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Achieving an efficient and controllable atom-light interface is essential for quantum
technologies. In this context, subwavelegnth atomic arrays provide a promising platform,
as collective radiance effects can be exploited to achieve an enhanced atom-light coupling
and a higher fidelity in certain quantum optics protocols. In such systems, constructive
(superradiance) and destructive (subrradiance) interference between the scattered photons
enables to suppress spontaneous emission into undesired optical modes, while enhancing it
into desired, detectable modes.

In this work, we explore how these ideas, originally developed for two-level atoms, can
be extended to multilevel structures with a focus on Λ-type atoms with one excited state and
two degenerate ground states. To this end, we generalize the open quantum spin model to
multilevel atoms and apply it to Λ systems. We study the collective radiative properties and
the entanglement of Dicke states, using a mapping onto SU(3) algebra. Furthermore, we
analyse how finite-size effects and coherent interactions modify collective radiance, leading
to the emergence of darker states in the two excitation manifold of Λ-systems, compared to
the case of two-level atoms, for an atom number N ≥ 10. We also study the dissipative
Dicke dynamics for a fully inverted initial state, showing that the evolution is restricted to
the symmetric sector. In the finite-size array case in presence of coherent interactions, we
identify a peak in the dynamical evolution of entanglement, coinciding with the superradiant
burst and find that the system reaches a non-trivial entangled steady state.
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1 Introduction
The progress of atomic physics has been closely linked to the development of new optical techniques.
Atom–light interactions lie at the heart of fundamental processes such as the absorption and emission of
radiation. Furthermore, the ability to manipulate the rich internal structure of atoms using electromagnetic
fields has become an essential tool over the past decades for cooling and trapping techniques to access,
control, and coherently manipulate atomic states with high precision [1, 2, 3]. This level of control has
given atomic systems such as ultracold neutral atoms and trapped ions a central role in the development
of quantum technologies [4], including quantum metrology [5], quantum information processing and
communication [6], and the study of synthetic quantum matter [7]. In particular, structured arrays of
ultracold atoms implemented using reconfigurable optical tweezers [8, 9, 10] or optical lattices [11] have
emerged as versatile and scalable platforms for quantum computation [12] and quantum simulation [13],
offering microscopic control over interactions and geometry that are hard to achieve in natural systems.

Beyond their computational capabilities, neutral atom arrays can be exploited as an efficient quantum
optics platform when interfacing with light. This is crucial for a wide range of applications, including
photon storage or quantum memories that are essential components in long-distance quantum commu-
nication [6], distributed quantum computing and networking [14]. Moreover, it provides a test-bed for
fundamental studies on atom-light interactions at the quantum level, such as the generation of highly
entangled states of atoms and photons and the emergence of exotic light properties [15].

Thus, achieving an efficient and controllable atom-light interface is essential for all the above men-
tioned tasks. However, in free space a single atom interacts only very weakly with a single photon [4].
This limitation arises because the optical field radiated by an atom through spontaneous emission does
not match the spatial mode of a propagating field such as a laser beam. Instead, the atom emits photons
into a broad distribution of optical modes, most of which cannot be collected. As a result, only a small
fraction of the emitted light can be captured in the desired mode, leading to photon loss and, consequently,
loss of information.

In experiments with large dilute atomic ensembles, spontaneous emission is usually considered an
independent process for each atom, leading to an optical depth scaling linearly with the atom number
N . The optical depth is the figure of merit in this context, proportional to N(λ2

0/A), where λ0 is the
transition wavelength and A the light beam area [4]. The quantity λ2

0/A is the scattering cross section
between a single atom and a single photon in free space, while the factor N reflects the assumption that
each atom either succeeds or fails independently to scatter a photon. In diluted ensembles, the optical
depth fundamentally bounds the minimum achievable error in protocols such as single-photon storage
and retrieval [16] and spin squeezing [4], resulting in errors that can be suppressed at most as 1/N .

As the interatomic distance decreases, the independent spontaneous emission assumption breaks
down. In this regime, wave interference of the scattered fields by the atoms leads to collective interfer-
ence effects in the emission process. Atoms couple through shared electromagnetic modes, leading to
coherent dipole-dipole interactions and collective radiative effects. Depending on the symmetry of the
collective atomic states, constructive interference can enhance photon emission, a phenomenon known
as superradiance. Conversely, destructive interference can suppress the collective decay rate drastically
leading to subradiance, and the formation of long-lived, decoherence-protected states.

These collective radiative phenomena were first described in the seminal work by Dicke [17], where
atoms are confined within a volume much smaller than the wavelength of light, so that they couple to
the same optical mode. This idealized model was later generalized by Lehmberg [18], who derived a
full master-equation description of atoms at finite separations, revealing how dipole–dipole interactions
and position-dependent decay rates govern cooperative effects. A comprehensive theoretical review,
generalizing the phenomena beyond Dicke’s model and providing connections with cavity quantum
electrodynamics (cQED), was subsequently provided by Gross and Haroche [19]. Since then, such
interactions have been extensively studied in the context of cQED, where atomic indistinguishability
leads to analogous physics.

In this context, superradiance was first experimentally observed several decades ago in hot atomic
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and molecular vapours within optical cavities [20, 21, 22]. It was later demonstrated in pairs of trapped
ions and without a cavity [23]. More recently, superradiance has also been observed in artificial atoms in
a cavity [24], in atomic ensembles coupled to nano-fibers [25, 26] or even in free space [27, 28, 29, 30].
In contrast, subradiance has remained experimentally elusive until recent years [23, 31, 32], largely due
to its intrinsic decoupling from the electromagnetic field.

In recent years, these studies have been extended to ordered atomic arrays where particles are separated
by subwavelength distances, where wave interference becomes maximal, in contrast to disordered atomic
ensembles. In this regime, the full three-dimensional continuum of optical modes must be considered, and
therefore interactions between atoms become position dependent. The broken permutational symmetry
increases the complexity of the problem. Nevertheless, the spatial order in these systems reduces
the dephasing effects, making atomic arrays a promising platform for studying many-body dissipative
dynamics [33, 34].

Experimental advances using optical lattices [11], optical tweezers [8, 9, 10] and quantum gas micro-
scopes [35, 36, 37] have demonstrated the ability to generate perfect one-, two- and three-dimensional
atomic arrays. Furthermore, reconfigurable optical tweezers allow to create arbitrary geometries almost
at will [9, 10]. Due to collective scattering of photons, the realization of atomically thin mirrors [38], as
well as a single-atom photon switch [39], has been realized in this context. These platforms pave the way
for the observation of other theoretical proposals in the field, such as photon storage with exponential
improved fidelity using subradiant states [40, 41], coherent photon-photon gates [42], driven-dissipative
phase transitions and phase separation [29, 43], quantum-enhanced sensing [44], and the engineering of
entangled dark atomic states through the interplay of coherent driving and dissipation [45, 46].

While most theoretical studies have focused on two-level atoms with a single decay channel from the
excited state to the ground state, real atomic systems exhibit intrinsically multilevel structures. Recent
works already point out how these multilevel configurations can give rise to highly entangled subradiant
and dark states [47, 48], how they also retain dynamical features like a superradiant burst [49], which can
be used for ground state selection [50], and how it is possible the generation of highly entangled steady
states using far-off resonant weak external fields [51, 52, 53]. However, a complete understanding of
collective radiance in these more complex systems is still lacking. This Master’s thesis aims to extend the
study of collective radiance phenomena to multilevel atomic structures, where the competition between
multiple decay channels can lead to novel and richer dynamical behaviour.

The manuscript is structured as follows. In Section 2 we introduce the physical system, together
with a possible experimental implementation of this. In Section 3, the theoretical formalism describing
quantum atom-light interactions and collective decay are introduced. The specific case of Λ-type atoms
is considered, with a concrete description of the pure dissipative Dicke limit. In Section 4 we study
the radiative and entanglement properties of the collective dissipative Dicke states, which can be well
understood within the framework of the SU(3) group. The effect of finite size and coherent interactions
are also studied. In Section 5 we analyse the dynamics of the Dicke model and the full model with finite
size effects and coherent interactions with a fully inverted initial state. Finally, we look at the steady-state
properties as a function of the inter-particle separation for the same model. In Section 6 we present our
main conclusions and outlook directions for future work.
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2 The system
In this section we introduce the model that will be studied in this thesis (Section 2.1) together with a
potential physical implementation of this based on state-of-the art experiments (Section 2.2).

2.1 Multilevel Λ atomic structure

The system under study is depicted schematically in Fig. 1. It consists of N identical Λ-type atoms,
each with an excited state |e⟩ and two possible decay channels into degenerate ground states, |g1⟩ and
|g2⟩. The photons emitted in the |e⟩ −→ |g1⟩ and |e⟩ −→ |g2⟩ transitions are circularly polarized, with
polarization vectors: σ+ = 1√

2 (x̂ + iŷ) and σ− = 1√
2 (x̂ − iŷ). Both transitions are assumed to have

the same wavelength λ0 and be equally weighted, i.e. have the same dipole moment strength.
The atoms are trapped at fixed positions, i.e. we assume a deep trapping optical potential such as that

provided by the optical tweezers. We consider two specific geometries: in the first configuration (left in
Fig. 1), atoms are placed on a ring lying in the plane defined by the circularly polarized emission vectors
(x̂ − ŷ), allowing us to study closed geometries where symmetry considerations can be exploited. In the
other configuration (right in Fig. 1), atoms are arranged in a linear chain lying in the x̂ direction, enabling
the study of simpler one-dimensional structures. When atoms are in the x̂ − ŷ plane, the two transitions
are no longer independent: photons emitted in a σ+ transition can excite atoms in a σ− transition, and
viceversa. This happens because the emitted photons do not retain a uniform polarization within the
plane of emission. Newer and interesting phenomena will happen when studying the mixing channels in
contrast to the two-level case. In both cases, d is the distance between two adjacent atoms.

Figure 1: Schematics of the studied system. An ordered array of Λ atoms separated by distance d are
dipole-dipole interacting. Two spatial configurations are considered: Geometrical configurations considered: a
ring (left) and a linear chain (right) with N = 8 atoms. The ring lies in the x̂ − ŷ plane, while the linear chain
is aligned along x̂ axis. The inset describes Λ atomic level structure, consisting of two degenerate ground states
|g1⟩ and |g2⟩ connected to the excited state |e⟩ via orthogonal circularly polarized transitions σ+ and σ−.

2.2 Experimental implementation

Following the discussion in [49, 54, 55] alkaline-earth(-like) atoms (AEAs) provide a promising platform
for realizing atomic arrays in the sub-wavelength regime, enabling the study of dissipative quantum
optics in many-body systems. Their main advantage comes from their multiple allowed transitions: short-
wavelength transitions allow for efficient cooling and trapping, while much longer-wavelength transitions
are suitable for the quantum optics experiments.

As a concrete example, one can consider the atomic structure of bosonic species like 174Yb or 88Sr
with two valance electrons. In these elements the nuclear spin is zero , Inuclei = 0, meaning that no
hyperfine structure needs to be taken into account (see Fig. 2(a)). The ground state 1S0 and metastable
states 3P0,1,2 can be trapped using optical wavelengths. Exciting the atoms into 3D0,1,2 manifold enables
decays to happen at infrared wavelengths, allowing for sub-wavelength interatomic spacing. In particular,
174Yb shows greater interest, because the 3D1 −→ 3P1 transition occurs at 1.540µm, making it compatible
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with telecommunication resources. On the other hand, for 88Sr, 3D1 −→ 3P1 transition occurs at the mid-
infrared 2.9µm, making it less compatible with experimental apparatus. For this reason, we will consider
174Yb.

We study the decay of initial atoms prepared in the |3D1,mJ = 0⟩ state into |3P1,mJ = −1⟩ and
|3P1,mJ = +1⟩ states via circularly polarized photons (σ+ and σ−, respectively). Several points must
be taken into account to achieve this closed configuration:

1. The |3D1,mJ = 0⟩ −→ |3P1,mJ = 0⟩ transition is forbidden by the corresponding Clebsch-Gordan
coefficient ⟨Jg = 1,mg = 0;Jq = 1, q = 0|Je = 1,me = 0⟩ = 0, being q the angular momentum
of emitted photon in the given transition.

2. The 3D1 −→ 3P2 decay has a strongly reduced linewitdh, with a branching ratio of 0.03 : 1 [56]
compared to 3D1 −→ 3P1 , and can be neglected.

3. 3P1 −→ 1S0 at 556nm, is too short in wavelength to be collectively enhanced. Moreover, its
relatively slow rate does not allow for the observation of collective effects on experimentally
relevant timescales.

4. Besides this, the 3D1 −→ 3P0 transition has a non-negligible decay rate with a linearly polarized
emitted photon (see Fig. 2 (b)). However, this photon is polarized in the perpendicular direction
to the circularly polarized σ+ and σ− emitted photons.

As a starting point, we have studied perfect Λ-systems. However, all simulations presented in this work
allow for a next-step generalization where the π-transition would be included, increasing the complexity
of the Hilbert space. Other demanding experimental techniques such as repumping from |3P0,mJ = 0⟩
into the original 3D1 state can be thought to eliminate the π-transition and achieve the perfect Λ-system.

Taking these considerations into account, we can study the closed Λ-type configuration with the
following states: |e⟩ ≡ |3D1,mJ = 0⟩, |g1⟩ ≡ |3P1,mJ = −1⟩ and |g2⟩ ≡ |3P1,mJ = +1⟩ (see Fig.
2 (b)). In order to confirm that the two branching ratios are equal, the Clebsch–Gordan coefficients for
both transitions must be calculated: ⟨Jg = 1,mg = ±1; Jq = 1, q = ∓1|Je = 1,me = 0⟩ = ±1/

√
2,

where q is the photon angular momentum. Therefore, the total spontaneous decay rate is given by:
Γtotal = Γg1

0 + Γg2
0 = ω3

0/(3πϵ0ℏc3) (1/2 + 1/2) |℘|2 = 2Γ0. Here, Γ0 = ω3
0|℘|2/6πϵ0ℏc3 is the decay

ratio into each channel. As both transitions have identical decay rates, this system is an ideal platform
for studying competition between decay channels. This is in contrast to schemes where one channel
dominates and enables ground state selection dynamics.

3 Theoretical Framework
In this section, we present a theoretical framework for photon-mediated interactions in atomic arrays.
We then particularize to atoms with a Λ-type level structure in free space (Section 3.3) and later derive
expressions for the Dicke limit, in which all atoms are assumed to be in the same spatial location (Section
3.4)

3.1 Input-Output equation

When two atoms couple to the same radiation mode, this can lead to an exchange of virtual photons,
resulting in coherent dipole-dipole interactions between the atoms. In addition, collective spontaneous
emission of photons (collective radiance) can occur, where photons are emitted at a faster (superradinace)
or reduced (subradiane) rate.

The standard quantized description of the electromagnetic field in free space involves an infinite
number of bosonic modes in this problem, each of which is associated with creation and annihilation
operators. To gain intuition on how atoms couple to radiation in the quantum regime, it is useful first to
consider a classical analogy, where atoms can be regarded as oscillating electric dipoles.
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Figure 2: (a) Relevant atomic structure of 174Yb. Violet dashed line indicate short wavelength optical
trapping transitions. Solid lines correspond to possible decay channels, with line thickness proportional to
the transition rate [57]. (b) Atoms are initially prepared in |3D1,mJ = 0⟩ and decay into |3P1,mJ = −1⟩
and |3P1,mJ = +1⟩ with circularly polarized emitted photons σ+ and σ−, respectively. Note the transition
between |3D1,mJ = 0⟩ and |3P1,mJ = 0⟩ is forbidden. In principle, they can also decay into |3P0,mJ = 0⟩
with linearly polarized emitted photons π. We will not consider this transition in our work.

Consider N classical electric dipoles pi located at positions ri, driven by a monochromatic external
field of frequency ω Ein(r, ω). The total electric field at any point is given by: Eout(r, ω) = Ein(r, ω) +∑

i µ0ω
2G(r − ri, ω) · pi, where G is the electromagnetic Green’s tensor. The components of this tensor,

Gα,β , with α, β ∈ {x, y, z} represent the α component of the electric field, generated by a dipole oriented
along β direction. The Green’s tensor is thus the solution to Maxwell’s equations with a dipole point
source and describes how the electromagnetic field propagates between two atoms. Because the fields
obey a linear wave equation, interference between the scattered fields are inherently encoded in this
tensor. This allows the description of light-mediated dipole-dipole interactions and collective radiance.
This description holds in any linear, isotropic and dielectric media with the appropriate Green’s function.
In the case of free space, the Green’s tensor between two atoms located at ri and rj is given by:

G(r = ri − rj , ω0) = eik0r

4πk2
0r

3

[(
k2

0r
2 + ik0r − 1

)
1 +

(
−k2

0r
2 − 3ik0r + 3

) r ⊗ r
r2

]
, (1)

where k0 = ω0/c is the wave number of the atomic transition and 1 the identity 3 × 3 matrix.
The quantum fields also satisfy Maxwell’s equations, and thus, it can be proven [40] that this equation

still holds for the quantum case, when replacing the classical dipole moments by the electric dipole
moment operators p̂ = −er̂ of the atoms, and the classical field by the quantum electric field operator
Ê(r, ω) = Ê+(r, ω) + Ê−(r, ω) (decomposed into its positive and negative frequency components).
For two-level atoms, with ground |g⟩ and excited |e⟩ energy levels, the electric dipole moment operator
associated with atom i can be written as p̂i = ℘∗σ̂eg

i + ℘σ̂ge
i , with ℘ = ⟨e| p̂ |g⟩ the dipole moment

matrix element. The input-output [58] equation for the (positive-frequency component) field reads:

E+
out(r, ω) = E+

in(r, ω) + µ0ω
2∑

i

G(r − ri, ω) · ℘σ̂ge
i . (2)

The above formalism can be readily generalized to the multilevel case as follows. Let us consider
transitions between two fine levelsJg andJe, more precisely, between the corresponding Zeeman sublevels
denoted by the quantum numbers mg ∈ {−Jg, · · · , Jg} and me ∈ {−Je, · · · , Je}. The electric dipole
moment operator can be written in this basis as

p̂i =
∑

mg ,me

⟨Jeme| p̂ |Jgmg⟩ σ̂memg

i + h.c. (3)
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Using the Wigner-Eckart theorem, we can rewrite the matrix elements in terms of the Clebsch-Gordan
coefficients Cq

mg
:

⟨Jeme| p̂ |Jgmg⟩ = ℘√
2Je + 1

Cq
mg

= (−1)Je−me℘

(
Je 1 Jg

−me q mg

)
, (4)

where we have denoted by ℘ = ⟨Je∥−er̂∥Jg⟩ the reduced matrix element associated with the transition,
and the matrix represents the 3−j symbols. Recall that q is the angular momentum of the emitted photon.

Note that the last expression always vanishes unless me = mg + q (i.e., electric dipole selection
rules). We then can define the multilevel lowering operator for the allowed transitions as:

Σ̂iq =
∑
mg

Cq
mg
σ̂

mg ,mg+q
i , (5)

and the corresponding raising operator as Σ̂†
iq ≡

(
Σ̂iq

)†
. The excitation number operator is also given

by the sum over all possible photon polarizations σ̂ee
i =

∑
q∈{0,±1} Σ̂†

iqΣ̂iq. Using these definitions, the
input-output equation generalizes into:

E+
out(r, ω) = E+

in(r, ω) + µ0ω
2℘
∑

i

G(r − ri, ω) · (êq) Σ̂iq, (6)

where now êq are the spherical basis vectors π, σ+ and σ− (q ∈ {0,±1}) as defined in Section 2.1.

3.2 Lindbladian and Open Quantum Spin Model

The atomic electric dipole moment operators are driven by the total fields at their positions, and at the
same time, the fields depend on the atomic coherences, as we have seen in the previous equation Eq. (6).
Starting from the electric dipole interaction Hamiltonian Ĥ = −e

∑
i p̂i · Êout(ri, ω0) it is possible to

derive, after tracing out the photonic degrees of freedom and in the Born-Markov and rotating wave
approximations, a Lindblad master equation for the reduced atomic density matrix ρ. The Born-Markov
and rotating wave approximations are well established in quantum optical systems [59]. In the Born
approximation the coupling to the bath is assumed to be weak (only second order in perturbation theory),
while in the Markov approximation the photonic bath is assumed to be memoryless or with very short
correlation time compared to the atomic scale, what allows to obtain a master equation which is local in
time and of the general form:

ρ̇ = − i

ℏ
[H, ρ] + L [ρ] , (7)

where H denoted the Hamiltonian part governing the coherent unitary evolution, and L corresponds to
the Lindblad dissipator, describing the dissipation due to the coupling with the external bath.

In the case under study, of an array of multilevel atoms in free space and interacting with the
electromagnetic vacuum, the Born-Markov approximation is equivalent to neglect light retardation, an
assumption that is always valid for typical atomic cloud sizes, and to assume that the Green’s function
propagator varies only smoothly around the atomic transition frequency compared to the atomic absorption
profile.

In this case, the operators H and L take the specific forms derived in [48, 54], that will be described
next. The Hamiltonian H contains both the bare energy of the atoms and the coherent dipole-dipole
interactions induced by the exchange of a virtual photon (from now on and for simplicity in the notation,
we will set ℏ = 1):

H = ω0

N∑
i

σ̂ee
i +

∑
q,q′∈{0,±1}

N∑
i,j

Jqq′

ij Σ̂†
iqΣ̂jq′ . (8)
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The Lindblad dissipator containing two types of terms (population recycling term and decoherence
contributions), can be written as:

L [ρ] = 1
2

∑
q,q′∈{0,±1}

N∑
i,j

Γqq′

ij

(
2Σ̂jq′ρΣ̂†

iq − {Σ̂†
iqΣ̂jq′ , ρ}

)
. (9)

The dissipative and dispersive couplings, Γqq′

ij and Jqq′

ij , depend on how light propagates between the
two quantum emitters, and are given by the real and imaginary parts of the Green’s tensor, respectively:

Γqq′

ij = µ0ω
2
0|℘|2

2 (êq)∗ · Im [G (ri − rj , ω0)] · êq′ (10a)

Jqq′

ij = −µ0ω
2
0|℘|2(êq)∗ · Re [G (ri − rj , ω0)] · êq′

. (10b)

Note that these operators, in principle, account for processes where an atom emitting a photon with
polarization q can induce absorption in another atom with a different polarization q′ ̸= q. This reflects
the fact that the electromagnetic field generated by a dipole oriented along a given direction generally
contains orthogonal components. The exact strength of this coupling, and the fact that it vanishes or not,
are determined by the Green’s tensor propagator.

The dynamics under Eq. (7) can be analogously described by the quantum jump formalism of
open quantum systems (see Appendix A). In this picture, the system evolves deterministically under an
effective non-hermitian Hamiltonian H = ω0

∑N
i σ̂ee

i + Heff interrupted by stochastic quantum jumps.
The effective Hamiltonian reads:

Heff =
∑

qq′∈{0,±1}

N∑
i,j

Jqq′

ij − i
Γqq′

ij

2

 Σ̂†
iqΣ̂jq′ , (11)

and leads to the deterministic part of the evolution given by K [ρ] = −i [Heff, ρ]. This Hamiltonian has
the form of a generalized open quantum spin model, where the raising and lowering operators Σ̂(†)

iq play
the role of generalized spin operators, and the couplings are complex-valued.

On the other hand, jumps or decays are encoded in the jump superoperator

J [ρ] =
∑

qq′∈{0,±1}

N∑
i,j

Γqq′

ij Σ̂jq′ρΣ̂†
iq. (12)

The total dynamical evolution is described by the Liouvillian superoperator, being the sum of the two
different terms described before: O = K + J .

From this, the transition rate between two different collective eigenstates of the effective Hamiltonian,
|ψnex

ξ ⟩ with nex excitations and |ψnex−1
ξ′ ⟩ with nex − 1 excitations, is given by:

γξ,ξ′ = Tr
(
|ψnex−1

ξ′ ⟩⟨ψnex−1
ξ′ |J

[
|ψnex

ξ ⟩⟨ψnex
ξ |

])
. (13)

Another important parameter is the photon emission rate by the atomic array. To quantify it, we can use
the rate at which the excited-state population decreases, i.e., how quickly atoms decay to the ground state
while emitting photons. At any time during the dynamical evolution, it can be calculated as:

R(t) = − d

dt

∑
i

⟨σ̂ee
i ⟩, (14)

where σ̂ee
i is the excited-state number operator of atom i and the expectation value is taken over the atomic

reduced density matrix at time t. The photon emission rateR(t) is proportional to the light emitted power
of the array, since multiplying it by the photon energy ℏω0 gives the total radiated power, i.e. energy per
unit of time.
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3.3 Λ Atoms

As discussed in Section 2.2, in this work we will consider three-level Λ-type atoms, with only two possible
decay channels. In this case, the Clebsch-Gordan coefficients for both decay channels are equal, and the
generalizing lowering and rising operators contain a single operator:

Σ̂i,q=+1 ≡ σ̂g1e
i , Σ̂i,q=−1 ≡ σ̂g2e

i . (15)

For this simpler case, the Fig. 3 shows the dependence on both dissipative and dispersive couplings as
a function of the normalized interparticle distance d/λ0 with two atoms separated along x̂ axis. Panel (a)
shows the normalized dissipative coupling Γqq

ij (green) and Γqq′

ij (red), corresponding to decay through the
same or different ground states respectively. Panel (b) show the corresponding dispersive couplings Jqq

ij

(green) and Jqq′

ij (red), again same channel and mixed channel interactions. In all plots it can be seen that
in the dilute limit d/λ0 ≫ 1, couplings between different atoms vanish and atoms behave independently,
with a decay rate Γ0 = Γqq

ii for each decay channel q (note that Γqq′

ii = 0). In this case, the computational
basis is enough to describe the physics and no collective phenomena is described. For shorter distances
d/λ0 ∼ 1 collective effects begin to emerge, and for d/λ0 ≪ 1, the system enters the Dicke regime,
where all atoms couple to the same electromagnetic field strength, and the Hamiltonian greatly simplifies
(see Section 3.4). In this case a collective basis is needed to describe the problem as will be discussed
later.

Figure 3: (a) Dissipative coupling Γqq′

ij and (b) dispersive coupling Jqq′

ij between two atoms, normalized to the
single channel decay rate Γ0, as a function of the normalized interatomic distance d/λ0. In both panels, green
lines represent couplings involving the same transition in the two atoms, whereas red lines correspond to the
crossed terms.

3.4 Point-like atomic gas: the Dicke limit

As a starting point for our studies, we will focus on the dissipative Dicke regime [17], where all atoms are
assumed to be confined at a very small volume (point-like gas limit) and only dissipative couplings are
present. In this case, all the non-vanishing couplings Γqq′

ij (including self-interacting terms) take the same
value, thus greatly simplifying the model and leading to a permutationally symmetric Hamiltonian. This
model captures essential physics relevant to some experimental platforms like atoms coupled resonantly
to an optical cavity in the so-called bad cavity regime (cavity loss dominated over reabsorption) or
atoms coupled to a waveguide and separated by a distance λ0. In all these scenarios, the atoms are
indistinguishable from the field’s perspective, and collective eigenstates (rather than product states in the
computational basis) become the natural basis.

More precisely, the Dicke regime corresponds to d/λ0 −→ 0, where all particles are coupled to the same
amplitude of the electromagnetic field. The dissipative couplings become diagonal Im

[
G(ri − rj, ω0)

]
∝

1, thus leading to Γqq′

ij = Γ0δqq′ , for any i and j (see Fig. 3(a)). Moreover, also strictly in this limit,
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and following a regularization procedure [60], it can be seen that the dispersive part of the interactions
Re
[
G(ri − rj, ω0)

]
∝ 1 is also proportional to the identity, thus not changing the structure of the effective

Hamiltonian Heff . As we are interested in the dissipative properties, and the collective eigenmodes are
the same, we will work for convenience with the Hamiltonian that results from setting Jqq′

ij = 0.
Therefore, in this limit we are left with the following permutationally invariant operators:

Heff = −iΓ0
2
∑
ij

(σ̂eg1
i σ̂g1e

j + σ̂eg2
i σ̂g2e

j ) (16a)

J [ρ] = Γ0
∑
ij

(
σ̂g1e

i ρσ̂eg1
j + σ̂g2e

i ρσ̂eg2
j

)
. (16b)

In the next Section 4, Eq. (16a) and Eq. (16b) will be used to classify and obtain the properties of the
collective eigenstates in the Dicke limit.

4 Collectively Radiant Eigenmodes
In this section we study the collective eigenmodes of the system defined as the eigenstates of the effective
Hamiltonian Heff , which as previously discussed, describes the deterministic evolution of the system. We
begin by characterizing the dissipative Dicke eigenstates for two-level atoms (Section 4.1.1), and then
extend the discussion to our proposal for Λ-type atoms, which can be mapped into SU(3) (Section 4.1.2)).
An entanglement characterization of Dicke eigenstates is also included (Section 4.1.3). In Section 4.2,
the collective eigenstates described before are used to solve the problem with finite interparticle distance
and adding dispersion.

4.1 Dissipative Dicke model

For independent spontaneous emission (d/λ0 ≫ 1), the computational basis diagonalizes the Hamiltonian.
In contrast, correlated spontaneous emission requires a collective basis reflecting interference effects. To
understand cooperative emission, it is instructive to analyse first the dissipative Dicke states obtained in
the limit of d/λ0 → 0. Dicke states already encode the essential collective radiative properties that are
the key point of our work.

4.1.1 2-level atoms: SU(2) mapping.

To gain some intuition, we start describing the case of two-level atoms. These can be described as spin-1/2
particles, with |g⟩ ≡ | ↓⟩ and |e⟩ ≡ | ↑⟩ levels. In this case, the effective Hamiltonian reads:

Heff = −iΓ0
2

N∑
ij

σ̂eg
i σ̂

ge
j = −iΓ0

2 S+S− = −iΓ0
2
(
S2 − S2

z + Sz

)
, (17)

where the collective raising and lowering spin operators are defined respectively as S+ =
∑N

i=1 σ̂
eg
i

and S− =
∑N

i=1 σ̂
ge
i , while the total spin operator and its projection along z-axis are S2 = (S+S− +

S−S+)/2 + S2
z and Sz =

∑N
i=1(σ̂ee

i − σ̂gg
i )/2. Since [Heff , Sz] = 0, the Hamiltonian in Eq. (17)

can be diagonalized in blocks with fixed excitation number. The collective eigenstates are labelled by
the total spin S and its projection MS , which are defined from S2|S,MS⟩ = S(S + 1)|S,MS⟩ and
Sz|S,MS⟩ = MS |S,MS⟩. Then, the decay rate is given by Γ/Γ0 = S(S + 1) +MS(1 −MS). One can
check how the most superradiant state is given by S = N/2 and Sz = 0, i.e., a fully symmetric state with
half of the atoms excited, for which the decay rate becomes Γ = N(N + 1)Γ0/4, leading to an emitted
intensity ∼ N2Γ0, for a large enough number of atoms. Instead, completely dark states with Γ = 0 are
given by MS = −S, in particular the total singlet state S = MS = 0 is a dark state.
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While this construction does not break completely the degeneracies, it organizes the eigenstates in
the so-called many-body Dicke ladder, naturally revealing the appearance of collective radiative states
(see Fig. 4). The N spin-1/2 physics are described by a (reducible) representation of the SU(2) group.
Here, there are three group generators that correspond to the Pauli matrices, satisfying the following
commutation relations:

[
Sa, Sb

]
= iϵabcSc, with {a, b, c} = {x, y, z} and ϵabc the totally antisymmetric

Levi-Civita symbol. In this case, there is just a single independent Casimir operator (group invariant),
which corresponds exactly to the total spin operator S2. Its eigenvalues S uniquely label the irreducible
representations of the group, each of dimension 2S+1. In the Dicke problem, irreducible representations
(different S sectors) are not mixed by dynamics of Eq. (7) (see Section 5).

In general, we can always numerically evaluate the Hamiltonian Heff using exact diagonalization.
Due to degeneracy in each sector (S,MS), the obtained states are not necessarily of the Dicke form. It
is important that we force the computational program to build permutationally invariant states, otherwise
they we will not get the right results.

Figure 4: Dicke many-body ladder for N 2-level atoms, with N even. Different colours represent different
irreducible representations of SU(2) spanned by different values of S. In every irreducible representation, there
are different levels from MS ∈ [−S, S]. Arrows represent the natural decay of these levels following Eq. (7),
and thick arrows describe states with bigger decay rate. Levels represented by dotted lines are completely dark
states.

4.1.2 Λ atoms: SU(3) mapping

We now generalize the discussion to Λ-type atoms, and find the quantum numbers that describe the
collective eigenmodes and decay rates in this more complex case as the main novelty of our work. Now,
the SU(2) representation is insufficient because of the richer three-level structure. A complete description
requires the full SU(3) algebra including the spin operators and the so-called quadrupole operators
[61, 62, 63]. For convenience, and without loss of generality, we will label the basis states as:

|g1⟩ =

1
0
0

 , |g2⟩ =

0
1
0

 , |e⟩ =

0
0
1

 .
While in SU(2), the only group invariant is the total spin operator S2, in SU(3) there are two

independent Casimir operators. The quadratic Casimir operator is defined as:

C2 =
8∑

i=1
λi · λi, (18)

where {λi} are the group generators. Note that the choice of generators {λi} is not unique: any complete
basis of the SU(3) algebra related by a unitary transformation can be used. The quadratic Casimir
operator is basis-independent, however, its explicit form and eigenvalues depend on the normalization
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convention for the generators. Instead of spin-1 and quadrupole operators, we will choose here the
Gell-Mann matrices as the eight group generators (see Appendix B.1). The cubic Casimir operator is
used to distinguish between an irreducible representation and its conjugate, but it will not be used for our
purposes.

Any irreducible representation of SU(3) can be labeled by their Dynkin coordinates (p, q) (see
Appendix. B.2). In any irreducible representation, the quadratic Casimir operator (Eq. 18) is proportional
to the identity, C2 = C2(p, q)1, with eigenvalue:

C2(p, q) = 1
3
(
p2 + q2 + pq + 3p+ 3q

)
, (19)

and the dimension of each representation is given by 1
2(p + 1)(q + 1)(p + q + 2). The fundamental

representation of one three-level system is represented by: (p,q) = (1, 0). Coupling many Λ-atoms,
requires Young tableaux instead of Clebsch-Gordan coefficients to get the possible values of (p, q) (see
Appendix. B.2)

Now we will work with the Dicke dissipative Hamiltonian given by Eq. (16a) and express it in terms
of SU(3) generators. The different single-atom raising and lowering operators can be written in terms
of the Gell-Mann matrices as: σ̂eg1 = 1

2(λ4 − iλ5), σ̂g1e = 1
2(λ4 + iλ5), σ̂eg2 = 1

2(λ6 − iλ7) and
σ̂g2e = 1

2(λ6 + iλ7). As done for the spin operators in the two-level case, we can define the collective
Gell-Mann matrices as: Λa =

∑N
i=1 λ

i
a, where the super-index i denotes the Gell-Mann matrix acting on

site i. Using the commutation relations [Λ4,Λ5] = i(Λ3 +
√

3Λ8), [Λ6,Λ7] = i(−Λ3 +
√

3Λ8) and the
definition of the quadratic Casimir operator (Eq. 18) the effective Hamiltonian becomes:

Heff = −iΓ0
2

1
4
(
C2 − Λ2

1 − Λ2
2 − Λ2

3 − Λ2
8 − 2

√
3Λ8

)
. (20)

The degeneracy of the ground states implies a symmetry under |g1⟩ ↔ |g2⟩, which can be exploited
by introducing an equivalent SU(2) subalgebra within {g1, g2} subspace. In this case, Sx

g1,g2 = 1
2Λ1,

Sy
g1,g2 = 1

2Λ2 and Sz
g1,g2 = 1

2Λ3, so that: 4S2
g1,g2 = Λ2

1 + Λ2
2 + Λ2

3. Using the definition of Λ8 in terms
of the occupation number operators: Λ8 = 1/

√
3
(
N̂g1 + N̂g2 − 2N̂e

)
and the relationship between the

population in the different levels: N̂ = N̂g1 + N̂g2 + N̂e, we obtain a compact form for the effective
Hamiltonian:

Heff = −iΓ0
2

[
C2 − S2

g1,g2 − 1
12
(
N̂ − 3N̂e

)2
− 1

2
(
N̂ − 3N̂e

)]
. (21)

This expression shows that the collective eigenmodes and decay rates are characterized by the
following quantum numbers: the quadratic Casimir eigenvalue C2(p, q), the total spin associated with
the {g1, g2} SU(2) subalgebra, the total number of particles N , and the total number of excited sites
Ne ≡ ⟨σee⟩ ≡ ⟨

∑
i σ̂

ee
i ⟩. Moreover, the population imbalance between the two ground statesNg1 −Ng2 ≡

2 ⟨Sg1g2
z ⟩ also commutes with Heff , and thus, the eigenstates can always be chosen with well defined

values of Ne, Ng1 and Ng2 .
As a consistency check, we first analyse the simplest case of a single Λ-atom (N = 1), corresponding

to the fundamental representation (p, q) = (1, 0) with C2 = 4/3. In this case: Heff|g1⟩ = 0, Heff|g2⟩ = 0
and Heff|e⟩ = −iΓ0|e⟩. Therefore |e⟩ has a decay rate of 2Γ0, as expected for a single atoms with two
independent decay channels, each with rate Γ0.

Moreover, using the Hamiltonian Eq. (21) we can check the prediction in [47]. In this work, authors
show that forN−1 optical transitions, at leastN atoms are needed for the emergence of a single-excitation
dark state, which necessarily has the form:

|ψN
dark⟩ = 1√

N !
∑

π∈SN

sgn(π)π (|g1...gN−1e⟩) , (22)
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where the sum runs over all permutations π of N elements. This is a completely antisymmetric state for
a given configuration. For our Λ-type atoms, this means that we need at leastN = 3 atoms to find this com-
pletely antisymmetric state: |ψ3

dark⟩ = 1√
6 (−|eg1g2⟩ + |eg2g1⟩ + |g1eg2⟩ − |g2eg1⟩ − |g1g2e⟩ + |g2g1e⟩).

We found that this state corresponds exactly to the irreducible representation (p,q) = (0, 0).
Dicke-decaying diagrams are the extension from Dicke-many body ladder of two-level atoms to Λ-

atoms, where the states are now labelled by the excitation number ⟨σee⟩ and the ground state imbalance
⟨Sg1g2

z ⟩. Here the states are represented by dots instead of lines (in contrast to the two-level atom case).
The fundamental Dicke-decaying diagram for N = 1 is shown in Fig. 5, where the states are just |g1⟩,
|g2⟩ and |e⟩.

Figure 5: Fundamental diagram with the eigenvalues of σee ≡ N̂e and Sg1g2
z ≡ N̂g1 − N̂g2 labelling the three

possible states. The action of the ladder operators is also shown.

In Fig. 6 we show the Dicke-decaying diagram in the more complicated case of N = 3 atoms. The
corresponding transition rates following Eq. 13. One can see the different irreducible representations
and the appearance of the predicted single excitation dark state in the (p, q) = (0, 0) representation.

As the atom number increases beyondN = 3, more dark states start to appear in the single excitation
sector. However, to observe a dark state in the two-excitations sector, one requires at least N = 6.
Likewise, a dark state with three excitations appears at N = 9, and so on. This follows from he fact that
subradiant states in higher-excitation sectors arise only in the (p, q) = (0, 0) irreducible representation,
which emerges in multiples of 3.

As another example, we now consider N = 6 atoms, with the following irreducible representations:
5(0, 0) ⊕ 16(1, 1) ⊕ 5(0, 3) ⊕ 10(3, 0) ⊕ 9(2, 2) ⊕ 5(4, 1) ⊕ (6, 0), where the prefactor in (p, q) indicates
the multiplicity of the representation. The symmetric subspace (6,0) contains the fully symmetric Dicke-
decaying diagram, while the five copies of (0,0) show the appearance of dark-states in the two-excitations
manifolds. The corresponding Dicke decaying diagrams are shown in Appendix. B.3.

We note that this model can be easily generalized to any atomic structure with one excited state and
n degenerate ground states. In this case the SU(n+ 1) group representation is needed, but the quadratic
Casimir operator involving the square of the group generators will be enough to describe the effective
Hamiltonian of the system.

4.1.3 Entanglement in collective eigenmodes

To characterize the entanglement content of collective Dicke states, we use two bipartite measures: the
Von-Neumann entropy and the negativity. In this case, the total atomic system is divided into two different
subsystems A and B, with Hilbert space dimensions dim(HA) = dA and dim(HB) = dB .

The Von-Neumann entropy (or entropy of entanglement) is well defined for pure states, ρAB =
|Ψ⟩AB⟨Ψ|AB , and reads:

ES(ρ) = S(ρA) = −Tr (ρA log ρA) , (23)
where ρA = TrB(ρAB) is the reduced density matrix for subsystem A. Notice that S(ρA) = S(ρB) =
−Tr (ρB log ρB). If ES(ρ) = 0 the state is separable, otherwise, for ES(ρ) > 0, the state is entangled.
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Figure 6: Dicke-decaying diagrams for N = 3 Λ-type atoms. One can see four disconnected ladders
coming from the different irreducible representations. Top left panel with (p, q) = (3, 0) represents the
symmetric subspace where the dynamics are restricted given an initial state with all atoms inverted, i.e., |e⟩⊗N

(represented by the top point), see also Section 5.1. The irreducible representations with (p, q) = (1, 1) show
mixed symmetries between the different Young tableaux, showing two degenerate states represented by the
circle around the dot. Bottom right panel with (p, q) = (0, 0) represents the completely antisymmetric sector
with just one dark single-excitation state, as predicted in Eq. 22. Arrows represent the possible decays from
one state into the others, with a width that is proportional to the rate evaluated from Eq. (13), as indicated in
the legend.

Maximally entangled states have an entropy of entanglement ES = log2(d), where d = min(dA, dB) .
Negativity [64] is particularly useful for mixed states (see Section 5). It is related to the Peres-

Horodecki criterion (positive under partial transpose, PPT) for separability [65]. This criterion states that
if ρ is separable, then its partial transpose with respect to subsystem A, ρTA , has only non-negative values.
It is an entanglement witness, meaning that it is a sufficient, but not necessary condition for bipartite
entanglement, except for 2×2 and 2×3 systems, where it becomes both necessary and sufficient [66, 67].
The negativity is defined as:

N (ρ) =
∑

i

|λi| − λi

2 , (24)

where λi are all the eigenvalues of ρTA . Therefore, the negativity is the absolute sum of the negative
eigenvalues in ρTA . An alternative and derived measure is the logarithmic negativity, given by:

EN (ρ) = log(2N + 1). (25)

For pure states, it can be shown that EN (ρ) ≥ ES(ρ), with equality holding for maximally entangled
states and product states (see Appendix. C).

In Fig. 7(a) we show the entanglement entropy and logarithmic negativity as a function of the number
of excitations for N = 6 two-level atoms under the bipartition 1|(N − 1), i.e. quantifying how a single
atom is entangled with the remaining N - 1 for every Dicke state. We can see how all the states with the
same number of excitations have the same bipartite entanglement. This bipartition is also chosen because
it allows for an analytical expression for the reduced density matrix: ρA = Ne

N |e⟩⟨e| + N−Ne
N |g⟩⟨g|, and
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therefore the entanglement entropy can be evaluated explicitly as:

ES(ρ) = −Ne

N
log2

(
Ne

N

)
−
(

1 − Ne

N

)
log2

(
1 − Ne

N

)
. (26)

Thus, the entanglement is directly connected to the Hilbert space dimension of the Hamiltonian blocks
with a fixed number of excitations, showing a bigger entanglement for Ne = N/2. We note that among
these states, there are the most superradiant and dark collective modes, as previously discussed. Moreover,
one observes that the inequality EN (ρ) ≥ ES(ρ) is satisfied.

In Fig. 7(b) we show the entanglement entropy for N = 6 Λ-type atoms and a bipartition 1|(N − 1),
now as a function of both the number of excitations and the population imbalance between the two ground
states. We can see how all the states with the same number of excitations and population imbalance have the
same bipartite entanglement. We do not show the logarithmic negativity, as it exhibits the same qualitative
behaviour. The reduced density matrix takes now the form: ρA = Ne

N |e⟩⟨e| + Ng1
N |g1⟩⟨g1| + Ng2

N |g2⟩⟨g2|,
leading to the entanglement entropy expression:

ES(ρ) = −Ne

N
log2

(
Ne

N

)
−
(
N −Ne + ⟨Sg1g2

z ⟩
2N

)
log2

(
N −Ne + ⟨Sg1g2

z ⟩
2N

)
−
(
N −Ne − ⟨Sg1g2

z ⟩
2N

)
log2

(
N −Ne − ⟨Sg1g2

z ⟩
2N

)
.

(27)

As before, maximal entanglement corresponds to the largest Hilbert space dimension. In the case of
N = 6, it corresponds to Ne = 2 and ⟨Sg1g2

z ⟩ = 0, precisely where the most superrradiant states and
subradiant states in the two-excitation manifold are located.

Figure 7: Entanglement properties of Dicke states. (a) Entanglement entropy and logarithmic negativity as
a function of the number of excitations (note that ⟨σee⟩ = Ne ) for N = 6 two-level atoms. (b) Entanglement
entropy as a function of the number of excitations ⟨σee⟩ and the ground state population imbalance ⟨Sg1g2

z ⟩
for N = 6 Λ-type atoms.

4.2 Finite-size model in presence of coherent interactions

We now move to the case where the atoms are separated by finite distances, beyond the point-like gas or
Dicke limit previously discussed. For finite size systems, permutational invariance no longer holds. Now,
the dissipative and dispersive couplings given by Eq. (10a) and Eq. (10b) have different values depending
on the pair of atoms i, j and the atomic transitions q, q′. In the case of the considered geometries, the ring
eigenstates are also permutationally invariant due to symmetry [J,Γ] = 0, showing a smooth crossover
between the Dicke model and finite-size effects. For the chain, and more general geometries, coherent and
dissipative interactions do not commute [J,Γ] ̸= 0, and therefore the collective eigenstates are not simply
the dissipative Dicke states described before. Nevertheless, the collective behaviour can be understood
by diagonalizing the effective Hamiltonian in Eq. (11), using the previous Dicke basis as a reference.

14



In Fig. 8 (a) we show the minimum and maximum decay rates in the single-excitation manifold as
a function of the inter-particle distance d for both geometries considered (ring and chain), comparing
two-level and Λ-type atoms forN = 3 atoms. One can observe collective radiance effects. In all cases, for
d/λ0 ≫ 1, atoms behave independently and the single-channel decay rate Γ0 is recovered. In the Dicke
limit d/λ0 ≪ 1, one recovers the decay rates predicted in the previous section and spontaneous emission
in each channel can get enhanced or suppressed. Between these two regimes, a smooth crossover with
oscillations can be observed. Subradiant behaviour is recovered in all geometries and atomic structures.
In contrast, superradiance effects in each channel are weaker for Λ-type atoms in the single-excitation
manifold. However, when adding the two channels one gets a bigger decay than for the two-level case.

In Fig. 8 (b) we study finite-size effects by showing the minimum decay rate in the single-excitation
sector as a function of the atom number N , for a fixed d/λ0 = 0.08 and both geometries. As expected,
the closed geometry (ring) is less sensitive to finite-size effects than open chains, because for the closed
geometry the radiation does not escape through the ends of the chains. The presence of multiple decay
channels in Λ-atoms increases the minimum decay rate compared to the two-level case.

Finally, in Fig. 8 (c) we test the prediction from Section 4.1.2. Here, we show that at least N = 6
atoms are required to obtain subradiant states with two excitations in Λ-atoms. For the two-level case
one needs at least N = 4 atoms. The plot shows the minimum decay rate in the two-excitation manifold
for a ring of two-level and Λ-atoms at the same fixed interparticle distance d/λ0 = 0.08. For N ≥ 6,
dark states with Γ −→ 0 start to appear in Λ-atoms, while in the two-level case is for N ≥ 4 as expected.
The inset highlights the logarithmic scaling of the minimum decay rate for N ≥ 6, showing that larger
systems further suppress decay, as happened in Fig. 8 (b) for the single excitation sector.

Figure 8: Collective decay rates in the finite size model in presence of coherent interactions. (a) Minimum
and maximum decay rate in the single-excitation manifold as a function of the interparticle distance d/λ0,
comparing the ring and chain geometries for the two-level and Λ-type atoms with N = 3. (b) Minimum decay
rate in the single-excitation manifold as a function of the atoms number N , for d/λ0 = 0.08 in both geometries
and atomic structure. (c) Minimum decay rate in the two-excitation manifold as a function of N for Λ-atoms
in a ring at d/λ0 = 0.08. The inset, in logarithmic scale, shows the emergence of subradiant states for N ≥ 6.
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5 Dynamics
In this Section we analyse the dynamics of the open quantum spin model for Λ-atoms and starting from
an initially fully inverted population. We first consider the dissipative Dicke model (Section 5.1) to
understand the main features of dynamics. We then include finite-size and coherent effects (Section 5.2)
with a particular focus on the time evolution of the entanglement content between the atoms. Finally, we
study how the steady-state entanglement changes with respect to the model parameters and analyse some
of its properties (Section 5.2.2).

5.1 Dissipative Dicke model

We begin by analysing the dynamics in the dissipative Dicke model (see Section 3.4). As shown in
Appendix D, the evolution generated by Eq. (7) does not mix different SU(3) irreducible representations
when the system is initialized with well-defined Dynkin labels (p,q). Interestingly, this result can be
easily generalized for any atomic structure with n degenerate ground states and their respective SU(n+1)
irreducible representations.

As a representative example, see Fig. 9. Here, we show the dynamics ofN = 3 Λ-type atoms starting
with the fully inverted state |eee⟩. This state belongs to the symmetric irreducible representation (3, 0)
(see Fig. 6 top left panel). As a consequence, the dynamics is confined to this symmetric sector, and
populations decay only in it.

Figure 9: Dynamics in the Dicke model. Time evolution of N = 3 Λ-type atoms in the dissipative Dicke
model, starting from fully inverted population: ρ(t = 0) = |eee⟩⟨eee|. Since this state belongs to the symmetric
irreducible representation with (p,q) = (3, 0), the dynamics remain confined to this sector and only symmetric
states are populated. Superposed lines indicate equal population between the corresponding states.
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5.2 Finite-size model in presence of coherent interactions

Departing from the Dicke limit, where all particles are effectively at the same point, introduces finite-size
effects due to non-zero inter-particle separations. In this regime, both the distance-dependent dissipative
couplings and the coherent interactions (which no longer commute with the dissipative part) break the
conservation of irreducible representations that characterizes the Dicke-model dynamics. Consequently,
even if we start with a fully inverted initial state |Ψ(t = 0)⟩ = |e⟩⊗N , dynamics can populate states
outside the perfectly smmetric Dicke ladder. To analyze these effects, we consider N = 6 atoms trapped
in the ring geometry for both the two-level and Λ-level configurations. This choice minimizes boundary
effects, as discussed in Section 4.2.

5.2.1 Dicke superradiance and entanglement dynamics

One key concept with the dynamics happening completely or almost in the symmetric sector is Dicke
superradiance. During the decay along these states with the maximum decay rate, the system undergoes
a superradiant burst: a peak in the photon emission rate R(t) proportional to N2 [17, 19], coming from
the constructive interference of the atomic dipoles. This peak marks the moment when atoms are most
strongly correlated. An interesting question is the relation between this photon-emission burst and the
interatomic entanglement generation within the process, which we analyse in the following.

In Fig. 10 (a) we plot the logarithmic negativity (Eq. 25) as a function of time for different interparticle
distances, together with the Dicke limit result, for comparison. For all cases we observe an initial peak
of entanglement at short times, which is higher in the Dicke limit.

In Fig. 10 (b) we also plot the photon-emission rate from Eq. (14). At small enough inter-particle
separation, even for small N , one observes the superradiant burst peak in the emission rate. At larger
separations (d/λ0 = 0.5) the burst disappears and the emission follows the independent-atom exponential
decaying law. For Λ atoms, the burst is more pronounced than in the two-level case, reflecting stronger
cooperative effects.

Interestingly, we find that the peak in entanglement precisely coincides with the superradiant burst in
the photon emission rate. The simultaneous maximization of emission and entanglement generation seems
natural, as cooperative photon emission enhances correlations among the atoms, leading to enhanced
entanglement.

As the interparticle distance increases, atoms start to behave more independently, leading to a
burst and maximum entanglement suppression. Interestingly, Λ-type atoms sustain a finite steady-state
entanglement, in contrast to two-level atoms. The reason is that while two-level atoms decay into the
trivial pure ground state |g⟩⊗N , Λ atoms decay into a mixture within the ground-state manifold, where
some collective states are entangled (see Fig. 7). Before reaching the steady-state entanglement, as d/λ0
increases there is a valley where entanglement negativity vanishes.

For completeness, we also plot in Fig. 10 (c) the purity P = Tr(ρ2) of the density matrix as a
function of time for different distances and the Dicke model. Starting from a pure state (P = 1), the
purity decreases as the density matrix becomes a mixed state (P < 1) and reaches a minimum value at
the superradiant peak, when the state is maximally mixed. For the two-level atoms in the Dicke limit, the
purity quickly returns to the unity once all atoms decay to the ground state. At finite distances, coherent
interactions and finite-size effects populate other states leading to a slower recovery. For Λ atoms, the
steady state remains mixed in all cases, consistent with the presence of an steady-state entanglement due
to the population of many ground state manifold states.

5.2.2 Steady-state entanglement and purity

Once the full dynamics is studied, we analyse the steady state entanglement and purity depending on
the interparticle distance. The steady state can be obtained by directly diagonalizing the Liouvillian
superoperator [68], rather than evolving the system in time until the density matrix derivatives vanish,
which is generally more computationally demanding.
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Figure 10: Dynamics entanglement with finite-size and coherent effects. (a) Logarithmic negativity as a
function of time for different interparticle distances and for the Dicke model. (b) Photon emission rate as a
function of time. (c) Purity of the density matrix, P = Tr(ρ2), as a function of time. The figures illustrate
how finite-size and coherent interaction effects modify the ideal Dicke superradiant dynamics. All plots are
done for N = 6 atoms trapped in a ring geometry.

For this algorithm, it is convenient to flatten the density matrix as a column vector. For instance, in
the case of a qubit one has:

ρ =
(
ρ11 ρ12
ρ21 ρ22

)
−→ |ρ⟩ =


ρ11
ρ12
ρ21
ρ22

 , (28)

where now |ρ⟩ is a vector written in the Dirac notation. The initial state will be: |ρ(0)⟩ = flatten(|Ψ0⟩⟨Ψ0|).
The Liouvillian superoperator O = K + J , which generates the dynamics, can be constructed

through the tensor product operation between the flattened density matrix and the corresponding atomic
raising and lowering operators, combined with identity operators to ensure dimensional consistency. For
example, when multiplying a density matrix by a general matrixA from either side, the mapping becomes:

Aρ −→ Â|ρ⟩ = (1 ⊗A)|ρ⟩, ρA −→ |ρ⟩Â = (AT ⊗ 1)|ρ⟩, (29)

where 1 has the same dimensions as A. Consequently, the Liouvillian superoperator has size (3N )2 ×
(3N )2, which quickly becomes computationally demanding for large N . Now, the equation governing
dynamics in this flattened form reads:

∂|ρ⟩
∂t

= Ô|ρ⟩. (30)

Diagonalizing Ô yields its eigenvalues and right/left eigenvectors. Since Ô is non-Hermitian, eigen-
vectors are biorthogonal: Ô|vR

i ⟩ = λi|vR
i ⟩ and (|vL

i ⟩)†Ô = λi(|vL
i ⟩)†. Hence the decomposition is:
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Ô =
(3N )2∑

i

λi|vR
i ⟩⟨vL

i |. (31)

At any time, the density matrix can be found using this formalism as:

|ρ(t)⟩ = eÔt|ρ(0)⟩ =
(3N )2∑

i

eλit⟨vL
i |ρ(0)⟩|vR

i ⟩. (32)

To obtain the steady state we impose Ô|ρss⟩ = 0. Thus, the steady state is reconstructed from the
zero-eigenvalue subspace:

|ρss⟩ =
r∑

i=1
⟨vL

i |ρ(0)⟩|vR
i ⟩, (33)

where the important point is that now the sum runs over all r eigenvectors with zero eigenvalue.
In Fig. 11 we analyse the steady-state logarithmic negativity and purity as functions of the interparticle

distance d for N = 6 Λ atoms in a ring geometry. Panel (a) shows that for d/λ0 ≳ 0.4 the logarithmic
negativity vanishes, while in the Dicke limit it saturates to EN (ρss) ≈ 0.13. Panel (b) includes as
reference a lower bound for the purity corresponding to a maximally mixed state in the ground state
manifold, 1/2N . At large distances the system approaches this bound, while in the Dicke limit the
symmetric ground manifold ofN = 6 contains 7 states, leading to P = 1/7 ≈ 0.143, consistent with the
observed result.

Figure 11: Steady state properties as a function of interparticle distance. (a) Steady-state logarithmic
negativity as a function of the interpaticle distance. (b) Steady-state purity as a function of the interpaticle
distance and the lower bound for a maximal mixed state of all ground state manifold. All plots are for N = 6
Λ atoms trapped in the ring configuration with the red star representing the Dicke model value.
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6 Conclusions and Outlook
In this Master’s Thesis, we investigated collective radiance properties of Λ-type atoms. To this end,
we first developed a general formalism for multilevel atomic structures and then applied it to construct
an open quantum spin model for Λ atoms with two coupled decay channels, where emission along one
channel can induce excitations in the other.

We then analysed the Dicke model as a reference case. A central novelty of our approach was to map
the problem onto SU(3) algebra, thereby extending the well-known Dicke ladder of two-level atoms to
a generalized decay diagram for Λ atoms. This formalism predicts the emergence of n-excitation dark
states when N = 3n, which we showed to be maximally entangled by evaluating both entanglement
entropy and logarithmic negativity.

Next, we studied finite-size arrays in the presence of coherent interactions. We demonstrated that
collective radiance persists, although the scaling with atom number is less favourable than in the two-level
case. The ring geometry was found to be more robust against finite-size effects due to its higher symmetry.
Interestingly, certain two-excitation states were identified as being darker in Λ atoms compared to their
two-level counterparts.

When analysing the dynamics, we proved that in the Dicke model the evolution does not mix between
different irreducible representations. For an initially inverted state, a superradiant burst appears in the
photon emission rate, coinciding with the maximum of logarithmic negativity. An open question for future
work is whether this connection is fundamental—i.e., whether the emission burst and peak entanglement
always occur simultaneously—or whether their relation depends on system parameters, such as atom
number and interparticle distance, or on the geometry or specific multilevel structure.

Another key observation is that entanglement disappears in the steady state for d/λ0 ≳ 0.4, raising
the question of whether this threshold marks the disappearance of the superradiant burst universally, or if
it varies with geometry or atom number N .

Finally, this work suggests further avenues for engineering highly entangled dark states. Possible
strategies include adding coherent driving fields or introducing detuning between atoms to break permu-
tation symmetry, thereby enabling the preparation of purer entangled dark states.

Overall, the results presented here provide a comprehensive picture of collective phenomena in Λ-type
atomic arrays. In particular, they may help interpret experimental observations in subwavelength arrays
of atoms trapped by optical tweezers, where the excited state decays into two degenerate ground states
through non-independent transitions.
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Appendices

A Quantum jump formalism

A.1 Collective jumps

Collective radiance effects are naturally described using collective jump operators instead of single atom
lowering and raising operators. Each atom i, has the two possible decay channels: σ̂g1e

i and σ̂g2e
i .

Therefore, the column vector that lists all elementary jumps is of length 2N:

σg1e
1
σg2e

1
.
.
.

σg1e
N

σg2e
N


(34)

To find the collective jumps operators, we define the enlarged dissipative matrix Γgαgβ

ij :

Γ =
(

Γg1g1
ij Γg1g2

ij

Γg2g1
ij Γg2g2

ij

)
, (35)

Γg1g1
ij and Γg2g2

ij connect the same transition on different atoms. The difference from the two-level case
comes from the non-diagonal blocks mixing the different transition channels Γg1g2

ij and Γg2g1
ij (see Fig. 3).

This matrix is diagonalized to obtain eigenvectors Γv⃗ν = Γν v⃗ν , for ν = 1, ..., 2N, allowing to define the
collective jump operators as:

Ôν =
2∑

gα=1

N∑
i=1

vν
i,gα

σgαe
i , (36)

The adjoint (Ôν)† is the corresponding raising operator.

A.2 Quantum jumps algorithm

Once we have obtained the collective jump operators we can write the master equation in the diagonal
form for the dissipative part:

ρ̇ = − i

ℏ
[H, ρ] +

2N∑
ν

Γν

2
(
2ÔνρÔ†

ν − {Ô†
νÔν , ρ}

)
. (37)

Starting with a pure state ρ(0) = |ψ(0)⟩⟨ψ(0)| and evolving under a small time δt:

ρ(δt) = (1 −
2N∑
ν=1

δpν)|ψd(δt)⟩⟨ψd(δt)| +
2N∑
ν=1

δpν |ψj
ν(δt)⟩⟨ψj

ν(δt)|, (38)

where the normalized states are:

|ψd(δt)⟩ = 1 − iHeffδt√
1 −

∑2N
ν=1 δpν

|ψ(0)⟩ (39a)

|ψj
ν(δt)⟩ = Ôν√

δpν/δt
|ψ(0)⟩. (39b)
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The effective non-hermitian Hamiltonian and the probability δpν are defined as:

Heff = H − i

2

2N∑
ν=1

ΓνÔ†
νÔν , (40a)

δpν = δt⟨ψ(0)|Ô†
νÔν |ψ(0)⟩., (40b)

Eq. 38 can be interpreted as following: after δt, ρ becomes a mixed state composed by |ψd(δt)⟩
(coherent evolution under the non-Hermitian Hamiltonian) with probability 1−

∑2N
ν=1 δpν , and any of the

2N states |ψj
ν(δt)⟩ given by the jump |ψj

ν(δt)⟩ ∝ Ôν |ψ(0)⟩ with probability δpν . This defines a strategy
for calculating the time evolution of a quantum state:

Quantum jumps algorithm

1. From a given initial state |ψ(0)⟩, compute all the decay probabilities δpν .

2. Draw a random number 0 ≤ Prand ≤ 1. If Prand >
∑2N

ν δpν the state evolves continuously
according to equation to Eq. 39a. If

∑k
ν δpν < Prand <

∑k+1
ν δpν , state jumps to |ψj

k(t+ δt)⟩
with operator Ôk (see Fig. 12).

Figure 12: Schematic representation of the quantum jumps algorithm. Probabilities are divided into 2N
decay channels with different weights δpν . The remaining probability corresponds to the deterministic
evolution under the effective non-hermitian Hamiltonian.

3. Repeat steps (1)-(2) until the final time tfinal is reached.

4. Repeat steps (1)-(3) a sufficient number of trajectories Ntraj to obtain different quantum tra-
jectories and avarege over them. When Ntraj is sufficiently large any expectation value of an
operator converges to the exact result.

B SU(3) notation

B.1 Gell-Mann matrices

The Gell-Mann definition as generators of SU(3) is:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .
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They obey the following commutation relationship: [λi, λj ] = 2ifijkλk, where fijk is known as the
structure factor. It is a antisymmetric under the exchange of two indices and the non vanishing values are
given by:

f ijk Value
f123 1

f147 = f165 = f246 = f257 = f345 = f376 1
2

f458 = f678
√

3
2

Table 1: Non vanishing structure factor fijk. It is antisymmetric under the exchange of two indices.

B.2 Young tableaux

Young’s tableaux rules for coupling many three-level atoms:

1. For each N particle draw a box numbered from left to right.

2. From left to right, put the boxes together such that the numbers assigned to them increase in each
row from left to right and in each column from top to bottom.

3. Each tableau represents symmetrization over all boxes in the same row and antisymmetrization
over all boxes in the same column. Antisymmetrization over all boxes in the same column implies
that there can not be more than three boxes on top of each other.

4. After tensor product, each tableau is now an irreducible representation and can be labeled by their
Dynkin coordinates (p, q), where p = a1 − a2 and q = a2 − a3, where ai is the number of boxes
in the ith row.

Figure 13: Tensor product of N = 3 three-level particles with Young tableaux.

B.3 N = 6 SU(3) diagrams.

For N = 6, the full set of Dicke decaying diagram for all irreducible representations are shown in Fig. 14.

27



Figure 14: Dicke decaying diagrams for N = 6 Λ-type atoms. One can see seven irreducible representations.
Top left panel represents the symmetric subspace (p, q) = (6, 0) where dynamics happens for an initial |e⟩⊗N

state (represented by the top point). Degenerate states are represented by the circle around the dot in some
representations. Bottom left panel represent the completely antisymmetric subspace (p,q) = (0,0) with just
one state, being exactly the subradiant with two excitations.

C Pure states - proof that EN(ρ) ≥ ES(ρ)
We show that EN (ρ) ≥ ES(ρ) for pure bipartite states, following the discussion in [64]. For a pure state
ρAB = |Ψ⟩AB⟨Ψ|, the Schmidt decomposition is:

|Ψ⟩ =
∑

a

ca |e′
a⟩ ⊗ |e′′

a⟩, ca > 0,
∑

a

c2
a = 1, (41)

where ca are the Schmidt coefficients. Then, the entanglement entropy is

ES(ρ) = −
∑

a

c2
a log2(c2

a) = 2
∑

a

c2
a log2

(
1
ca

)
. (42)

For pure states, the negativity is given by:

N (ρ) = 1
2

(∑
a

ca

)2

− 1

 , (43)

and therefore, the logarithmic negativity becomes:

EN (ρ) = log2(2N + 1) = 2 log2

(∑
a

ca

)
. (44)

Now, to compare ES(ρ) and EN (ρ), we apply Jensen’s inequality. Since log(1/x) is a convex function
for x > 0, we have: ∑

a

c2
a log2

(
1
ca

)
≤ log2

(∑
a

c2
a

1
ca

)
. (45)

Multiplying both sides by 2 this gives:

ES(ρ) = −2
∑

a

c2
a log2

(
1
ca

)
≤ 2 log2

(∑
a

c2
a

1
ca

)
. (46)
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The right-hand side simplifies to:
2 log2

(∑
a

ca

)
= EN (ρ). (47)

Thus we have shownEN (ρ) ≥ ES(ρ). Equality holds when all Schmidt coefficients are equal, which
corresponds to maximally entangled states and product states.

D Dissipative dynamics - proof that Dicke model does not mix irreducible
representations

To prove that dissipative Dicke dynamics does not mix SU(3) irreducible representations, we show that the
Liouvillian superoperator commutes with the quadratic Casimir operator C2 defined in Eq. 18. Since C2

charachertized the different irreducible representations with two quantum numbers, (p,q), the condition:[
C2,O

]
= 0 (48)

implies that the dynamics preserves each representation sector. The Liouvillian superoperator O can be
written as the sum of the coherent evolution and the jumps: O = K + J . Recall that the different terms
in the Dicke model can be written as:

Heff = −iΓ0
2
∑
ij

(σeg1
i σg1e

j + σeg2
i σg2e

j ) = −iΓ0
2 (Seg1Sg1e + Seg2Sg2e) , (49a)

J [ρ] = Γ0
∑
ij

(
σg1e

i ρσeg1
j + σg2e

i ρσeg2
j

)
= Γ0 (Sg1eρSeg1 + Sg2eρSeg2) , (49b)

where K [ρ] = −i [Heff, ρ]. Moreover, the different collective raising and lowering operators are: S
g1g2
g2g1 =

Λ1 ± iΛ2, S
eg2
g2e = Λ6 ± iΛ7 and S

eg1
g1e = Λ4 ± iΛ5, given by the collective Gell-Mann matrices defined

before: Λa =
∑N

i=1 λa(i).
We know that the Casimir operator is a group invariant, and therefore it commutes with all group

generators:
[
C2,Λi

]
= 0 ∀ i = [1, 8]. As all ladder operators are combinations of Gell-Mann matrices it

is also straightforward to see
[
C2,S

g1g2
g2g1

]
=
[
C2,S

eg2
g2e

]
=
[
C2,S

eg1
g1e

]
= 0. The total commutator can be

split in two terms as: [
C2,O

]
=
[
C2,K

]
+
[
C2,J

]
. (50)

The first part of Eq. 50 simplifies to:[
C2,K

]
= −Γ0

2

([
C2, Seg1Sg1eρ

]
+
[
C2, Seg2Sg2eρ

]
−
[
C2, ρSeg1Sg1e

]
−
[
C2, ρSeg2Sg2e

])
= −Γ0

2

([
Seg1Sg1e,

[
C2, ρ

]]
+
[
Seg2Sg2e,

[
C2, ρ

]])
.

(51)

The second part of Eq. 50 is:[
C2,J

]
= Γ0

([
C2, Sg1eρSeg1

]
+
[
C2, Sg2eρSeg2

])
= Γ0

(
Sg1eρ

[
C2, Seg1

]
+ Sg1e

[
C2, ρ

]
Seg1 +

[
C2, Sg1e

]
ρSeg1

+Sg2eρ
[
C2, Seg2

]
+ Sg2e

[
C2, ρ

]
Seg2 +

[
C2, Sg2e

]
ρSeg2

)
= Γ0

(
Sg1e

[
C2, ρ

]
Seg1 + Sg2e

[
C2, ρ

]
Seg2

)
.

(52)
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After straightforward algebra (Eqs. 51–52), one arrives at:[
C2,O

]
= Γ0

(
Sg1e

[
C2, ρ

]
Seg1 + Sg2e

[
C2, ρ

]
Seg2

−1
2

[
Seg1Sg1e,

[
C2, ρ

]]
− 1

2

[
Seg2Sg2e,

[
C2, ρ

]])
.

(53)

Therefore, in the most general case ρ does not commute with C2. However, if the initial density
matrix ρ(0) belongs to a sector with well defined (p,q):

[
C2, ρ(0)

]
= 0 at t = 0, and the relation is

preserved for all times. Consequently,
[
C2,O

]
= 0 holds during the dynamics, proving that different

irreducible representations do not mix under Dicke evolution.
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