:

ρTA
1 =



p00 − − − − p01 0 0
| p01 0 0 0 | 0 0
| 0 p02 − α∗

√
2 | 0 0

| 0 | p03 | | 0 0
| 0 α√

2 − p01 | 0 0
p01 − − − − p11 0 0
0 0 0 0 0 0 p12 0
0 0 0 0 0 0 0 p13


=
(
p00 p01
p01 p11

)⊕(
p02

α∗
√

2
α√
2 p01

)⊕
ctes.

Where ctes are 2x2 diagonal matrices with entries pij ≥ 0. To prove separability, we want
that

det
(
p00 p01
p01 p11

)
≥ 0 and det

(
p02

α∗
√

2
α√
2 p01

)
≥ 0 (63)

Given that p00 = |00⟩⟨00| = |a0|2|b0|2, p11 = |11⟩⟨11| = |a1|2|b1|2 and p01 = |01⟩⟨01| =
|a0|2|b1|2 = |a1|2|b0|2 = a0a1b0b1.

det
(
p00 p01
p01 p11

)
= p00 · p11 − p2

01 = |a0|2|b0|2|a1|2|b1|2 − a2
0a

2
1b

2
0b

2
1 = 0. (64)

and

det
(
p02

α∗
√

2
α√
2 p01

)
= p02 · p01 −

|α|2

2 = |a0|2|b2|2|a1|2|b0|2 − a2
0a

2
1b

2
0b

2
2 = 0. (65)

We can see here that the partial transpose ρTA is positive semidefinite, our state be-
ing PPT. We know that if any principal minor of ρTA is negative, this would be a NPT
state, i.e. entangled. However, the determinants of our 2x2 matrices vanish, and none
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of them is negative. This confirms that our state is PPT, but also that it is in the edge
of PPT and NPT, given that any small perturbation in the coherences α or amplitudes
pij would easily give a negative determinant, meaning that we would be in the NPT region.

Additionally, the vanishing of all 2x2 matrices means that the support of ρTA, and hence of
ρ, contain vectors with Schmidt rank < 2. Then, We can conclude that all matrices that
come from case 1 PPT entangled states can’t have a maximal Schmidt Number.

The proof for separability in case 1 is in appendix B. The cases 2, 3, and 5, although
they are quite similar, can be found in appendices C, D, and E, respectively.

Result 2. This analytical construction demonstrates that case 1 PPT entangled states
here (and cases 2,3, and 5 in the appendices) are edge states, PPT, and structurally limited
in Schmidt rank, confirmining they cannot achieve maximal SN.

3.2.3 Third approach: Numerical method of subtracting product vectors.

To tackle the fourth case, which is the only case that could not be solve by using the last
approach, we used a numerical approach consisting of subtracting product vectors. The
idea is given an ϵ value and an initial state ρ0, we want ρ0 − ϵ |ψ⟩⟨ψ| → 0 given different
|ψ⟩⟨ψ| product vectors.
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The pseudo-code of the main function of our program is the following:

Algorithm 1 parallel_isitedge(estat, step, eps): Iteratively remove product
states from a quantum state
Require: A quantum state matrix estat, step size step, epsilon eps
Ensure: Modified state, step count, product vectors, epsilon values

1: Assert that estat and its partial transpose are positive semidefinite
2: Initialize final_estat ← estat
3: Initialize empty lists: pvector, epsilon_values
4: count ← 0
5: Generate param_list from generate_valid_params(step)
6: Print number of generated parameters

7: for i = 1, . . . , 500 do
8: In parallel, apply substracting_product_vectors(params, final_state, eps)

for all params in param_list
9: Filter out None results into results_wout_none

10: found ← False
11: tol_trace ← 1

12: while results_wout_none is not empty do
13: Extract first result ← (estat, steps_taken, phi, eps)
14: fs_trace ← trace(state)

15: if fs_trace < tol_trace then
16: Append phi to pvector
17: Append eps to epsilon_values
18: count ← count + steps_taken
19: tol_trace ← fs_trace
20: final_state ← state

21: found ← True
22: Remove current result from results_wout_none

23: if not found and count = 0 then
24: break

return final_state, count, pvector, epsilon_values

Since case 4 failed for the last method, it is possible that the state may lie on the
boundary between separable and entangled states, or be a candidate for PPT entangle-
ment. Therefore, this numerical method is used to probe if the state contains any residual
product structure.

This iterative subtraction scheme is based on the idea that a separable state can be written
as a convex combination of product states. So we try to remove such contributions. If,
after the exhausting product vector removal, no further subtraction is possible without vi-
olating positivity or the PPT condition, then the state is a candidate to be PPT entangled.
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The function generate_valid_params(step) generates the parameters to cover the space
of product vectors in C2 ⊗ C4.

Since each product vector subtraction is independent, the method can be parallelized,
allowing for batch evaluation over hundreds of product vector candidates and significantly
reducing computational time.

If no product vectors can be subtracted while preserving positivity and the PPT con-
dition, and if this persists across fine parameter grids, we conclude that the state is likely
to be an edge PPT entangled state.

From the return of the function we get the final state, the number of product vectors
that have been subtracted count, the pvector list which contains all the different product
vector subtracted, and epsilon_values which is a list containing all the epsilon values
used to subtract each product vector. Taking this into consideration, lets look at some
results of this numerical method:

The initial state is:

initial state =



0.1 0 0 0 0 0 0 0
0 0.1 0 0 0.1 0 0 0
0 0 0.1 0 0 0 0 0.005
0 0 0 0.1 0 0 0.01 0
0 0.1 0 0 0.1 0 0 0
0 0 0 0 0 0.2 0 0
0 0 0 0.01 0 0 0.1 0
0 0 0.005 0 0 0 0 0.2


(66)

nº iterations step epsilon trace nº product states removed time (s)
50 0.1 1 0.71 83 399
50 0.08 1 0.67 123 518
50 0.06 1 0.54 103 458
50 0.035 1 0.23 157 487
50 0.025 1 0.096 126 487

Table 1: Results of different epsilon values to see the evolution of the trace.

And the final state we get for the last simulation with a step value of 0.025 is:
0.0056 0.0019 0 0 0.0019 −0.0026 0 0
0.0019 0.0164 0 0 0.0164 0.0034 0 0

0 0 0.0007 0 0 0 0 0
0 0 0 0 0 0 0 0

0.0019 0.0164 0 0 0.0164 0.0034 0 0
−0.0026 0.0034 0 0 0.0034 0.0494 0 0

0 0 0 0 0 0 0.0039 0
0 0 0 0 0 0 0 0.0029


As it can be seen in the table, the trace decreases moderately for larger step sizes(ϵ = 0.1,

ϵ = 0.08), while a larger number of product states are subtracted. For smaller values
(ϵ = 0.035, ϵ = 0.025), the trace is reduced much more strongly, with more product states
removed and longer runtime required. This behaviour enables a more delicate peeling of
separable components, thereby isolating a deeper entangled core.

The overall trace drops to approximately 0.096, showing that most of the separable con-
tribution has been eliminated. What remains is a state from which no further product
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vector can be subtracted without violating positivity, thus providing strong evidence that
the algorithm isolates an edge PPT entangled state. However, it also suggests that with
other values, we may well be able to approach a 0 state where we could prove separability
for states with the same structure.

Result 3. The numerical subtraction method successfully proves that this kind of states
cannot achieve maximal SN. By systematically removing product vectors while preserving
positivity and the PPT condition, the algorithm reduces the trace of the initial state
significantly, isolating a residual state, with a trace of approximately 0.096 in our finest
simulation, providing strong evidence that the remaining core is PPT entangled and likely
lies on the edge of the separable-entangled boundary. The results demonstrate that the
method can effectively subtract separable contributions of our state, confirming the presence
of entanglement in cases where analytical constructions fail.

It is worth noting that this example is a concrete case to illustrate the procedure.
Although, it allows us to demonstrate that all the cases of this kind behave in the same
way. All the tests performed on the various cases examined so far are consistent with our
intuition that these states do not achieve maximal SN.

4 Conclusion and outlook
In this work, we have addressed the problem of quantifying entanglement in a given state
in C4 ⊗ C4 by checking separability in a set of structured quantum states in C2 ⊗ C4. Our
primary goal is to demonstrate that PPT bound entangled states exhibit reduced entan-
glement and cannot achieve the maximum Schmidt number.

By applying the technique of the trivial lifting, —a technique used to demonstrate that in
C3 ⊗ C3 all maps are decomposable— we reduce the analysis of quantifying the Schmidt
number of PPT bound state to the analysis of separability in C4 ⊗ C4 of a finite set of
ten distinct structural cases. By demonstrating that such reduced states are separable, we
ensure that the state in C4⊗C4 does not have maximal Schmidt number. We have focused
on the symmetric subspace to simplify the problem. My work has been mainly devoted to
study and apply separability techniques in C2⊗CN to this specific problem. To investigate
the entanglement properties of these reduced states, I have used multiple complementary
techniques.

First, I examined the structure of each state’s kernel to identify the presence or absence of
product vectors, which serve as a key criterion in distinguishing separable from entangled
states. However, in our cases, this technique ends up being irrelevant as not product vec-
tors in the corresponding kernels are present. Then I analyzed analytically if the reduced
matrices obtained after trivial lifting are separable or not, which in several cases, such a
technique provides a sufficient and necessary evidence of separability.

Finally, for more complex cases, I employed a numerical algorithm that iteratively sub-
tracts product states to test for edge states and check if such edge states exist or not.

Our findings reveal several important conclusions, such as the pattern of surviving co-
herences after the trivial lifting serves as a structural fingerprint that largely determines
the entanglement class of the state.
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Our results show that by combining the above techniques, there is strong numerical and
analytical evidence that all PPT bound entangled states in the symmetric subspace do not
have a maximal Schmidt rank number. However, we have only analysed a prototype state,
and our results are, in this respect, restricted.

Finally, we would like to point out that our technique provides a novel technique towards a
deeper understanding of how coherence patterns, partial transpositions, and kernel struc-
ture interact to shape the entanglement landscape of PPT bound entangled states
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A Proofs
A.1 Proof of Lemma 1
Proof. If we partially transpose ⟨e, f | ρ |e, f⟩ = 0 we get ⟨e∗, f | ρTA |e∗, f⟩ = 0.

Since ρTA ≥ 0⇒ ρTA |e∗, f⟩ = 0.

Since |e⟩ ∈ C2 it has a unique orthogonal |ê⟩ = ⟨e|ê|e|ê⟩ = 0. So if we partially transpose

⟨ê| ρ |e, f⟩ = 0 with ⟨ê|∗ ρTA |e∗, f⟩ = 0 (67)

we get
⟨e∗| ρTA |ê∗, f⟩ = 0 with ⟨e| ρ |ê, f⟩ = 0 (68)

and since in C2 |ê⟩ is unique there ∃ |h⟩,
∣∣∣h̃〉, such that

ρ |ê, f⟩ = |ê, h⟩ with ρTA |ê∗, f⟩ =
∣∣∣ê∗, h̃

〉
(69)

leading to
|h⟩ = ⟨ê| ρ |ê, f⟩ and

∣∣∣h̃〉 = ⟨ê∗| ρTA |ê∗, f⟩ (70)

Now, we found that |ê, h⟩ ∈ R{ρ} and |ê∗, h⟩ ∈ R{ρTA}. Then, we can rewrite the
lemma 2.2 as:

ρ = ρ′ + Λρ |ê, f⟩⟨ê, f | (71)

where Λρ = 1
⟨ê,h| 1

ρ
|ê,h⟩

and
ρTA = (ρ′)TA + Λρ |ê∗, f⟩⟨ê∗, f | (72)

where ΛρTA = 1
⟨ê∗,h̃| 1

ρTA
|ê∗,h̃⟩

So, if we choose Λ to be maximal for both, ρ and ρTA , we will diminish the rank of
both by 1 simultaneously.

A.2 Proof of Lemma 2
Proof. We are searching for a product vector |e, f⟩ ∈ C2 ⊗ C2(|e⟩ ∈ C2, |f⟩ ∈ C2) from the
given dimensional subspace.

We know we can always find |ψ1⟩, |ψ2⟩ spanning the dimensional subspace orthogonal to
the subspace of |e, f⟩:

⟨ψ1|e, f |ψ1|e, f⟩ = 0, ⟨ψ2|e, f |ψ2|e, f⟩ = 0 (73)

Now, using the computational basis for Alice, we can write:

|e, f⟩ = (|0⟩+ α |1⟩) |f⟩ (74)

Using the Schmidt decomposition, we have:

|ψi⟩ =
∣∣∣ϕ0
i

〉
|0⟩+ α

∣∣∣ϕ1
i

〉
|f⟩ (75)
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where
∣∣∣ϕ0,1
i

〉
∈ C2 are fixed by the chosen basis and |ψi⟩.

This leads to ⟨ψi|e, f |ψi|e, f⟩ = (
〈
ϕ0
i

∣∣ + α
〈
ϕ1
i

∣∣) |f⟩ = 0 thus, obtaining the following
equation: [(〈

ϕ0
1
∣∣〈

ϕ0
2
∣∣
)

+ α

(〈
ϕ1

1
∣∣〈

ϕ1
2
∣∣
)](

f1
f2

)
=
(

0
0

)
(76)

where
[(〈

ϕ0
1
∣∣〈

ϕ0
2
∣∣
)

+ α

(〈
ϕ1

1
∣∣〈

ϕ1
2
∣∣
)]

= M(α) ∈ C2 ⊗ C2.

So, we will find a product vector iff we find a value of α for which det(M(α)) = 0.

A.3 Proof of Lemma 3
Proof. As r{ρ} = 2 and from lemma ?? we know that there exists a product vector |e, f⟩
in the kernel of ρ: ρ |e, f⟩ = 0.

Now, we can apply lemma ?? and we get ρ = ρ′ + Λ |ê, f⟩⟨ê, f | and r{ρ′} = r{ρ} − 1 = 1.
Since (ρ′)TA ≥ 0, so ρ′ is a PPT state in C2 ⊗ C2 with rank 1 we know that has to be
proportional to a projector into a product state. Thus

ρ = |m,n⟩⟨m,n|+ Λ |ê, f⟩⟨ê, f | (77)

then ρ is separable.

B Proof of separability for case 1
Now, we will try to express this submatrices in the Bloch representation ρ = 1

2(a11 + b⃗ · σ⃗)
where to determine the values of our parameters such that the resulting state is separable.
So we have:

M1 =
(
p00 p01
p01 p11

)
, B = 1

2

(
a+ bz bx − iby
bx + iby a− bz

)
(78)

Which give rise to two system of equations:{
a+ bz = 2p00
a− bz = 2p11

{
bx + iby = 2p01
bx − iby = 2p01

(79)

From the left hand side system we get the following results:

bz = p00 − p01 and a = p00 + p00

And from the right hand side, we get:

bx = 2p01 and by = 0

Now, we calculate the eigenvalues of the following matrix:(
2p00 2p01
2p01 2p11

)
→ λ = p00 + p01 ±

√
(p00 − p11)2 + 4p2

01 (80)
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Since we are looking for separability we want that λ± ≥ 0, so:

λ+ = p00 + p01 +
√

(p00 − p11)2 + 4p2
01 ≥ 0 (81)

(p00 + p01)2 ≥ (p00 − p11)2 + 4p2
01 (82)

4p00p01 ≥ 4p2
01 (83)

p00p01 ≥ p01 (84)

The value of λ− gives rise to the same inequality.

And for the matrix

(
p02

α∗
√

2
α√
2 p01

)
we have the following system of equations:

{
a+ bz = 2p02
a− bz = 2p01

bx + iby = 2√
2α

bx − iby = 2√
2α

∗ (85)

Given that α = β + iγ we get for the first system:

bz = p02 − p01 and a = p02 + p01

and for the second system:

bx = 2√
2
β and by = 2√

2
γ

Then, we calculate the eigenvalues of the following matrix:(
2p02

2√
2(β − iγ)

2√
2(β + iγ) 2p01

)
→ λ = p02 + p01 ±

√
(p02 − p01)2 + 2|α|2 (86)

We want to know for which values this eigenvalues are ≥ 0, so:

λ− = (p02 + p01) +
√

(p02 − p01)2 − 2|α|2 ≥ 0 (87)

(p02 + p01)2 ≥ (p02 − p01)2 + 2|α|2 (88)
4p02p01 ≥ 2|α|2 (89)

p02p01 ≥
|α|2

2 (90)

For the eigenvalue λ+ the result is the same inequality.

Summing up, we began with a structured quantum state in C2 ⊗ C4, constructed it from
general product vectors, and analyzed its partial tranpose ρTA

1 by decomposing it into a
direct sum of 2x2 blocks.

Two of these blocks had off-diagonal coherences terms, while the remaining blocks were
purely diagonal and positive semidefinite.

The key results are that the first block M1 is always PPT because all the entries arise from
modulus-squared terms of a product vector, and determinant vanishes. For the second
block which had coherence terms involving α we found that if the inequality p02p01 ≥

|α|2
2

is fulfilled the block is semidefenite positive and hence our initial state is separable. Then,
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we can conclude that this inequality delineates the boundary between separable and entan-
gled states.

In case, α becomes too large relative to the diagonal entries, the partial transpose would
have a negative eigenvalue, implying that the initial state is NPT and hence entangled. In
case, the equality holds, the state lies on the edge of separability and any small perturba-
tion in the coherence terms would push the state into the entangled region.

C Case 2
Recall that we were looking at a mixed state and two vectors a ∈ C2 and b ∈ C4:

ρ =
∑
j,k,r,s

∑
v

∑
w

ϕ
vj

1 (ϕ∗
1)vrϕvk

2 (ϕ∗
2)vseiw1(f(j)−f(r))eiw2(g(k)−g(s))ajbkarbs |jk⟩⟨rs| (91)

Next, we want to find the conditions under which this construction gives us back a state
of the same form as ρ′

i. For simplicity, we will take w1 = w2 = w, ϕ1 = ϕ2 = 1, and
f(j) = g(j) as before, and our construction will be reduced to:

ρ =
∑
j,k,r,s

∑
w

eiw(f(j)+f(k)−f(r)−f(s))ajbkarbs |jk⟩⟨rs| = (92)

=
∑
j,k,r,s

ajbkarbs

(∑
w

eiw(f(j)+f(k)−f(r)−f(s)) |jk⟩⟨rs|
)

(93)

where the sum over w is a geometric sum; rewritting is as:

ρ =
∑
j,k,r,s

ajbkarbsδf(j)+f(k),f(r)+f(s) |jk⟩⟨rs| (94)

Let’s now define the following:

f(0) = a, f(1) = b, f(2) = c and f(3) = d (95)

It can be seen that the different kets and bras will have the corresponding values in one
side of the Dirac’s delta term:

|00⟩ → 2a (96)
|01⟩ → a+ b (97)
|02⟩ → a+ c (98)
|03⟩ → a+ d (99)
|10⟩ → a+ b (100)
|11⟩ → 2b (101)
|12⟩ → b+ c (102)
|13⟩ → b+ d (103)

In this case we want the terms |00⟩⟨12| and |11⟩⟨03| survive because is the one containing
the coherence term. So we will need the following two conditions:

2a = b+ c and 2b = a+ d (104)
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For example, for the following values:

f(0) = 2, f(1) = 1, f(2) = 3 and f(3) = 0 (105)

We are able to recover matrices with the same structure as in the case 2 with this separable
construction.Then, we perform its partial transpose:

ρ2 =



p00 0 0 0 0 0 α√
2 0

0 p01 0 0 p01 0 0 0
0 0 p02 0 0 0 0 0
0 0 0 p03 0 β√

2 0 0
0 p01 0 0 p01 0 0 0
0 0 0 β∗

√
2 0 p11 0 0

α∗
√

2 0 0 0 0 0 p12 0
0 0 0 0 0 0 0 p13


, ρTA

2 =



p00 0 0 0 0 p01 0 0
0 p01 0 0 0 0 0 α∗

√
2

0 0 p02 0 α∗
√

2 0 0 0
0 0 0 p03 0 0 0 0
0 0 α√

2 0 p01 0 0 0
p01 0 0 0 0 p11 0 0
0 0 0 0 0 0 p12 0
0 β√

2 0 0 0 0 0 p13


If we decompose ρTA

2 as a direct sum:

ρTA
2 =



p00 − − − − p01 0 0
| p01 − − − | − β∗

√
2

| | p02 − α∗
√

2 | 0 |
| | | p03 | | 0 |
| | α√

2 − p01 | 0 |
p01 − − − − p11 0 |
0 | 0 0 0 0 p12 |
0 β√

2 − − − − − p13


=
(
p00 p01
p01 p11

)⊕(
p02

α∗
√

2
α√
2 p01

)⊕p01
β∗
√

2
β√
2 p13

⊕ ctes.

Where ctes are 2x2 diagonal matrices with entries pij ≥ 0 and from case 1, we already
know that the first two matrices have a determinant ≥ 0. So, for the third matrix, we want
the same: To prove separability, we want that

det

p01
β∗
√

2
β√
2 p13

 ≥ 0 (106)

Given that p13 = |13⟩⟨13| = |a1|2|b3|2, p01 = |01⟩⟨01| = |a0|2|b1|2 = |a1|2|b0|2 = a0a1b0b1,
and β = |01⟩⟨13| = |a0||b1||a1||b3|.

det

p01
β∗
√

2
β√
2 p13

 = p01 · p13 −
|β|2

2 = |a0|2|b1|2|a1|2|b3|2 −
1
2a

2
0a

2
1b

2
1b

2
3 ≥ 0. (107)

|a0|2|b1|2|a1|2|b3|2 >
1
2a

2
0a

2
1b

2
1b

2
3 (108)

We can see here that the partial transpose ρTA is positive semidefinite, our state being
PPT. We know that if any principal minor of ρTA is negative, this would be a NPT state,i.e.
entangled. However, the determinants of our 2x2 matrices vanish or are greater than 0, and
none of them is negative. This confirms that our state is PPT, but also that it is in the edge
of PPT and NPT, given that any small perturbation in the coherences α or amplitudes
pij would easily give a negative determinant, meaning that we would be in the NPT region.
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Now, we will try to express this third matrix in the Bloch representation ρ = 1
2(a11 + b⃗ · σ⃗)

to determine the values of our parameters such that the resulting state is separable. So we
have:

M1 =

p01
β∗
√

2
β√
2 p13

 , B = 1
2

(
a+ bz bx − iby
bx + iby a− bz

)
(109)

Which give rise to two systems of equations:{
a+ bz = 2p01
a− bz = 2p13

bx − iby = 2√
2β

∗

bx + iby = 2√
2β

(110)

From the left hand side system we get the following results:

bz = p01 − p13 and a = p01 + p13

And from the right hand side and considering α = δ1 + iγ1 β = δ2 + iγ2, we get:

bx = 2√
2
δ2 and by = 2√

2
γ2

Now, we calculate the eigenvalues of the following matrix:(
2p01

2√
2β

∗

2√
2β 2p13

)
→ λ = (p01 + p13)±

√
(p01 − p13)2 − 2|β|2 (111)

Since we are looking for separability, we want λ± ≥ 0, so:

λ+ = (p01 + p13) +
√

(p01 − p13)2 − 2|β|2 ≥ 0 (112)

(p01 + p13)2 ≥ (p01 − p13)2 + 2|β|2 (113)
4p01p13 ≥ 2|β|2 (114)

p01p13 ≥
|β|2

2 (115)

We don’t calculate the λ− because it gives rise to the same inequality.

Summing up, we began with a structured quantum state in C2 ⊗ C4, constructed it from
general product vectors, and analyzed its partial tranpose ρTA

1 by decomposing it into a
direct sum of 2x2 blocks.

Three of these blocks had off-diagonal coherence terms, while the remaining blocks were
purely diagonal and positive semidefinite.

The key results are that the first block M1 is always PPT because all the entries arise from
modulus-squared terms of a product vector, and the determinant vanishes. For the second
block which had coherence terms involving α we found that if the inequality p02p01 ≥

|α|2
2 is

fulfilled, the block is semidefenite positive and hence our initial state is separable. Finally,
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for the third block we found that if p01p13 ≥
|β|2

2 is satisfied then our state is separable.
Hence, we can conclude that this inequality delineates the boundary between separable
and entangled states.

In case α or β becomes too large relative to the diagonal entries, the partial transpose
would have a negative eigenvalue, implying that the initial state is NPT and hence entan-
gled. In case the equality holds, the state lies on the edge of separability, and any small
perturbation in the coherence terms would push the state into the entangled region.

D Case 3
Recall that we were looking at a mixed state and two vectors a ∈ C2 and b ∈ C4:

ρ =
∑
j,k,r,s

∑
v

∑
w

ϕ
vj

1 (ϕ∗
1)vrϕvk

2 (ϕ∗
2)vseiw1(f(j)−f(r))eiw2(g(k)−g(s))ajbkarbs |jk⟩⟨rs| (116)

Now, we need to find the conditions under which this construction gives us a state of the
same form as ρ′

i. For simplicity, we will take w1 = w2 = w, ϕ1 = ϕ2 = 1 and f(j) = g(j)
and our construction will be reduced to:

ρ =
∑
j,k,r,s

∑
w

eiw(f(j)+f(k)−f(r)−f(s))ajbkarbs |jk⟩⟨rs| = (117)

=
∑
j,k,r,s

ajbkarbs

(∑
w

eiw(f(j)+f(k)−f(r)−f(s)) |jk⟩⟨rs|
)

(118)

where the sum over w is a geometric sum; rewritting is as:

ρ =
∑
j,k,r,s

ajbkarbsδf(j)+f(k),f(r)+f(s) |jk⟩⟨rs| (119)

Let’s now define the following:

f(0) = a, f(1) = b, f(2) = c and f(3) = d (120)

It can be seen that the different kets and bras will have the corresponding values in one
side of the Dirac’s delta term:

|00⟩ → 2a (121)
|01⟩ → a+ b (122)
|02⟩ → a+ c (123)
|03⟩ → a+ d (124)
|10⟩ → a+ b (125)
|11⟩ → 2b (126)
|12⟩ → b+ c (127)
|13⟩ → b+ d (128)

In this case we want the term |02⟩⟨13| survives because is the one containing the coherence
term. So we will need the following condition:

a+ c = b+ d (129)

35



For example, for the following values:

f(0) = 5, f(1) = 12, f(2) = 8 and f(3) = 1 (130)

We are able to recover matrices with the same structure as in the case 3 with this separable
construction.Then, we perform its partial transpose:

ρ3 =



p00 0 0 0 0 0 0 0
0 p01 0 0 p01 0 0 0
0 0 p02 0 0 0 0 α

2
0 0 0 p03 0 0 0 0
0 p01 0 0 p01 0 0 0
0 0 0 0 0 p11 0 0
0 0 0 0 0 0 p12 0
0 0 α∗

2 0 0 0 0 p13


, ρTA

3 =



p00 0 0 0 0 p01 0 0
0 p01 0 0 0 0 0 0
0 0 p02 0 0 0 0 0
0 0 0 p03 0 0 α∗

2 0
0 0 0 0 p01 0 0 0
p01 0 0 0 0 p11 0 0
0 0 0 α

2 0 0 p12 0
0 0 0 0 0 0 0 p13


If we decompose ρTA

3 as a direct sum:

ρTA
3 =



p00 − − − − p01 0 0
| p01 0 0 0 | 0 0
| 0 p02 0 0 | 0 0
| 0 0 p03 − | α∗

2 0
| 0 0 | p01 | | 0
p01 − − − − p11 | 0
0 0 0 α

2 − − p12 0
0 0 0 0 0 0 0 p13


=
(
p00 p01
p01 p11

)⊕(
p03

α∗

2
α
2 p12

)⊕
ctes.

Where ctes are 2x2 diagonal matrices with entries pij ≥ 0, and from case 1, we already
know that the first matrix has a determinant ≥ 0. So, for the second one, we want the
same: To prove separability,

det
(
p03

α∗

2
α
2 p12

)
≥ 0 (131)

Given that p12 = |12⟩⟨12| = |a1|2|b2|2, p03 = |03⟩⟨03| = |a0|2|b3|2, and α = |02⟩⟨13| =
|a0||b2||a1||b3|.

det
(
p03

α∗

2
α
2 p12

)
= p03 · p12 −

|α|2

4 = |a1|2|b2|2|a0|2|b3|2 −
1
4 |a0|2|b2|2|a1|2|b3|2 ≥ 0. (132)

|a0|2|b1|2|a1|2|b3|2 −
1
4 |a0|2|b2|2|a1|2|b3|2 > 0 (133)

We can see here that the partial transpose ρTA is positive semidefinite, our state being
PPT. We know that if any principal minor of ρTA is negative, this would be a NPT state,i.e.
entangled. However, the determinants of our 2x2 matrices vanish or are greater than 0,
and none of them is negative. This confirms that our state is PPT, but also that it is on the
edge of PPT and NPT, given that any small perturbation in the coherences α or amplitudes
pij would easily give a negative determinant, meaning that we would be in the NPT region.

Now, we will try to express this matrix in the Bloch representation ρ = 1
2(a11 + b⃗ · σ⃗)

to determine the values of our parameters such that the resulting state is separable. So we
have:
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M1 =
(
p03

α∗

2
α
2 p12

)
, B = 1

2

(
a+ bz bx − iby
bx + iby a− bz

)
(134)

Which gives rise to two systems of equations:{
a+ bz = 2p03
a− bz = 2p12

{
bx − iby = α∗

bx + iby = α
(135)

From the left-hand side system, we get the following results:

bz = p03 − p12 and a = p03 + p12

And from the right hand side and considering α = δ1 + iγ1, we get:

bx = δ1 and by = γ1

Now, we calculate the eigenvalues of the following matrix:(
2p03 α∗

α 2p12

)
→ λ = (p03 + p12)±

√
(p03 − p12)2 − |α|2 (136)

Since we are looking for separability, we want λ± ≥ 0, so:

λ+ = (p03 + p12)±
√

(p03 − p12)2 − |α|2 ≥ 0 (137)

(p03 + p12)2 ≥ (p03 − p12)2 − |α|2 (138)

p03p12 ≥
|α|2

4 (139)

We don’t calculate the λ− because it gives rise to the same inequality.

Summing up, we began with a structured quantum state in C2 ⊗ C4, constructed it from
general product vectors, and analyzed its partial tranpose ρTA

1 by decomposing it into a
direct sum of 2x2 blocks.

Two of these blocks had off-diagonal coherences terms, while the remaining blocks were
purely diagonal and positive semidefinite.

The key results are that the first block M1 is always PPT because all the entries arise from
modulus-squared terms of a product vector, and the determinant vanishes. For the second
block which had coherence terms involving α we found that if the inequality p03p12 ≥

|α|2
4

is fulfilled the block is semidefenite positive and hence our initial state is separable. Then,
we can conclude that this inequality delineates the boundary between separable and entan-
gled states.

In case, α becomes too large relative to the diagonal entries, the partial transpose would
have a negative eigenvalue, implying that the initial state is NPT and hence entangled. In
case, the equality holds, the state lies on the edge of separability and any small perturbation
in the coherence terms would push the state into the entangled region.

37



E Case 5
Recall that we were looking at a mixed state and two vectors a ∈ C2 and b ∈ C4:

ρ =
∑
j,k,r,s

∑
v

∑
w

ϕ
vj

1 (ϕ∗
1)vrϕvk

2 (ϕ∗
2)vseiw1(f(j)−f(r))eiw2(g(k)−g(s))ajbkarbs |jk⟩⟨rs| (140)

Then, we need to find the conditions under which this construction gives us back a state
of the same form as ρ′

i. For simplicity, we will take w1 = w2 = w, ϕ1 = ϕ2 = 1 and
f(j) = g(j) and our construction will be reduced to:

ρ =
∑
j,k,r,s

∑
w

eiw(f(j)+f(k)−f(r)−f(s))ajbkarbs |jk⟩⟨rs| = (141)

=
∑
j,k,r,s

ajbkarbs

(∑
w

eiw(f(j)+f(k)−f(r)−f(s)) |jk⟩⟨rs|
)

(142)

where the sum over w is a geometric sum; rewritting is as:

ρ =
∑
j,k,r,s

ajbkarbsδf(j)+f(k),f(r)+f(s) |jk⟩⟨rs| (143)

Let’s now define the following:

f(0) = a, f(1) = b, f(2) = c and f(3) = d (144)

It can be seen that the different kets and bras will have the corresponding values in one
side of the Dirac’s delta term:

|00⟩ → 2a (145)
|01⟩ → a+ b (146)
|02⟩ → a+ c (147)
|03⟩ → a+ d (148)
|10⟩ → a+ b (149)
|11⟩ → 2b (150)
|12⟩ → b+ c (151)
|13⟩ → b+ d (152)

In this case we want that the terms |00⟩⟨12| and |02⟩⟨13| survive because is the one con-
taining the coherence term. So we will need the following two conditions:

2a = b+ c and b+ d = a+ c (153)

For example, for the following values:

f(0) = 5, f(1) = 2, f(2) = 8 and f(3) = 11 (154)

We are able to recover matrices with the same structure as in the case 2 with this separable
construction.Then, we perform its partial transpose:

ρ5 =



p00 0 0 0 0 0 α
2 0

0 p01 0 0 p01 0 0 0
0 0 p02 0 0 0 0 β

2
0 0 0 p03 0 0 0 0
0 p01 0 0 p01 0 0 0
0 0 0 0 0 p11 0 0
α∗

2 0 0 0 0 0 p12 0
0 0 β∗

2 0 0 0 0 p13


, ρTA

3 =



p00 0 0 0 0 p01 0 0
0 p01 0 0 0 0 0 0
0 0 p02 0 α∗

2 0 0 0
0 0 0 p03 0 0 β∗

2 0
0 0 α

2 0 p01 0 0 0
p01 0 0 0 0 p11 0 0
0 0 0 β

2 0 0 p12 0
0 0 0 0 0 0 0 p13


38



If we decompose ρTA
3 as a direct sum:

ρTA
3 =



p00 − − − − p01 0 0
| p01 0 0 0 | 0 0
| 0 p02 − α∗

2 | 0 0
| 0 | p03 − | β∗

2 0
| 0 α

2 | p01 | | 0
p01 − − − − p11 | 0
0 0 0 β

2 − − p12 0
0 0 0 0 0 0 0 p13


=
(
p00 p01
p01 p11

)⊕(
p03

α∗

2
α
2 p12

)⊕(
p02

α∗

2
α
2 p01

)⊕
ctes.

Where ctes are 2x2 diagonal matrices with entries pij ≥ 0 and from case 3, we already
know that the first and second matrix has a determinant ≥ 0 and also from case 2 we
already know that the third has a determinant ≥ 0.

So, for this case we have that the key results are that all matrices are PPT, in the case
of the second and third matrices, for this to be true, these following inequalities have to
be satisfied:

p03p12 ≥
|α|2

4 and p02p01 ≥
|β|2

2 (155)

Two of these blocks had off-diagonal coherences terms, while the remaining blocks were
purely diagonal and positive semidefinite.

Then, we can conclude that this inequality delineates the boundary between separable
and entangled states.

In case, α or β become too large relative to the diagonal entries, the partial transpose
would have a negative eigenvalue, implying that the initial state is NPT and hence entan-
gled. In case, the equality holds, the state lies on the edge of separability and any small
perturbation in the coherence terms would push the state into the entangled region.
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