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A B S T R A C T

Fetal alcohol spectrum disorder (FASD) is a complex neurodevelopmental condition caused by prenatal alcohol 
exposure (PAE), often underdiagnosed due to heterogeneous symptoms and diagnostic challenges. This study 
aimed to identify serum-based biomarkers for early FASD diagnosis and assess the potential of epigallocatechin 
gallate (EGCG), a natural antioxidant found in green tea, in modulating markers related to FASD. Luminex 
immunoassays were employed to analyze serum samples from FASD patients, identifying seven predictive bio
markers involved in neuroinflammation and immune dysregulation: IL-10, IFNγ, CCL2, NGFβ, IL-1β, CX3CL1, 
and CXCL16. These biomarkers reflect key disruptions in brain health, particularly in neuroinflammation, which 
contributes to the cognitive, behavioral, and mental health challenges frequently observed in FASD patients, 
including memory deficits, attention problems, and emotional dysregulation. To enhance diagnostic precision, 
machine learning (ML) models were trained on these biomarker datasets, with Random Forest (RF) achieving the 
highest accuracy (0.89), sensitivity (0.92), specificity (0.83), and ROC AUC (0.88). Additionally, an open-label 
pilot study in children diagnosed with FASD showed significant restoration of the levels of IFNy, CX3CL1, IL- 
1β, IL-10, and NGFβ after 12 months of EGCG treatment, suggesting its potential role in mitigating neuro
inflammatory responses and promoting neurogenesis. These findings underscore the value of integrating serum 
biomarkers with ML-driven approaches to advance FASD diagnostics, while also identifying EGCG as a promising 
intervention for neurodevelopmental and mental health impairments associated with the disorder.

Introduction

Fetal alcohol spectrum disorder (FASD) is a multifaceted neuro
developmental disorder associated with prenatal alcohol consumption 
(PAE) (Chung et al., 2021), which includes Fetal Alcohol Syndrome 
(FAS), partial FAS (pFAS), alcohol-related neurodevelopmental disorder 
(ARND), and alcohol-related birth defects (ARBD) (Hoyme et al., 2016). 
Globally, FASD affects approximately 7.7 per 1000 individuals, with 
prevalence in Europe reaching up to 19.8 per 1000 (Lange et al., 2017a). 

Eastern European orphanages have reported rates between 15% and 
68% (Popova et al., 2014), and it is known that at least half of the 
children adopted from Eastern European countries exhibit symptoms 
linked to FASD (Colom et al., 2021; Landgren et al., 2010). In Western 
European countries and the United States, 1–5% of school-aged children 
may be affected by FASD (May et al., 2009, 2018). Despite its high 
prevalence, FASD remains underdiagnosed due to the variability of 
symptoms and overlap with other conditions such as attention deficit 
hyperactivity disorder (ADHD).
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Individuals diagnosed with FASD experience lifelong neurocognitive 
impairments and social challenges. These include deficits in memory, 
attention, adaptive functioning, and abstract reasoning (Champagne 
et al., 2023; Kelly et al., 2000; Lange et al., 2017b). Secondary disabil
ities arise from interactions between primary impairments and the 
environment, contributing to difficulties in education, employment, 
mental health, and social relationships (Lowry, 1997) leading to aca
demic failure, low self-esteem, unstable housing, depression, and legal 
problems (Leenaars et al., 2012; Navarro et al., 2011; Pei et al., 2011; 
Popova et al., 2016). Therefore, early diagnosis is essential to facilitate 
targeted interventions, improve quality of life, and reduce long-term 
complications.

Current diagnostic criteria for FASD encompass PAE history, char
acteristic facial features, growth impairments, and neurodevelopmental 
deficits (Hoyme et al., 2016). The Institute of Medicine (IOM) guidelines 
include assessments of craniofacial anomalies, growth retardation, and 
neurodevelopmental disorders (Hoyme et al., 2016). However, chal
lenges such as unreliable maternal alcohol histories, changes in custody, 
and the absence of clear physical features hinder accurate diagnoses. As 
a result, many cases remain undiagnosed or are identified too late, 
limiting access to early interventions and support for academic diffi
culties, employment instability, mental health, drug use, legal problems, 
and suicide attempts (Fast & Conry, 2009; Jańczewska et al., 2019; 
Popova et al., 2016).

A key consequence of PAE is the alteration of cytokine and chemo
kine pathways, such as CCL2 (Chang et al., 2018; Pascual et al., 2017; 
Zhang & Luo, 2019), CX3CL1 (Bachstetter et al., 2011; Cardona et al., 
2006; Pascual et al., 2017; Roberson et al., 2011), and CXCL16 
(Juárez-Rodríguez et al., 2020; Lepore et al., 2018; Rosito et al., 2012, 
2014). The imbalance of these molecules has been associated with 
alcohol-induced neuroinflammation in the developing central nervous 
system (CNS), as well as in various neurodevelopmental conditions, such 
as Alzheimer (Domingues et al., 2017; Sanford & McEwan, 2022), Par
kinson (Liu et al., 2019) and ADHD (Dunn et al., 2019). PAE also triggers 
impaired activation of microglia and astrocytes (Kane & Drew, 2021; 
Lawrimore et al., 2019; Lord et al., 2022), releasing pro-inflammatory 
cytokines such as IL-1β, IL-6, TNF, COX2, and nitric oxide, as well as a 
reduction in anti-inflammatory factors such as IL-10 (Lobo-Silva et al., 
2016; Milligan & Watkins, 2009; Pascual et al., 2017; Roberson et al., 
2012; Saijo & Glass, 2011). Additionally, there is an exacerbated 
leukocyte migration to the CNS due to an altered expression of adhesion 
molecules and remodeling proteins such as MMP-10 and VCAM-1 
(DeVito & Stone, 2001; Noor & Milligan, 2018).

In addition to the molecules mentioned above, there is a subset of 
neuronal biomarkers, including Enolase-2 (a marker of cell maturation 
in nerve tissue) (Ledig et al., 1990), NGF (neuronal plasticity marker) 
(Boschen & Klintsova, 2017; Ceccanti et al., 2012) as well as s100b 
(neural differentiation marker) (Eriksen et al., 2002), that have been 
identified as potential indicators of neuroinflammation and neuronal 
damage. All these biomarkers could be used, after clinical validation, as 
potential candidates to facilitate the diagnosis of this syndrome. 
Nevertheless, studies specifically targeting serum biomarkers in human 
FASD patients remain limited.

The search for novel strategies and methods for early diagnosis is one 
of the most promising fields of research in FASD. In this context, 
emerging technologies, such as machine learning (ML), offer promising 
avenues for improving diagnostic accuracy and efficiency (Rodrigues 
et al., 2023). ML algorithms have demonstrated impressive capabilities 
in analyzing complex datasets and extracting meaningful patterns in 
other diseases such as cancer, Alzheimer, ASD, and ADHD (Bahathiq 
et al., 2022; Ehrig et al., 2023; Eslami et al., 2021). For instance, ML has 
shown great promise in predicting the onset of Alzheimer’s disease, 
specifically in identifying individuals at risk of significant cognitive 
decline, thereby facilitating their inclusion in clinical trials (Ezzati et al., 
2020). In recent years, research exploring the potential use of ML al
gorithms for early diagnosing FASD has shown promising results (Suttie 

et al., 2024). Goh et al. trained their model using CBCL scales, IQ, and 
physical examination, obtaining a sensitivity of 64%− 81% and speci
ficity of 78%− 80% (Goh et al., 2016). Furthermore, Lussier et al. used 
methylation signatures for FASD classification (Lussier et al., 2018). 
Using facial recognition datasets, Blanck-Lubarsch et al. formulated an 
automated classification algorithm with 3D facial scans 
(Blanck-Lubarsch et al., 2022). However, further research into the 
application of machine learning algorithms is essential to improve early 
diagnosis and enhance the quality of life for individuals. Additionally, 
integrating serum biomarkers into ML models could further increase 
diagnostic accuracy and facilitate earlier detection of FASD.

In addition to improved diagnostic accuracy, effective treatments are 
needed to combat the harmful effects of PAE. Epigallocatechin gallate 
(EGCG), a catechin found in green tea, has been investigated as a po
tential treatment for several health conditions, including cancer, 
inflammation, diabetes, and cardiovascular diseases (Chu et al., 2017). 
Despite some molecular mechanisms remain unclear, EGCG has been 
shown to attenuate oxidative stress (Saffari & Sadrzadeh, 2004), protect 
against neuroinflammation, boost the immune system (Levites et al., 
2003; Long et al., 2010), and provide neuroprotective benefits in 
neurodegenerative diseases (de la Torre et al., 2016). In addition, EGCG 
has received increasing attention for its role in neural plasticity and its 
interaction with key proteins such as DYRK1A (De la Torre et al., 2014; 
de la Torre et al., 2016). Previous studies have examined the protective 
effects of EGCG in FASD, including oxidative stress, cardiac biomarkers, 
neuronal maturation, astrocyte differentiation, and neuronal plasticity 
(Almeida-Toledano et al., 2021; Andreu-Fernández et al., 2023).

The present study has analyzed the serum protein profile in a cohort 
of children diagnosed with FASD to identify specific biomarkers asso
ciated with this syndrome for diagnostic purposes. ML algorithms were 
used to develop a predictive model based on the serum protein profile 
for the early diagnosis of FASD. In addition, the effect of 12-month 
treatment with the antioxidant EGCG on these biomarkers was studied 
to determine the potential of this natural antioxidant as a therapeutic 
tool for FASD.

Material and methods

Study design and participant information

This is an open-label, pre-post intervention, non-randomized quasi- 
experimental study. The study cohort comprised 30 children without a 
diagnosis of FASD (control group) and 60 patients diagnosed with FASD, 
all of them coming from adoptions from Eastern European countries 
(EEC). The subset of 60 FASD patients received a nutritional supplement 
(FontUp®), a therapeutic candidate known for its potential to enhance 
cognitive performance (de la Torre et al., 2016). FontUp® is a soluble 
commercial preparation in a sachet format containing 94% EGCG 
(Supplementary Table S1). The selection of FontUp® for this study was 
based on several key factors. First, its palatable taste makes it easier for 
children to consume, overcoming a common challenge in pediatric 
supplementation. Second, FontUp® has demonstrated superior 
bioavailability, exhibiting a longer half-life, enhanced gastrointestinal 
stability, and reduced inter-individual variability in plasma concentra
tions compared to EGCG alone (Fernández et al., 2020). Although the 
Font-Up® formulation contains additional components such as vitamins 
and minerals, their concentrations are more than an order of magnitude 
below those required to significantly affect neurocognitive or physio
logical outcomes (Mengelberg et al., 2022; Sim et al., 2022; Zhou et al., 
2023).

Intervention

FASD participants received an oral dose of 9 mg/kg/day of EGCG via 
FontUp®, a cocoa-flavored nutritional powder dissolved in 200 mL of 
semi-skimmed milk. The 9mg/kg/day dose is grounded in prior 
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pediatric research (Cieuta-Walti et al., 2022; de la Torre et al., 2016), 
and a maximum daily limit of 400 mg. The product was purchased from 
Grand Fontaine Laboratories (Barcelona, Spain).

FASD diagnosis

The diagnosis and clinical assessment were made by a pediatrician 
and a clinical psychologist specialized in FASD, following the Updated 
Clinical Guidelines for Diagnosing FASD by Hoyme et al. (2016). Briefly, 
each child was assigned to a FASD diagnostic category according to the 
classification of the 1996 IOM criteria (reviewed in 2016) (Hoyme et al., 
2005, 2016), based on 5 diagnostic characteristics: 1) confirmed pre
natal alcohol exposure; 2) evidence of a characteristic minor facial ab
normalities pattern (2), typified by having a thin upper lip, smooth 
philtrum and short palpebral fissures; 3) growth retardation, defined as 
height or weight (1) ≤10th percentile; 4) evidence of deficient brain 
growth or subrogated data; and 5) behavioral or cognitive affected do
mains (1 or 2) related to prenatal alcohol exposure. For a diagnosis of 
complete FAS, at least criteria 2, 3, 4, 5 (confirmed or not confirmed 
PAE) were required. For partial FAS, criteria 1, 2, and at least one of 
criteria 5 (confirmed PAE) or 2, 5, and 3 or 4 (no confirmed PAE) were 
required. The diagnosis of alcohol-related birth defects (ARBD) required 
the finding of 1 criterion plus a minimum of one structural defect 
involving heart, skeleton, kidney, eye, ear, or minor abnormalities like 
railway ears, midface hypoplasia, or stick hockey hands. The diagnosis 
of alcohol-related neurodevelopmental disorders (ARND) required the 
finding of 1 and 5 criteria.

Blood collection, processing and storage protocol

A total of 5 mL of whole blood was collected from both control and 
FASD group at baseline using BD Vacutainer® SST® II Advance® (BD 
Biosciences; 367,955). For the FASD group, additional blood samples 
were obtained 12 months post-treatment. Immediately after collection, 
the blood samples were centrifuged at 1750 g for 10 min. Serum samples 
were stored at − 80 ◦C until further analysis.

A further 5 mL of blood was collected into BD Vacutainer® K3E 15% 
Aprotinin 250KIU tubes (SGSH; BD361017). Peripheral blood mono
nuclear cells (PBMCs) were isolated from whole blood by centrifugation 
using Blood Collection tube BD Vacutainer®, BD CPT™ (Avantor, 
BDAM362781) at 1750 g for 25 min. After isolation, PBMCs were 
washed twice with PBS at 500 g. RNA was extracted from the PBMCs 
using the QIAshredder (Qiagen, 79,654) and RNAsy Mini-Kit (Qiagen, 
74,104) protocols for RNA isolation. The RNA was quantified using 
Nanodrop One (Thermo Fisher Scientific). Nucleic acids included in the 
study had a 260/280 ratio and a 260/260 ratio >1.8. RNA samples were 
stored at − 80 ◦C for further analysis.

Luminex / multiplex bead-based immunoassay

Serum samples were centrifuged at 16,000 g for 4 min and then 
diluted 1:2 and 1:4 with Calibrator Diluent RD6–40 following the 
manufacturer’s instructions. The concentration of several biomarkers, 
IL-6, CCL2, CX3CL1, IL-10, NGFβ, IL1β, IFNγ, CXCL16, VCAM-1, MMP- 
10, were quantified in serum samples using a personalized human 
multiplexed magnetic beads-based immunoassay (LXSAHM-06 and 
LXSAHM-08, R&D Systems). Serum samples (50 μL/well) or standards 
(50 μL/well) were incubated according to the manufacturer’s 
instructions.

The standard for each biomarker was provided by the manufacturer 
and was used to establish standard curves to maximize the sensitivity of 
the assay. Biomarker levels were determined using a Luminex analyzer 
(Luminex 200) and the data were reported accordingly. More detailed 
information can be found in the original protocol provided by R&D 
Systems.

Reverse transcription-quantitative real-time PCR (RT-qPCR)

Reverse transcription was performed using the Applied Bio
systemsTM High Capacity cDNA Reverse Transcription Kit (Fisher Sci
entific; 10,400,745) according to the manufacturer’s protocol. RT-qPCR 
was performed in 384-well plates (Axygen, PCR-384M2-C) using 
PerfeCTa SYBR Green FastMix (Quantabio, 95,074–012) in Quant
StudioTM 7 Real-Time PCR (Thermo Fisher Scientific; 4485,701). The 
GAPDH gene was used for normalization. Primers for the analyzed genes 
(CCL2, CX3CL1, CXCL16, IL-1β, IL-10, IL-6, VCAM-1, MMP-10, IFNγ, 
enolase-2, NGFβ and S100β) were provided by Sigma Aldrich and are 
listed in Supplementary Table 2. The RNA used was obtained from the 
same samples subjected to RNA-seq. The 2− ΔΔCt method was used to 
assess relative abundance.

Statistical analysis

Results were expressed as mean and standard deviation. Compari
sons were performed between controls and FASD as well as between 
FASD and FASD after EGCG treatment. Data were first tested for 
normality using the Shapiro-Wilk test. One-way ANOVA followed by 
Tukey’s multiple comparison test was used to assess differences between 
groups. For non-normally distributed samples, Kruskal-Wallis test was 
used, followed by Dunn’s multiple comparison test.

In addition to the aforementioned statistical tests, ML algorithms 
were also employed to build a predictive model. Significant biomarkers 
included in this study were used as variables for the model: CCL2, 
CX3CL1, CXCL16, IL-1β, IL-10, IFNγ, and NGFβ.

All statistical analyses were performed using the R statistical pack
age. All graphs were generated using GraphPad Prism software.

Machine learning models

This research tested a variety of ML algorithms, including Logistic 
Regression (LR), Linear Discriminant Analysis (LDA), Support Vector 
Machine (SVM) in both its linear and polynomial forms, Decision Tree 
(DT), K-Nearest Neighbors (KNN), Random Forests (RF), and Extreme 
Gradient Boosting (XGB), to predict FASD.

The analysis incorporated significant biomarkers evaluated in this 
study (7), namely CCL2, CX3CL1, CXCL16, IL-10, IFNγ, and NGF. Each 
biomarker was tested for outliers using Rosner’s generalized extreme 
Studentized deviate test, implemented through the rosnerTest function 
from the EnvStats package. The dataset was subsequently scaled using 
‘scale’ function in base R. Prior to model construction, a hold-out 
method was applied to split the data into training and test sets using 
‘createDataPartition’ function from caret package in R (Kuhn, 2008). 
67% of the data was allocated to training set and the remaining 33% to 
test set. This function employs a stratified random sampling method, 
which minimizes the bias of the data distribution and creates balanced 
data.

In addition to the hold-out method, a resampling method involving 
5-fold cross-validation and three repeats was adopted. This was imple
mented using ‘trainControl’ function from the caret package (Kuhn, 
2008). The models were trained using ‘train’ function with hyper
parameters set to default, which gathers and simplifies numerous R al
gorithms for the development of predictive models (Kuhn, 2008). The 
models employed included LR, using ‘glm’ method and binomial family, 
and LDA, implemented with ‘lda’ method, which has ‘moment’ as the 
default mean and variance estimator. Linear SVM and Polynomial SVM 
were performed using ‘svmLinear’ and ‘svmPoly’ methods, respectively. 
They have C tuning parameter, which determines the margin classifi
cation, equal to 1 as default settings. KNN was employed by ‘knn’ 
method also from caret package, performing automatic hyperparameter 
tuning for k depending on instance-based learning. In addition, RF was 
employed using ‘rf’ method, with 500 trees as default. XGB model used 
‘xgbTree’ method, having 100 maximum iterations by default.
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The ‘predict’ function from stats package was used to predict classes 
with the test group. In order to make comparisons, the ‘confusionMatrix’ 
function from caret package was used to calculate true positive, true 
negative, false positive, and false negative. These calculations provided 
measures including accuracy, precision, sensitivity, F1 score and speci
ficity. ROC-AUC was obtained using ‘roc’ function from pROC package 
(Robin et al., 2011). Training and test datasets were consistent across 
FASD and its subgroups, ensuring a fair and valid comparison.

Feature importance prediction of the models was determined by 
calculating the Root Mean Square Error (RMSE) loss after permutation. 
It was obtained with ‘explain’ function from DALEX package, with 
‘classification’ type model in arguments (Law Biecek, 2018). Plots were 
generated from the object class formed by ‘variable_importance’ func
tion from caret package (Kuhn, 2008).

LR is a binary classification method that uses a logistic function for 
class probability estimation and maximum likelihood estimation for 
coefficient assessment. LR is easy to implement, but can overfit with 
many features. LDA reduces data dimensionality, maximizing class 
separability, to identify a linear combination of features that charac
terizes a group. SVM maximizes the distances between class-separating 
hyperplanes. We differentiate between linear SVM (efficient, for linearly 
separable data) and polynomial SVM (for non-linear data, computa
tionally intense). DT is a non-parametric, tree-structured algorithm that 
splits data into subsets based on the value of input features, and handles 
both numerical and categorical data but is prone to overfitting if not 
properly pruned. KNN predicts class by calculating the Euclidean dis
tance to training points, selecting K most similar instances. Its perfor
mance degrades on high-dimensional datasets. Ensemble methods such 
as RF and XGB are based on decision trees. RF combines multiple 
independently trained decision trees, uses bagging to create subsets of 
the original dataset, and then aggregates the results. XGB, on the other 
hand, trains decision trees sequentially, with each new tree correcting 

the errors made by the previous one. Our study aimed to identify the 
most effective model for predicting FASD by comparing different 
models. This variety of approaches enhanced the robustness and 
comprehensiveness of the study.

To explore the multidimensional structure of our data, we applied t- 
distributed Stochastic Neighbor Embedding (t-SNE) using the Rtsne 
package in R, setting three dimensions and a perplexity value of 20 to 
balance local and global structure preservation. To analyze group 
separability, we calculated centroids for each group by computing the 
mean t-SNE coordinates across all three dimensions. A Multivariate 
Analysis of Variance (MANOVA) was performed to determine whether 
the group centroids differed significantly. Pairwise comparisons were 
conducted using Bonferroni-adjusted t-tests to identify specific group 
differences. T-SNE visualization was performed using plotly package.

Results

A total of 105 subjects from different previous cohorts of EEC 
adoptees with a suspicion of FASD diagnosis were initially enrolled in 
the study. Among these, 7 subjects did not meet the inclusion criteria, 
and 8 declined participation, leaving 90 subjects who underwent neu
rocognitive and clinical evaluation for FASD diagnosis (Fig. 1).

Out of the 90 evaluated, 60 were diagnosed with FASD, while the 
remaining 30 were categorized as unaffected controls. None of the 
control participants had a documented history of prenatal alcohol 
exposure, and their neuropsychological assessments and clinical evalu
ations did not indicate any impairment.

30 children diagnosed with FASD completed the 12-month EGCG 
treatment regimen (Fig. 1). Blood samples were collected at baseline 
from both the FASD and control (No FASD) groups, and again after 12 
months of treatment for the FASD group. 30 patients were lost to follow- 
up due to a combination of personal, behavioral, psychosocial, and 

Fig. 1. Flowchart diagram. Flowchart of FASD diagnosis and EGCG study in FASD patients during 12 months.
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procedural challenges commonly encountered in individuals diagnosed 
with FASD and their families. Comparative analysis of the FASD and 
control groups showed no significant differences in age, sex, or the 
prevalence of pre-existing comorbidities, as summarized in Table 1.

Serum biomarker analysis and EGCG effect in FASD

Serum biomarker concentrations were quantified using Luminex 
multiplex immunoassays showing a significant increase in the level of 
IFNγ, CX3CL1, IL-1β and CCL2 in FASD group compared to controls 
(Fig. 2A–D, Supplementary Table 3). After EGCG treatment, IFNγ, 
CX3CL1, and IL-1β levels were significantly recovered to physiological 
levels in FASD patients (Fig. 2A–C). Although a reduction in CCL2 levels 
was observed after EGCG treatment, this change did not reach statistical 
significance (Fig. 2D). In contrast, IL-10 and CXCL16 levels were 
significantly lower in the FASD group (Fig. 2E, F) compared to control 
group. EGCG treatment successfully restored IL-10 levels. However, no 
significant differences were detected in CXCL16 levels.

IL-6, VCAM-1, and MMP10 levels trended upward in the FASD group 
compared to controls (Fig. 2G–I), though not statistically significant. 
Although EGCG treatment resulted in a slight decrease in these bio
markers, the changes were not statistically significant.

Regarding neuronal biomarkers, a significant decrease in NGFβ was 
observed in the FASD group (Fig. 3A), suggesting that PAE may down
regulate NGFβ expression, potentially contributing to the neuro
developmental impairments associated with FASD. The FASD group 
treated during 12 months with EGCG exhibited a significant increase in 
NGFβ levels compared to the FASD group, then restoring the physio
logical levels. Moreover, no significant differences were observed be
tween groups for Enolase-2 and s100β biomarkers (Fig. 3B, C).

To validate these findings, gene expression of several biomarkers was 
analyzed using RT-qPCR. there was a significant increase in IFNγ 
expression in the FASD group compared to the control, with a subse
quent significant reduction observed following EGCG treatment 
(Fig. 4A). Similarly, CX3CL1 mRNA expression were significantly 
elevated in the FASD group compared to controls and EGCG significantly 
reduced CX3CL1 expression in the FASD+EGCG group (Fig. 4B). IL-1β 
expression showed significantly increased expression in the FASD group 
compared to the control and significantly reduced expression after 
EGCG treatment (Fig. 4C). The mRNA expression of CCL2 exhibited 
trends consistent with the Luminex assay results. A significant increase 
was observed in the FASD group compared to controls (Fig. 4D), fol
lowed by a decreasing trend after EGCG treatment, although it was not 
significant. IL-10 expression was also reduced in FASD group and 
significantly increased after EGCG treatment, suggesting an anti- 
inflammatory effect (Fig. 4E). Similarly, CXCL16 mRNA expression 
was reduced in FASD group compared to controls (Fig. 4F). An 
increasing trend in CXCL16 expression was observed after EGCG treat
ment, although it was not statistically significant. According to immu
noassays results, IL-6, VCAM-1 and MMP-10 expression did not show 
significant differences among the groups (Fig. 4G–I).

Regarding neuronal biomarkers, NGFβ mRNA expression exhibited a 
significant decrease in the FASD group compared to controls (Fig. 5A). 
EGCG treatment resulted in a significant increase of NGFβ expression 
compared to FASD group. Consistent with the Luminex results, no sig
nificant differences were detected among the groups for Enolase-2 and 
s100β mRNA expression (Fig. 5B, C).

Therefore, the RT-qPCR analysis corroborated the findings obtained 
from the Luminex immunoassays, highlighting the potential of EGCG to 
mitigate the neuroinflammatory and neurodevelopmental disruptions 
through the normalization of specific biomarkers.

Predictive model

Predictive models were developed using 7 biomarkers, which 
include CCL2, IFNγ, CX3CL1, CXCL16, IL-1β, IL-10, and NGFβ, selected 
based on their statistically significant group differences and established 
biological relevance in the context of FASD-related neuroinflammation 
and immune dysregulation. This targeted feature selection strategy was 
applied to reduce dimensionality, minimize the risk of overfitting in a 
limited dataset, and enhance the interpretability and clinical applica
bility of the resulting models.

A total of 90 samples were included in the study, with 72 samples 
allocated for training the models and 18 samples reserved for testing and 
final model evaluation (Fig. 6). Multiple ML algorithms were performed, 
including LR, SVML, LDA, SVMP, DT, KNN, XGB, and RF. All models 
were trained using 5-fold cross-validation on the training dataset, and 
the final model performance metrics on the test dataset are summarized 
in Table 2.

Among the models, RF demonstrated the highest predictive perfor
mance, achieving the highest accuracy (0.89), precision (0.92), sensi
tivity (0.92), F1 Score (0.92), specificity (0.83), and ROC AUC (0.88), 
making it the most effective model for predicting FASD diagnosis. Other 
models such as Logistic Regression, SVML, LDA, SVMP, Decision Tree, 
KNN, and Xgboost showed lower performance across these metrics 
(Table 3, Fig. 7A). Based on these results, the RF model was selected as 
the primary predictive tool for FASD diagnosis due to its robust 
discriminative ability and superior overall performance.

To understand the decision-making process of RF model, we 
analyzed the importance of the variables in this algorithm. Feature 
importance was determined by calculating the Root Mean Square Error 
(RMSE) loss after permutation. The features were ranked in order of 
importance, with IL-10 (0.35) having the highest importance, IFNγ 
(0.33), CCL2 (0.27), NGFβ (0.22), IL-1β (0.17), CX3CL1 (0.16), and 
CXCL16 (0.12) (Fig. 7B). These results provide valuable insights into the 
key serum biomarkers involved in FASD conditions and their relative 
importance in the predictive model.

Partial dependence plots were generated to illustrate the influence of 
individual biomarkers on the predictions made by RF. These plots pro
vide a visualization of the marginal effect of each biomarker on the 
predicted probability of FASD diagnosis, averaged across all other fea
tures in the dataset. The x-axis represents the range of scaled biomarker 
levels, while the y-axis indicated the marginal predicted probability for 
FASD. An upward trend in the plot suggests that higher levels of the 
biomarker increase the likelihood of an FASD diagnosis, whereas a 
downward trend suggests that lower biomarker levels are associated 
with a higher probability of diagnosis.

Aligning with Luminex results, the analysis of IL-10 revealed that a 
decrease in its levels was associated with a marked increase in the 
predicted probability of FASD diagnosis (Fig. 8A). For IFNγ and CCL2, 
higher levels of this biomarker were associated with increased pre
dictions for FASD (Fig. 8B, C). NGFβ levels demonstrated a negative 
relationship with FASD predictions, with lower levels indicating a 
higher probability of diagnosis (Fig. 8D). IL-1β showed a strong positive 
association with FASD predictions (Fig. 8E). However, CX3CL1 and 
CXCL16 showed a less pronounced effect (Fig. 8F, G), being the two less 
important variables for FASD prediction.

Table 1 
Distribution by sex and mean age of participants.

Control (n ¼ 30) FASD

FAS (n ¼ 47) pFAS (n ¼ 13)

Descriptive characteristics
Sex (n, % male) 63 (19) 45 (21) 62 (8)
Age (years) 12.9 (3.7) 11.3 (4.0) 14.6 (4.0)
Anthropometric measurements
Height (cm) 150.3 (15.9) 142.5 (17.0) 158.2 (14.5)
Weight (kg) 43.8 (12.1) 39.6 (12.1) 50.9 (11.9)
BMI (kg/m2) 28.6 (4.8) 27.2 (5.1) 31.8(4.7)

Data for age, height, weight, and BMI are represented by mean and SD.
Abbreviations: BMI, Body Mass Index; FAS, Fetal Alcohol Syndrome; SD, Stan
dard Deviation; pFAS, partial Fetal Alcohol Syndrome.
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To further examine how EGCG treatment modulates biomarker 
profiles, a dimensionality reduction approach using t-distributed Sto
chastic Neighbor Embedding (t-SNE) was employed to visualize the 
clustering patterns of control, FASD, and EGCG-treated FASD patients 
(Fig. 9, Additional HTML File). To determine whether EGCG treatment 
shifts FASD patients toward a control-like profile, the centroids (mean 
positions) of each group in the t-SNE reduced space were compared 
(Table 3). A Multivariate Analysis of Variance (MANOVA) was 

performed to assess overall differences among centroids across groups, 
revealing a statistically significant difference (p < 0.001), indicating that 
at least one group centroid is significantly different from the others.

To further dissect these differences, pairwise t-tests were conducted 
for each of the three t-SNE dimensions (X, Y, Z), with Bonferroni 
correction applied for multiple comparisons. The results revealed sig
nificant centroid shifts in the X dimension between FASD and 
FASD+EGCG (p = 0.03) (Supplementary Table 4), suggesting that 

Fig. 2. Boxplot of serum concentration (pg/mL) of inflammatory and immune response biomarkers. (A) IFNγ, (B) CX3CL1, (C) IL-1β, (D) CCL2, (E) IL-10, (F) 
CXCL16, (G) IL-6, (H) VCAM-1, (I) MMP-10. White represents control patients; purple represents FASD patients and blue represents FASD patients at 12 months of 
EGCG treatment. **** P < 0.001, *** P < 0.005, ** P < 0.01, * P < 0.05.
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EGCG-treated patients exhibit a biologically relevant movement away 
from untreated FASD individuals. Significant differences in the Y 
dimension between FASD and FASD+EGCG (p = 0.016) and between 
FASD and control (p = 0.007) were observed, with no significant dif
ference between control and FASD+EGCG (p = 1.000) (Supplementary 
Table 5). This suggests that EGCG treatment aligns the Y-component 
biomarker profile of FASD patients more closely with control in
dividuals. No statistically significant differences in the Z dimension, 
implying that EGCG did not fully normalize all aspects of the biomarker 
profile (Supplementary Table 6).

The 30 FASD patients treated with EGCG were classified using the RF 
model previously discussed; 11 were classified as control and 19 as 
FASD, suggesting that a subset of EGCG-treated individuals exhibit a 
biomarker profile that is more similar to control than untreated FASD, 
confirming the recovery of physiological levels. The probabilities can be 
found in Supplementary Table 7. However, the persistence of FASD-like 
classification in some EGCG-treated individuals suggests that additional 
factors influence biomarker normalization.

Discussion

PAE disrupts critical physiological pathways, including neuro
inflammation, oxidative stress, and hormonal imbalances, leading to 
lifelong cognitive, behavioral, and physical impairments (Kane & Drew, 
2021; Popova et al., 2023). Despite advances in understanding the 
pathophysiology of FASD, traditional diagnostic methods remain 
limited by their reliance on clinical features and confirmation of 
maternal alcohol, which further complicates accurate diagnosis. These 
challenges highlight the need for innovative diagnostic strategies that 
take into account the heterogeneity of FASD manifestations. Over the 
past decade, research on early diagnostic biomarkers for neurodegen
erative diseases, including Alzheimer’s and Parkinson’, has highlighted 
the potential of serum-based biomarkers due to their cost-effectiveness, 
time-efficiency, and non-invasiveness, compared to cerebrospinal fluid 
(Ausó et al., 2020; Koníčková et al., 2022; Le et al., 2017). Technologies 
like the Luminex assay allow the simultaneous measurement of multiple 
biomarkers, providing insights into molecular disruptions caused by 
PAE. Previous studies revealed impaired levels of fractalkine (CX3CR1) 
(Roberson et al., 2011) and mTOR signaling proteins and phosphopro
teins (de la Monte et al., 2023). Another study showed that Insulin-like 
Growth Factor-I (IGF-I) and Insulin-like Growth Factor-II (IGF-II) levels 
were significantly lower in FASD and prenatal ethanol exposure (PEE) 
compared to the control group (Andreu-Fernández et al., 2019). 
Furthermore, research on effective treatments for FASD is essential to 
alleviate symptoms and improve the quality of life of individuals 
affected. However, the potential for novel therapeutic interventions 

remains largely unexplored. One promising treatment is the use of the 
natural antioxidant EGCG, which has demonstrated anti-inflammatory, 
antioxidant, and cognitive stimulation properties (de la Torre et al., 
2016). The present study investigated not only the biomarker profile of 
critical pathways associated with FASD, but also the effect of EGCG 
treatment on these biomarkers related to FASD physiopathology.

Some studies have highlighted the association between cytokine and 
chemokine alterations and FASD in both neonatal and adult brains of 
FASD-mouse models, producing immune dysregulation and inflamma
tion (Bodnar et al., 2016, 2020; Noor & Milligan, 2018). Consistent with 
these findings, this study identified elevated levels of CCL2, IFNγ, and 
CX3CL1 in patients diagnosed with FASD. These molecules play critical 
roles in inflammatory processes, neuronal and microglial dysfunction, 
and impaired neurogenesis, as confirmed by previous research 
(Bachstetter et al., 2011; Bodnar et al., 2016; Chang et al., 2018; Gao & 
Ji, 2010; Ginhoux et al., 2010; Pascual et al., 2017; Sanford & McEwan, 
2022; Zhang & Luo, 2019). Notably, CCL2, IFNγ, and CX3CL1 are known 
to mediate the recruitment and activation of monocytes and microglia, 
contributing to the release of neurotoxic factors for the CNS (Deshmane 
et al., 2009; Tau & Rothman, 1999). Importantly, EGCG treatment 
reduced the levels of these inflammatory markers, indicating its poten
tial to modulate the inflammatory cascade and provide neuroprotection 
by suppressing key regulators such as Nuclear Factor Kappa B (NF-kB) 
and Tumor Necrosis Factor alpha (TNF-α) (Bosch-Mola et al., 2017; Lee 
et al., 2009; Li et al., 2012; Melgarejo et al., 2009; Wang et al., 2012).

Conversely, CXCL16 chemokine showed reduced levels in patients 
diagnosed with FASD. CXCL16 is a chemokine that regulates innate 
immunity and provides neuroprotection against damage, inflammation, 
and hypoxia (Lepore et al., 2018; Rosito et al., 2012, 2014). The 
observed reduction in CXCL16 levels likely reflects the neurotoxic 
impact of PAE, consistent with findings in animal models of PAE 
(Juárez-Rodríguez et al., 2020). Our results showed that treatment with 
EGCG did not significantly restore CXCL16 levels, suggesting that its 
therapeutic effects are more likely attributable to the suppression of 
pro-inflammatory mediators rather than the re-establishment of CXCL16 
chemokine homeostasis. This finding aligns with previous studies 
reporting that EGCG had no effect on CXCL16 cytokine levels (Li et al., 
2011). However, other investigations have observed a reduction in 
CXCL16 levels following EGCG treatment, both in vivo (Saleh et al., 
2015) and in vitro (Saleh et al., 2013), suggesting that its impact on 
CXCL16 may be context-dependent.

PAE alters the hypothalamic-pituitary-adrenal (HPA) axis, a critical 
regulator of the immune and neuroendocrine systems, with interleukins 
playing a pivotal role in this dysregulation (Bodnar et al., 2016, 2020; 
Ruffaner-Hanson et al., 2023). Among these, IL-1β plays a proin
flammatory role in acute and chronic inflammatory disorders (Ren & 

Fig. 3. Boxplot of serum concentration (pg/mL) of neuronal biomarkers. (A) NGFβ, (B) Enolase-2, (C) S100β. White represents control patients; purple rep
resents FASD patients and blue represents FASD patients at 12 months of EGCG treatment. **** P < 0.001, *** P < 0.005, ** P < 0.01, * P < 0.05.
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Torres, 2009). Our findings indicated that patients diagnosed with FASD 
had higher levels of IL-1β compared to the controls, which is consistent 
with previous research suggesting that PAE conditions activate micro
glia and release pro-inflammatory molecules, such as IL-1β (Lawrimore 
et al., 2019; Mukherjee et al., 2023; Pascual et al., 2017). Our results 
also showed a significantly reduced expression of IL-10, an 
anti-inflammatory interleukin (Moore et al., 2003). IL-10 modulates 
immune responses by limiting excessive inflammation and preventing 

tissue damage (Iyer & Cheng, 2012). It is primarily produced by regu
latory T cells, monocytes, macrophages, and dendritic cells in response 
to inflammatory stimuli (Iyer & Cheng, 2012). Our results are consistent 
with studies examining children with a history of PAE at 6 and 12 
months of age (Bodnar et al., 2020), and FASD-rat model observations 
(Noor et al., 2016). Reduced IL-10 levels may lead to an exaggerated 
pro-inflammatory response, increasing susceptibility to neuro
inflammation and immune dysregulation, potentially influencing 

Fig. 4. RT-qPCR of selected inflammatory and immune biomarkers. Validation of inflammatory and immune biomarkers in control, FASD and FASD+EGCG 
groups. (A) IFNγ, (B) CX3CL1, (C) IL-1β, (D) CCL2, (E) IL-10, (F) CXCL16, (G) IL-6, (H) VCAM-1, (I) MMP-10. White represents control patients; purple represents 
FASD patients and blue represents FASD patients at 12 months of EGCG treatment. **** P < 0.001, *** P < 0.005, ** P < 0.01, * P < 0.05*.

A. Ramos-Triguero et al.                                                                                                                                                                                                                      International Journal of Clinical and Health Psychology 25 (2025) 100620 

8 



Fig. 5. RT-qPCR of selected neuronal biomarkers. Validation of neuronal biomarkers in Control, FASD and FASD+EGCG. (A) NGFβ, (B) Enolase-2, (C) S100β. 
White represents control patients; purple represents FASD patients and blue represents FASD patients at 12 months of EGCG treatment. * P < 0.05.

Fig. 6. Predictive model flowchart. Machine learning model development structure for FASD prediction.

Table 2 
Hyperparameters and test performance.

Performance Measures Machine Learning Models

LR SVM Linear LDA SVM Polynomial Decision Tree KNN XGBoost Random Forest

Accuracy 0.72 0.78 0.78 0.78 0.61 0.61 0.78 0.89
Precision 0.77 0.83 0.83 0.83 0.86 0.67 0.83 0.92
Sensitivity 0.83 0.83 0.83 0.83 0.5 0.83 0.83 0.92
F1 Score 0.8 0.83 0.83 0.83 0.63 0.74 0.83 0.92
Specificity 0.5 0.67 0.67 0.67 0.83 0.17 0.67 0.83
ROC AUC 0.67 0.75 0.75 0.75 0.67 0.5 0.75 0.88

Abbreviations: LR, Logistic Regression; SVML, Support Vector Machine Linear Kernel; LDA, Linear Discriminant Analysis; SVMP, Support Vector Machine Polynomial 
Kernel; KNN, k-Nearest Neighbour; XGB, gradient-boosted trees; RF, Random Forest; AUC, Area Under the Curve.
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developmental outcomes (Noor et al., 2016). Furthermore, studies 
revealed that PAE potentiated proinflammatory interleukins such as 
IL-1β and simultaneous suppression of IL-10 (Noor et al., 2016). EGCG 
therapy significantly restored IL-1β and IL-10 levels, by reducing the 
phosphorylation of the NF-kB p65 subunit (Sah et al., 2022), demon
strating its anti-inflammatory potential as previously reported (Shan 
et al., 2018; Wheeler et al., 2004). Interestingly, a study observed the 
downregulation of IL-1β in embryos after treatment with the antioxidant 
astaxanthin in FASD mice (Zheng et al., 2014).

Although previous studies have reported elevated levels of IL-6, a 
cytokine with both anti- and pro-inflammatory properties, after alcohol 
exposure (Noor & Milligan, 2018; Roberson et al., 2012; Schnur et al., 
2023), our study did not show statistically significant differences in 
these levels. However, our findings demonstrated a broader trend of 
upregulation of other interleukins in FASD patients, indicative of 
heightened inflammatory responses and disruptions in HPA axis regu
lation. The increased production of pro-inflammatory molecules in 

FASD leads to increased trans-endothelial leukocyte migration across 
the blood spinal-cord barrier, producing damage in CNS (Noor & Mil
ligan, 2018). VCAM-1, a cell adhesion protein primarily expressed in 
endothelial cells, plays a pivotal role in these inflammatory processes 
(Kong et al., 2018). Previous studies reported that PAE upregulated 
adhesion molecules such as VCAM-1, facilitating leukocyte migration 
into the CNS and exacerbating neuroinflammation [26,29]. However, no 
significant changes in VCAM-1 levels were observed in our study. 
Similarly, vascular remodeling proteins like MMP-10, which have been 
reported to be reduced in FASD and may confer immune-protective 
properties (Gano et al., 2020; Rosenberg et al., 2010), did not show 
significant differences in our cohort.

Neurotrophins, which are essential for brain development and syn
aptic plasticity, play a crucial role in maintaining neuronal function and 
survival (Carito et al., 2019). NGFβ, a neurotrophic factor, is expressed 
both in CNS and peripheral nervous system, where it regulates neuronal 
maturation and survival (Bersani et al., 2000). Abnormalities in NGFβ 
levels during fetal growth can have long-lasting effects on neuro
plasticity, learning, memory, and behavior (Carito et al., 2019). Our 
study found a significant decrease in NGFβ in FASD group. Previous 
research suggests that alcohol exposure leads to promoter methylation 
of NGFβ gene, leading to a significant decrease in NGFβ expression, 
producing the neurodevelopmental impairments observed in FASD 
(Heberlein et al., 2013). In contrast, biomarkers levels of enolase-2, a 
marker of neuronal maturation whose levels were reduced in PAE rat 
model (Ledig et al., 1990), and s100β, a potential biomarker for brain or 

Table 3 
Centroid coordinates of control, FASD, and EGCG groups in the t-SNE 
space. The table presents the mean centroid positions (X, Y, and Z coordinates) 
for each group based on the t-SNE dimensionality reduction.

Group Control FASD FASD+EGCG

X centroid 0.6268624 − 1.2104418 1.7940211
Y centroid − 2.896919 2.667445 − 2.437972
Z centroid − 1.4199625 − 0.0198971 1.45975662

Fig. 7. Machine learning algorithm modeling. (A) Model performance for FASD prediction. (B) Mean variable-importance of RF model for FASD prediction, 
calculated using 50 permutations and the root-mean-squared-error-loss-function. LR, Logistic Regression; SVML, Support Vector Machine Linear Kernel; LDA, Linear 
Discriminant Analysis; SVMP, Support Vector Machine Polynomial Kernel; DT, Decision Tree; KNN, k-Nearest Neighbor; XGB, gradient-boosted trees; RF, 
Random Forest.
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spinal cord injury (Yokobori et al., 2013), were not significantly 
different in our study. Interestingly, after EGCG treatment, NGFβ levels 
increased significantly in the FASD group, reaching levels comparable to 
the control group. This finding suggests a potential neurostimulatory 
effect of EGCG, probably due to stimulation of neuritogenic activity, as 
observed in previous studies (Gundimeda et al., 2010). These results 
highlight the specificity of EGCG’s effects on certain neurotrophic fac
tors that could provide an answer to the improvement of cognitive 

function, such as memory and learning tasks, observed in FASD-mouse 
model (Tiwari et al., 2010). However, our results also suggest a 
limited effect on other biomarkers associated with neuronal growth and 
astrocytic function.

In order to evaluate the effects of EGCG on biomarker expression, a 
multivariate analysis of t-SNE centroids was performed. Significant 
differences were observed between the untreated FASD group and the 
FASD+EGCG group along the Y dimension, while no significant 

Fig. 8. Partial dependence plot (PDP) from RF model. PDP illustrates the influence of biomarker levels in model predictions. A downward trend indicates that 
higher values of the biomarker decrease the likelihood of being classified as FASD, whereas an upward trend suggests a higher likelihood of FASD classification with 
increasing biomarker levels. CCL2, C–C Motif Chemokine Ligand 2; CX3CL1, C-X3-C Motif Chemokine Ligand 1; CXCL16, C-X-C Motif Chemokine Ligand 16; IL-1β, 
Interleukin 1 Beta; IL-10, Interleukin 10; IFNγ, Interferon Gamma; NGFβ, Nerve Growth Factor Beta. X-axis represents the scaled values of each biomarker. Y-axis 
represents the mean predicted value for the FASD risk.
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differences were detected between the EGCG-treated group and the 
control group across the X, Y, and Z dimensions. These findings suggest 
that EGCG treatment shifts the biomarker profile of FASD patients to
ward a closer control-like state. Consistent with this, our ML model 
identified 58% of the FASD+EGCG group as belonging to the control 
group. This result highlights the efficacy of EGCG in modulating key 
molecular pathways affected by PAE, reinforcing its potential as a 
therapeutic intervention for FASD.

The use of ML in FASD diagnosis represents a significant advance in 
addressing the complexity and heterogeneity of this disorder. Tradi
tional diagnostic methods for FASD are often hampered by factors such 
as the absence of maternal alcohol consumption confirmation, lack of 
characteristic facial dysmorphology, and subtle or absent growth 
impairment, all of which can lead to misdiagnosis or delayed interven
tion (Chasnoff et al., 2015), highlighting the need for novel diagnostic 
approaches to complement those already available. Early ML studies 
focused on predicting FASD risk in pregnant drinkers using question
naire data assessing factors such as timing of alcohol consumption, race, 
ethnicity, prenatal care, and pregnancy complications (Oh et al., 2023). 

However, reliance on self-reported data introduces bias due to potential 
misrepresentation, emphasizing the limitations of such approaches. In 
contrast, biomarker-based analyses provide quantifiable, reproducible 
indicators of underlying pathophysiological processes, making them 
valuable tools for objective diagnosis.

To ensure the robustness of our approach, we selected biomarkers 
with strong evidence in the literature for being affected by PAE and that 
can be reliably quantified in serum using immunoassays. These bio
markers encompass key molecular pathways implicated in neuro
inflammation and neurodevelopmental alterations induced by PAE. 
Specifically, cytokines and chemokines such as IFN-γ (Roberson et al., 
2012), CX3CL1 (Bachstetter et al., 2011; Cardona et al., 2006; Pascual 
et al., 2017; Roberson et al., 2011), IL-1β (Milligan & Watkins, 2009; 
Pascual et al., 2017; Roberson et al., 2012), CCL2 (Chang et al., 2018; 
Pascual et al., 2017; Kai Zhang & Luo, 2019), IL-10 (Lobo-Silva et al., 
2016; Milligan & Watkins, 2009), and CXCL16 (Juárez-Rodríguez et al., 
2020; Lepore et al., 2018; Rosito et al., 2012, 2014) have been exten
sively associated with alcohol-induced immune dysregulation and neu
roinflammation, produced by impaired activation of microglia and 

Fig. 9. Three-dimensional t-SNE clustering analysis of control, FASD, and FASDþEGCG samples. The T-distributed Stochastic Neighbor Embedding (t-SNE) 
visualization illustrates the similarity relationships among the samples. Control is represented in white, FASD in purple, and FASD+EGCG in blue. The spatial 
distribution of the clusters highlights the separation between groups, with the EGCG-treated samples appearing to shift towards the control cluster, suggesting a 
potential effect of the treatment. Figures A, B and C visualize different positions of the t-SNE.
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astrocytes (Kane & Drew, 2021; Lawrimore et al., 2019; Lord et al., 
2022). Additionally, NGF-β, a critical mediator of neuronal plasticity 
and survival (Bersani et al., 2000), has been associated in the neuro
developmental deficits observed in FASD (Boschen & Klintsova, 2017; 
Ceccanti et al., 2012).

The input features were deliberately limited to a subset of seven 
biomarkers that demonstrated statistically significant differences be
tween groups and were strongly supported by prior biological evidence. 
This targeted feature selection aimed to reduce dimensionality and 
minimize the risk of overfitting, which is particularly important in 
studies with limited sample sizes (Ng et al., 2023). Including 
non-significant or weakly associated variables could increase model 
complexity and reduce generalizability by introducing noise into the 
predictive framework (Kannan, 2017). Furthermore, the use of a concise 
and informative biomarker panel improves clinical feasibility, decreases 
the burden of blood collection in pediatric populations, and enhances 
the potential for integration into real-world diagnostic workflows. By 
focusing on biomarkers that are both biologically relevant and statisti
cally robust, the resulting machine learning models are designed to be 
accurate, interpretable, and suitable for practical clinical 
implementation.

Recent research has demonstrated the potential of ML algorithms in 
early FASD diagnosis, showing promising results by leveraging diverse 
datasets (Suttie et al., 2024). Ehrig et al. utilized physical traits (e.g., 
body length, head circumference) and neuropsychological measures (e. 
g., IQ, behavior, memory), achieving good levels of accuracy (0.85), 
precision (0.87), and sensitivity (0.91) (Ehrig et al., 2023). Goh et al. 
employed behavior scores, IQ data, and physical examinations to train a 
decision tree model, obtaining sensitivities of 64 - 81% and specificities 
of 78 - 80% (Goh et al., 2016). Zhang et al. introduced a comprehensive 
ML framework integrating eye movement metrics, psychometric tests, 
and brain imaging (Zhang et al., 2019). Other efforts have used 
advanced neuroimaging techniques, such as magnetic resonance imag
ing (Rodriguez et al., 2021) and diffusion tensor imaging combined with 
saccadic eye movements and executive function scores (Duarte et al., 
2021). In addition, methylation signatures have been explored as bio
markers for FASD classification (Lussier et al., 2018). Fu et al. and 
Blanck-Lubarsch et al. used advanced facial recognition methodologies, 
employing facial datasets and automated classification of 3D facial scans 
(Blanck-Lubarsch et al., 2022; Fu et al., 2022). Ramos et al. developed 
ML models for FASD prediction based on sociodemographic, clinical, 
and neuropsychological data, demonstrating the utility of algorithmic 
approaches in this area (Ramos-Triguero et al., 2024).

In the present study, we take a novel approach by using blood-based 
biomarkers as predictive variables, being, to date, the first ML study to 
do so for FASD diagnosis. This study evaluated eight different ML al
gorithms, employing 5-fold cross-validation on the training set. Among 
them, RF model showed superior performance, achieving the highest 
accuracy (0.89), precision (0.92), sensitivity (0.92), F1 score (0.92), 
specificity (0.83), and ROC AUC (0.88), making it an effective model for 
predicting FASD diagnosis. The biomarkers identified as most influential 
in accurately predicting FASD were IL-10, IFNγ, CCL2, and NGFβ, have 
been well documented in previous studies for their role in FASD-related 
pathophysiology (Bodnar et al., 2016; Heberlein et al., 2013; Noor & 
Milligan, 2018).

The incorporation of serum biomarkers would not only enhance 
diagnostic accuracy but also provide valuable information on the un
derlying mechanisms of FASD. By utilizing these biomarkers, this 
approach addresses diagnostic challenges in complex cases without clear 
maternal alcohol history, facial dysmorphology, or growth impairment. 
A small, targeted panel of blood-based biomarkers offers a cost-effective 
and feasible diagnostic aid that could complement existing clinical 
criteria, improving early identification of children at risk. For future 
experiments, the use of blood-based diagnostics, combined with new 
technologies, such as wearable-based assessments, could refine FASD 
profiling, by capturing real-time physiological and behavioral data, 

offering a more comprehensive and non-invasive evaluation. This 
research underscored the importance of integrating biological markers 
with ML to increase diagnostic accuracy and improve clinical outcomes. 
Future studies should focus on refining these models, identifying addi
tional biomarkers, and incorporating digital health tools to enhance 
diagnostic precision and clinical outcomes, ultimately improving the 
quality of life for individuals affected by FASD.

Conclusions

This study highlights the utility of machine learning in advancing 
FASD diagnosis through the integration of serum biomarkers, addressing 
critical challenges posed by the heterogeneity of the disorder. Through 
the use of an RF model, we achieved robust predictive performance, 
with key biomarkers such as IL-10, IFNγ, CCL2, NGFβ, IL-1β, CX3CL1 
and CXCL16, demonstrating significant associations with FASD patho
physiology. The novel use of blood biomarkers offers a non-invasive and 
objective diagnostic approach, especially valuable in cases where 
maternal alcohol consumption history is unavailable or traditional 
diagnostic features are absent. The inclusion of inflammatory and neu
rotrophic markers underscored the importance of immune and neuro
developmental pathways in FASD, underscoring the urgent need for 
therapeutic interventions such as the use of EGCG. This study highlights 
the therapeutic potential of this natural antioxidant to mitigate FASD- 
associated inflammation and neurodevelopmental impairments. EGCG 
treatment was shown to significantly modulate key biomarkers such as 
IL-10, CX3CL1, IL-1β, IFNγ, and NGFβ, restoring levels associated with 
healthier physiological states.

Limitations

This study provided valuable evidence of the potential of ML algo
rithms to help in the early diagnosis of FASD. Moreover, the analysis of 
key biomarkers demonstrated the potential benefits of EGCG treatment 
in FASD. However, it is important to note some limitations. The mod
erate sample size, partly influenced by the dropout rate related to 
behavioral and compliance challenges in children diagnosed with FASD, 
may have reduced the statistical power of our findings and affected the 
performance of the ML model. This provides an opportunity for future 
research in a larger and more diverse population to validate and expand 
our findings. Additionally, our study focused on specific biomarkers 
related to FASD in previous studies, not providing a complete picture of 
FASD profile. Exploring other potential biomarkers could offer a more 
comprehensive understanding of FASD. Furthermore, while our ML 
model showed promising results, additional work is needed to refine and 
test these models to assess their performance in clinical conditions. 
Importantly, adherence to the EGCG treatment posed a challenge due to 
the behavioral characteristics of children diagnosed with FASD, the 
burden of daily medication, and the procedural distress caused by 
repeated blood collections, all of which contributed to participant 
dropout. Lastly, while EGCG showed potential therapeutic effects, 
further research is needed to fully understand its mechanisms of action 
and long-term effects.
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Kornhuber, J., Bleich, S., & Hillemacher, T. (2013). Epigenetic down regulation of 
nerve growth factor during alcohol withdrawal. Addiction Biology, 18(3), 508–510. 
https://doi.org/10.1111/J.1369-1600.2010.00307.X

Hoyme, H. E., Kalberg, W. O., Elliott, A. J., Blankenship, J., Buckley, D., Marais, A. S., 
Manning, M. A., Robinson, L. K., Adam, M. P., Abdul-Rahman, O., Jewett, T., 
Coles, C. D., Chambers, C., Jones, K. L., Adnams, C. M., Shah, P. E., Riley, E. P., 
Charness, M. E., Warren, K. R., & May, P. A. (2016). Updated clinical guidelines for 
diagnosing fetal alcohol spectrum disorders. Pediatrics, 138(2). https://doi.org/ 
10.1542/PEDS.2015-4256

Hoyme, H. E., May, P. A., Kalberg, W. O., Kodituwakku, P., Gossage, J. P., Trujillo, P. M., 
Buckley, D. G., Miller, J. H., Aragon, A. S., Khaole, N., Viljoen, D. L., Jones, K. L., & 
Robinson, L. K. (2005). A practical clinical approach to diagnosis of fetal alcohol 
spectrum disorders: Clarification of the 1996 institute of medicine criteria. Pediatrics, 
115(1), 39–47. https://doi.org/10.1542/PEDS.2004-0259

Iyer, S. S., & Cheng, G. (2012). Role of interleukin 10 transcriptional regulation in 
inflammation and autoimmune disease. Critical Reviews in Immunology, 32(1), 23. 
https://doi.org/10.1615/CRITREVIMMUNOL.V32.I1.30
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