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Conventional transport measurements cannot detect charge transitions in
carbon nanotube quantum dots when no net current flows, whereas existing
dispersive readout approaches using separate chips suffer from parasitic capaci-
tances and limited scalability. We developed the first fully integrated platform
within our research group that capacitively couples a λ/4 niobium supercon-
ducting resonator (fr = 5.88 GHz, Qi = 1150, Qe = 1730) directly to a
suspended carbon nanotube quantum dot, enabling cryogenic measurements
from 10 mK to 6 K. We successfully demonstrated dispersive readout of in-
terdot charge transitions that are invisible to transport techniques, while also
observing clear Coulomb peaks, diamonds, and stability diagrams through re-
flectometry measurements. This integrated approach achieves higher signal-
to-noise ratios, precise control over resonance coupling, and eliminates wiring
losses, establishing quantum non-demolition readout capabilities and opening
new possibilities for charge qubit studies and electromechanical coupling exper-
iments.
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1 Introduction
Carbon nanotubes (CNTs) have driven major advances in nanoelectronics, sensing, and
materials science because of their exceptional electronic and mechanical properties [1, 2].
In quantum technologies, CNTs enable the electrostatic definition of quantum dots and
ultrastrong electromechanical coupling [3–5].

However, conventional DC transport measurements are fundamentally limited as they
cannot detect coherent charge transitions inside the CNT when no net current flows [6].
A standard procedure for quantum non-demolition readout is dispersive coupling of the
nanotube to a superconducting microwave resonator [7]. Typically, it requires separate
chips for CNTs and resonators. Several research teams have used flip-chip and wirebond
architectures [8], but parasitic capacitances and complex assembly limit yield and scalabil-
ity.

A fully integrated design simplifies device assembly and enhances measurement perfor-
mance. Progress in transfer-based fabrication makes suspended CNT devices compatible
with superconducting materials, allowing integration on a single chip [9, 10]. Higher signal-
to-noise ratios result from this method, which reaches higher frequencies where resonators
couple more strongly to quantum dots. It also allows researchers to precisely engineer
resonance frequency and coupling, and eliminates wiring losses. To implement this, we
capacitively couple a λ/4 niobium resonator (fr = 5.88 GHz, Qi = 1150, Qe = 1730) to a
suspended CNT quantum dot and study the system from 10 mK to 6 K.

This thesis demonstrates and characterizes the performance of a superconducting res-
onator integrated with a suspended CNT on a single chip for the first time in our research
group. To achieve this goal, Sections 2 and 3 present CNT properties and quantum dot
transport. Next, Section 4 describes resonator design, Sonnet simulations, reflectometry
measurements, and fitting procedures. Section 5 then demonstrates dispersive readout
of interdot charge transitions. Together, this work establishes a reproducible platform
for CNT-based devices for our group and facilitates future studies of charge qubits and
electromechanical coupling in CNTs.

2 Carbon nanotubes
Carbon nanotubes are hollow cylindrical nanostructures composed of a single layer of
carbon atoms [11]. The diameters of CNTs are in the range of a few nanometers, while their
lengths can reach several millimeters or even centimeters, yielding a length-to-diameter
aspect ratio exceeding 107. Under tension, they are two orders of magnitude stronger than
steel but six times lighter [2]. Because of their remarkable mechanical properties and high
electrical and thermal conductivity, carbon nanotubes are valuable in nanotechnology and
materials science [12].

Figure 1: Carbon nanotubes can be visualized as rolled-up sheets of graphene.
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CNTs, discovered by Sumio Iijima in 1991 [1], are carbon allotropes like graphene,
graphite, and fullerenes. They can be visualized as rolled-up sheets of graphene1. In fact,
the electronic properties of CNTs can be understood by examining the electronic properties
of graphene [3, 11].

2.1 Electronic properties of graphene
Lattice vectors a1 and a2 define the graphene unit cell, which contains two carbon atoms
separated by a distance a = 1.42 Å. Each of the atoms has four electrons in the outermost
atomic shell. The s, px, and py orbitals hybridize, forming three sp2 orbitals. These orbitals
create σ covalent bonds with adjacent atoms, which cause the rigidity of this material. The
pz orbitals hybridize with those of the neighboring atoms creating π bonds. Many π bonds
combine to form valence (π) and conduction (π∗) bands, which determine the electronic
transport properties of graphene (see Fig. 2a).

The reciprocal lattice of graphene is constructed from the reciprocal lattice vectors b1
and b2, which fulfill the relation ai · bj = 2πδij . We use them to define the Brillouin
zone: a hexagon in the k-space. The valence and conduction bands meet at the corners
of this hexagon, known as the Dirac points K and K ′. In the vicinity of these points,
bands present a conical shape (Fig. 2a), and the dispersion relation between energy and
momentum can be linearly approximated as

E(k) ≈ ±ℏvF |k|, (1)

with vF ≈ 8 × 105 m s−1 the Fermi velocity [14].
The K and K ′ points are inequivalent and they give rise to a 2-fold degeneracy known

as the valley degree of freedom [11]. A four-fold degeneracy emerges from combining valley
and spin degrees of freedom. This degeneracy is experimentally accessible via transport
measurements in ultra-clean CNTs, as we will show in Section 3.

E

kx ky𝜋

𝜋*

K' K

x

y

z

a1

a2

C=na1+ma2

k ||

ℏvF Egap

E E

EF EF

k ||

(a) (b)

(c)

Metallic Semiconducting

Figure 2: (a) Band structure of graphene. The valence and conduction bands meet at the K and K ′

points, known as Dirac points. The dispersion relation can be approximated linearly in the vicinity of
these points, yielding a conical shape. Adapted from Refs. [14, 15] (b) The chiral vector C defines the
circumference of the nanotube, and it is perpendicular to the nanotube axis. (c) The band structure of
the nanotube depends on the intersection between quantization lines and Dirac cones. From Ref. [11].

2.2 Zone folding approximation
A CNT can be seen as a rolled-up sheet of graphene. The rolling direction of the sheet is
described by the chiral vector C, which is perpendicular to the nanotube axis and defines

1Graphene is a two-dimensional hexagonal lattice of carbon atoms. After its isolation in 2004 by Andre
Geim and Konstantin Novoselov [13], it opened the door for the field of 2D materials research.
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the circumference of the nanotube (Fig. 2b).

C = na1 +ma2, (2)

where n andm are integers that define the chirality of the nanotube: CNTs can be classified
as zigzag (n, 0), armchair (n, n), or chiral (n,m).

The nanotubes can thus be modelled as graphene with periodic boundary conditions
along the circumference. This is called the zone folding approximation, and it is valid
when the diameter of the nanotube is much larger than the interatomic distance. As
a consequence of the additional boundary conditions, the allowed wavevectors along the
circumference of the nanotube are quantized [12]:

ψk(r + C) = eik·Cψk(r) = ψk(r), (3)

which imposes the condition k · C = 2πl, with l an integer. The resulting quantization
lines determine whether the nanotube is metallic or semiconducting, depending on their
intersection with the K, K ′ points [12]. Figure 2c shows that if the lines intersect the Dirac
points the nanotube is metallic, whereas if they do not, an energy gap opens up, making
the nanotube semiconducting [11]:

Egap = 4ℏvF

3d ≈ 0.7
d

eV nm, (4)

where d is the diameter of the nanotube. This yields a 175 meV band gap for typical
4 nm diameter tubes. The true value of the gap depends on additional factors, such as the
tension applied to the CNT.

2.3 Device fabrication
Our devices consist of a carbon nanotube suspended between two electrodes, called source
and drain. Five additional electrodes, called gates, are placed under the CNT (see Fig. 3).
The distance between the source and drain is referred to as the trench. The gate electrodes
are not galvanically connected to the CNT, but they can control the electrostatic potential
due to capacitive coupling to the nanotube.

Our group has two collaborators involved in the fabrication of the devices. Dr. D. A.
Czaplewski, from Argonne National Laboratory [16], helps with the design and performs
the nanofabrication techniques needed to define the electrodes. The prepatterned wafers
are then inspected at ICFO and sent to Chiral Nano afterwards [17]. They transfer single
nanotubes, placing them over the trench. The technique is called stapling, and it is similar
to the one described in [9, 10, 18].

The layers of the prepatterned chips are shown in Fig. 3a. The fabrication process
starts with a high resistivity silicon wafer (> 10 kΩ cm), covered by a 292 nm thick layer of
thermally grown silicon dioxide. The electrodes are made by depositing a 100 nm layer of
niobium. The source and drain electrodes are made taller by evaporating 5 nm of titanium
and 150 nm of palladium. Finally, etching of SiO2 is done, resulting in gates being left on
top of SiO2 ridges. This prevents electrical shorts between adjacent electrodes [11].

The trench in our designs can vary from 500 nm to a few micrometers, and gates can
be patterned down to 50 nm in width. The transferred nanotube is at a distance of 150 nm
from the gates. Transfer techniques avoid the high-temperature conditions of chemical
vapor deposition (CVD) growth, which was the standard method to fabricate CNTs in the
past [19, 20]. CVD requires temperatures above 900 ◦C, making CNTs incompatible with
superconducting materials. The transfer technique also allows us to preselect semiconduct-
ing CNTs before placing them.
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Figure 3: (a) Schematic of the layers of the device. The nanotube is stamped over a five-gate structure.
The 5 nm thick titanium layer on top of niobium (not shown in the image) is used to improve the
adhesion of palladium. SEM micrographs: (b) side view of the device, (c) top view of the device. Yellow
arrows indicate the two ends of the nanotube.

2.4 Device characterization
We characterize devices at room temperature after receiving them at ICFO, to select the
suitable ones for our experiments.

2.4.1 Air probe station
We perform the initial checks on the devices using an air probe station. This setup has two
tips that can be placed on different pads of the chips using a micropositioner (Fig. 4a). A
voltage is then applied between the two probes, and the current flowing through them is
measured.

To check the presence of nanotubes, we apply a source-drain voltage Vsd that ramps
between −10 mV and 10 mV. When there is a CNT connecting source and drain, the
current increases linearly with Vsd, and we measure Rsd resistances of 10 kΩ to 1 MΩ. If no
nanotube is present, the circuit is open and hence no current flows through the tips. The
same procedure is used to check for possible electric leaks between the source, drain and
gate electrodes. If there is a leak, it means that the nanotube is contacting the gate, and
it is not adequate for our experiments.

(a) (b)

Figure 4: Illustrations of the probe stations used for room temperature characterization of the devices.
(a) Air probe station. (b) Vacuum probe station.
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2.4.2 Vacuum probe station
The devices are next moved to a vacuum probe station. This setup allows us to apply
higher voltages to the gates, and to study the modulation of the conductance through the
nanotube with the gate electrodes. The vacuum prevents air ionization. Without vacuum,
high voltages would cause dielectric breakdown and damage CNTs. This station consists
of a vacuum chamber with four probes that can be positioned over the pads of the chip,
as Fig. 4b shows. A camera above the chamber allows us to see the chips on a screen.

We apply a source-drain voltage Vsd = 20 mV, and we sweep the gate voltage Vg from
−3 V to 3 V. The nanotube is connected in series with a 100 kΩ resistance. We measure the
voltage drop across this resistance, and use it to calculate the conductanceGCNT = 1/RCNT
of the nanotube. Semiconducting nanotubes typically show a “V”-shaped conductance as a
function of gate voltage (Fig. 5). This field-effect behavior is desirable for our experiments.
The gate voltage shifts the Fermi level relative to valence and conduction band edges,
allowing us to control the current flow through the nanotube. The current through the
gate is also monitored in this setup, which allows us to detect leaks that were not visible
in the air probe station.

−3 0 3

Vg1 (V)

14

18

22

G
(µ

S
)

−3 0 3

Vg2 (V)

−3 0 3

Vg3 (V)

−3 0 3

Vg4 (V)

−3 0 3

Vg5 (V)

Figure 5: Five consecutive measurements of the modulation of the conductance of a suspended CNT
from source to drain. We sweep each gate individually, keeping the rest grounded. Nanotubes that
modulate their conductance when the gate voltage is varied are desirable for our experiments. The
minimum in conductance corresponds to the band gap, which separates hole (left) and electron (right)
conduction regions.

3 Transport through quantum dots
In this section, we will introduce the basic concepts of quantum dots, their transport
properties and how they are used to study electron-electron interactions. We will also
discuss the double quantum dot, a system that allows for the study of electronic states
resembling an artificial molecule and where qubits based on the electric charge degree of
freedom can be defined.

3.1 Single quantum dots
A quantum dot (QD) is an artificial 0-dimensional system that spatially confines charge
carriers (electrons or holes) in three dimensions [4]. QDs are often referred to as artificial
atoms [21], as they share some properties with natural atoms, such as discrete energy levels
and the ability to confine charge carriers. However, quantum dots provide tunable energy
levels and controllable electron number through external gates, which modify the electric
potential. Electrons in CNTs are naturally confined to one dimension. Adding longitudinal
tunnel barriers allows full quantum dots to form [3].

We study the physical properties of QDs by measuring electron transport. Two energy
scales determine these properties: the charging energy EC and the single particle level
spacing ∆E [4, 22].

∗ Because of the Coulomb repulsion between electrons, adding a single electron to the
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quantum dot requires a certain amount of electrostatic energy, the charging energy
EC = e2/C. C is the total capacitance of the dot.

∗ The three-dimensional confinement creates discrete energy levels, separated by ∆E =
hvF /(2L), where L is the confinement length, i.e., the size of the quantum dot.

Combining these two, the total energy needed to add a charge to the QD is given by the
addition energy [11],

Eadd = EC + ∆E. (5)

For the number of electrons N on the dot to be a well-defined integer, the tunnel
barriers must be high enough, ℏΓ ≪ EC , where Γ = Γs +Γd is the tunnelling rate to source
and drain electrodes. In this regime, adding electrons to the QD becomes blocked until
the applied voltage provides enough energy to overcome the addition energy Eadd. This
phenomenon is known as Coulomb blockade [23]. The two main conditions for Coulomb
blockade to happen are related to the resistance and temperature of the system [22].

1. The approximate time that a charge spends on the dot is τdot ≈ 1/Γ, where τdot =
RtC. Rt is the tunnel resistance and C = Cs +Cg +Cd is the total capacitance of the
dot. This time is related to the charging energy EC by the Heisenberg uncertainty
principle

ECτdot ≥ h, (6)

which gives a lower bound for the tunnel resistance Rt,

Rt ≥ h

e2 = RQ. (7)

RQ ≈ 25.8 kΩ is the quantum of resistance [20]. In CNT quantum dots this condition
is achieved through gate-defined barriers.

2. The temperature of the system must be low enough to avoid thermal excitations that
would allow the electrons to tunnel through the barriers. The thermal energy kBT
must be smaller than the charging energy EC ,

kBT ≪ EC . (8)

If the thermal energy is also smaller than the single particle level spacing ∆E, only
one energy level will contribute to electron transport. That is the reason why most
experiments are done at cryogenic temperatures, in the mK to few K range.

3.1.1 Constant interaction model
For a more detailed description of the QD transport properties, we can use the constant
interaction model [24]. This model allows us to describe the system as a series of lumped
elements (Fig. 6a). It assumes that the capacitances are constant, i.e., they do not depend
on the number of electrons in the dot. The single particle energy levels are also assumed
to be independent of the number of electrons in the dot. Under these assumptions, the
total energy U(N) of a system with N electrons is given by

U(N) = [−e (N −N0) + CgVg + CsVs + CdVd]2

2C +
N∑

n=1
En, (9)

where C = Cg + Cs + Cd is the total capacitance of the dot, En are the single particle
energy levels and N0 is the charge in the dot compensating the positive background charge.
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Γs Γd(b)

μs
μd
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Γs Γd

Vg

Cg

NS

Rt 

C Γ 

Vs

QD

D Vd

(a)

eVsd

Figure 6: (a) Constant interaction model for a single quantum dot. We represent tunnel barriers as
a capacitor and a resistor connected in parallel. (b) Electrochemical potential diagram of a single
dot. Current can flow from source to drain when one of the energy levels is inside the bias window
µs − µd = −eVsd. Adapted from Ref. [11].

From Eq. (9), we can define the electrochemical potential µ(N) as the energy required
to add the Nth electron to the quantum dot [3],

µ(N) = U(N) − U(N − 1). (10)

Fig. 6b shows the electrochemical potential diagram of a single dot. Substituting Eq. (9)
into Eq. (10), we obtain

µ(N) = e2

C
(N −N0 − 1/2) − e

C
(CgVg + CsVs + CdVd) + EN . (11)

We can now calculate the addition energy Eadd as

Eadd = µ(N + 1) − µ(N) = e2

C
+ EN+1 − EN , (12)

which is the same as Eq. (5), where we recognize the charging energy EC = e2/C and the
single particle level spacing ∆E = EN+1 −EN . When two consecutive electrons are added
to a degenerate level, EN+1 = EN and ∆E = 0.

To quantify the coupling of the ith gate to the dot, i.e., how much the electrochemical
potential of the dot changes when the voltage on the gate is modified, we define the lever
arm αi = eCi/C [3]. Using this definition, we can rewrite Eq. (11) in a more convenient
way:

µ(N) = (N −N0 − 1/2)EC −
∑

i

αiVi + EN , (13)

eVsd
𝜇s

𝜇d

𝜇s 𝜇d𝜇s 𝜇d

(c)(b)(a)

Figure 7: Energy levels of a single quantum dot. The electrochemical potential µ(N) is modified by
the gate voltage Vg. The source electrochemical potential µs can be tuned by the source voltage Vs.
We consider the drain is grounded, Vd = 0. Current can only flow when µs ≥ µN ≥ µd. (a) No current
flows through the dot. (b) Charge can flow through the dot sequentially. (c) At finite source bias,
current can flow through the dot in a wider range of gate voltages.
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3.1.2 Coulomb blockade oscillations
Consider the diagram in Fig. 6b. Γs and Γd are the tunnelling rates to the source and
drain contacts, respectively. Their electrochemical potentials (µs and µd) can be modified
changing the bias voltage: µs − µd = −eVsd, e > 0. Setting Vsd = 0 V, the discrete levels
inside the QD are given by Eq. (13). This shows that the level µN = µ(N) gets lower
as the gate voltage Vg is increased. Fig. 8 shows experimental data of Coulomb blockade
oscillations in the conductance G = dI/dVg through a single QD defined in a CNT.

1.6 1.8 2.0 2.2 2.4 2.6
Vg1, Vg2, Vg3, Vg4, Vg5 (V)

0

50

G
 (
µS

)

T=10 mK

Figure 8: Experimental measurements of Coulomb blockade oscillations in the current through a single
quantum dot. Vsd = 0 V and T = 10 mK. The black line indicates a 4-fold degenerated level. The peak
spacing is EC/αg = 23.1 ± 0.6 mV, and the level spacing Eadd/αg = 31.6 ± 0.3 mV. This yields a single
particle level spacing of ∆E/αg = 8.5 ± 0.7 mV.

When µN is misaligned with the source and drain electrochemical potentials, no current
flows through the dot (Fig. 7a). However, when µs ≥ µN ≥ µd, the electrochemical
potential of the dot is resonant with the source and drain, and charge can flow through the
dot sequentially (Fig. 7b). The resulting peaks in the conductance are known as Coulomb
peaks, and they are separated by ∆Vg = Eadd/αG. This measurement is particularly
meaningful as it clearly shows the four-fold degeneracy of the CNT electronic structure
that was described in Section 2.

3.1.3 Coulomb diamonds
If we now allow the source and drain electrochemical potentials to vary, we can explore
another dimension of the system. For simplicity, we will consider the case where the drain
is grounded. At higher source bias, |eVsd| = µs > µN ≥ µd, tunnelling is allowed in a
wider range, known as the bias window (Fig. 7c). The map that is obtained by plotting
the conductance G as a function of the gate voltage Vg and the source-drain voltage Vsd
shows a series of diamond-shaped regions, the Coulomb diamonds. Inside them, there is
no current flow. Figure 9 shows a schematic of ideal Coulomb diamonds in CNTs.

EC
Eadd

EC/𝛼g

eCg/Cs

−eCg/(Cg+Cd)

𝜇
s−

𝜇
d
 =

 −
eV

sd

Vg

Eadd/𝛼g

∆E

Figure 9: Coulomb diamonds are useful to retrieve many parameters of the constant interaction model.
The leftmost biggest diamond corresponds to the band gap. The four-fold period of diamonds in CNTs
is a consequence of spin and valley degrees of freedom. Experimental data showing this clearly four-fold
degeneracy can be found in Fig. 1 from Ref. [25]. Slope equations taken from Ref. [4].
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Coulomb diamonds are a useful tool to quantify the energy scales, the gate lever arms,
as well as the coupling to the source and drain contacts. For instance, for the data in
Fig. 8, the corresponding diamonds yield αg = 0.21 ± 0.02 eV/V, EC = 4.8 ± 0.5 meV,
Eadd = 6.6 ± 0.6 meV and ∆E = 1.8 ± 0.2 meV. See Appendix A for more details.

3.2 Double quantum dots
We now turn to the case of two quantum dots coupled in series, forming a double quantum
dot (DQD). This system opens the possibility to study the interaction between the two
dots and ultimately, to define an artificial molecule, whose two lowest energy levels define
a so-called charge qubit.

VgR

CgR

M

QDR

VgL

CgL

CgL,R

NSVs

QDL

VdD

CgR,L Rt 

C Γ 

Γs ΓdΓm

Figure 10: Constant interaction model for a double quantum dot. The left dot (QDL) contains N
electrons, and the right dot (QDR) contains M electrons. The gates are named VgL and VgR. CgL,R and
CgR,L are cross-capacitances. The barrier Γm determines interdot coupling.

The constant interaction model can be used to describe the DQD (Fig. 10), but in
this case the calculations are more complex. For simplicity, we will not include the single
particle energy levels in this discussion, and moreover, we will consider the zero bias case,
Vsd = 0. Also, we will not consider any residual charge, i.e., N0 = 0, and we will neglect
the cross-capacitances between gate i and the other dot j, Cgidj = 0.

We will follow the derivation from Ref. [6]. The total energy of the system is now
dependent on the number of electrons in both dots, N and M : U(N,M). Proceeding as
before, we can retrieve the chemical potentials µL(N,M) and µR(N,M) of the two dots
as µL(N,M) = U(N,M) −U(N − 1,M) and µR(N,M) = U(N,M) −U(N,M − 1). Using
the expression for the total energy given in the Appendix B, Eq. (24), we can write the
electrochemical potentials as

µL (N,M) =
(
N − 1

2

)
ECL +MECm − 1

e
(CgLVgLECL + CgRVgRECm) , (14)

µR (N,M) =
(
M − 1

2

)
ECR +NECm − 1

e
(CgLVgLECm + CgRVgRECR) . (15)

with e > 0. The explicit expressions of charging energies ECL, ECR, and ECm are given
in Appendix B, Eq. (25).

3.2.1 Charge stability diagram
The charge stability diagram of a DQD is a map on which the conductance is plotted as a
function of the two gate voltages VgL and VgR, keeping the voltages of the remaining gates
fixed. The conditions for electrochemical potential alignment give rise to a honeycomb
pattern. If no bias voltage is applied, µs = µd = 0. The equilibrium charges on the
dots are the largest values of N and M for which µL(N,M) ≤ 0 and µR(N,M) ≤ 0. If
any of them is positive, the electron will escape to the leads. This constraint, plus the
fact that N and M must be integers, creates hexagonal domains in the region where the
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electrostatic potential forms a double-well shape along the nanotube. In these domains
the charge configuration is stable [6]. Figures 11a, b and c show schematics of the charge
stability diagram of a DQD in three different regimes, depending on the interdot coupling.

VgL VgL VgL VgL

VgR

(N+1,M)

(N,M+1)

(a) ECm ≪ ECL, ECR (b) ECm < ECL, ECR (c) ECm ∼ ECL, ECR (d) Charge qubit 

ε
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|R⟩

(1,0)
(2,0)

(0,1)

(0,0)

(1,1)
(2,1)

(0,2)
(1,2)

(2,2)

(1,0) (2,0)

(0,1)

(0,0)

(1,1) (2,1)

(0,2) (1,2) (2,2)

(d) 

(1,0) (2,0)

(0,1)

(0,0)

(1,1) (2,1)

(0,2) (1,2) (2,2)

Figure 11: The geometry of the charge stability diagram of a double quantum dot depends on the
mutual charging energy ECm. (a) Uncoupled QDs, (b) weakly coupled QDs, (c) strongly coupled DQDs.
Dashed lines are charge transition lines. Circles indicate triple points. (d) The red dashed line represents
the interdot charge transition. |L⟩ and |R⟩ indicate the presence of the electron in the left or right dot.
ε is the energy detuning axis.

3.2.2 Charge qubits
The interdot charge transition (ICT) involves tunneling between the left and right quantum
dots, as shown in Fig. 11d. The energy detuning (ε) quantifies the electrochemical potential
difference between the two dots, while the tunneling energy (tc) quantifies the tunneling
rate between them [11]. The position of a single charge can be written as |ψ⟩ = αL |L⟩ +
αR |R⟩ eiθ, using the charge basis {|L⟩ , |R⟩}. The state |L⟩ indicates the presence of the
electron in the left dot, while |R⟩ indicates the presence of the electron in the right dot.
Using the same basis, the Hamiltonian of the DQD can be written as

Ĥ = ε

2 σ̂z + tcσ̂x, (16)

where σ̂z and σ̂x are the Pauli matrices. Diagonalizing Eq. (16) gives the energy eigenval-
ues,

E± = ±1
2

√
ε2 + 4t2c . (17)

The eigenstates |±⟩ are used to build a qubit with transition frequency ℏωq = E+ −E− =√
ε2 + 4t2c .
The coherent tunneling between the two dots that characterizes the ICT implies that

there is no current flowing through the DQD, from source to drain electrodes. Therefore,
transport measurements cannot be used to read out the qubit state. Instead, we will
couple another system to it, which is the superconducting resonator we describe in the
next section.
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4 Characterization of the superconducting cavity
Gate reflectometry readout is a technique that enables high frequency (MHz-GHz) and sen-
sitive measurements of the impedance changes of a device under test [26]. This information
is encoded in the reflected signal from a microwave resonator, also referred to as microwave
cavity. With the goal of using this technique to measure the CNT QDs, our group has
designed a new chip that integrates the trench where the nanotube is suspended and a
superconducting cavity connected to one of the gate electrodes. This section describes the
design and presents Sonnet simulation results for the cavity. We then introduce microwave
resonator concepts and present the cavity’s characterization.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

s

1

2

3

d

5

4

100 μm

200 μm

200 μm

100 μm

5 μm

1.1 μm

1 mm

Figure 12: Integrated chip design. The enlarged views are micrographs of (i) coupling gap, (ii) LC filter,
(iii) feedline, (iv), (v) and (vi) trench. The arabic numbers indicate the different pads: source (s), drain
(d) and gates (1,2,3,4,5). The central meandering element is a λ/4 microwave resonator.

4.1 Integrated chip design
The layout of the integrated chip is shown in Fig. 12. The insets highlight the different
parts of the chip: (i)-(iv) show optical microscope images; (v) and (vi), scanning electron
microscope (SEM) micrographs. The central serpentine element of the chip is a λ/4 mi-
crowave resonator that serves both as a cavity for dispersive readout and an electrostatic
gate (4) for the CNT. The numbered pads on the sides of the chip are the remaining elec-
trodes: source (s), drain (d) and gates (1,2,3,5). Each electrode ends in a low-pass LC
filter (ii). To send the radiofrequency (RF) signal to the cavity, we use the feedline (iii).
The coupling between the cavity and the feedline can be controlled by their separation
(i). Regarding the trench (iv), discussed in section 2, it is located on the top part of the
chip. All the lines coming from the pads are connected to the trench. The insets (v) and
(vi) show magnified views of it. The remaining RF line on the bottom right side of the
chip serves as a driving line for the cavity. Chiral Nano’s CNT transfer process uses the
four small pads above the source and drain pads. Once the CNT has been placed on top
of the trench, high voltages are applied to each pair of pads to cut the CNT, leaving it
suspended. The transfer process is crucial, because of the incompatibility of CVD with
superconducting materials.

4.1.1 Superconducting transition of niobium
A key aspect of the design is the use of a superconducting material for the cavity: in this
case, niobium (Nb). One of the initial tests we have done is to ensure the niobium film is
indeed superconducting, especially in the thinner part of the gate electrodes, where the area
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of Nb is 100 nm ×100 nm. We measured a structure that mimics the gate electrodes using
a four-point probe configuration, see Fig. 13a. It is more precise than the two-point probe
configuration, as it avoids spurious resistances, like contact resistances. The two outer
probes provide a steady current (∼ nA), while the two inner probes measure the voltage
drop across the path. We measured the resistance as a function of temperature, see Fig.
13b. The critical temperature we obtain is T = 9.65 K. The tabulated critical temperature
of bulk Nb is 9.268 K, which indicates either a calibration shift of the thermometers in the
cryostat or improper thermalization of the Nb sample.

5 μm

150 μm(a) (b)

4 6 8 9.65 12
T (K)

0

100
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300

R
N

b
(Ω

)

Figure 13: (a) 4 point probe structure of a 100 nm wide, 100 nm thick and 30 µm long Nb path. The
environment reproduces the trench. (b) Measurement of superconducting transition of niobium.

4.1.2 Microwave cavity
The λ/4 microwave resonator is the central element of the chip. It is designed to create a
standing wave pattern with maximum electric field at one of the nodes, in the region where
the quantum dots will be defined. This ensures maximal coupling between the quantum
dot’s electric dipole and the electric field of the cavity. We operate the microwave cavity
as a dispersive readout, in a regime where changes in the electric dipole associated with
electronic transitions in the quantum dots renormalize the cavity frequency. The frequency
shift reveals measurable information about the electronic transition in the quantum dots,
and therefore, a readout mechanism. The meander geometry provides compactness while
maintaining the quarter-wavelength electromagnetic path length necessary for the desired
resonant frequency in the microwave range. For the design in Fig. 12, the length of the
resonator is 6 mm, the calculated resonance frequency is fr = 6 GHz, and the expected
frequency shifts are on the order of 100 kHz to few MHz.

4.1.3 LC filters
The end of the λ/4 resonator that connects to the DC bias pad includes a distributed LC
filter composed of interdigitated capacitor elements and an inductive coil to ensure proper
electromagnetic boundary conditions and RF isolation [27]. The role of the low-pass LC
filters is to avoid photonic losses from the cavity due to coupling of its electromagnetic field
to the rest of the lines. These filters simultaneously act as an effective shunt to ground
for photons at the resonance frequency. The ground reference established at the end of
the cavity line creates the necessary voltage node for the λ/4 mode. This ensures that
photons remain confined within the resonator structure, while being able to DC bias the
cavity through that port for proper gate control.

4.2 Sonnet simulations
We have simulated the LC filters using Sonnet [28], to understand the effect of changing
the number of turns of the inductor and the number of lines of the capacitor. This way,
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we optimize the filter design and characterize its performance with respect to these pa-
rameters (Fig. 14). Sonnet is a specialized software for simulating planar circuits in the
radiofrequency range. We input into the program the layer stack of the circuit: 500 µm of
Si (εr = 11.9), 300 nm of SiO2 (εr = 3.9), Nb configured as lossless metal2 and 500 µm of
air. Considering that the smallest features are 3 µm wide and the amount of computational
resources needed for the simulation, the mesh size we use is 2 µm × 2 µm.

50 μm

(i)
(ii)

nturns

nlines

(ii)(i)

Figure 14: LC filter layout. The inductor has nturns = 8 and the interdigitated capacitor has nlines = 17.
The tracks and the gaps are 3 µm wide. Insets (i) and (ii) are magnified views of the inductor and the
capacitor, respectively. The external light blue region defines the ground plane.

We simulate a two-port, 50 Ω network: the input is connected to the pad inside the
inductor and the output is connected to a pad at the end of the capacitor (not shown in Fig.
14). Sonnet outputs the scattering parameters of the circuit, which are complex numbers
that describe how the circuit reflects and transmits signals at different frequencies. The
reflection coefficient S11 is defined as the ratio of the reflected power to the incident power,
while the transmission coefficient S21 is defined as the ratio of the transmitted power to
the incident power. See Ref. [29] for a detailed explanation.

Simulations show that the number of turns of the inductor influences the transmission
coefficient more than the number of capacitor lines. Figure 15a shows the value of the cutoff
frequency3 for different values of nturns and nlines. In Figure 15b we show the effect in the
value of the transmission coefficient at 6 GHz, which is the designed resonance frequency
of the circuit.
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Figure 15: Sonnet simulation of the LC filter. The number of turns and the number of lines are varied
to optimize (a) the cutoff frequency and (b) the attenuation at the resonance frequency. See Appendix
C for more details.

The values in the fabricated chips are nturns = 8 and nlines = 17, a good compromise
between compactness and performance. The output of the corresponding Sonnet simulation
is shown in Fig. 16. Next to it, we show the experimental transmission measurement for a

2A lossless metal in Sonnet is treated as a perfect electric conductor, with infinite conductivity and zero
penetration length. For this reason, Sonnet does not need a thickness value.

3The cutoff frequency is defined as the frequency at which the transmission coefficient S21 drops −3 dB.
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single distributed LC filter as in Fig. 14, in a helium dewar at 4 K. There is good agreement
between the simulation and the measurements, both in the trend of the transmission and
in the value of the cutoff frequency. Extra RF components in the dewar, as well as chip
imperfections and the presence of wirebonds, add frequency-dependent losses that can be
seen as wiggles and dips in the transmission of Fig. 16.
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Figure 16: Sonnet simulation of the LC filter compared to experimental measurements.

To finish this section, we have to mention that Sonnet simulations of the device shown
in Fig. 12, which include the cavity, also agree with experimental measurements performed
both at 4 K and at mK temperatures. See Fig. 30 in Appendix C.

4.3 Resonator characterization
In this section we first introduce some basic concepts of resonators, to then present the
results of the characterization of the cavity.

4.3.1 Basics of reflectometry
All resonators can be described in terms of three parameters: the resonance frequency fr,
the total or loaded quality factor Ql and the coupling coefficient β [30]. The quality factor
Ql is defined as the ratio of the average energy stored in the resonator to the energy lost per
cycle. It can be written as Ql = ωr/κ, where ωr = 2πfr is the angular resonance frequency
and κ is the total decay rate of the resonator. The decay rate κ can be written as the
sum of the external and internal damping rates κ = κext + κint. The external losses are
via the coupling to the external circuit, which is used for measurement, while the internal
losses are uncontrolled losses to the environment. The corresponding quality factors can
be defined as Qext = ωr/κext and Qint = ωr/κint, with Q−1

l = Q−1
ext + Q−1

int . The ratio of
the internal quality factor to the external quality factor defines the coupling coefficient

β = Qint
Qext

. (18)

This coefficient describes the coupling strength between the resonator and the external
circuit. Three regimes of coupling can be distinguished: undercoupled (β < 1), critically
coupled (β = 1) and overcoupled (β > 1). See the examples in Fig. 17. Critical coupling
occurs when the internal and external losses are equal, and the impedance is matched
between the resonator and the input line.

The reflectometry measurements involve measuring the reflected signal. The reflection
coefficient S11 of a resonator can be written in terms of external and internal quality factors
and the resonance frequency as follows [30]

S11 =
Qext −Qint + 2iQintQext

ω−ωr
ωr

Qext +Qint + 2iQintQext
ω−ωr

ωr

. (19)
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Note that when ω = ωr, arg(S11) = 0 and |S11| = |1 − β|/(1 + β). When the resonator
is critically coupled (β = 1) the reflection coefficient is minimized: |S11| = 0. It is in this
limit that the reflected signal is most sensitive to changes in the resonator, and therefore
the regime we want to operate in.
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Figure 17: Three regimes of coupling: undercoupled (β < 1), critically coupled (β = 1) and overcoupled
(β > 1). The reflection coefficient S11 is plotted as a function of frequency. (a) Magnitude, (b) phase,
(c) complex plane. The diameter of the complex plane circle is d = 2β/(1 +β). Adapted from Ref. [30].

4.3.2 Data fitting procedure
To study the superconducting cavity at cryogenic temperatures, we use a Proteox™ dilu-
tion refrigerator from Oxford Instruments. The setup is equipped with a vector network
analyzer (VNA) that we use to measure the reflection coefficient S11 of the cavity when
connected to the driving line. The VNA outputs the complex reflection coefficient S11 as
a function of frequency, up to 14 GHz.

The standard procedure to extract the parameters fr, Qe and Qi is to fit the data to
Eq. (19). One of the tasks of this thesis has been to improve the fitting process to make it
more robust and user-friendly. We have written a script that uses the NLQFIT-7 algorithm
[31, 32], which allows us to fit complex data directly, as opposed to older procedures used
in the group that fitted magnitude and phase separately [33].

A graphical user interface has been developed to facilitate the navigation through data
files and selection of fitting regions. Then, the script applies a baseline correction to the
data and fits a more convoluted version of Eq. (19), which includes correction terms to
account for various non-idealities in the measurement setup. See Eq. (33) in Appendix D.
This makes the fitting process more robust and the resulting quality factors more accurate.
We stress here the importance of precise fitting of the cavity response, since it is this
response that will give us information about the system. More information about the
algorithm and the code used can be found in Appendix D.

We have measured the resonance of a cavity integrated on a chip as in Fig. 12 at
different temperatures, from 6 K to 25 mK. The behavior of the extracted parameters is
shown in Fig. 18. The resonance frequency is constant (fr = 5.884 GHz) below 2 K and
it decreases at higher temperatures. The quality factors behave similarly (Qi = 1150 and
Qe = 1730), but Qi shows a jump at T = 1.14 K, which corresponds to the superconducting
transition of the aluminum used to wirebond the chip to the sample holder [11].
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Figure 18: The values of the resonance frequency fr, internal quality factor Qi and external quality
factor Qe decrease as the temperature increases. The data is fitted to Eq. (19). The dashed vertical
line indicates the superconducting transition of aluminum at 1.14 K. At low temperatures, β = 0.66,
which indicates that the cavity is undercoupled.

5 Readout of charge states in the integrated device
5.1 Reflectometry readout
We have already mentioned that the reflectometry readout technique detects changes in
the impedance of the device under test by measuring the reflected signal from a microwave
resonator. In the context where DQDs are defined, the charge transitions can be modelled
as an effective capacitance change ∆C [26]. The resonator couples capacitively to the
quantum dot through the gate, and changes in the resonator capacitance generate changes
in the magnitude and phase of the reflected signal.

Let us consider a simple example to gain some intuition. Following Ref. [34], we model
the resonator as a series RLC circuit with impedance

Z(ω) = iωL+ 1
iωC

+R. (20)

The resonance happens when the frequency fulfills arg(Z) = 0. Imposing this condition to
Eq. (20), the expression for the resonance frequency is given by

fr = 1
2π

√
LC

. (21)

We see that the resonance frequency is sensitive to changes in the capacitance C, as those
provoked by electronic transitions. If we drive the cavity at a fixed frequency fr and
measure the reflected signal S11, we can detect changes in the capacitance by observing
shifts in the resonance frequency.

Figure 19 shows an example of a measurement. We quantify resonance shifts via changes
in the magnitude |S11| and phase arg(S11) of the reflected signal (Fig. 19a, 19b). The shift
in the complex plane combines both components (Fig. 19c):

|∆S11| =
√

[Re(∆S11)]2 + [Im(∆S11)]2. (22)

The greater the shift, the bigger the signal to noise ratio (SNR) will be.

5.2 Experimental results
We now show some of the measurements from the first functional integrated chips we have
produced. The following measurements, as well as the modulation curves in Fig. 5 from
Section 2.4, correspond to the same device.
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Figure 19: The resonance is shifted when the coupling of the cavity to the quantum dots changes. On
the “on” state, the cavity is coupled to an electronic transition between two quantum dots, and on the
“off” state, it is not. We quantify the shift via the distance |∆S11| in the complex plane. The data has
been extracted from the interdot charge transition in Fig. 26.

5.2.1 Conductance measurement
The data in Fig. 8 is a zoom of the conductance measurement shown in Fig. 20. The data
from a simultaneous reflectometry measurement is also shown in the bottom panel of Fig.
20, demonstrating the success of this readout technique.

On the left, we see the Fabry-Pérot region, where holes behave as coherent wave packets
that undergo quantum interference [35]. The conductance remains high throughout this
region. The band gap is the 150 mV region after the peak at 1 V, where the conductance
drops to zero. Using the lever arm αg ∼ 0.2 eV/V calculated in Section 3.1.3, the energy
gap between the conduction and valence bands is Egap ∼ 30 meV. The right side of the
figure shows the Coulomb blockade peaks for single electrons, featuring the characteristic
four-fold degeneracy of CNTs.
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Figure 20: (Top) Measurement of the conductance as a function of the gate voltages. (Bottom)
Simultaneous reflectometry measurement. The Fabry-Pérot region is visible in the hole region (left), as
well as the Coulomb blockade peaks for single electrons (right). Fig. 8 is a zoom of the top figure.
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5.2.2 Coulomb diamonds
Figures 21 and 22 show the Coulomb diamonds measured using transport and reflectometry,
respectively. In this case, only the third gate has been swept, while the remaining gates
are held at 0 V. The largest diamond at Vg3 = −0.4 V marks th band gap. We see that
diamonds appear on the left side, for negative gate voltages, indicating we are confining
holes instead of electrons, as in Fig. 20. A possible explanation is that adsorbed molecules
or contamination can alter nanotube doping, changing the carrier type that shows low
conductance. Moreover, the diamonds are not regular, their size becomes smaller as they
get further from the gap.

These electronic transitions involve incoherent tunneling, which appears primarily as
changes in resistance of the load. Therefore, the signal is visible in the magnitude of
the reflection coefficient |S11|. When the transitions are coherent, like in the case of the
interdot charge transition we will present later, the electron is isolated between the two
dots and there are no dissipative losses. In that case, the phase of the reflected signal is
more sensitive to the changes than magnitude.
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Figure 21: Coulomb diamonds measured in transport. We vary the voltage of the third gate, while the
remaining gates are held at 0 V. The largest diamond corresponds to the gap between conduction and
valence band.
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Figure 22: Coulomb diamonds measured using reflectometry. The cavity couples to the quantum dots
successfully, allowing to observe diamonds as changes in the magnitude of the reflected signal.

5.2.3 Charge stability diagrams
Fig. 23 shows the measured charge stability diagram. Single and double dot regions are
visible, which have the appearance described in Fig. 11b and c. Figure 24 shows a closer
view of the honeycomb pattern in the DQD region.

18



Zooming even more, we can see the interdot charge transition, in which the electro-
chemical potentials of the two dots align, but are far from the potentials of the electrodes
(Figs. 25 and 26). The ICT measurement clearly shows the advantage of reflectometry.
This feature is not visible in transport measurements, where only two finite conductance
regions appear: the triple points. This is because there is no net charge flowing to the
leads, the electron tunnels coherently between the two dots. The reflected signal S11 shows
a clear change in the phase and magnitude. This transition can be used to define a charge
qubit in future experiments (Sec. 3.2.2).
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Figure 23: Charge stability diagram measured using reflectometry. Single dot features are visible in the
bottom left corner, where straight diagonal lines appear. The top right region shows a faint honeycomb
region. See Fig. 24 for a zoom of this area.
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Figure 24: Honeycomb pattern, indicating the presence of a double quantum dot. The charge transition
lines are visible only in the reflectometry readout, not in transport, where conductance G remains at
zero.
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Figure 25: Example of an ICT measurement. In transmission, only two finite conductance regions appear
at the triple points. In reflectometry, a clear change in the phase and magnitude is visible. In this
example, the frequency shift is small in the ICT region, so the magnitude does not change appreciably.
It is enough, however, to produce a clear change in the phase.
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Figure 26: The same transition as in Fig. 25 after the height of the interdot barrier has been modified
to enhance the detected signal. In this example the ICT is measurable both in magnitude and phase.
Transport only shows the bias points. The data to illustrate the frequency shift in Fig. 19 has been
taken “on” and “off” the transition.

6 Conclusion
The integrated platform we have developed opens numerous possibilities for quantum opto-
electromechanical experiments, perfectly aligning with the research focus of our group at
ICFO.

Defining high-quality charge qubits enables us to study qubit coupling to different
degrees of freedom. This includes fermionic degrees of freedom, such as electron spin,
which forms the basis for spin qubits [36], a highly relevant field in quantum technologies.
It also covers bosonic degrees of freedom, including photons [7] and phonons [5], which
would allow investigating how qubits interact with mechanical vibrations of the suspended
nanotube in our platform. Achieving sufficiently coherent qubits is a prerequisite for all
experiments in these directions.

Regarding the device studied, we have demonstrated dispersive readout of interdot
charge transitions in a suspended carbon nanotube quantum dot coupled to a supercon-
ducting microwave cavity. The device resonates at fr = 5.88 GHz with internal and exter-
nal quality factors Qi = 1150 and Qe = 1730. We observe clear Coulomb diamonds and
honeycomb stability diagrams through shifts in the reflectometry signal at interdot charge
transitions, absent in DC transport. Upcoming experiments will drive the qubit through a
gate with an external radiofrequency tone, enabling qubit spectroscopy and a systematic
study of how the interdot barrier tunes the qubit energy splitting. Experiments that tune
the cavity into resonance with the qubit, allowing coherent energy exchange between the
two systems, are also in preparation.

The nanotube stamping process will be optimized in the near future. A new gener-
ation of stapled nanotubes will allow statistical studies and improved control over their
mechanical resonance frequency.

Regarding microwave cavity improvements, the new devices will feature narrower gate
widths and a shorter trench, raising the natural mechanical frequency. The group is also
developing new on-chip filters and exploring NbN as the superconducting material; its high
kinetic inductance offers magnetic-field resilience and enables greater miniaturization and
compactness. Finally, increasing the device density per wafer will boost the fabrication
yield.
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A Complementary Coulomb diamonds
This appendix contains the Coulomb diamond measurement that corresponds to the peaks
shown in Fig. 8. This data is not shown in the main text because the diamonds are not as
clear as the ones in Fig. 22, but they still allow to extract the parameters of the constant
interaction model.
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Figure 27: Coulomb diamonds measured using reflectometry.

From this measurement, we extract the following parameters:

EC/αg = 24 ± 1 mV, EC = 4.9 ± 0.5 mV,
Eadd/αg = 32.3 ± 0.6 mV, Eadd = 7.5 ± 0.9 mV.

Which yield a lever arm αg = 0.21 ± 0.02 eV/V. To complete the set of parameters given
in the text, we also calculate the effective dot length L, the total capacitance C and the
gate capacitance Cg:

L = 900 ± 100 nm,
C = 33 ± 3 aF,
Cg = 7 ± 1 aF.

B Supplementary equations for double quantum dots
This appendix contains additional equations of quantum dot transport theory, which are
not included in the main text. We followed the derivation from Ref. [6].

For the sake of completeness, we restate the equation for the total energy of a single
quantum dot, Eq. (9),

U(N) = [−e (N −N0) + CgVg + CsVs + CdVd]2

2C +
N∑

n=1
En. (23)

The total energy of the double quantum dot system, ignoring the single-particle energy
levels is given by

U (N,M) =1
2N

2ECL + 1
2M

2ECR +NMECm

− 1
e

[CgLVgL (NECL +MECm) + CgRVgR (NECm +MECR)]

+ 1
e2

[1
2C

2
gLV

2
gLECL + 1

2C
2
gRV

2
gRECR + CgLVgLCgRVgRECm

]
.

(24)

24



where ECL and ECR are the charging energies of the individual dots, ECm is the electro-
static coupling energy, and e > 0 is the absolute value of the charge of the electron. The
coupling energy ECm quantifies the change in the energy of one dot when an electron is
added to the other dot. The expressions of the charging energies are

ECL = e2

CL

 1
1 − C2

m
CLCR

 , ECR = e2

CR

 1
1 − C2

m
CLCR

 , ECm = e2

Cm

 1
CLCR

C2
m

− 1

 . (25)

with CL(R) = Cs(d) + CgL(R) + Cm, the sum of capacitances connected to the left (right)
dot. ECL and ECR can be seen as the charging energies of the single dots multiplied by a
correction factor, which vanishes when Cm = 0.

A sanity check for the expressions (14) and (15) of the electrochemical potentials of
the two dots is to verify that they yield the charging energies when adding electrons to the
dots:

µL (N + 1,M) − µL (N,M) = ECL, (26)
µR (N,M + 1) − µR (N,M) = ECR, (27)
µL (N,M + 1) − µL (N,M) = µR (N + 1,M) − µR (N,M) = ECm. (28)

There is an insightful exercise which consists in studying the expression of the total
energy U(N,M) in the limits illustrated in Fig. 11. On the one hand, when the two dots
are uncoupled, Cm = 0 and therefore ECm = 0. In this case, the total energy is simply the
sum of the energies of the two individual dots, U(N,M) = UL(N) + UR(M),

U (N,M) = (−eN + CgLVgL)2

2CL
+ (−eM + CgRVgR)2

2CR
, (29)

and the charge stability diagram is a rectangular grid (Fig. 11a). On the other hand, when
the two dots are strongly coupled, Cm/CL(R) → 1. In this limit, the denominator in the
expressions of the charging energies Eq. (25) can be written as

1 − C2
m

CLCR
≈ 1 − 1

1 + C̃L+C̃R
Cm

≈ 1 −
(

1 − C̃L + C̃R

Cm

)
= C̃L + C̃R

Cm
, (30)

where we defined C̃L = CL − Cm and C̃R = CR − Cm. This leads to

ECL ≈ ECR ≈ ECm ≈ e2

C̃L + C̃R
. (31)

Rearranging the terms in Eq. (25) gives

U (N,M) = [−e (N +M) + CgLVgL + CgRVgR]2

2
(
C̃L + C̃R

) , (32)

which is the energy of a single dot with total charge N +M and capacitance C̃L + C̃R (Fig.
11c).

Finally, in the intermediate regime of weak coupling, Cm < CL, CR we obtain the
well-known honeycomb pattern (Fig. 11b and d).
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C Additional information on characterization of the cavity
Raw outputs of Sonnet simulations are shown in Figs. 28 and 29. The magnitude and
phase of the transmission coefficient S21 are plotted for different combinations of line and
turn numbers. The data from Fig. 15 has been extracted from these traces.
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Figure 28: Sonnet simulation outputs for fixed nturns = 8 and varying nlines. Compared to Fig. 29, the
effect of changing the number of lines is less pronounced.
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Figure 29: Sonnet simulation outputs for fixed nlines = 17 and varying nturns. The magnitude plot shows
a mode at high frequencies that is shifted towards lower frequencies when increasing the number of
turns. It is responsible for the increasing trend of data in Fig. 15b for nt > 12.

The transmission through the microwave cavity has been also simulated in Sonnet. The
comparison of the results and the corresponding experimental measurements are shown in
Fig. 30. The agreement is good, even if extra RF components in the dewar as well as chip
imperfections add frequency-dependent features to the measured data, i.e. wiggles and
dips in the transmission.
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Figure 30: Sonnet simulation of the transmission through the cavity compared to experimental measure-
ments performed in a helium dewar at 4 K. The mode at 6.3 GHz is the cavity resonance.

For the measurements in the helium dewar, the first step is to prepare the chips. The
lift-off of a polymethyl methacrylate (PMMA) protective layer is done in acetone and
overnight. Then, the chips are rinsed in isopropanol (IPA) and dried with a nitrogen gun.
Figures 31a and b show pictures of the clean chips.

Then, chips are glued on a PCB sample holder, as shown in Fig. 31d and e. Next,
the chip is wirebonded to the PCB lines, as in Fig. 31f. Note that the chip shown in this
picture is different: it only has RF filters, and it is the one used to measure the data in
Fig. 16. Apart from making connections to the lines, wirebonds are also used to define
properly the ground plane of the chip.

Finally, the PCB is mounted on a RF stick, and secured with aluminum tape, as shown
on the left of Fig. 31c. The RF stick is then inserted in the helium dewar, and the
measurements are performed connecting the input and output ports of the chip to a vector
network analyzer using coaxial cables.

(a) (b)

(c)

(d) (e) (f)

Figure 31: Pictures to illustrate the cooldown procedure. (a) Gel pack where chips are stored after
cleaning. (b) Close-up view of a clean chip under the optical microscope. (c) RF stick with a PCB
sample holder mounted on it. (d) PCB sample holder. (e) PCB sample holder with chip glued on it. (f)
Chip wirebonded to the PCB lines.
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D Further insights on resonance fitting
This appendix summarizes the method used to extract the resonance frequency and quality
factors from complex VNA data. The main text presents the ideal expression of the
reflection coefficient S11 to explain the physics, but all data fitting in this thesis is performed
with NLQFIT 7 [31, 32]. The key idea is to fit the complex data directly with a model that
absorbs common measurement non-idealities such as cable delay, impedance mismatch, and
slow frequency-dependent gain. This improves robustness and yields reliable fr, Ql, Qi, Qe.
The fitted model for the measured data is

Sa(f) = α(f) e−iϕ e−i ∆ϕ(f)
[
SD + d eiθ

1 + iQl t(f)

]
, t(f) = 2(f − fr)

fr
, (33)

where fr and Ql are the resonance frequency and loaded quality factor. The bracketed term
is the usual Q-circle. The prefactors account for the measurement chain: α(f) represents
a slowly varying amplitude correction that captures background gain; ϕ is a static phase
offset; ∆ϕ(f) is a slowly varying phase term; SD sets the off-resonance point in the complex
plane and allows the circle center to be shifted from the origin; d controls the circle diameter;
and θ is a rotation angle. From the fitted parameters one obtains fr and Ql directly; the
internal and external quality factors follow from Q−1

l = Q−1
i + Q−1

e and the coupling
coefficient β that can be extracted from the Q-circle diameter.

In relation to the ideal expression quoted in the main text, which assumes perfect
matching and negligible backgrounds, this model differs by allowing frequency-dependent
amplitude and phase corrections and the circle to be shifted and rotated in the complex
plane. When these corrections are negligible the fitted model reduces to the ideal form
used for explanation in the main text, but in general the augmented model provides better
fits to real laboratory data.

For the numerical optimization, NLQFIT7 minimizes residuals in the complex domain
using the compact parameterization

ri = Si −
[
m1 + im2 + (m3 + im4) yi

]
exp

(
im7

fi−fr

flwst

)
, (34)

with
yi = 1

1 + iQl ti
, ti = 2fi−fr

fr
. (35)

Here (m1,m2) encode a complex offset that captures background transmission or reflection,
(m3,m4) scale and rotate the Q-circle contribution yi, and m7 captures a linear phase slope
with frequency that effectively models cable delay. This formulation ensures that magni-
tude and phase are treated consistently by fitting the real and imaginary parts together.
The equivalence between Eqs. (33) and (34) can be found in Refs. [31, 32].

In practice this approach is advantageous because it provides reliable fits even when
the resonance is weak or distorted by the measurement chain. The Python implementa-
tion used in this thesis provides a graphical interface for selecting files and the frequency
band of interest, applies an optional baseline correction, and then performs the NLQFIT 7
optimization to return (fr, Ql, Qi, Qe).

Note: The code is available at github.com/BeBerasategi/Resonance-fitting.
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