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In this work, we explore the use of Neural Quantum States to approximate
the ground-state wavefunctions of fully polarized fermionic systems confined
in a D-dimensional harmonic trap. Building on the architecture introduced
in [1], we generalize the input representation and network structure to han-
dle arbitrary spatial dimensionality, extending the applicability of the method
beyond one-dimensional systems. The antisymmetric nature of the fermionic
wavefunction is preserved through the use of equivariant neural layers, and
a generalized Slater determinant is constructed from learned single-particle
orbitals modulated by a Gaussian envelope. Training is carried out in two
stages: first, a supervised pretraining phase based on analytical solutions of
the non-interacting system, which is then followed by variational Monte Carlo
optimization of the network parameters using the energy as the loss function.

We validate our approach on non-interacting systems with up to 4 particles
in 2D and 3 particles in 3D, where analytical solutions are available for bench-
marking. Results show excellent agreement in terms of mean energy, one-body
density, and the one-body density matrix, with observed spatial symmetries
and degeneracy patterns matching theoretical expectations. While the train-
ing protocol has been generalized to incorporate finite-range interactions, this
study focuses on non-interacting systems to establish a solid baseline. The
framework developed here provides a flexible and scalable foundation for fu-
ture exploration of interacting quantum systems in higher dimensions using
neural variational methods.
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1 Introduction

Simulating quantum many-body systems on classical hardware is notoriously demanding,
as the computational cost of representing the full wavefunction grows exponentially with
system size. Although sophisticated techniques such as tensor–network factorizations can
alleviate this scaling for certain classes of states, such as large one-dimensional models
with short-range interactions [2, 3, 4, 5, 6, 7] they remain insufficient for generic, strongly
entangled systems [8, 9]. This computational bottleneck has motivated the search for
alternative methods capable of tackling strongly correlated, higher-dimensional systems or
systems defined on unstructured lattices, as often encountered in quantum chemistry and
quantum algorithms [10].

Concurrently, modern artificial intelligence has demonstrated an undeniable ability
to tackle high-dimensional optimization problems by discovering compact representations
of complex data distributions. In particular, deep neural networks can learn intricate
correlation structures that are prohibitively expensive to encode explicitly. Leveraging
this capability, Neural Quantum States (NQS) [11] have emerged as a powerful variational
ansatz in which the many-body wavefunction is parametrised by a neural network. NQS
frameworks have achieved state-of-the-art accuracy in ground-state energy estimation, all
while maintaining favourable scaling on classical hardware accelerators [12, 13, 14, 15, 16,
17, 18].

In this work, we generalize the NQS architecture introduced in Ref. [1]. In it, is
provided a minimal implementation for solving the many-body Schrödinger equation in
one-dimensional systems of potential relevance to condensed matter physics. That study
focused on fully polarized (spinless) fermions confined within a harmonic trap and inter-
acting via finite-range pairwise potentials. Our contribution extends this framework to
arbitrary spatial dimensions, thereby broadening its applicability to higher-dimensional
and continuous quantum systems. Crucially, our generalization retains the expressive ca-
pacity of the original model while enabling the investigation of more complex systems
within a unified and scalable framework.

We also present a detailed theoretical formulation of the extended NQS model, de-
scribe the variational training procedure employed, and benchmark the resulting simula-
tions against known analytical solutions. Our results demonstrate competitive accuracy
and computational scalability, highlighting the potential of NQS as a versatile and comple-
mentary tool to both tensor-network techniques and nascent quantum computing platforms.
This work underscores the practical utility of neural network-based variational methods
for advancing classical simulations of complex quantum phenomena.

This report is structured as follows. In Section 2, we introduce the physical system
under study and outline the methodology employed. In Section 3, we describe the structure
of the model and detail the generalisations introduced. Section 4 presents and discusses the
results of our simulations, including a comparison with the findings reported in the original
work. Finally, Section 5 summarises the main conclusions and outlines future directions
for research.
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The implementation developed in this work is available at
https://github.com/mcarraar39/SpinlessFermionsJames---varias-dimensiones.

2 Theoretical Background

2.1 Describing the system

We consider a D-dimensional system of A identical fermions confined within a harmonic
trap, which, for simplicity, is assumed to be rotationally invariant. The particles interact
through a finite-range Gaussian potential, and the corresponding Hamiltonian is given by:

Ĥ = − ℏ
2m

A∑
i=1

∇2
i + 1

2mω
2
A∑
i=1

D∑
d=1

(xdi )2 + V√
2πσ

∑
i<j

exp
[
−

∑D
d=1(xdi − xdj )2

2σ2

]
, (1)

where m is the mass of the particles, ω is the angular frequency of the harmonic trap, and
x⃗i denotes the position vector of particle i, with individual spatial components labelled by
superscripts. The Gaussian interaction is characterised by two parameters: the interaction
strength V and the range σ. In the limit σ → 0, the interaction approaches a contact
potential, reducing to V δ(x⃗i − x⃗j).

By introducing Harmonic Oscillator units, defined as

aho =
√
ℏ/mω, x⃗ → x⃗/aho, (2)

the Hamiltonian can be expressed in a dimensionless form that is more convenient to
handle,

Ĥ = −1
2

A∑
i=1

∇2
i + 1

2

A∑
i=1

D∑
d=1

(xdi )2 + V0√
2πσ0

∑
i<j

exp
[
−

∑D
d=1(xdi − xdj )2

2σ2
0

]
, (3)

where the dimensionless parameters are σ0 = σ/aho and V0 = V/(ahoℏw).

Since the particles in the system are fermions, the wavefunction must be antisymmetric.
Moreover, as the fermions are fully polarized, all of them have the same spin orientation.
Consequently, the wavefunction vanishes whenever two or more particles occupy the same
position:

Ψ(x⃗1, . . . , x⃗A) = 0 if x⃗i = x⃗j , ∀i, j ∈ {1, . . . , A}, (4)

and it changes sign under the exchange of any two particles:

Ψ(x⃗1, . . . , x⃗i, . . . , x⃗j , . . . , x⃗A) = −Ψ(x⃗1, . . . , x⃗j , . . . , x⃗i, . . . , x⃗A), ∀i, j ∈ {1, . . . , A}. (5)

In the non-interacting case, V0 = 0, the Hamiltonian describes a system of A non-
interacting particles in a D-dimensional Harmonic Oscillator. The solutions can be ob-
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tained analytically and they are expressed as products of the one-dimensional harmonic
oscillator eigenfunctions (with proper accounting for degeneracies introduced by higher
dimensionality),

ϕn(xdi ) =
( 1√

π2nn!

)1/2
Hn(xdi )e−

(xd
i

)2

2 , (6)

where Hn are the physicist’s Hermite polynomials,

Hn(xdi ) = (−1)ne(xd
i )2 dn

dxn
e−(xd

i )2
. (7)

Then, the single-particle solutions in D dimensions take the separable form

ϕn1
i ,...,n

D
i

(x1
i , . . . , x

D
i ) = ΠD

j=1ϕnj
i
(xji ), (8)

where nji denotes the quantum number associated with the j-th coordinate of particle i.
The many-body wavefunction, Ψ, is constructed as a Slater determinant built from these
single-particle orbitals, ensuring the required antisymmetry under fermion exchange. Each
row of the determinant corresponds to a different particle, while the columns are filled with
the lowest-energy orbitals available, respecting the Pauli exclusion principle. Degeneracies
arising from different combinations of quantum numbers that yield the same total energy
must be carefully accounted for when selecting the occupied orbitals.

2.2 Neural Quantum States and Variational Monte Carlo

The wavefunction of a quantum system fully characterizes the state of a closed system. All
physically accessible information is encoded in it and can be extracted through the expec-
tation values of suitable observables. However, in the many-body setting, the dimension
of the Hilbert space grows exponentially with the number of particles, rendering direct
approaches intractable for all but the smallest systems.

To address this challenge, variational methods are commonly employed. These rely
on the variational principle of quantum mechanics, which states that for any normalized
trial wavefunction |Ψθ⟩, parametrized by a set of variables θ, the expectation value of the
Hamiltonian provides an upper bound to the true ground-state energy of the system,

E(θ) = ⟨Ĥ⟩ = ⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

≥ E0, (9)

where the brackets can be expressed as integrals in position space,

⟨Ψθ|Ĥ|Ψθ⟩ =
∫ +∞

−∞
Ψ∗
θ(x⃗1, . . . , x⃗A)ĤΨθ(x⃗1, . . . , x⃗A)dx⃗1 . . . dx⃗A, (10)

and
⟨Ψθ|Ψθ⟩ =

∫ +∞

−∞
|Ψθ(x⃗1, . . . , x⃗A)|2dx⃗1 . . . dx⃗A. (11)
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The goal is then to adjust the parameters θ to minimize E(θ), yielding an optimal
approximation to the ground-state energy and wavefunction.

Within this framework, a variational ansatz is a parametrized family of wavefunctions
chosen to approximate the true ground state. Traditional ansätze are typically based on
physical intuition and may be limited in expressibility. In contrast, neural networks provide
a highly flexible alternative: due to their universal approximation capabilities, they can
serve as powerful ansätze capable of capturing complex many-body correlations. When a
neural network is used to represent the wavefunction, the resulting object is referred to as a
NQS. The network is trained by minimizing a suitable cost function, usually the expectation
value of the Hamiltonian, using iterative optimization algorithms. This procedure ensures
that the network learns a variational approximation to the ground state of the system [12].

A naive approach would be computing these integrals through some grid-based numer-
ical methods, such as the trapezoidal rule. However, due to the curse of dimensionality,
the memory needed to compute these integrals scales exponentially as we increase the di-
mension of the system and/or the number of particles. To overcome this, we can leverage
the Variational Monte Carlo (VMC) method, which enables efficient sampling from the
probability distribution defined by the wavefunction [13].

To understand the advantage of this approach, consider the following manipulation.
The completeness relation in Hilbert space can be expressed as

1 =
∫
dX |X⟩ ⟨X| , (12)

where X includes the quantum numbers of all particles. Inserting it twice in the numerator
and once in the denominator of Eq. (9), we can rewrite the expectation value of the
Hamiltonian as

⟨Ĥ⟩ = ⟨Ψθ| Ĥ |Ψθ⟩
⟨Ψθ|Ψθ⟩

=
∫
dXdX′ ⟨Ψθ|X⟩ ⟨X| Ĥ |X′⟩ ⟨X′|Ψθ⟩∫

dX ⟨Ψθ|X⟩ ⟨X|Ψθ⟩
× ⟨X|Ψθ⟩

⟨X|Ψθ⟩
. (13)

We can reorder the expression in a more meaningful shape,

⟨Ĥ⟩ =
∫
dX ⟨Ψθ|X⟩ ⟨X|Ψθ⟩∫

dX ⟨Ψθ|X⟩ ⟨X|Ψθ⟩

∫
dX′ ⟨X| Ĥ |X′⟩ ⟨X′|Ψθ⟩

⟨X|Ψθ⟩
. (14)

The first term in the product can be interpreted as the probability density of obtaining
the configuration X given the wavefunction Ψθ,

pθ(X) = ⟨Ψθ|X⟩ ⟨X|Ψθ⟩∫
dX ⟨Ψθ|X⟩ ⟨X|Ψθ⟩

. (15)

The second term corresponds to the so-called “local energy” when the system has the
quantum numbers encoded in X,

∫
dX′ ⟨X| Ĥ |X′⟩ ⟨X′|Ψθ⟩

⟨X|Ψθ⟩
:= Eloc(X, θ). (16)
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Since Monte Carlo methods allow us to efficiently sample from the distribution given by
the network, we have that

⟨Ĥ⟩ =
∫
dXPθ(X)Eloc(X, θ) = ⟨Eloc(X, θ)⟩X, (17)

where the notation ⟨·⟩X denotes an average over the sampled configurations.

The use of VMC is essential in this context, as it enables the estimation of expectation
values from a tractable number of samples drawn from |Ψθ|2, which is orders of magnitude
smaller than the full Hilbert space. Provided the Hamiltonian is local, the local energy Eloc

remains computationally affordable to evaluate at each sampled configuration. Although
this derivation has been presented for the Hamiltonian, the same reasoning applies to any
other observable (for more details see [19]).

3 Implementation and extension to arbitrary dimensions

3.1 The NQS architecture

Input

x1

x2

xA

...

x1 µ
(0)
1

x2 µ
(0)
2

xA µ
(0)
A

f (0)

Equivariant layer L = 1

ta
nh

(h
)

h
(1)
11 h

(1)
1H

h
(1)
21 h

(1)
2H

h
(1)
A1 h

(1)
AH

...

f (1)

Equivariant layer L = 2

ta
nh

(h
)

h
(2)
11 h

(2)
1H

h
(2)
21 h

(2)
2H

h
(2)
A1 h

(2)
AH

...

Li
ne

ar
La

ye
r

GSM, ϕ

ϕ11 ϕ12 ϕ1A· · ·

ϕ21 ϕ22 ϕ2A· · ·

ϕA1 ϕA2 ϕAA· · ·

...
. . . det(ϕij) LU

sgn(ψe)

log(|ψθ|)

log-envelope

e11 e12 e1A· · ·

e21 e22 e2A· · ·

eA1 eA2 eAA· · ·

...
. . .

Figure 1: NQS Ansatz of the original work, where A particles were studied using a network with two
equivariant layers and a single generalised Slater determinant. The latter outputs the antisymmetric
wavefunction of the system, given the generalised single-particle orbitals obtained after applying a
log-envelope function to each orbital [1].

An important feature of Neural Quantum States is that this framework enables the
explicit encoding of the symmetries of the wavefunction, which facilitates the network’s
exploration of the parameter space. In the original work, the authors implemented an
ansatz inspired by FermiNet [20], represented schematically in Fig. 1. We now describe
the architecture of the network, detailing the necessary modifications to generalize it to
more than one spatial dimension.
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In the original formulation, the input is an A-dimensional vector encoding the positions
of the A fermions, where each position is a real, one-dimensional coordinate, xi ∈ R

∀i ∈ 1, . . . , A. Our first modification is to replace this vector x ∈ R
A by a matrix that

accounts for the D spatial dimensions, where each column corresponds to one spatial
dimension, 

x1
...
xA

 ∈ R
A −→


x1

1 x2
1 . . . xD1

...
. . .

...
x1
A x2

A . . . xDA

 ∈ R
A×D. (18)

To preserve antisymmetry, the network employs two equivariant layers (corresponding
to the black layers in Fig. 1). These layers are designed so that any permutation of the
input, x, is reflected in the same permutation of the outputs, h, such that

hi(xπ(1), . . . , xπ(A)) = hπ(i)(x1, . . . , xA), (19)

where h is the transformation of Eq. (21), and π is a permutation. To achieve this, the
methodology of the original work [1] is followed, and a permutation-invariant feature is
concatenated with the network input. Thus, the input feature to the first equivariant layer
is f (0) ∈ R

A×2, constructed as f (0) = (x µ⃗(0)), where x ∈ R
A×D is the position matrix

and µ⃗(0) is a vector of size A with all entries equal to µ(0). While the computation of
this feature changes due to the higher dimensionality, we still preserve the idea of taking
a mean over positions across all dimensions,

µ(0) = 1
A

A∑
i=1

xi −→ µ(0) = 1
A ·D

A∑
i=1

D∑
j=1

(xji ). (20)

The first equivariant layer then performs a linear transformation followed by a non-linear
activation function. Here, we use the hyperbolic tangent activation, as it is both continuous
and differentiable. For each row, the computation is

h
(1)
i = tanh

(
f

(0)
i W (1)T + b(1)

)
, (21)

where the weight matrix, which originally had dimensions H × 2, is expanded to W (1) ∈
R
H×(D+1) and the bias vector remains b(1) ∈ R

A. Before feeding the output of this layer into
the next equivariant layer, a permutation-invariant feature is needed, so we concatenate
the column-wise averages µ(1) ∈ R

H and we obtain f (1) ∈ R
A×2H .

The second equivariant layer follows a similar procedure, with the addition of a residual
connection, such that the output is

h
(2)
i = tanh

(
f

(1)
i W (2)T + b(2)

)
+ h

(1)
i , (22)

where the weight matrix is of the shape W (2) ∈ R
H×2H , and the biases are b(2) ∈ R

H .

The output of the equivariant block is then passed through another linear layer with
weights W (M) ∈ R

A×H and biases b(M) ∈ R
A, producing a matrix M ∈ R

A×A, with rows
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computed as
Mi = h

(2)
i W (M)T + b(M). (23)

To ensure the correct boundary conditions, we impose a Gaussian envelope on the
wavefunction, which enforces decay to zero at infinity. For numerical stability, this envelope
is implemented in the log-domain. Due to the updated position structure, we modify this
term as

eij = exp
[
−(xi ·W (e)

j )2
]

−→ eij = exp
[
−(

D∑
d=1

xdi ·W d(e)
j )2

]
, (24)

where the weights W (e) ∈ R
A×D match the shape of the position matrix. Taking the

element-wise product of the output of the linear layer and the Gaussian envelope, we
obtain a generalized Slater matrix (GSM), formed by the elements

ϕij = Mijeij . (25)

Each element ϕij can be interpreted as a generalized single-particle orbital on state j,
constructed to preserve the permutation invariance introduced by the equivariant layers.
As discussed in the original article, this construction, where all orbitals depend on all
particle positions, enables an efficient encoding of backflow correlations in the wavefunction
[21, 20, 22].

Finally, we compute the generalized Slater determinant (GSD) of the GSM, which
produces an antisymmetric wavefunction consistent with the description of fully polarized
fermions. For numerical stability, the determinant is computed in the log-domain using a
LU decomposition. As in the original work, our network can be modified to have a different
number of equivariant layers or GSM, but for the systems studied, this combination, with
H = 64, 2 equivariant layers and one determinant, performed well and a study of how
these changes would affect the training is out of the scope of this work.

3.2 Training and sampling

Having defined our variational ansatz, we have to adjust its parameters so that it returns
the wavefunction of the ground state of the system. The process is divided into two
different stages: a pretraining phase, in which supervised learning is performed, and the
proper training phase, which is an unsupervised learning procedure to find the ground
state wavefunction.

For the pretraining, the solutions of the non-interacting system, given by Eq. (8), are
taken as the target wavefunctions. We compare the generalized single-particle orbitals of
the GSM with these analytical solutions. This is done by minimizing the loss function

L(0)(θ) =
〈∑

ij

[ϕi(xj) − φi(xj)]2
〉

X

, (26)

where, in the original work, φi were the i-th eigenstates of the harmonic oscillator. For the
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generalized case, we have to increase the number of quantum numbers in each combination.
Instead of having one eigenstate per energy level, we work with tuples of D quantum num-
bers and take into account the energy degeneracy. In cases where different combinations
of quantum numbers yield the same energy, the ordering of these tuples will be random.

For the second phase, the variational principle is used, Eq. (9), as it states that the
ground-state energy is a lower bound of the energy of the NQS. Therefore, the statistical
average of the local energies is minimized as the loss function. This local energy is computed
with the kinetic energy evaluated in the log domain for stability reasons, and it has the
expression

Eloc(X, θ) = −1
2

A∑
i=1

[
∇2
i ln |ψθ| +

(
∇i ln |ψθ|

)2]∣∣∣∣∣
X

+
A∑
i=1

D∑
j=1

(xji )2

2 + V0√
2πσ0

∑
i<j

e
−

∑D

d=1(xd
i

−xd
j

)2

2σ2
0 .

(27)
However, due to numerical instabilities that arise when computing gradients for the kinetic
energy, it is better to use an auxiliary function as the loss function, which has the same
gradient. The auxiliary expression reads

Laux(θ) = 2
〈
⊥

[
Eloc(X, θ) −

〈
Eloc(X, θ)

〉
X

]
× ln |Ψθ(X, θ)|

〉
X
, (28)

where ⊥ denotes the detach function, which acts as the identity but sets the derivative to
zero [23].

For both pretraining and training we perform 5000 epochs, each consisting of three
phases. First, we perform 10 sweeps of the sampler (it has been adapted to work with
D-dimensional positions) that runs the Metropolis-Hastings algorithm [24, 25] over 10096
walkers, so that they are distributed according to the Born probability of the network.
Then, the loss function is computed from each position sampled by the walkers, and finally,
the Adam optimizer (with learning rate 10−4) is used to update the parameters [26].

During the development, we discovered that for systems with D > 1, the wavefunction
was unable to properly reproduce the probability distribution outside a neighbourhood of
the origin. Initial efforts to address this issue focused on increasing the expressiveness of
the network by adding more neurons and verifying the correctness of the generalizations
introduced in the sampler and other parts of the code. However, we ultimately identi-
fied that the root of the problem laid in the boundary behaviour learned by the network.
Specifically, the log-envelope structure, which in principle constrains the decay of the wave-
function, becomes insufficient in higher-dimensional settings. The network discovers that
it can minimize the loss function more effectively by suppressing this envelope, reducing
its contribution to the generalized single-particle orbitals. As a result, the wavefunction
artificially decays too rapidly with distance, vanishing entirely beyond a certain radius.

This behaviour is unphysical. In the systems we aim to simulate, harmonically trapped
fermions, the probability density should decay gradually and asymptotically vanish only
at infinity. This means that, although the likelihood of finding particles far from the origin
decreases, it never becomes exactly zero. Instead, the network learns a degenerate solution
in which all regions beyond a certain distance become effectively equiprobable with zero
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probability, causing walkers that fall into these regions to drift without guidance rather
than being drawn back towards the physically relevant configurations. This undermines
the statistical sampling and deteriorates the learned representation of the wavefunction.

To solve this, we decided to enforce the potential of the harmonic trap when comput-
ing the probability distribution in the Metropolis-Hastings by adding a Gaussian envelope
weighted by a strength constant. Since this modification is applied only when compar-
ing the proposed and existing configurations, it does not affect to the energy or other
observables of the system, while it ensures the walkers follow the proper distribution. As
in the original work, the Metropolis configuration is adjusted at each step to accept ap-
proximately the 55% of the proposed configurations, following the methodology of [27].
Additionally, ℓ1 norm clipping is used for numerical stability, as in [20]. The “coherent”
local energy window is defined by computing the local energy median ⟨EL⟩ and an associ-
ated ℓ1 norm deviation σℓ1 . Local energies are only accepted if they fall within the interval
[⟨EL⟩ − 5σℓ1 , ⟨EL⟩ + 5σℓ1 ].

3.3 Obtaining the results

3.3.1 Energy

Once the training is completed, we employ a handful of procedures to obtain the final
results. We begin by computing a final estimation of the energy using the optimized
configuration of the parameters θ. This is done following the methodology described in
[28], as in the original work, by employing multiple batches through the “blocking” method
(i.e., partitioning the data into smaller blocks called batches to limit comparisons to within
each block). We use 104 batches, as in the original article, but we increase the number of
walkers per batch to 10096 (as in the training phase), resulting in a total of 1.61 × 108

samples that are not affected by the energy clipping applied during training.

The error of the mean energy is computed as

∆
〈
Ĥ

〉
X

=

√
σ2
B

NB
, (29)

where NB is the number of batches used and σ2
B is the variance of the batch samples.

3.3.2 One-body density

The next property we analyse is the fermion spatial distribution. Since the fermions are
indistinguishable, it is sufficient to consider the marginal distribution of a single particle,
which already encodes the behaviour of the ensemble. To this end, we again use 104 batches,
each employing 10096 walkers to explore the feature space and sample the distribution
learned by the network.

Once a sufficiently large number of samples is collected, the one-body density is esti-
mated using aD-dimensional histogram. The spatial domain is discretized into 250D voxels,
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and the density is accumulated cell by cell. Although the final histogram has a fixed size of
O(nDbins), its generation is computationally demanding. This is because NumPy needs to
build and manipulate intermediate arrays that hold all sampled positions before binning.
Each walker contributes A positions in D dimensions, i.e., data of shape [A,D], so the
total number of input points is

N = B ·A ·W, (30)

where B is the number of batches and W the number of walkers per batch, and the memory
required for temporary storage scales as O(N ·D).

As a consequence, with our current computational resources we were only able to obtain
the density for up to 4 fermions in a bidimensional system, and only up to 3 fermions in
a three-dimensional setup, as 3.01 GiB of RAM were required to store the tensors for the
case of a three-dimensional system with 4 fermions.

3.3.3 One-Body Density Matrix

Finally, the One-Body Density Matrix (OBDM) is estimated. It is defined as

ρ(x⃗, x⃗′) = A

∫
dx⃗2 . . . dx⃗AΨ∗(x⃗, x⃗2 . . . , x⃗A)Ψ(x⃗′, x⃗2, . . . , x⃗A). (31)

and it corresponds to the reduced one-body density matrix, obtained by tracing out all but
one particle. It can be interpreted as the amplitude of annihilating a particle at position
x⃗ and creating it at x⃗′. The diagonal elements, ρ(x⃗, x⃗), yield the one-body density, while
the off-diagonal terms quantify spatial coherence and correlations.

To estimate it, the Ghost Particle method is used [29]. It works as follows. Once we
have the positions of the walkers following the NQS distribution, we perform a random
displacement of the first fermion’s position, x⃗, moving it to a new position, x⃗′. Then,
we evaluate the network at both configurations. Since the network returns its output in
logarithmic form, we compute the ratio

Ψ(x⃗′, . . .)
Ψ(x⃗, . . .) = sgn1sgn0 exp(log |Ψ1| − log |Ψ0|). (32)

Next, we compute some weights defined as A · (x⃗max − x⃗min)D, where x⃗min and x⃗max are
the spatial bounds in which the OBDM is being calculated. These weights are multiplied
by the previously computed ratios. We then compute a 2D histogram where the first
coordinate corresponds to the original positions, x⃗, and the second coordinate corresponds
to the “ghost” positions x⃗′. The ratios, multiplied by the weights, are used as the weights
of the histogram. Finally, the histogram is normalized so its trace matches the number of
particles,

Tr[ρ] = A. (33)

In the D-dimensional case, this procedure is generalized by computing a separate his-
togram for each dimension, as these projections of the OBDM are easier to interpret.
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4 Results

4.1 Energy
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Figure 2: Training evolution of the ground-state energy for systems with A = 2, 3, 4 fermions in two
dimensions and A = 2, 3 fermions in three dimensions. Shaded areas represent the statistical uncertainty,
while dashed horizontal lines indicate the exact ground-state energies to which the simulations converge.

In this work, the network has been trained for five different systems, varying the num-
ber of fermions and spatial dimensions in order to evaluate its effectiveness. During the
generalization of the network, all one-dimensional systems from 2 up to 6 fermions were
configured to replicate the results of [1], ensuring that the network behaves as we expected.
Therefore, we focus here on the two- and three-dimensional systems without particle inter-
actions, as these allow comparison with analytical results.

As introduced in Section 2.1, the analytical solutions of the non-interacting harmonic
trap correspond to products of the one-dimensional harmonic oscillator eigenfunctions. The
total energy can thus be computed analytically as

E =
A∑
i=1

D∑
d=1

(
ndi + 1

2

)
. (34)

Table 1 shows the mean energies obtained for each case. As expected, we observe that
as the system grows in complexity, the network finds it more challenging to reproduce the
target state. This is somewhat expected, as the number of parameters or the number of
pretraining and training steps are not increased accordingly. Nevertheless, thanks to the
variational principle Eq. (9), the true mean energy of the system will always be a lower
bound to the mean energy obtained by the NQS, and a sufficiently optimized network
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could approximate this bound with high accuracy.

2 fermions
2D

3 fermions
2D

4 fermions
2D

2 fermions
3D

3 fermions
3D

Quantum
numbers (0,0),(0,1) (0,0),(0,1)

(1,0)
(0,0),(0,1)
(1,0),(1,1) (0,0,0),(0,0,1) (0,0,0),(0,0,1)

(0,0,1)
Analytical 3 5 8 4 6.5

NQS 3.0149 ± 0.0008 5.013 ± 0.001 8.026 ± 0.002 4.181 ± 0.005 6.744 ± 0.005

Table 1: Comparison between the ground-state energies obtained by the NQS and the corresponding
analytical values for each studied system. The listed quantum numbers correspond to one possible
configuration; due to energy degeneracy, alternative equivalent configurations also exist.

This behaviour is illustrated more clearly in Fig. 2, which shows the energy evolution
during training for both the two- and three-dimensional systems. For the bidimensional
cases with A = 2, 3, 4 fermions, the energy exhibits a smooth, monotonic decrease and
asymptotically approaches the corresponding analytical values reported in Table 1. In
contrast, the three-dimensional systems with A = 2 and A = 3 fermions display occa-
sional spikes in the energy trajectory. Although these fluctuations are quickly suppressed
by the optimization algorithm, they reflect the increased instability and complexity as-
sociated with higher-dimensional systems. Nevertheless, in all cases, the energy stabilizes
after approximately 5000 training epochs, indicating convergence towards the ground-state
configuration.

Despite this convergence, the mean energies obtained do not reach values where the
analytical solutions fall within the estimated uncertainties (see Table 1). This discrepancy
is most likely due to the limited expressive power of the chosen model in its present con-
figuration, which may not capture the finer details of the system. Alternatively, it could
indicate that a more extensive training protocol, either by increasing the number of param-
eters, pretraining steps, or training epochs, is required to achieve closer agreement with
the analytical benchmarks.

4.2 One-body density

4.2.1 D = 2 systems
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Figure 3: Density n(x, y) of 2 (left panel), 3 (central panel) and 4 (right panel) fermions in D = 2
systems.
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The next step is to study how the particles are distributed in space. In Fig. 3, we
display the probability density of finding a particle, shown as heat maps for the cases of 2,
3 and 4 fermions in D = 2 dimensions.

In the cases of 2 and 4 fermions, we observe that the densities are tilted. This occurs
because, although the system is equivariant under the SO(2) group, when the energy level
is not fully occupied, the system is not fully symmetric and there is a degree of freedom in
the rotation angle. This choice in the rotation angle is influenced by the initial weights of
the network, which causes a preferred direction to emerge. This direction can be altered by
changing the random seed or the initial weights. In contrast, for the system of 3 fermions,
the symmetry is preserved, as all the degenerate energetic levels are occupied.

To construct the analytical solutions, the Hermite orbitals used during pretraining are
implemented as callable objects. Then, the centres of the grid used to computed the
NQS one-body density are taken, and the A Hermite orbitals are evaluated at each point,
yielding ϕi(x⃗).

The one-body density is computed as

n(x⃗) = N

∫
dx⃗2 . . . dx⃗A|Ψ(x⃗, x⃗2, . . . , x⃗A)|2, (35)

where the total wavefunction is a Slater determinant,

Ψ(x⃗1, . . . , x⃗A) = 1√
A!

det [ϕi(x⃗j)]Ai,j=1 . (36)

Expanding the squared determinant into a double sum over permutations π and σ

yields:

|Ψ|2 = 1
A!

∑
π,σ

(−1)sgn(π)+sgn(σ)ΠA
k=1ϕ

∗
π(k)(x⃗k)ϕσ(k)(x⃗k). (37)

Due to orthonormality of the orbitals, ⟨ϕi|ϕj⟩ = δij , all cross terms vanish, and only the
diagonal terms remain. Thus, the analytical density is computed as

nexact(x⃗) =
A∑
i=1

|ϕi(x⃗)|2. (38)

In Fig. 4 we compare the densities computed by the NQS with the analytical solutions.
In systems with energy degeneracy, we must select an ordering for the quantum numbers
used to build the eigenstates. To avoid introducing any bias, this ordering was chosen
randomly. In these cases, the X axis appears to be the preferred direction. Since this
choice does not affect the energy or the properties of the system (unless an external field
is applied), we perform a rotation of the system to align the preferred directions of both
the NQS and the analytical solutions.

To this end, we run an optimization loop that searches for the rotation angle minimizing
the absolute difference between the analytical and NQS densities. After applying this
optimal rotation to the NQS density, we compute and plot the absolute error. As shown
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Figure 4: Absolute error in the density of 2 (left panel), 3 (central panel) and 4 (right panel) fermions
in D = 2 systems.

in Fig. 4, the error maps follow the underlying one-body density profiles, which confirms
that the network captures the correct spatial structure. The discrepancies are localized in
the regions where the density is nonzero, and the relative error remains below 10% in all
cases. This demonstrates that the spatial distribution is accurately reproduced, while the
remaining deviations are mainly due to the precise adjustment of the density values rather
than to its overall shape.

4.2.2 D = 3 systems
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Figure 5: Densities of 2 (upper row) and 3 (bottom row) fermions in D = 3 systems.

The analysis of three-dimensional systems is more complex, as the density must be eval-
uated through lower-dimensional projections. In Fig. 5, we present the projected one-body
densities n(x, y) and n(y, z) for systems of 2 and 3 fermions, along with the corresponding
radial density profiles. The latter reveal that the average size of the system is approximately
3 harmonic oscillator units in radius for both cases. Notably, the n(x, y) projection for 2
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fermions does not exhibit any clear spatial separation between the particles, whereas the
n(y, z) projection shows that their separation occurs predominantly along the z-axis in our
chosen coordinate system. In the case of 3 fermions, the projected density in the y-z plane
resembles the spatial distribution observed in the bidimensional system with 3 fermions,
suggesting that the three-dimensional generalization retains key structural features of the
lower-dimensional configuration. Overall, the projected densities remain qualitatively con-
sistent with their bidimensional counterparts, providing further validation of the network’s
behaviour across dimensions.
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Figure 6: Absolute error in the density of 2 fermions in a D = 3 system

In this case, the system is invariant under the SO(3) group, meaning that three degrees
of freedom must be considered. To reduce the difference between the theoretical and the
obtained densities, we optimize a three-dimensional rotation. This rotation is performed
using the Euler angles in the Z − Y − Z convention,

R(α, β, γ) = Rz(γ)Ry(β)Rz(α). (39)

However, performing a full optimization to find the optimal angles is computationally
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Figure 7: Absolute error in the density of 3 fermions in a D = 3 system
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costly, so we restrict the search to Euler angles that are multiples of 30◦. As shown in
Fig. 6 and Fig. 7, the shape of the error plots remains qualitatively consistent with those of
the densities, although the discrepancy between these plots increases with the complexity
of the system. In these cases the match is not perfect, but the shapes are very similar, so
it is likely that further fine-tuning of the rotation angles could reduce the discrepancy.

4.3 One-Body Density Matrix
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Figure 8: OBDM projections (ρxx, ρyy, ρzz) for 2 (left column), 3 (central column) and 4 (right column)
fermions in D = 2 systems.

To conclude the analysis, we study the one body density matrix . In multidimensional
systems, the OBDM becomes a tensor of rank 2D that encodes not only the spatial den-
sity, but also coherence and correlation properties of the quantum state. Its eigenvectors
represent the natural orbitals of the system, and its eigenvalues provide their respective
occupation numbers.

In our case, since the many-body wavefunction factorizes into the products of unidimen-
sional harmonic oscillator eigenstates, it is sufficient to study the coordinate projections
of the OBDM. In an ideal scenario, these projections should be diagonalizable, and their
eigenvectors should match the 1D analytical orbitals.

However, the OBDM is constructed numerically using histograms, and this introduces
limitations. The binning resolution is critical for accurate reconstruction, but memory
constraints restrict the number of bins that can be used. Although increasing the bin
count improves precision, it was not feasible here due to hardware limitations. Even in
the unidimensional case, special care was needed to extract eigenvectors with sufficient
accuracy.

Fig. 8 displays the projections ρxx and ρyy for the D = 2 systems with 2, 3 and
4 fermions. We observe that their qualitative features resemble those reported in the
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unidimensional benchmarks of [1]. For 2 fermions, ρxx exhibits a two-lobed structure, as
expected from the 1D OBDM for two particles, while ρyy shows a single, centred cluster.
When the number of fermions increases to 3, ρxx retains the same structure, while ρyy now
acquires the two-lobed shape, suggesting that the additional fermion “fills” a new orbital
in the y direction. Finally, for 4 fermions, it is ρyy that now resembles the OBDM of 3
fermions, while ρxx remains unchanged.

This observation suggests a sort of directional promotion: when the energy shell is
not completely filled and all spatial directions are symmetric, one projection “inherits” the
structure of the next higher unidimensional OBDM. When the energy level is completely
filled (e.g., 3 fermions in 2D), all directions exhibit the same projection structure.
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Figure 9: OBDM projections (ρxx, ρyy, ρzz) for 2 (upper row) and 3 (bottom row) fermions in three-
dimensional systems.

In Fig. 9, we extend this analysis to the three-dimensional systems, now including the
third projection ρzz. The same pattern of promotion seems to hold: for 2 fermions, one
projection (in this case ρzz) resembles the unidimensional OBDM of 2 fermions, while the
others remain simple and centralized. Upon increasing to 3 fermions, another projection
(ρyy) gains structure, also mimicking the unidimensional OBDM of 2 fermions.

However, numerical limitations become more pronounced in 3D. The histogram-based
construction of the OBDM introduces noise, especially given the coarse binning resolution
used here. This affects the smoothness and eigenstructure of the computed matrices. While
some of this noise could be mitigated by increasing the number of bins and improving
sampling accuracy, doing so requires more computational memory and time.

A more refined numerical treatment, possibly involving kernel density estimation or
variational methods, would likely improve the quality of the OBDM. Nonetheless, such
improvements fall beyond the scope of this work.
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5 Conclusions

In this work, we have explored the use of machine learning, and in particular, Neural
Quantum States (NQS), as a computational tool for the study of quantum many-body
systems. Specifically, we have generalized the architecture proposed in [1] to describe
fully polarized fermions confined in a D-dimensional harmonic trap. The particles were
considered to interact via a Gaussian potential, a form commonly used in nuclear physics to
model finite-range interactions. The combination of deep learning techniques with Monte
Carlo sampling methods enables us to construct a scalable and flexible framework for
variational quantum simulations, capable of learning physically meaningful wavefunctions
with minimal prior assumptions beyond the required antisymmetry for fermionic systems.
This is made possible by the universal approximation properties of neural networks.

The original NQS ansatz was adapted to account for the spatial dimensionality of the
system. Instead of receiving one-dimensional position vectors as input, the generalized
network processes A × D matrices encoding the positions of the A particles in D spatial
dimensions. The structure of the subsequent layers is generalized accordingly, while pre-
serving the fundamental features of the original architecture, such as a set of permutation-
equivariant layers and a final Generalized Slater Matrix (GSM) determinant calculation,
which ensures the correct fermionic antisymmetry. This demonstrates that the original
one-dimensional architecture can be extended to higher dimensions without requiring fun-
damental changes to its conceptual design.

Importantly, the number of parameters in the network was kept constant across all stud-
ied systems. While this may result in a loss of precision for more complex configurations,
the overall accuracy of the predictions, particularly in terms of mean energy, one-body
density, and the one-body density matrix (OBDM), demonstrates the strong expressibility
of the ansatz, even without task-specific tuning.

This work has focused on non-interacting systems, which admit analytical solutions to
the Schrödinger equation and thus provide a reliable benchmark for validating the varia-
tional approach. The results obtained exhibit close agreement with theoretical expectations
and confirm the correct generalization of the NQS architecture to arbitrary dimensions. It
is worth noting that the training procedure itself has been fully generalized to incorporate
interparticle interactions, using a finite-range Gaussian potential. However, no interact-
ing systems were trained in this study, as the focus was placed on validating the method
with exactly solvable cases. This ensures that future investigations can directly explore
systems with non-zero interaction strength, without requiring further modifications to the
architecture or training protocol. Such studies could systematically examine how interac-
tions and dimensionality influence degeneracy lifting, correlation structures, and the overall
behaviour of the variational solutions.

Other natural extensions include fine-tuning the architecture for each specific case in
order to optimize accuracy and training efficiency. Furthermore, the current setup reveals
how the harmonic potential’s radial symmetry leads to degenerate energy levels, especially
in higher dimensions. This opens the door to exploring symmetry breaking via external
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fields and analysing how such perturbations influence the one-body density and OBDM
projections. Such studies would be particularly relevant for simulating trapped ultracold
atomic gases or nuclear shell models.

Overall, the results presented here illustrate the potential of deep learning–based vari-
ational methods to simulate and analyse the quantum behaviour of few-body fermionic
systems in arbitrary dimensions. The framework developed provides a robust and flexi-
ble foundation for future investigations of more complex, interacting, or experimentally
motivated scenarios within the realm of quantum many-body physics.
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