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Learning open quantum many-body dynamics is challenging: full Liouvil-
lian models grow exponentially with system size, and dissipation and dephas-
ing force us to follow mixed states from noisy, limited data. These factors
make routine characterisation and control difficult, so we need methods that
are data-efficient, scalable, and easy to interpret. We present an interpretable,
robust framework for learning Lindbladian dynamics from minimal, hardware-
friendly data. The method pairs a physics-first CPTP Lindblad model with a
small Neural Differential Equation (NDE) residual and uses a two-stage cur-
riculum (neural warm-up, then analytic-only refinement) to reliably recover
coherent and dissipative parameters on challenging 1D benchmarks. There are
two ways in which robustness emerges in Lindladian learning: modest physical
dissipation that smoothens loss landscapes via steady-state attraction, and the
NDE residual that resolves remaining nonconvexity when paired with an opti-
mizer reset. A transient infidelity metric shows short-time power-law error and
small steady-state plateaus. Extending beyond CPTP to a stochastic dissipa-
tive qubit shows failures in noise-induced or deep PT-unbroken phases that are
information-limited, not optimization-limited.
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1 Introduction

The reliable identification of generators governing many-body quantum dynamics is foun-
dational for error mitigation, device certification, and model-based quantum control [1—
4]. While Hamiltonian Learning (HL) has recently achieved robust performance in closed
systems using Neural Differential Equations (NDEs) and experimentally friendly data pro-
tocols [5], practical platforms operate as open systems where dissipation, dephasing, and
control imperfections are intrinsic [6]. This reality motivates a principled extension from
unitary generators to Liouvillian learning, in which one seeks interpretable coherent terms
together with physically meaningful dissipative channels from limited, noisy observations.
In practice, this lets one carry out three relevant and useful tasks: tune Hamiltonian
parameters even when small, unknown noise is present; measure the main noise chan-
nels when a Hamiltonian model is already trusted; or recover a complete, interpretable
open-system generator using short evolutions and standard measurements. This directly
supports routine calibration of noisy quantum computing hardware, and it enables control
and error-mitigation workflows by recovering the dominant dissipative channels alongside
the coherent terms [7-9].

The learning problem exhibits two practical formulations: the white-box and black-
box scenarios. In a white-box scenario, we fix the generator’s structure in advance, and
then learn only the corresponding real coefficients and nonnegative rates from data (see
Fig. 1). In a black-box scenario, we do not fix the operator structure in advance: both
the basis elements and their coefficients are inferred from data at the same time. This
greatly enlarges the search space and introduces intrinsic non-uniqueness due to unitary
gauge freedoms in the Lindblad representation (see Appendix A for a short derivation of
the gauge). Gray-box methods interpolate between these extremes by fixing part of the
structure (e.g., locality pattern, jump set) while learning unknown magnitudes, which is
often the most realistic stance in many-body hardware where engineering and calibration
coexist with latent interactions [10].

Promise: ® is a CPTP map and

Pj and L, known, ¢; and v, unkown

Figure 1: White-box Lindbladian learning. We assume access to time-evolved states under a CPTP
dynamical map ®(t) = e'“ generated by a structured Lindbladian. The operator sets P; (coherent
terms) and L, (jump operators) are fixed by prior knowledge (e.g., locality, engineering and calibration),
while the unknown real parameters ¢; and nonnegative rates -, are inferred from measurements after
controllable evolution times ¢. Under standard locality and measurement-completeness assumptions, this
parametrization yields an identifiable, finite-dimensional estimation problem.

In open-system identification, complementary strategies emerge depending on what is
known a priori and which measurements are feasible. When the dissipative magnitude
is weak (i.e., the norm of the generator’s dissipative part is small), short-time quenches
of local systems enable joint recovery of coherent and dissipative terms with predictable
shot-scaling, providing transient-time routes that avoid full tomography [11]. At the op-
posite temporal extreme, steady-state measurements can identify local Lindbladians—and




even aid in reconstructing commuting Hamiltonians—thereby offering a resource-efficient
alternative when long-time data are available [12|. For scenarios where memory cannot be
neglected, likelihood-based estimators have been proposed that reconstruct time-local gen-
erators consistent with non-Markovian dynamics, bridging toward more general dynamical-
map tomography [13]. Motivated by experimental friendliness and alignment with near-
term control constraints, we operate in the transient regime: prepare a small set of basis
states, evolve only for short durations, and sample random Pauli observables. This setting
leverages informative state trajectories while requiring no optimal control beyond choosing
measurement times.

Parallel progress in machine learning indicates that neural-network based methods can
distill dynamical structure from modest, noisy datasets when coupled with physical con-
straints and inductive biases [14]. Advances span data-driven predictors trained under
random drivings, limited-data state and process tomography, expressive variational repre-
sentations for mixed many-body states, and sequence models that diagnose Markovianity
from time series [15-18]. These developments collectively motivate hybrid identification
pipelines where minimal, interpretable physics is augmented by disciplined neural compo-
nents to improve robustness and data efficiency on many-body hardware.

Building on these ideas, we extend the NDE-based HL framework from [5] to open quan-
tum systems. We couple a physically structured Lindblad-form generator with a lightweight
neural augmentation under a curriculum designed for interpretability and stable optimiza-
tion. This approach retains experimental friendliness (short-time evolution, random Pauli
measurements), respects completely positive and trace preserving map (CPTP) structure
through the analytic component, and provides quantitative diagnostics for robustness and
extrapolation in dissipative settings.

We found that adding more physical noise smoothens the loss landscape and often
negates the need for NDEs. However, in realistic settings with fractionally small noise
relative to the unitary operator norm, they remained necessary to be as robust as the
results from unitary HL [5]. Out of sample, errors grow with a short-time power law and
then flatten to small steady-state plateaus, which shows the learned fixed points are accu-
rate. As a compact complement to our CPTP program, we also apply the same learning
framework to a recently introduced stochastic non-Hermitian single-qubit model [19]. In
this setting, the algorithm stays robust in regimes where the data carry enough informa-
tion, and it fails in phases where fast collapse or very weak damping erase that information.

The remainder of this work is organized as follows. Section 1.1 states the problem and
assumptions. Section 2 introduces the stochastic dissipative qubit and its anti-dephasing
master equation. Section 3 presents the gray-box NDE framework, with measurements,
loss, and the curriculum for training. Section 4 details the experimental models and data
protocol. Section 5 reports results on noise-induced smoothing, NDE-enhanced learning
with optimizer reset, accuracy and extrapolation, and the SDQ phase-resolved robustness.
We conclude with conclusions and outlook.

1.1 Problem Statement

We consider Markovian open-system dynamics on 1D spin-1/2 chains. We assume the
system plus environment evolves unitarily and the environment is not observed. Tracing
out the environment, the reduced state p(t) evolves under a time-homogeneous CPTP




semigroup generated by the Lindblad master equation [20)]
#(6) = Lrlp(®)] = =ilHz. p(B)] + 30 (Lap()LE, = 3{LE Las p(1)}) (1)

with coherent Hamiltonian Hp, jump operators L., and nonnegative real-valued rates 4.
The learning task is to infer a generator within a chosen model structure that explains
observed data and remains physically valid (CPTP), prioritizing interpretability of both
coherent and dissipative terms. By interpretability we mean: the Hamiltonian and dissi-
pative channels are expressed in a fixed, physically motivated operator basis, and most of
the fitted dynamics is attributed to these analytic terms, with any additional flexibility
tightly regularized.

For spin-1/2 chains of length N, we represent the coherent part in the Pauli basis,

4N 1
HT = Z Cij, Pj c PN,Cj S R, (2)
j=0

which is a complete decomposition for any Hamiltonian on N qubits. Dissipative channels
are modeled by local jump operators (e.g., relaxation/dephasing) with rates 7, € Ry.

The objective is therefore to learn (cj,7,) so that the induced trajectories match ob-
served statistics within the training window and generalize to nearby times. The learning
algorithm is based on maximum-likelihood estimation on random local Pauli measurements
during transient times, avoiding full process tomography while remaining identifiable under
locality assumptions [21, 22].

The measurement data is structured as follows: prepare a small set of eigenstate prod-
uct states, evolve for short durations, and perform random, mutually compatible Pauli
measurements with finite shots. We target sub-exponential classical post-processing with
shot budgets consistent with standard quantum-limit scaling [23]. Assumptions on noise
and control are minimal: we assume no state preparation and measurement errors, and no
time-dependent control is applied beyond selecting evolution times.

We also assume finite-range locality (nearest-neighbour by default, with straightforward
extension k-local interactions), and we operate primarily in a white- /gray-box regime (fixed
locality pattern and jump set, unknown coefficients). These restrictions reduce parameter
count and improve identifiability, but they can bias recovery if the true generator contains
longer-range couplings or different dissipators.

When additional expressivity is required, we augment the analytic generator with a
small regularized set of neural parameters acting as residual corrections, trained under a
curriculum described in 3.2. This aims to mitigate mild misspecification without sacrificing
interpretability.

In addition to CPTP Lindbladian learning on spin chains, we will apply the identi-
cal learning pipeline—without architectural changes—to a stochastic non-Hermitian single
qubit benchmark (SDQ). This add-on exposes how our estimator behaves when trajectories
are not CPTP (see Sec. 2).




2 Beyond-CPTP testbed. Stochastic Dissipative Qubit: master equation
and phase diagram

We consider a system with Hermitian Hamiltonian that is subject to classical noise cou-
pled to a non-Hermitian operator. Stochastic Hamiltonians model the environment through
noise statistics, and upon noise averaging with trace renormalization one obtains a non-
linear “anti-dephasing” master equation that is distinct from GKSL yet experimentally
achievable |24-26].

The SDQ setting corresponds to the Lindblad evolution of a 3-level system {|g),|e),|f)},
where all quantum jumps from |e) to |g) are discarded. The time-dependent non-Hermitian
Hamiltonian we consider is

HP? = J5, —iD (1 + /27611, I = |e) (e], (3)

where J is the coherent coupling between |e) and |f), I' > 0 is the mean loss from |e),
~v > 0 controls classical (white) noise strength, and & is Gaussian white noise [19]. The
corresponding (noise-averaged, trace-renormalized) “anti-dephasing” master equation used
for learning is

Oupr = —iJ[62, pr) — (T = AT, pe} + 29T TR0 + (2T — 4T Te(Tp)pe. (4)

We use this equation as-is and learn its parameters directly from transient measurements
using the same NDE-based pipeline as for CPTP generators. The learnable parameters
are (J,T,7). I1 is fixed by the experimental design. Their ratios organize the dynamics
into three regimes phases that are straightforward to recognize in transient signals and
in the steady state, ps, through z(ps) = Tr[6.ps]. The dynamics splits into three phases:
PT-unbroken (PTu), PT-broken (PTb), and a noise-induced (NI) phase. Here “PT” refers
to the parity—time symmetry of the underlying non-Hermitian two-level block in the noise-
less limit. Figure 2a summarizes these regimes; Figures 2b and 2c¢ show representative
transients.

PT-unbroken. Inherited from the noiseless threshold J > I'/2. For small ~, the lead-
ing eigenvalues retain nonzero imaginary parts, producing visible oscillations. The
dissipative gap is tiny, so relaxation is slow and the steady state lies near the maxi-
mally mixed state, z(ps) ~ 0. This regime cleanly exposes residual damping on top
of coherent oscillations, which is informative about the noise while the oscillation
frequency calibrates J.

PT-broken. Dominant loss I'/.J > 2 suppresses oscillations: imaginary parts vanish deep
in the phase and the dissipative gap grows. Trajectories relax quickly and monoton-
ically toward a state close to |f), yielding z(ps) — +1. Early-time curvature and
approach speed tightly constrain I'/J.

Noise-induced. Beyond the straight critical line v* = 1/(2I"), classical noise stabilizes the
originally leaky state |e): convergence becomes very fast and z(ps) — —1. Exactly at
~v = ~* the map turns CPTP with jump I1 at rate I'; away from it, rapid convergence
motivates denser time sampling.

Taken together, the phase diagram and the representative transients in Fig. 2 substan-
tiate the phase descriptions above: PTu preserves coherent oscillations with weak damping,
PTb exhibits non-oscillatory relaxation set by I'/J, and NI reveals a noise-stabilized tar-
get (|e)) and a CPTP critical line that can serve as a calibration anchor. This structure is
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Figure 2: Stochastic dissipative qubit (SDQ). (a) Phase map in (I'/J,~J) colored by z(ps) with PTu
(white), PTb (orange), NI (purple). Solid diagonal: v = 1/(2T'); dashed horizontal: T'/J = 2. Overlaid
markers indicate the T'- and ~-sweeps used in (b,c). Initial state pg = |+) (+|. (b) Transients z(p;)
along the I'-sweep at fixed J,y: oscillatory and slow in PTu, fast monotone in PTb, accelerated near
NI. (c) Transients along the y-sweep at fixed J,T': crossing v* stabilizes |e) (negative z) with rapid NI
convergence. At v* the dynamics is CPTP with jump II at rate I

interesting for control because noise becomes a tunable resource. Such phase-aware tuning
suggests practical avenues for state preparation and stabilization with fluctuating gain/loss
[27].

3 Neural Differential Equations and Learning Framework

A Neural Ordinary Differential Equation (NODE) specifies the vector field of an ODE with
a trainable function. Given a state vector (¢) € R and a neural architecture fs : R¥ — R?
with parameters 6, the NODE dynamics

O =fole®),  2(0) =0, )

are integrated to time 7', and the parameters 6 are tuned by backpropagating a task loss
through the ODE solver. Universal approximation results justify the expressivity of fy,
and practical training uses stochastic optimizers such as Adam [14, 28, 29].

In our open-system setting the dynamical variable is a density operator p(t) evolving
under a Liouvillian superoperator. We adopt a gray-box decomposition that preserves




interpretability while permitting data-driven corrections:

Lo = Ephys(e) + ENN(¢)7 (6)

where the physics ansatz is the standard Lindblad generator
Lonys(0)[p] = =i[H(0m), p] + D" 7a(03.) (LapLl, = H{LLLa, p}). (7)

Here 0y are the Hamiltonian Pauli coefficients and 6., are real-valued free parameters
mapped to nonnegative rates by a softplus transformation,

Ya(8,) = softplus(6,,) = log (1 + ¢=), (8)

which guarantees v, > 0 and improves sensitivity of gradients for small rates. The neural
correction £nxn(¢) is implemented as a small, trainable superoperator acting on p whose
structure is chosen to preserve trace and Hermiticity. Its magnitude is controlled by strong
Lo regularization and by the training curriculum so that the analytic term (7) remains the
dominant term in the inferred dynamics for maximal intepretability. We emphasize that
we do not impose additional physics-informed penalties beyond the softplus transformation
for dissipative rates.
The master equation then reads

p(t) = (Lpnys(0) + Lan(9)) [p(1)],  p(0) = po, (9)

and is integrated with an automatic-differentiation-compatible ODE solver. In practice we
use a high-order explicit Runge-Kutta integrator with adaptive step control (Diffrax/JAX)
[14, 30].

3.1 Measurements and Loss Function

To train the NDE, we require a loss function that compares an estimated time-evolved
state to observed data in an experimentally friendly manner. Access to the “ground truth”
evolution is assumed only through samples obtained from compatible Pauli measurements
on the true output state; full state or process tomography is not used.

Let pe(t) denote the model-predicted state at time ¢ obtained by integrating Eq. (9)
with parameters © = (6, ¢) from a specified initial state p(0). For each chosen Pauli
measurement basis, we collect binary bitstrings b € {0,1}", forming a dataset D of mea-
surement outcomes. Following [31], with J timestamps, M repeats per measurement, and
K random Pauli bases, one has |D| = M KJ samples for a single initial state. Varying the
number of initial states multiplies the dataset size correspondingly.

Since our pipeline is numerical, we have full access to pg(t) and can evaluate Born-rule
probabilities for observing bitstrings b in the chosen Pauli basis,

pe(b;t) = Tr(Ilype(t)), (10)

where I is the projector associated with b in that Pauli basis. The training objective is
the average negative log-likelihood over the observed outcomes,

L(pe; D) = — Y _ logpe(b;t), (11)
be D’




where D' C D denotes those outcomes acquired from evolving the corresponding initial
state and measuring at the same timestamp used to evaluate pg(b;t). This loss is differ-
entiable with respect to © through the ODE solver, enabling end-to-end gradient-based
updates of the analytic parameters 6 and the neural parameters ¢.

As the neural component can be substantially more expressive than the constrained
Lindbladian ansatz, there is a risk that the network overfits and overwhelms the inter-
pretable part. Since our aim in the white-/gray-box setting is an interpretable estimate—
where as much of the learned dynamics as possible is attributed to the analytic Lindbladian—
we must bias training toward reliance on the physics model. We do so with strong regu-
larization of the neural parameters [32], and, crucially, with a curriculum that stages the
optimization to favor the analytic component |33, 34].

3.2 Curriculum Learning

We employ a simple, effective curriculum that gradually reduces reliance on the neural
augmentation while refining the interpretable parameters:

Warm-up Jointly train the analytic parameters 6 and the neural parameters ¢. This
phase leverages the smoothing effect of the neural term to escape poor basins and
accelerate convergence.

Analytic refinement Switch off the neural term (both forward and backward), reset the
optimizer state, and train only 6. The reset is essential to restore sensitivity to small
dissipative rates parameterized via the softplus map, ensuring accurate recovery of
the interpretable Hamiltonian and Lindbladian coefficients.

Optional residual fine-tuning With 6 frozen, one may briefly train ¢ to capture small
systematic discrepancies not represented in the analytic ansatz. In our synthetic
studies—where the ground truth lies in the analytic class—we omit this step.

This staged procedure mirrors the rationale behind curriculum learning: begin with a
more permissive model to navigate rugged landscapes, then constrain capacity to distill an
interpretable solution. In practice, the warm-up removes sensitivity to initialization and
barren plateau effects, while the refinement phase consolidates the physically meaningful
parameters.

4 Experimental models and setup

This section specifies the dynamical models and the data protocol used throughout. We
study two many-body Hamiltonians under local Lindblad noise—the anisotropic Heisen-
berg chain and the constrained PXP model—and, separately, the single-qubit non-Hermitian
testbed (SDQ) described in 2 while reusing the same learning pipeline.

We consider 1D spin—% chains with N € {3,...,7} qubits, where the reduced state
p(t) evolves under a time-homogeneous Lindblad master equation p(t) = L[p(t)] with
coherent Hamiltonian H and local jump operators. Following previous benchmarks for
challenging unitary dynamics [5], we select two models that probe complementary regimes

of identifiability and dynamical complexity: (i) the anisotropic Heisenberg chain,

N-1 N
Hy= Y (JIXiXi1 + JYYi + Ji ZiZia) + Y i X, (12)
-1 i=1




and (ii) the PXP model [35], a paradigmatic weakly non-ergodic Hamiltonian,

N-1
Hpxp = Z JiPileiPiJrl, with P, = |0> <0|z . (13)
=2

Both were previously identified as hard instances for closed-system HL due to rugged loss
landscapes and non-ergodic dynamics, respectively, serving as stringent tests for robustness
and generalization of our open-system learning algorithm [5]. To model realistic dissipation
relevant to near-term hardware, we couple each site to a thermal-like environment using
local ladder jump operators defined as

L =0, = %(O‘x ic?), LI =0 = %(O’f +i0?), (14)

) ) i WYy 7 i

with nonnegative rates -, ,%-Jr > 0, implementing amplitude damping and thermal ex-
citation. This choice captures dominant Ti-type relaxation and finite-temperature re-
excitation processes in many platforms (e.g., superconducting circuits and Rydberg arrays)
[36, 37], while preserving complete positivity and trace preservation by construction within
the GKSL form. Thermal-like channels also induce unique steady states that regularize
long-time dynamics [38, 39|, improving identifiability of both coherent and dissipative
parameters from short-time transients and stabilizing extrapolation beyond the training
window. These properties align with steady-state identifiability results and transient-time
learning strategies reported in recent open-system learning literature [11, 40].

Ground-truth datasets are generated by numerically integrating the Lindblad master
equation with the specified H and jump set Lii, using an adaptive high-order explicit
integrator applied directly to the density matrix representation. Unless stated otherwise,
Hamiltonian parameters are drawn i.i.d. from [—1,1], and dissipative rates are set by
sampling v, ,71-‘*' in [0.2,1.0] and rescaling by a global noise level 1 to probe robustness
across weak-to-moderate dissipation. For each N € {3,4,5,6,7} we prepare L = 5 prod-
uct eigenstates of single-qubit Pauli operators, drawn uniformly from the sets of X-, Y-
and Z-eigenstates (i.e., “up”/“down” along z,y,z), and evolve to J = 10 timestamps
t € {0.1,0.2,...,1.0} (in units where &7 = 1). Measurements follow the experimentally
friendly protocol from [5]: at each (state,t) pair, we choose K = 100 random compatible
Pauli bases and collect M = 100 shots per basis. Training uses the average negative log-
likelihood under the Born rule computed from predicted p(t) and the observed bitstrings.
This transient, random-Pauli scheme is consistent with identifiability from local measure-
ments and avoids oracle access or steady-state-only requirements.

For each model and system size, we generate 50 independent ground-truth parameter
sets 0. Let 6 denote the learned estimator after training via the chosen learning algo-
rithm (vanilla or NDE-enhanced). We calculate the relative absolute error for the coherent
parameters, ~

() = 121 —0nlt. (15)

0|1

and, when Lindbladian parameters are learned, the analogous error for the dissipative
parameters,

~ oL -0
r () = 0L 0Ll (16)

0L]1
A trial is declared successful for parameters S € H, L if e5(f) < 0.1. This threshold mir-
rors prior practice and cleanly separates converged from failed runs across all experiments.




Reported success rates are the proportion of successful trials over the 50 draws for fixed
(H, N) and fixed experimental condition (e.g., noise level, learning algorithm).

To quantify generalization, we evaluate the density-matrix fidelity

2
Plor(0).0:0) = ( Ty (00050 e ) (")
and define the infidelity loss

Z(pr(t), p(t;0)) =1 = F(pz(t), p(t; 0)). (18)

5 Results

We evaluate the framework on 1D spin-1/2 chains with local Lindblad noise, and then
on the SDQ testbed. The aim is to determine when the analytic Lindblad model suffices,
when a small neural residual is needed, and how well the learned dynamics extrapolate
beyond the training window.

We begin with robustness on spin chains. First, we study how physical dissipation alone
improves convergence in a hard, non-ergodic setting (PXP) by smoothing the loss landscape.
Next, we turn to a higher-parameter model (anisotropic Heisenberg) and show that a short
neural warm-up followed by an optimizer reset removes residual nonconvexity and recovers
both Hamiltonian and Lindbladian parameters reliably. We then assess out-of-sample
behaviour using the infidelity benchmark. Finally, we apply the same pipeline to the SDQ
testbed to probe behaviour beyond CPTP. This separates optimisation effects from limits
imposed by the data.

True constant noise Learnable noise
1.07 1 0.101 - 1
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o | r0.1 5 0.1 ;5
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Figure 3: Impact of injected thermal noise level 17 on white-box learning for PXP at N = 3. Each panel
shows (purple) failure rate and (orange, log-scale) mean relative error of the Hamiltonian coefficients
versus 7. (a) dissipative rates are fixed to their ground-truth values and not learned. Increasing noise
monotonically reduces failures, illustrating that strong dissipation regularizes the Hamiltonian estimation.
Failures drop below 10% once rates are ~ 0.1 of coherent scales. (b) dissipative rates are learned jointly
with the Hamiltonian. During training, the rates transiently rise before converging to their true values,
which induces the same robustness mechanism and yields accurate Hamiltonian recovery even when the
true noise is negligible.




5.1 Noise impact

We probe how thermal noise impacts convergence in a setting designed to stress identifiabil-
ity in the unitary limit: the PXP Hamiltonian, whose constrained, non-ergodic dynamics
yield rugged landscapes and high failure rates for vanilla white-box learning at zero dissi-
pation (see Fig. 3a). To isolate the role of dissipation, we start with the smallest nontrivial
instance, N = 3, where we can scan noise settings comprehensively and still capture the
qualitative behavior that persists at larger sizes.

We sweep a global noise level n € [0, 1] that multiplicatively rescales all dissipative
rates, keeping the sampling protocol otherwise unchanged. We first freeze the dissipative
rates to their ground-truth values and attempt to learn only the Hamiltonian parameters
using the vanilla learning algorithm. Close to the noiseless limit, convergence becomes
fragile, which is typical for constrained, non-ergodic dynamics. While weak dissipation
improves convergence and stabilizes training to some extent, robust performance requires
a moderate to substantial noise level. Optimization remains fragile near the noiseless limit,
and only stronger dissipation ensures consistently reliable convergence.

Figure 3 illustrates the measured success-rate transition as a function of n, while Fig. 4
shows representative two-dimensional slices of the loss landscape with and without dis-
sipation. The landscapes reveal that dissipation “rounds” sharp valleys and reduces the
prevalence of local minima, producing gradient fields that guide optimization toward the
global minima even from typical random initializations. This smoothing effect is qualita-
tively similar to the neural augmentation observed in closed-system Hamiltonian learning
(see [5] Fig. 3), both mechanisms reduce ruggedness and shrink the set of local minima.
However, the smoothing here arises from physical mixing and the emergence of an attractive
steady state that is common across initial conditions. Intuitively, the relaxation pathways
bridge dynamically separated regions that, in the purely constrained, non-ergodic limit,
would trap local search. This makes for easier convergence from generic initializations.

PXP with n=0.0

PXP with n=0.1

PXP with n=1.0
v

=/

OB

! { j j
RS 1 l: 2
ﬁr};m;zxia

(a) (b)

Figure 4. Loss landscapes for the two PXP Hamiltonian parameters at system size N = 3 under
increasing thermal noise 7. Each panel is centered at the global minimum and axes are the two physical
parameters of the PXP model. As 7 grows, the landscape transitions from (a) highly rugged with many
spurious minima and saddle features to (c) a markedly smoother, bowl-shaped basin around the optimum.
Thus, dissipation acts as a landscape regularizer, enlarging the region of attraction of the global minimum
and reducing the chance of getting trapped away from it. This smoothing mechanism is consistent with
the robustness trends in Fig. 3: higher noise lowers failure rates and improves Hamiltonian recovery.
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Table 1: Robustness on the PXP Hamiltonian with thermal-like damping. Reported are success rates
(in %) over 50 runs with random parameter initializations, learned with engineered noise and no NDE.
Top block: Hamiltonian learning, with no true noise (true 7 = 0). Bottom block: joint recovery of
Hamiltonian and dissipator (H, L) with learnable rates, initialized at 0.1x the coherent scale.

Noise N Success % (H) Success % (L)

0 3 96 -
0 4 98 -
0 5 98 -
0.1x 3 100 100
0.1x 4 100 100
0.1x 5 100 100

Allowing the algorithm to estimate the Lindbladian rates (rather than freezing them
to ground truth) preserves the same qualitative trends. Even when the true system has
vanishingly small dissipation, introducing a weak learnable dissipative sector significantly
reduces failure rates for the coherent parameters (see Fig. 3b). In low-noise regimes, fail-
ures fall to ~ 4%, and for n 2 0.01 we observe near-perfect success in simultaneous H-only
identification with fixed Lindblad, while full (H, L) identification reaches 100% in the same
range. Table 1 summarizes the trend for N € {3,4,5}.

Taken together, these results motivate an “engineered-noise” perspective: in challeng-
ing non-ergodic instances, controlled weak dissipation can act as a regularizer that widens
basins of attraction and enhances learning. In practice, modest thermalization is ubiqui-
tous on near-term platforms, and these observations suggest that appropriately accounting
for it can turn a liability into an advantage for learning. While learning with neural aug-
mentations can also smooth landscapes, dissipation offers a physics-grounded route that
is architecture-agnostic and complements neural methods. We emphasize that engineered-
noise learning is not a substitute for neural augmentation on higher-parameter Hamilto-
nians; rather, it provides a baseline improvement in robustness and, when combined with
NDEs, yields consistently high success rates across models.

5.2 NDE-enhanced learning

We next evaluate the impact of neural differential equation augmentation in the anisotropic
Heisenberg model, whose parameter space is substantially higher dimensional than that of
the PXP and exhibits more complex loss geometries. Here, the vanilla algorithm already
benefits from moderate dissipation but continues to show degradation at intermediate sizes
(e.g., N = 4,6), reflecting residual landscape complexity and sensitivity to initialization.
Table 2 reports baseline vanilla success rates with thermal-like damping and no NDE.

Introducing the NDE augmentation with the standard two-stage curriculum (warm-up
with NN on, then NN off, train analytic terms) improves coherent-parameter robustness
but initially causes a pronounced trade-off (see Table 2): Lindbladian parameters degrade
very substantially.

This trade-off arises because, during the warm-up, the NN model is able to represent the
noise very well at transient times. Small-rate dissipative gradients are comparatively weak,
so when the NN is disabled without resetting the optimizer, the stale adaptive moments
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Table 2: Effect of NDE augmentation with curriculum and optimizer reset on anisotropic Heisenberg
with thermal Lindblad noise. Success rates (in %) over 50 trials per size. Side-by-side comparison shows
that the optimizer reset removes the earlier trade-off, yielding near-perfect joint recovery.

Success % (H) Success % (L)
N Vanilla NDE NDE + reset Vanilla NDE NDE -+ reset
3 98 98 98 98 82 98
4 92 98 98 92 32 98
5 98 - 100 98 - 100
6 92 - 100 90 - 100
7 98 - 100 98 - 98

downweight precisely those directions now responsible for fitting the residual dynamics.
The softplus-reparametrized rates then stall near the noise floor.

An optimizer-state reset at the curriculum boundary resolves this problem. By clearing
accumulated moments when switching off the NN, we restore sensitivity to the dissipative-
rate gradients, enabling accurate joint refinement of H and L. With this single change, the
NDE-enhanced learning algorithm achieves near-perfect success across sizes, eliminating
the earlier trade-off. Table 2 shows the resulting success rates.

The robustness picture that emerges is cohesive across models and mechanisms. In
non-ergodic cases like PXP, a small amount of dissipation already makes training reliable.
For higher-parameter models like the anisotropic Heisenberg chain, dissipation helps but
is not enough on its own; a short neural warm-up is needed to get past the remaining
optimisation hurdles. That warm-up, however, can leave the optimiser biased against
small dissipative rates. Resetting the optimiser at the curriculum switch fixes this and lets
both the Hamiltonian and the Lindbladian be recovered accurately. In practice, combining
weak physical dissipation (present on realistic devices) with NDE augmentation and an
optimizer reset yields high success rates in both coherent and dissipative sectors, while
keeping most of the learned dynamics in the interpretable analytic model.

5.3 Accuracy and Extrapolation

We evaluate accuracy and out-of-sample behavior with the infidelity benchmark introduced
for Hamiltonian Learning in [5]. In the unitary case, the error accumulated by the learned
flow is well described by a power law in time: for ground-truth and predicted pure states
| (t)) and |/ (t)), the infidelity scales as

I(t) =1 F([v(1), [v'(t))) = AL, (19)

with coefficients (A,b) characteristic of the algorithm and problem class. It provides a
model-agnostic way to track local error growth beyond the training window time. In open
quantum systems, we extend the same idea by fitting a power law only on the transient
portion of the dynamics, now using density-matrix fidelity introduced in 4.

Consistent with the unitary benchmark, very short-time behavior exhibits a power-law
regime that reflects the global integration error accumulated by the learned flow. Unlike
the closed-system setting, however, the presence of thermal jump operators drives trajec-
tories to steady states, so the power law does not persist indefinitely: after an initial rise,
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Figure 5: Infidelity for anisotropic Heisenberg dynamics with thermal Lindblad noise. For each system
size N € {3,4,5,6,7}, the curves show the average over 30 random Hamiltonian instances and 10
random initial states (empirical mean across all runs). The shaded region marks the training-time
window, times to the right are out-of-sample. Dashed lines indicate short-time power-law fits used only
to read off the pairs (Ax,by). The horizontal red dashed line marks the 1% error guide.

Z(t) reaches a maximum in the transient window and subsequently decays toward a con-
stant plateau. This asymptotic value quantifies the mismatch between the learned and true
steady states and provides a natural open-system analogue of long-horizon generalisation.

Figure 5 shows Z(t) for anisotropic Heisenberg Hamiltonians with thermal Lindbladi-
ans at N € {3,4,5,6,7}. The shaded region marks the training-time window; dashed lines
indicate short-time power-law fits used solely to extract exponents and prefactors. Two
qualitative features are robust across sizes: (i) transient dynamics are harder to reproduce
than steady-state behavior—infidelity increases within the first decade beyond the train-
ing window before relaxing; and (ii) the final plateau is small, indicating that the learned
generator captures the dominant dissipative fixed point. For the system sizes considered,
peak infidelities remain well below 10~2, highlighting strong extrapolation to unseen times.

To characterise the short-time scaling, we fit Z(t) ~ Ant’N over an interval strictly
contained in the pre-asymptotic regime, avoiding both the training window and the onset
of steady-state relaxation. Beyond (Ap,by), two additional open-system benchmarks are
informative: the peak infidelity in the transient regime and the long-time plateau (steady-
state mismatch). Table 3 below reports all four quantities with standard deviations where
applicable.

The fitted short-time power laws, with prefactors Ay and exponents by, align closely
with those reported for Hamiltonian-only learning (see [5] Table 2), indicating that extend-
ing the protocol to open dynamics preserves performance under this metric rather than
degrading it. In particular, by varies mildly with N and falls within the same narrow ranges
observed in the closed-system study [5]. Just like in the unitary HL case, This points to by
being a property of the learning pipeline (data protocol + optimizer + model class), not
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Table 3: Short-time power-law fits Z(t) ~ Axt’™ and open-system benchmarks (peak and steady-state
infidelities) for N € {3,4,5,6,7}.

(a) Fit coefficients (mean + s.d.).

AN by

2.272 x 1074 £+ 9.469 x 10~7 1.288 + 0.016
3.083 x 107* + 1.359 x 1076 1.275 + 0.016
4563 x 107* + 2.066 x 1075 1.197 + 0.017
4.821 x 107* + 4.453 x 1076 1.299 + 0.035
5.280 x 1074 4+ 7.300 x 107% 1.395 + 0.052

\]CDU!HkOOZ

(b) Infidelity summary.

N Max infidelity Final (steady-state) infidelity

3 1.099 x 1073 4.596 x 107>
4 1.093 x 1073 1.017 x 1074
5 1.390 x 1073 1.079 x 1074
6 1.380 x 1073 2.151 x 1074
7 1.772x 1073 7.455 x 104

of any specific ground-truth example, and makes by a handy indicator of out-of-sample
performance for Lindbladian learning. The weak dependence of by on N also suggests
the protocol can scale, provided the underlying simulation cost is controlled. Finally, this
benchmark is easy to reuse with any Lindbladian-learning method: given a learned gener-
ator, evolve some held-out initial states under both the true and learned dynamics beyond
the training window and fit the log—log slope of infidelity to get b.

The good long-time behavior is naturally explained by the same effect seen throughout
the paper—moderate dissipation smooths the loss landscape and stabilizes training—so the
algorithm tracks the dominant dissipative fixed point while still reproducing the relevant
transients. The subsequent decay to a small, size-dependent plateau reflects convergence
toward a learned steady state close to the true fixed point; the plateau height offers a concise
metric of steady-state accuracy complementary to the short-time power-law benchmark.
That said, we emphasize a limitation: our present experiments cover N < 7, and it remains
an open question how the peak-and-plateau behavior evolve at larger IV, where state-space
growth makes systematic studies significantly more challenging.

5.4 Beyond Lindblad learning: SDQ results and phase-resolved robustness

We close the results with a non-Hermitian benchmark that lies outside the CPTP setting
analyzed so far. We keep the same gray-box learning pipeline and curriculum used for spin
chains, and adapt only the data protocol to accommodate the extreme relaxation scales
that arise across SDQ phases.

We draw parameter triples (J, T, v) log-uniformly from [0.03, 3.0]* and then augment the
set to obtain 50 instances per dynamical phase—PT-unbroken (PTu), PT-broken (PTb),
and noise-induced (NI)—for a total of 150 ground-truth models. We will evaluate ro-
bustness on recovering the coherent parameter, J, and the parameters related to the non-
Hermitian operator, I' and -y, separately.
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Figure 6: Vanilla algorithm on the SDQ: phase-resolved outcomes overlaid on the steady-state map
z(ps). Markers encode recovery success by sector: both H and L (green), H (J) only (blue), L (T',~)
only (orange), both failed (red). The horizontal dashed line I'/J = 2 marks the PT threshold; the solid
diagonal v* = 1/(2T) is the CPTP line. Robust recovery concentrates in PT-broken; failures cluster
deep in PT-unbroken (weak damping) and in NI (rapid collapse).
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Figure 7. NDE-augmented algorithm (warm-up + optimizer reset) on the SDQ, same operating points
and legend as Fig. 6. Near the CPTP line 4* = 1/(2T"), both H(J) and L(T',~) are reliably recovered.
Outside PT-broken and away from the CPTP corridor, added expressivity yields little benefit—the
limiting factor is data informativeness under fast NI collapse or too-weak PT-unbroken damping.
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Table 4: Phase-resolved robustness on the SDQ. Columns report success rates (%) for coherent (H:.J)
and dissipative (L:T",y) parameters under three protocols: NDE with coarse internal step (At = 0.1),
NDE with dense internal step (At = 0.01), and vanilla (At = 0.01). Dense stepping improves L recovery
where informative transients exist (near CPTP and in PT-broken), while both methods degrade in NI
and deep PT-unbroken due to limited information rather than optimization.

At = 0.1 neural A¢=0.01 neural A¢=0.01 Vanilla
Phase H % L % H % L % H % L %

PTu 88.5 46.1 96 66 98 68
PTb 85.7 100 96 100 96 98
NI 90 40 82 54 88 60
TOTAL 88 60 91.3 73.3 94 75.3

To counteract low sensitivity of noise parameters in extreme regimes, We collect denser
training data by sampling measurements every At = 0.01 and we extend training to 100
epochs. We compare the vanilla analytic algorithm against the NDE-augmented one with
a warm-up and optimizer reset at the curriculum boundary.

The phase-resolved maps in Figs. 6—7 and the summary in Table 4 reveal a clear depen-
dence on dynamical regime. As expected, in PT-broken the vanilla algorithm is already
very robust: relaxation is monotone with a sizable dissipative gap, so both H (J) and L
(',~) parameters are identified reliably. Fast entry into NI and modest excursions into
PT-unbroken degrade learning of the noise parameters in particular. The mechanism dif-
fers from the many-body (spin-chain) failures addressed by NDEs: here the bottleneck is
information, not optimization. In NI, trajectories collapse extremely rapidly to the same
steady state across a wide swathe of (I',7), suppressing transient structure and erasing
Fisher information needed to disentangle rates. In deep PT-unbroken, oscillations pin J
accurately but damping is too slow to resolve small noise within feasible windows, again
limiting information. Because the data lack sensitivity in these regimes, extra expressivity
from NDEs yields little to no improvement away from the CPTP corridor. We note that
in the PT-unbroken and NI phases, but near the CPTP line, v* = 1/(2I"), convergence
slows and parameters are learned with ease.

As an explicit illustration of information—limited regimes in the SDQ, we compute the
time-resolved classical Fisher information (CFI) for the noise parameter 7 at representative
operating points across the phase diagram. The Fisher information quantifies the infor-
mation about the parameter v that can be extracted from observation of a probabilistic
observable. For classical projective measurements, the relevant quantity is the CFI,

2
) — 1 (9p;(t)
FC(tﬂ’y)_%:pj(t)( 8’}/ ) ) (20)

where p;(t) are the Born-rule probabilities of outcomes m; at time t for a chosen initial
state [41]. In our single-qubit readout, p;(t) = Tr(IL;, p;) with II; the projectors of X, Y,
or Z, and p; the solution of Eq. (4). Figure 8 summarizes F(t;v) along a y—sweep at fixed
(J,T') for six initial states |0),|1),[4+),|—=),[+%),|—7) and the three Pauli bases.
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Figure 8: Gamma—sweep Fisher information in the stochastic dissipative qubit. (a) Phase map in
(T'/J,~J) as in Fig. 2, with the y-sweep operating points overlaid. (b—g) Time-resolved Fisher information
Fc(t;y) available from single-qubit Pauli measurements X, Y, and Z (the sum of the 3 is given) for six
initial states |0),|1),|+),|—),|+%),|—). Each panel shows F(t;7) for several y along the sweep at
fixed (J = 0.1,T" = 1), revealing phase-dependent informativeness.

Two phase-dependent trends are apparent. First, for most initial states the points in
the PT-broken phase provide substantially larger and more broadly distributed information
about ~ than points deep in the NI phase: F(t;7) grows monotonically, enabling reliable
estimation. Second, in NI the information collapses rapidly. Fc(t¢;7) concentrates into a
narrow early-time peak whose height diminishes as one moves deeper into NI, reflecting
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the swift attraction to a common steady state that washes out parameter dependence. The
initial state |0) is a useful edge case: while it retains some sensitivity to -y, the deeper the
operating point lies in NI, the sharper and lower the F:(¢;y) peak becomes, leaving only a
short temporal window with modest information content. These CFI profiles are consistent
with the phase-resolved learning outcomes in Figs. 6-7 and Table 4: parameter recovery
is robust where F¢ is large over a finite time interval (PT-broken and near the CPTP
line), and it degrades when F( is either too small (deep PT-unbroken) or too localized and
rapidly extinguished (deep NI).

Training with sparser external sampling (At = 0.1) underperforms across phases (bot-
tom block of Table 4). This degradation directly corroborates the sensitivity explanation:
with fewer, more widely spaced snapshots, the short-lived or weak dissipative signatures
that identify v and its interplay with I" are not sufficiently expressed in the data.

Overall, the SDQ study complements the spin-chain analysis: NDEs are most valuable
when failures originate from rugged landscapes. When failures are driven by fast attraction
(NI) or too-weak damping (deep PTu), the limiting factor is data informativeness. In
those regimes, experimental design (earlier/denser sampling or calibrated dissipation) is
the appropriate lever, while the analytic estimator already achieves phase-aware robustness
near the CPTP corridor and throughout PTh.

6 Conclusion and Outlook

This work extends Neural Differential Equations from closed to open quantum dynamics
by pairing a physically structured Lindblad generator with a lightweight neural residual
trained under a simple two-stage curriculum. In an experimentally friendly setting—short
evolutions and random Pauli measurements—the method reliably recovers both coher-
ent and dissipative parameters under locality assumptions, stabilizing optimization in
many-body settings with rugged, nonconvex loss landscapes. Altogether, the pipeline
remains interpretable and CPTP-consistent through its analytic core, while the neural
augmentation compensates mild misspecification in a controlled way.

From an application standpoint, the framework supports white- and gray-box work-
flows, and even black-box workflows if the NDE were to dominate over the ansatz. Exper-
imentalists seeking to identify a system’s Hamiltonian in the presence of weak, unknown
noise should prioritize a white- /gray-box fit of the analytic Lindblad model. Those wishing
to perform dominant noise-channel characterization under a trusted Hamiltonian should
freeze H and train only the dissipator within the analytic class, inserting a brief neu-
ral warm-up and an optimizer reset if convergence stalls. Under full Liouvillian learning
of (H,{Ly}), use the same short neural warm-up and optimizer reset as above, but do
not freeze any parameters. These workflows map directly to quantum simulation, error
mitigation, and device certification by enabling data-driven open-system models with con-
trolled interpretability, calibration and compensation of coherent and incoherent drift, and
likelihood-based verification of controlled operations under a structured generator.

We also tested the pipeline beyond CPTP on the stochastic dissipative qubit (SDQ)
governed by a nonlinear anti-dephasing master equation. Identifiability is phase dependent:
it is strong in PT-broken, degrades in NI due to rapid collapse to a common steady state,
and weakens deep in PT-unbroken where damping is too small to resolve. Robust perfor-
mance reappears near the CPTP line 4* = 1/(2I"), where transients carry information.
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Several limitations point to concrete next steps. Scalability is the central bottleneck:
despite locality and short-time protocols, density-matrix propagation grows exponentially
with system size. Incorporating tensor-network or reduced-order methods for Lindbladians,
along with structure-exploiting integrators, is a natural way to expand the accessible system
sizes while preserving differentiability and CPTP structure. Another route is to work
in multi-qubit phase-space: represent states and dynamics as smooth functions over a
domain that scales linearly with qubit number, instead of exponentially large Hilbert-space
objects. This function-space view enables variational modelling directly on phase-space.
For technical details and proofs, see the recent multi-qubit phase-space foundations [42].

On the data side, random Pauli marginals are hardware-friendly but can bias likelihood
estimates under finite shots and SPAM drifts. Integrating shadow-based estimators and
related variance-reduction techniques into the learning objective could improve sample effi-
ciency without altering the basic workflow (e.g., classical shadows and shadow tomography
provide principled ways to estimate many observables from few measurements [43]). For
non-Hermitian stochastic dissipative qubit, scalability is not the bottleneck; instead, data
expressivity dominates, which also suggests allocating budget to denser, phase-aware sam-
pling, or other means of information gathering altogether, rather than to larger models or
solvers.
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A GKSL Generator Invariance Under Unitary Mixing of Jump Operators

Proof. We recall the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation
for a density operator p,

p=—ilH, o]+ D(p),  D(p) =3 w(LrpL} — H{LLLx, p}), (21)
k

where H is Hermitian, Ly are jump (collapse) operators, and the rates satisfy 75 € R4.
Consider the transformation of the collapse operators as

VIeLe = > Uri/iLi,
J
where U is a unitary matrix, i.e., >, U Uy = 051

Under this transformation, the dissipator transforms like
* 1 *
D(p) = (Z Ukj\/’TijPZUkzﬁLlT —3 {Z UkjﬁL; ZUM\/’WLhP})
k J l J l
=> (D UkU; wyL-pLT—1 S UL U/l L. p
_\2 iUV NP = : ki Uki/ il L,
Js
:Z 54\/A7L,LT_1{5. ~ 1L }
il ViV PLy 5 v Yindb L, P
75l

1
J

= D(p).
Hence, the GKSL generator is invariant under any unitary rotation among the jump oper-
ators /7L, and the corresponding dynamics are unchanged. |

B Code and Data Availability

The full source code implementing the learning pipeline will be released in a public repos-
itory concurrent with the posting of this research to the arXiv. Prior to public release
the repository may be shared on reasonable request to the author for academic assessment
purposes.
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