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Abstract

Reduced density matrices (RDMs) offer a more scalable alternative to full
wavefunctions when performing chemical calculations. The variational two-
electron RDM (v2RDM) method exploits the efficiency of RDMs, employ-
ing semidefinite programming (SDP) to enable polynomial scaling of ground
state simulations. Recent work by Avdic & Mazziotti seeks to improve the
performance of the v2RDM by incorporating classical shadow constraints, si-
multaneously reducing the number of measurements required for tomography.
Drawing from this work, we introduce a spatial orbital variant of the v2RDM
with measurement constraints (m-v2RDM). The proposed method achieves
comparable accuracy for small to medium-sized molecules such as Ho, Hy,
and HF, while substantially reducing memory and runtime costs. Its com-
paratively simple implementation also allows for the approximation of larger
systems like No, which are otherwise intractable on modest computational
resources using standard v2RDM. As a pedagogical resource, the spatial vari-
ant more closely resembles the underlying theory, making it an accessible
introduction to RDMs. The spatial m-v2RDM further highlights the com-
plementary nature of measurement constraints and N-representability condi-
tions, framing the RDM as a potential tool for noise mitigation in quantum
information processing.

Keywords:  Reduced Density Matrices, Semidefinite Programming, N-
representability, Quantum Chemistry, Quantum Tomography, Classical Shad-
ows
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1 Introduction

Accurate simulation of molecular systems remains a central challenge in applications of
quantum chemistry. Many observables, such as the ground-state energy, can be computed
using only p-local interactions, which are fully described by the corresponding p-particle re-
duced density matrix (p-RDM). Unlike the exponential scaling of wavefunction approaches,
RDMs typically enable polynomial scaling with system size. As such, RDM theory is an
active area of research that has influenced the development of modern computational chem-
istry tools [Maz11b, Lev13, MOCT24].

RDMs have recently been recognized in quantum information processing for their poten-
tial to mitigate exponential resource requirements. Characterizing a subset of the system
using RDMs presents a more efficient alternative to full state tomography, which scales
exponentially with system size. Indeed, RDMs have shown promise as tools for error
correction in quantum algorithms [RBM18, WDPT25].

Variational methods have emerged as a notable technique for calculating RDMs of
molecular ground states. The variational 2-RDM (v2RDM) approach optimizes the 2-
RDM subject to N-representability conditions, which ensure that the resulting matrix
corresponds to a valid many-electron wavefunction [Maz07|. Since the N-representability
conditions can be expressed as a semidefinite program (SDP), the v2RDM benefits from
convex optimization theory, yielding highly accurate results. The v2RDM has been success-
fully applied to molecules as large as 64 electrons [MMK19]. However, such calculations
remain computationally demanding and must compete with modern configuration interac-
tion (CI) methods [ED24].

Recent work has sought to reduce resource costs by combining the v2RDM with tech-
niques from quantum tomography. In particular, the framework of classical shadows allows
for the estimation of many observables by storing an efficient classical representation of a
quantum state [HKP20]. In their 2024 paper entitled “ Fewer measurements from shadow
tomography with N-representability conditions”, Avdic & Mazziotti integrate classical shad-
ows with the v2RDM to accelerate convergence and improve performance [AM24b]|. Their
results demonstrate that shadow constraints improve the accuracy of the v2RDM, while
N-representability conditions in turn enhance shadow prediction and reduce the number
of measurements required for a given accuracy.

Building on this work, we propose a spatial orbital variant of v2RDM with additional
measurement constraints (m-v2RDM). This new approach offers a simpler implementa-
tion than existing algorithms, and substantially reduced memory and runtime demands.
It achieves a comparable accuracy for small molecules and approximates larger systems
with modest resources, albeit at reduced accuracy. Furthermore, its clarity and ease of
implementation make it easily extendable and valuable as a pedagogical resource.

The remainder of this thesis is organized as follows. Section 2 reviews the theoretical
background of SDPs, N-representability, quantum tomography, and classical shadows. It
concludes by unifying these concepts in the v2RDM and examining the shadow constraints
of Avdic & Mazziotti. In Section 3, we address some essential practical considerations
for N-representability and review existing v2RDM implementations. Subsequently, we
motivate the spatial m-v2RDM and detail its implementation. Section 4 presents the
performance of the proposed method and compares it with Avdic and Mazziotti’s shadow

v2RDM, followed by conclusions in Section 5. Finally, Section 6 discusses directions for
future work and potential improvements.




2 Theoretical Background

This section begins with an overview of semidefinite programming, followed by an introduc-
tion to the N-representability problem and the role of reduced density matrices in quantum
chemistry. Thereafter, we review quantum state tomography and classical shadows. We
conclude with a synthesis of these concepts in the variational 2-RDM with shadows.

2.1 Semidefinite Programming

In semidefinite programming, we aim to optimize a linear function of some matrix variable
over a convex set, subject to linear constraints. It is typically expressed using both primal
and dual formulations. The standard primal formulation of an SDP reads,

maximize Tr(AX)
subject to ®;(X)=B;, i=1,....m (1)
I;(X)<Cj j=1,....n ie. C;—T;(X)>0

where X is a Hermitian operator that constitutes the optimization variable. Additionally,
the matrices A, B;, and C; are Hermitian operators that define the linear objective function,
equality constraints, and inequality constraints, respectively. Note that any linear function
of X can be expressed as Tr(AX). Finally, the linear maps ®;(-) and I'j(-) are required to
be Hermiticity-preserving. The need for Hermiticity becomes clear when we consider that
the notion of positive semidefiniteness is only well-defined for matrices with real eigenvalues,
i.e. Hermitian matrices. As such, both the variables and the constraint functions must
preserve Hermiticity to ensure the well-definedness of the solution space.

Every primal SDP possesses a complementary dual formulation. While the primal
problem seeks to maximize its objective function, the dual seeks to minimize, thus providing
an upper bound on the optimal solution to the primal problem. Similarly, solutions to the
primal problem provide a lower bound on the optimal solution to the dual problem.

The dual problem can be derived by introducing Lagrange multipliers to the primal
problem. After some simplification, we arrive at the following formulation of the dual:

m n
minimize ZTr(EBz) + Z Tr(Z;C;)
i=1 j=1

m n
subject to A — )" (I)I(Y;,) - ZF}(ZJ) =0,
i=1 j=1

where Y; and Z; are the Lagrange multipliers associated with the equality and inequality
constraints on the primal problem, respectively. Unsurprisingly, both ¥; and Z; should be
Hermitian. The full derivation can be found in Chapter 2 of [SC23].

Having both the primal and dual solutions to an optimization problem is useful for
several reasons. Firstly, under mild assumptions, SDPs exhibit strong duality. That is, the
optimal solutions to the primal and dual coincide. Hence, the self-consistency of SDPs can
be used to validate the optimal solution. Additionally, when strong duality does not hold,
the primal and dual can provide lower and upper bounds the the optimal solution. Finally,
the dual is at times a more efficient or practical alternative to the primal.

SDPs have become ubiquitous owing to the fairly recent development of efficient solvers
like the interior-point [Kar84, AA0O]| and first-order algorithms [OCPB16]. Their convexity
guarantees a global optimum as opposed to several local optima, making them consider-
ably more tractable than non-convex optimization problems. Furthermore, many quantum




information tasks are naturally framed as SDPs, as they deal primarily with Hermitian op-
erators.

2.2 The N-representability Problem
2.2.1 Two-particle Reduced Density Matrices

In quantum chemistry, it is of particular interest to describe the correlations between pairs
of electrons. Since electrons are indistinguishable and interact under Coulomb repulsion,
many properties of an IN-electron system can be computed from at most pairwise inter-
actions [May55, 1.55]. These are fully characterized by the two-electron reduced density
matrix or 2-RDM, defined as

2Dy = (] alalaay, |v) (3)

where |¢) is typically the fermionic ground-state wavefunction [Maz07]. Accordingly, a;-r

and a; denote the fermionic creation and annihilation operators in second quantization. In
T

the context of molecules, a;
electron in the jth orbital.

Consider the Hamiltonian for an N-electron system in Born-Oppenheimer approxima-

creates an electron in the ith orbital, while a; annihilates an

tion:

. . 1 g
H= Z h}azaj + 3 Z h;glaja;alak (4)
ij ijkl

where h;- and hg represent the one-body kinetic energy operator and two-body interactions,
respectively. The one-body terms can be incorporated into the two-body terms to give a
more compact form of the Hamiltonian,

H= Z 2K,Zaja}alak (5)
ijkl

where 2K;€Jl is the reduced Hamiltonian operator, given by

YK = < (b + A6 + B (6)
Taking the expectation value of Eq.(5), we see that the electronic energy can be expressed
entirely in terms of the 2-RDM as defined in Eq.(3),

E=3)*Kjj*Dj)=Tr(*K*D) (7)
ijkl

This convenient representation allows one to calculate the energy of an atom or molecule
using only the 2-RDM. Indeed, any observable involving at most two-body interactions
can be calculated using the 2-RDM [May55, Col63, Maz07]. The potential of the 2-RDM
was first emphasized by Coulson in 1955, when he questioned whether it could ultimately
replace the wavefunction in chemical calculations entirely - a remark that became known
as Coulson’s Challenge |Jud01].

By the variational principle, the ground-state energy is always less than or equal to the
expectation value of the Hamiltonian calculated with some trial wavefunction. Therefore,
one can treat 2D as a variable over which the ground-state energy in Eq. (7) can be mini-
mized to obtain the 2-RDM, effectively solving the many-body Schrédinger equation [L55].
This approach has the especially attractive advantage that the 2-RDM scales polynomially
with the number of orbitals, unlike the exponential scaling of configuration interaction
methods [LTWHG17].




However, early variational energy calculations by Mayer and Lowdin [May55, L55]
demonstrated that 2-RDMs constrained solely by wavefunction normalization produced
energies that were too low. Rather, additional constraints were required to guarantee that
the 2-RDM obtained via minimization could be obtained from the integration of an N-
electron density matrix. These became known as the N-representability conditions and
would be vital for realizing Coulson’s vision.

2.2.2  N-representability

The 2-RDM is obtained by integrating over all but two particles of the full N-electron

density matrix,
’D =Trs. n(V D) (8)

where o
MD =)yl =D D5 in il il (9)
It is indeed possible to define a p-RDM by tracing out all but p of the NV electrons:
PD = Trpy1. NV D) (10)

resulting in a set of (];f ) p-RDMs. Similarly to the 2-RDM, any p-local observable can be
calculated using only the set of p-RDMs [RBM18|. It is immediately evident that the set
of p-RDMs needs to be consistent. That is, each element should be contractable from a
single global state. For general quantum systems, ensuring consistency is referred to as the
quantum marginal problem and is known to be QMA-complete [Liu06].

The fermionic version of the quantum marginal problem is known as the N-representability
problem [Kly06]. In addition to consistency and general requirements for density matrices,
fermionic p-RDMs are further subject to N-representability conditions. First conceptual-
ized by Coleman in 1963 [Col63], these constitute the necessary and sufficient conditions to
ensure that a given p-RDM can be derived from an antisymmetric N-particle wavefunction.

Finding the full set of conditions proved to be a decades-long endeavour [T C13, Maz07].
To date, most progress has been made with respect to 2-RDMs, with the complete N-
representability for 2-RDMs being formulated by Mazziotti as recently as 2012 [Maz12].
Arguably the most significant advancement came in the form of Mazziotti and Erdahl’s
p-positivity conditions [MEO1L], which enabled the N-representability problem to be cast
as a semidefinite program. This is expanded upon for the 2-RDM in Section 2.4.

2.2.3 The N-representable 2-RDM

The basic conditions for N-representability of the 2-RDM follow from the general require-
ments for density matrices established by Von Neumann. A valid fermionic 2-RDM is
required to be at least,

(i) Positive semidefinite i.e. all its eigenvalues should be non-negative (to ensure non-
negative probabilities),
D >0 (11)

(ii) Antisymmetric (due to fermionic anticommutation relations),

.
Dy = —"Dj;, =Dy, = =Dy (12)

(iii) Hermitian
(20y) = (@Wldldlmar [v))" = (v|afafajai[v) =2DE =2Dy,  (13)
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(iv) Normalized (to conserve particle number)

Tr(*D) = AN(N - 1) (14)
However, the above conditions are not sufficient to ensure that a 2-RDM is N-representable,
that is, traceable from an N-electron density matrix. While not complete, an important
subset of the sufficient conditions are known as the p-positivity conditions [MEO1]. We
derive them as follows:

For a p-particle system, consider that the overlap matrices, M j, must be positive
semidefinite:

M5 = (@/]0,) = (9|C;CHw) =0 (15)

where C; is a product of p creation and annihilation operators, |¥) is the groundstate, and
the set of basis functions (®;| are defined as

(®1] = (¥|Cr. (16)

When constructing Cy, permuting aj and a; admits p + 1 different overlap matrices, each
of which are required to be positive semidefinite. The one- and two-electron cases yield
the overlap matrices ' D, 1Q, 2D, 2Q and %G given in Table 1.

Cr RDM Description
a;-r le- = (Y| ajaj [1) one-electron
a; Q% = (¢] aal [v) one-hole

a;-ra;f ZDZ = (Y| aja}alak |y two-electron
aiaj Q= (Y| azajaal [4) two-hole
QGZ] — <

a;-raj | a;rajazrak |1b)  electron-hole

Table 1: Overlap matrices generated for the one and two-electron case.

Hence, we obtain the 2-positivity conditions,

D0 (17)
Q=0 (18)
G -0 (19)

Furthermore, rearranging the creation and annihilation operators allow 2Q and %G to be
expressed as linear functions of 2D:

2QU = 2210 —4'Di A ) 42D (20)
2qi =1 'Dj — Djl. (21)

as first derived by Garrod and Percus in 1964 [GP64]. Here, A denotes the Grassmann
wedge product' and D is the 1-RDM which is related to 2D by a partial trace,

, 1 N
Dy = 5 2 Dk (22)
J

Note that the 2-positivity conditions for 2D and 2@ imply the 1-positivity conditions for 1D
and '@, which are necessary and sufficient for N-representability of the 1-RDM [Col63].

! Antisymmetric tensor product given in appendix A.




2.3 Quantum Tomography
2.3.1 Quantum State Tomography

Quantum state tomography refers to the estimation of an unknown quantum state, p, by
measuring a finite number of copies of that state. If the appropriate measurement scheme
is chosen, p can be entirely characterized by the probability vector, p, which results from
repeated measurement of the state. The relationship between p and p is defined by a
tomographic map,

T:p—p (23)

which is required to be linear in p and injective, i.e. p # p) = T(p) # T(p'). More
simply, the chosen measurement scheme should map distinct quantum states to distinct
probability distributions - a property referred to as tomographical completeness [BCMTS24].
The tomographical completeness of T guarantees that we can unambiguously reconstruct
p from p by inverting the map:

p=T '(p) (24)

Quantum measurement is typically performed using positive operator-valued measures
(POVMs). Let {E;} be a set of positive semi-definite operators E; € L(Hg) such that
> Ei = 1, where L(Hg4) is the set of Hermitian operators on d-dimensional Hilbert space
Hg. The set {E;} constitutes a POVM. As per the Born rule, the probability of measuring
outcome i is given by

pi = Tr(Eip). (25)

To ensure tomographical completeness, we can select a POVM that is informationally
complete. An informationally complete POVM is one for which the set of operators {E;}
spans L(Hq) [Cze21].
In practice, we cannot obtain the exact probability vector p since we are limited to
a finite number of copies of p. Instead, we can estimate p using empirical frequencies, f
with
n;

fi=+ (26)

where n; is the number of times outcome ¢ was observed when measuring N copies of p.
By the law of large numbers,

f—p a N — o0, and (f=p (27)

where (f) is the expectation value of f. We can thus construct a map, f — p called an
estimator, such that we estimate the state p using:

p=T'(f) (28)

For example, consider the least squares estimator (LSE), where

p = argmin||f — T (p)[|3 (29)
pEL(Ha)

such that p is a valid density matrix, i.e. p = 0 and Tr(p) = 1. This estimator aims
to minimize the square difference between the empirical frequency, f, and the probability
distribution generated by p.




2.3.2 Classical Shadows

As quantum devices grow in size, conventional tomographical techniques have become less
practical since they suffer from the curse of dimensionality. That is, the number of copies
required to accurately reconstruct a quantum system scales exponentially with the size of
that system, consequently demanding exponential classical memory and computing power.
In the ongoing effort to develop more efficient techniques, recent breakthroughs include
shadow tomography.

The central idea of shadow tomography is to estimate selected target functions of a
quantum state without full state reconstruction. Many interesting properties of quantum
states are linear functions their density matrix. For example, the probability distribution,
fidelity with a pure target state, and entanglement witnesses are all examples of functions
that take the form of expectation values:

0i(p) = Tr(O;p) 1<i<M (30)

where o; is the expectation value associated with observable O;. Limiting the prediction
task to only these M target functions makes it possible to predict an exponential number of
target functions from only a polynomial number of samples. However, shadow tomography
as originally proposed by Aaronson is difficult to implement, since it requires exponentially
long quantum circuits and all copies of the state to be stored in quantum memory [Aarl8|.

Classical shadows is one fairly recent technique designed to address this, in which an
efficient classical representation of a quantum state suffices to predict any linear function
of that state in expectation [HKP20]. Crucially, both the memory and number of copies
required do not depend on the size of the system (number of qubits) [HKP20|. Rather, the
resource requirements scale with the choice of measurement and the number of linear target
functions to be estimated. The procedure is described for an n-qubit state as follows:

Randomly select a unitary U from a tomographically complete fixed ensemble U and
apply it to the state, p — UpUT. Measure the rotated state in the computational basis to
obtain an n-bit measurement outcome, |b) € {0,1}". Thereafter, store an efficient classical
description of U T|5> <?)|U in classical memory. In expectation, the above process can be
viewed as a quantum channel, p — M(p):

E[U115) (10| = M(p) (31)

The tomographical completeness of U guarantees that M is invertible, resulting in an
estimator,

p=Mm1 (U (bU) (32)

called a classical shadow. In expectation, we recover the original state exactly: p = E[p].
The inverse mapping M~! depends on the measurement ensemble, I/, and generally in-
volves a non-trivial derivation. Fortunately, Huang et al. provide the Clifford and Pauli
measurements as examples.

In order to estimate a target function, we repeat the process to generate a set of N
independent shadows, {p1,..., oy} and average over the estimators to predict the target
function:

LN
0;(N,1) = N > Tr (0ip;) (33)
j=1




For greater accuracy, Huang et al. recommend using median of means to estimate the
target function instead of just the sample mean: construct K independent sample means
to form the set

1 Nk
6i(N, K) = median {ag”(N, 1),.... 0" (N, 1)} where o = = 3" tr(0:;)
j=N(k—1)+1
(34)
with 1 < k < K. Theorem 1 provides the corresponding accuracy guarantee,

Theorem 1. Fix a measurement primitive U, a collection O1,...,Op; of 2™ x 27
Hermitian matrices and accuracy parameters €,d € [0,1]. Set

_ _ 34 __ Tr(0) 2
K =2log(2M/6) and N =5 max |0 — B2 e (35)
where || - ||shadow denotes the shadow norm. Then, a collection of NK independent

classical shadows allows for accurately predicting all features via median of means
prediction:
|6i(N,K) —Tr(Oip)| <€ forall 1<i<M (36)

with probability at least 1 — 9.

The shadow norm is defined as

1/2
|O]lshadow = max (EUNU > <b!U0UT!b><b!UM_1(O)UT|b>2> : (37)

o:state
be{0,1}"

The above theorem implies a sample complexity of

_ log M Tr(0;)
Ntot—O( ; 1225(\4”01— on |

? 38
shad0w> ) ( )

2.4 Variational 2-RDM with Shadows

It is easy to show that the set of N-representable p-RDMs, i,v P, is convex [Maz12]. When re-
stricted to only the p-positivity conditions, we obtain a set of approximately N-representable
p-RDMs, }],V P which is also convex, with JJDV PC év P. Thus, the minimization of the ground
state energy subject to the p-positivity conditions constitutes a semidefinite program. Since
this is a relaxation of the full N-representability problem, its solution will lower bound the
true energy. Employing the 2-positivity conditions yields the following SDP, called the
variational 2-RDM (v2RDM) [Mazl1a]:

Hz%n E[*D]
such that 2D =0
Q-0
2G =0 (39)
Tr(*D) = §N(N — 1)

Q= fo(*D)

G = fo(*D)
where E[?D] = Tr(2K?D) and fo and fg are the linear mappings defined in Eq. (20) and
Eq. (21), respectively.
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2.4.1 Classical Shadow Constraints

In their paper, Avdic & Mazziotti propose the use of classical shadows to improve the
performance of the v2RDM, and in turn reduce the number of measurements required
[AM?24b]. Classical shadows are characterized as unitary transformations of the 2-RDM,
and constructed as follows:

SP1 = (U|Uabataqa,U, ), (40)
where
Un = exp ( Ag”&L&U> (41)
uv

are unitaries sampled using the Haar measure. A, is a one-body anti-Hermitian matrix,
and n is the shadow index. Thereafter, constraints are added to the v2RDM SDP:

qu = ((Un ® Un) °D (Un ® Un)T)% (42)

where

Uy, = exp(A4y). (43)

Note that the above implies the equivalence of Equations (40) and (42).

There are a few points in this formulation that merit clarification. Firstly, the transpose
in Eq. (42) appears to be intended as a conjugate transpose; otherwise, SP? could contain
non-zero imaginary components despite being expectation values. The authors also provide
a correction to the original derivation of Eq. (42) in Appendix B of this work.

Additionally, the definition of U, is somewhat ambiguous. Appendix A of [AM24al
describes generating U, using normal sampling and Gram—Schmidt decomposition, which
does not involve an anti-Hermitian matrix such as A,. Moreover, the definition of Un
given in Eq. (41) is presented without motivation, even though this construction does not
necessarily yield Haar-distributed unitaries.

Most importantly, the authors note that the use of the term ‘“classical shadows” may
not be entirely accurate. The method described above does not incorporate the defining
features of classical shadows, namely,

(i) storing an efficient classical representation of the measurements,
(ii) reconstructing the state with an inverse map of the unitary channel,
(iii) and estimating an observable using an aggregation of the reconstructed state.

Alternatively, we suggest that these more closely resemble typical measurements with
unitaries, and hence adopt this terminology going forward. That being said, considering
the measurements in isolation constitutes another semidefinite program:

pin D) (44)
such that 524 = (U, ® Uy,) 2D (U, ® Uy,)")2

When combined with Eq. (39), we obtain the main contribution of Avdic & Mazziotti’s
paper, namely, a variational 2-RDM SDP with additional measurement constraints. They
refer to this as the shadow v2RDM (sv2RDM) method.

12



3 Implementation

Thus far, we have provided an elegant formulation of the v2RDM. However, most literature
does not explicitly mention that its implementation necessitates very specific structure for
the 2D, 2Q and 2G matrices. Additionally, the conventional notation is somewhat vague
as it indexes by ‘orbitals’, typically without specifying whether these refer to spatial or
spin-orbitals - a crucial distinction. As such, this section begins with a brief overview of
molecular orbitals. Thereafter, we review existing implementations of the v2RDM. We
conclude by proposing a new, spatial version of the v2RDM with additional measurement
constraints.

3.1 Spatial vs Spin-orbitals

A spatial (or molecular) orbital is a one-electron spatial wavefunction that depends on
either cartesian (z,y,z) or spherical (r, 0, ¢) coordinates. These are visually represented
by regions around the nucleus where an electron may occur, as shown in Figure 1. A
spin-orbital adds a fourth coordinate, namely the electron spin, taking the value of either
a (spin-up) or S (spin-down). Formally, a spin-orbital is the product of a one-electron
spatial orbital and a one-electron spin function. Typically, they are approximated using
Slater determinants - a set of basis functions that enforces the antisymmetry required by
the Pauli exclusion principle [Lev13|. It thus possible for two electrons to occupy the
same spatial orbital, provided they have different spins. Figure 2 compares the electron
configuration of spatial orbitals with that of spin-orbitals.

| Spotiol vs Spin

A ! e Y 1

|
S orbital p orbital
2 z Is 2s Is6 258

< - ~o -
~. - ~, -7
= & ~ -
~1l-

: 1
2 ! g i Yy Isx 25
4 orbital £ orbital
Figure 1: Spatial orbitals are functions of spatial Figure 2: One possible configuration for the
coordinates and are designated the letters s, p, ground state of Li. Notice that spin is handled
d, and f based on their angular momentum explicitly when dealing with spin-orbitals.

quantum number.

3.2 Existing v2RDMs

Very few implementations of the v2RDM are publicly available. The authors are aware
of only three open-source versions” and two proprietary implementations® of the v2RDM.
Furthermore, these employ the Boundary Point SDP algorithm (BPSDP) [Maz11a], which
entirely reformulates the v2RDM SDP provided in the literature. Fortunately, recent
papers by DePrince [ED24] and Rubin [RBM18] shed some light on the topic. These are

2By Mazziotti, DePrince, and Rubin.
3Maplesoft and Q-Chem
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among the rare instances that explicitly detail the spin-block structure of the 2D, 2Q and
2@ matrices.
In practice, it is more apt to include spin components when defining 2-RDMs:

2Dy = (lal al apar, |v) (45)
Qi = (Yl ai,aj.a] af W) (46)
2620 = (Y| al aj.a] ar, 1) (47)

where o, 7,k, A € {a, 8} are the spin components and i, j, k,l € {1,...,r} are the spatial
components of the orbitals. The second quantization operator a;-rU (a;, ) thus corresponds
to creating (destroying) an electron in orbital ¢ with spin o. The resulting matrices have
the following spin-block structure:

2D 055 0 0 2Goa QG% 0 0
op_| © D O 0 2 _ 2GR Gy O 0 (48)
0 0 2D o0 | 0 0 262 0

0 0 0 2D 0 0 0 2GR
Each spin-block has dimensions (12, 7?) for a total dimension of (472, 47?) per matrix.
Notice that the only non-zero entries are those that preserve spin. For example, a non-zero
value for QDE‘E‘ would imply that we can create two « electrons and destroy two [, but
this would change the total spin of the system. The v2RDM assumes that the system
has zero spin i.e. is not subject to an external magnetic field. Spin-adapted versions
of the algorithm have also been proposed [Maz05]. Additionally, note that 2D and 2Q
have a similar structure as they represent analogous operations - creating two electrons is
analogous to creating two holes elsewhere. However, G has a slightly different structure
as the electron-hole 2-RDM. The spatial 2-RDM can be obtained by summing over the
spin components of the spin-orbital 2-RDM [Mar19)],
2Djg = 5(De + Dyt + Dyl + D) (49)
The BPSDP approach flattens each spin-block component into a large vector x. To
calculate the energy, it takes the dot product of x with another vector, ¢, which contains

the one and two-body integrals of the Hamiltonian. The resulting objective function reads,

min c¢!x

X

such that Ax=Db (50)
M(x) = 0.

Constraints are built into M (x) by constructing the 2QQ and 2G matrices in terms of
each spin-block basis using 0s, 1s and -1s. Overall, the solution is not straightforward
and difficult to relate to the theoretical formulation of the v2RDM. Hence, extending the
available implementations to include shadows proved to be unworkable.

3.3 Proposed Spatial v2RDM

While very helpful, DePrince and others do not explain why the spin-block structure is
strictly necessary for constraining the v2RDM, nor why a spatial version would not suffice.
As a sanity test, we examined the 2-RDM obtained from FCI (full configuration interaction)
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using OpenFermion [MRS*20]. Importantly, this 2Dpcy is given in spatial orbital basis
and is obtained via diagonalization of the full Hamiltonian. We also computed the reduced
Hamiltonian, 2K, using the one- and two-body integrals accessible via OpenFermion. The
relevant code can be found in Appendix D. Initial calculations with the 2Dpcr consistently
produced energies that matched FCI, indicating that a much simpler implementation of
the v2RDM may be possible. The full investigation is detailed in Section 4.

A simpler, spatial version of the v2RDM is desirable for a number of reasons. Firstly,
the number of optimization variables scales as r# instead of (2r)%, as for the spin-orbital case.
For example, the spatial treatment of H4, which has 4 orbitals, would optimize 256 variables.
In comparison, the spin-orbital treatment would require a substantial 4096 variables. Even
Mazziotti’s open source Python version of the v2RDM, which employs the more efficient
BPSDP, requires 2256 variables. A spatial version would thus necessitate significantly
fewer computational resources and less time. Secondly, a spatial implementation aligns
more naturally with the underlying theory, making it easier to extend or modify and
better suited for pedagogical purposes.

The spatial v2RDM was implemented in Python. A short excerpt demonstrating the
simplicity of the code is provided in Listing 1. The full code is given in Appendix D.
The GitHub repository for this project can be found here. The CVXPY library was
used with the MOSEK solver to implement the SDP. Molecules were simulated using the
OpenFermion library [MRS™20]. The mappings from 2D to 2Q and 2G were implemented
as CVXPY functions and used to constrain the SDP. The mappings were validated by
manually constructing 2D, 2Q) and 2G from the ground state using the definitions in Table
1. These were subsequently compared with the result of applying each mapping to 2D. This,
along with other validation steps, can be found in the mappings-demo.ipynb notebook in
the GitHub repository for this project.

3.4 Measurement Constraints

The measurement constraints were implemented similarly to those given in Avdic & Mazz-
iotti’s paper. The measurements were obtained by applying a random unitary to the 2Dpcr
obtained from OpenFermion, as per Eq. (42). Each unitary was generated by sampling
a normal distribution, then performing Gram-Schmidt decomposition. Such unitaries are
known to be Haar distributed [AM24a]|. Thereafter, the unitaries and resulting S,, matrices
were used to constrain the SDP, so that any feasible 2D satisfies the condition in Eq. (42).

To simulate noisy measurement, a random matrix was added to the S,, matrix. The
matrix was sampled from a Gaussian distribution with a mean of zero and standard devi-
ation €, where € is the desired noise level. This is akin to the noise introduced by Avdic
& Mazziotti. To accommodate the noisy measurements, the constraints in Eq. (42) were
relaxed similarly to the reference paper:

SPI_ 31 < XPT <SP 4 3P (51)

where

XPI = ((Up @ Up) *D (Up @ Up)")21 (52)

The term €P? is a matrix with the same shape as S,,, with each entry equal to the desired
noise level, e. The factor of 3 was added to account for noise samples that exceed the
standard deviation of €, since omitting the prefactor would inevitably result in an infeasible
SDP. The associated Python code can be found in Appendix D.
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import cvxpy as cp

### assume 'molecule' has been defined using UpenFermion

r, N = molecule.n_orbitals, molecule.n_electrons

# define optimization wvariable
D2 = cp.Variable((r**2, r**2))

# define objective function
K2 = getK2(molecule)
E = lambda D : cp.trace(K2 @ D) + molecule.nuclear_repulsion

objective = cp.Minimize(E(D2))

# define constraints

constraints = [
D2 >> 0,
Q2_cvxpy(D2, r, N) >> 0,
G2_cvxpy(D2, r, N) >> 0,
cp.trace(D2) == 0.5 * N * (N-1)

# solve
problem = cp.Problem(objective, constraints)

problem.solve (solver=cp.MOSEK, eps=1e-8)

Listing 1: Basic implementation of the spatial v2RDM. The code can be directly related to the theory,
unlike the BPSDP used in most implementations.

4 Results

Presented below are the results of the spatial v2RDM with measurements (m-v2RDM).
We begin with a closer examination of OpenFermion’s spatial 2Dpcy so as to contextualize
subsequent findings. Thereafter, we consider the spatial v2RDM in isolation, followed by
the effect of adding the measurement constraints. We do so for both noiseless and noisy
measurements. Finally, we compare the performance of the spatial m-v2RDM to Avdic &
Magzziotti’s sv2RDM implementation. All results were averaged over ten runs and produced
on a personal computer with a 2.3 GHz 8-core Intel processor and 16GB of RAM.

4.1 Examining the Spatial 2 Dgc,

The 2-RDM obtained from OpenFermion provides insight into the limitations of the spatial
v2RDM. Recall that the energy of a molecule can be calculated using E = Tr(2K 2D).
When accounting for normalization and indexing, we can obtain a 2K and 2Dgcr from
OpenFermion that align closely with theoretical expectations. Figure 3 shows that the
energy calculated using the 2Dpcr matches the theoretical prediction. The spatial 2Dpcr
also exhibits the expected normalization. The results seem to indicate that the spatial
2-RDM could be used in variational calculations instead of the spin-orbital version.
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Figure 3: Calculating the groundstate energy of a molecule using the reduced Hamiltonian 2K and
the spatial 2Dgc consistently matches the energy obtained by FCl, i.e. full diagonalization of the
Hamiltonian. This is shown for the hydrogen molecule (Hz), the hydrogen chain with evenly spaced
atoms (H4), and diatomic nitrogen (N2).

The spatial 2Dpcy is consistently positive semidefinite, and so is the 2Q) matrix when
acquired using Eq. (20). However, Table 2 demonstrates that the spatial ?Dgc does
not typically meet all requirements for a valid fermionic density matrix. For a variety of
molecules, the 2G matrix obtained from Eq. (21) fails to be positive. This contradicts the
G-positivity constraint on the v2RDM. Finally, the antisymmetry requirement in Eq. (12)
is consistently violated.

Molecule Orbitals Electrons 2Dpcr =0 2Q >0 2G>0 Antisymm. Hermitian

H, 2 2 True True True False True
Hy 4 4 True True False False True
LiH 6 4 True True False False True
HF 6 10 True True False False True
H>0O 7 10 True True False False True
NH; 8 10 True True False False True
Ny 10 14 True True False False True

Table 2: OpenFermion’s spatial 2-RDM consistently fails to meet all requirements for a valid fermionic
density matrix. All molecules were constructed with the STO-3G basis using evenly spaced atoms, each
separated by 1.0A.

The failure of the spatial 2Dpcy to exhibit the correct antisymmetry and G-positivity
are likely closely related. The spatial 2D is obtained by summing over the spin components
of the spin-orbital version, as per Eq. (49). Since the spin-block structure of 2D and 2Q
are the same, the spin-information appears to be preserved when mapping between them.
However, the off-diagonal spin-block elements of 2G' contain information about the spin
that is clearly lost when converting to the spatial representation. This raises the question
of whether the G-positivity condition is applicable to the spatial v2RDM, or should be
reformulated to better account for spin.

4.2 Spatial v2RDM Performance

The performance of the spatial v2RDM without measurements affirms the findings of our
investigation above. Figure 4 shows the energy curves obtained by the spatial v2RDM
compared with the FCI energy for the hydrogen, hydrogen chain, and hydrogen fluoride
molecules. Given alongside are the minimum eigenvalues of the 2D, 2Q) and 2G matrices
at the corresponding bond length.
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Figure 4: The positivity of the 2G' matrix affects the feasibility and accuracy of the spatial v2RDM. The
full DQG conditions are accurate for Hy only in regions where is 2G' is more positive, while accurate
everywhere for Hy. For HF, adding the G condition results in an infeasible SDP. Hence, only the D and
Q conditions can be applied.

For a simple molecule like Hg, we observe the FCI energy matched exactly using con-
ditions D, DQ and DQG. All eigenvalues of the positivity matrices are non-negative up to
machine precision. In contrast, consider HF in the bottom row. The 2G matrix is negative
throughout, with a constant value for the smallest eigenvalue. Correspondingly, adding the
G condition makes the spatial v2RDM infeasible for all bond lengths. Similar behaviour
was observed for other larger molecules like water and ammonia.

H,4 provides an interesting case study on the effect of the G condition. At shorter bond
lengths, the energy is overestimated to compensate for the negativity of 2G. Although neg-
ative throughout, the minimum eigenvalue of 2@ increases at longer bond lengths, resulting
in greater accuracy at those points. For all molecules tested, the D and DQ conditions
consistently provide a lower bound for the FCI energy, as expected for a relaxation of the
full N-representability conditions.
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4.3 Introducing Measurements

Constraining the SDP using only measurements was found to be largely infeasible, except
for small molecules or many measurements. When feasible, the measurements-only SDP
is highly accurate without noise. In the noisy case, more measurements are required to
obtain the same accuracy as without noise.

Simply adding the D-positivity condition to the measurements-only SDP makes many
infeasible problems become feasible. For example, adding the D condition renders Hy
feasible with only 1 measurement, while it otherwise requires at least 11 measurements
to be feasible. The D and DQ conditions have the same effect on noisy measurements,
albeit with slightly less accuracy. Figure 5 compares the D and DQ conditions with and
without noise for Hy at 1.0A over a range of measurements. Additionally, it shows that
the accuracy of the spatial m-v2RDM is proportional to the level of noise.
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Figure 5: Adding the D condition makes H, feasible for any amount of either noiseless or noisy
measurements. Moreover, the DQ conditions exhibit an improved accuracy over D in both cases. As
expected, increased noise results in reduced accuracy.

The spatial v2RDM and measurement constraints are highly complementary. Figure 6a
demonstrates the remarkable effect of combining these two approaches. Without measure-
ments, the spatial v2RDM performs poorly on the hydrogen fluoride molecule. Moreover,
at least 22 measurements are required for the measurements-only SDP to be feasible. How-
ever, combining the constraints garners an improvement of ~90 Hartree (93%) on the spatial
v2RDM for just 4 measurements. The full effect of the measurement constraints can be
seen at 22 measurements, where the difference with the FCI energy sharply decreases.

In general, adding the Q condition yields a marginal increase in accuracy. However, the
time complexity of the problem scales notably slower with the Q condition than without,
as shown in Figure 6b. If it is possible to formulate a spatial version of the G condition, we
expect that adding G should improve the accuracy and, potentially, the time complexity
of the SDP.

Lastly, the spatial m-v2RDM allows us to approximate large molecules. In Figure 7,
40 measurements achieve a ~1.8 Hartree energy difference with FCI. Although this does
not reflect the standard desired chemical accuracy of approximately 1.6 x 10~3 Hartrees
[Lev13], there is potential for improvement with more measurements.
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Figure 6: Adding measurements vastly improves the spatial v2RDM. Without at least the D condition,
the HF molecule is infeasible with fewer than 22 measurements. The DQ conditions significantly improve
the time scaling of HF compared to D only.
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Figure 7: Even large molecules like N5 (shown here at 1.75A) can be approximated using the spatial
m-v2RDM.

4.4  Comparison with Avdic & Mazziotti

Here we compare the results in [AM24b| with the spatial m-v2RDM above. We also make
use of Mazziotti’s open source v2RDM Python implementation to examine memory and
time requirements for the v2RDM without shadows.

Mazziotti’s v2RDM implementation achieves high accuracy even without shadow con-
straints. Nonetheless, algorithms such as the BPSDP still have substantial time and mem-
ory requirements. Despite its shortcomings, the spatial m-v2RDM offers a practical alter-
native when computational resources are limited.

Consider Figure 3a in Avdic & Mazziotti’s paper. For Hy, the sv2RDM achieves an
accuracy on the order of 10~* within 8 shadows. The spatial version presented above
obtains a comparable accuracy within 10 measurements (Figure 5), while optimizing only
256 variables (16 x 16 matrix) with a single run taking on average ~0.45s. In comparison,
Mazziotti’s v2RDM requires 2 256 variables and an average of ~25s per run. It is not known
whether the addition of shadows decreases the time requirement, but it will certainly require
at least as much memory.

For hydrogen fluoride at 1.0A, Mazziotti’s v2RDM yields energies within 1073 of FCI,
but a single run takes approximately ~1100s and optimizes 11412 variables. The spatial
version achieves a similar accuracy within 22 measurements, while taking only ~3.6s per
run and optimizing 1296 variables (36 x 36 matrix).
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The spatial m-v2RDM can approximate the ground state energy of nitrogen on a stan-
dard laptop. Consider Figure 7 above and Figure 2a in [AM24b]. With 30 measurements,
we obtain an accuracy comparable to the sv2RDM (D) with 2 shadows. With 40 mea-
surements, the spatial m-v2RDM (DQ) achieves similar accuracy to Mazziotti’'s v2RDM
(DQ) without shadows. On average, a single run of the spatial m-v2RDM with 30 shadows
takes 225s, while 40 measurements takes 305s. The number of optimization variables is
10000 (100 x 100 matrix). In comparison, Mazziotti’s v2RDM requires 88 500 optimization
variables and failed to run on the machine used in this paper due to insufficient memory.

5 Conclusion

Based on recent work by Avdic & Mazziotti [AM24b]|, we have presented a novel spatial or-
bital variant of the variational 2-RDM (v2RDM) with additional measurement constraints
(m-v2RDM). The proposed method offers a simpler implementation than existing algo-
rithms, such as the boundary point semidefinite programming (BPSDP) algorithm, which
are often complex and resource intensive.

Computationally, the spatial m-v2RDM drastically reduces memory and runtime re-
quirements. Its simplified structure allows for the approximation of larger molecules like
Ny, which are costly or intractable with traditional implementations. For small to medium
molecules, including Hs, Hy, and HF, the spatial m-v2RDM achieves accuracy comparable
to standard v2RDM methods while using far fewer variables and shorter runtimes. These
results demonstrate the method’s potential to make reduced density matrix approaches
more practical, particularly when combined with measurement constraints.

Although chemical accuracy is not consistently achieved, performance improves sub-
stantially with more measurements, suggesting clear opportunities for refinement. In
particular, a key limitation arises from the spatial 2-RDM’s lack of antisymmetry and
G-positivity. As a result, many molecules could be treated only with the DQ conditions
as opposed to the full DQG conditions.

This work also illustrates the complementary nature of N-representability conditions
and measurement constraints. Adding the D-positivity condition to a measurements-only
SDP makes many otherwise infeasible problems feasible. Adding Q-positivity conditions
further improves accuracy and runtime complexity. Conversely, even a small number of
measurements significantly enhances the spatial v2RDM’s performance.

Finally, the spatial approach aligns naturally with the underlying theory, making it
easier to implement, extend, and modify. Its simplicity makes the spatial m-v2RDM a
valuable pedagogical tool for researchers and students exploring reduced density matrix
methods.

6 Outlook

Future work may include applying the spatial m-v2RDM to larger molecules to test its
computational limits and accuracy. A key theoretical direction is the development of a
spatial analogue of the G-positivity condition. Results by Avdic & Mazziotti [AM24b)|
indicate that the DQG conditions provide a substantial improvement over DQ compared
to that of DQ over D, suggesting that a spatial G condition could significantly improve
performance.

Implementing the method with true classical shadow constraints may be another valu-
able line of investigation. This could further reduce measurement requirements and im-
prove scalability. Moreover, it could allow the estimation of excited states, as in Avdic
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& Mazziotti’s follow-up paper [AM24al|. A proposal for true classical shadows is given in
Appendix C.

Finally, it is worth exploring the potential of spatial N-representability conditions for
error correction in quantum algorithms or noisy quantum communication. These types of
applications may provide the most promising avenue for impact, since v2RDM methods
struggle to contend with the efficiency of modern configuration interaction methods.
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A Grassmann Wedge Product

The wedge product or exterior product, denoted by A, is an operation in exterior algebra
named after Hermann Grassmann. Its defining property is anti-commutativity. Let a,b €
V where V is a vector space. Then,

aNb=—-bAa (53)

and, consequently,
aNa=0 VaelV. (54)

For example, the wedge product of two rank-2 tensors (one-particle matrices) yields a
rank-4 tensor (two-particle matrix) [Maz07]:

¢ = ai b = 7 (akb] — albf - ajb] + afb) (55)

For higher-dimensional tensors, the wedge product can be written as

Lz n pipbid 1\? (ip11)--0(in) 40 (ip1)--0 (i)

i A = () L emeomad ) I m et s
: e

where 7 and o represent all permutations of the upper and lower indices, respectively. The

function € determines the sign of each term, returning +1 for even permutations and —1 for

odd permutations. Geometrically, the wedge product can be thought of as a generalization

of area and volume to higher dimensions. Indeed, in R3, it is closely related to the cross

product.

B Correction to Constraint Derivation

To derive the measurement constraints, Avdic & Mazziotti provide Eq. (3) of [AM24Db] as
follows: N
Shi =Y URUR *Duitugt (57)
ijkl
However, this does not correspond to the eventual expression obtained in Eq. (6) of their
work,

S8l = ((Up @ Up) *D (Up @ Uyn)" )P4 (58)

We provide the following correction. First, rewrite U, in terms of its spectral decomposition.
For convenience, we omit the subscript n:

U= U lu) (0 (59)
The tensor product of U with itself can therefore be written

UoU = (Z Us |u) <v) ® (Z Ust |s) <t|> = 2 Uulst [us) (v (60)

uvst

= U® U)T = Z U Ust |0t) (us| (61)

uvst

We can retrieve the elements of the above using,

(U & U)ab,ij = UaiUbj and (U ® U)gl,cd = (U ® U)cd,kl =U,Uyg. (62)
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Next, let X be the result of sandwiching 2D between the unitary products, that is,
Xapea = (U@ U)apij 2Dyf) (U @ U)t.cd (63)
The diagonal entries of X are thus given by
Xpapg = UpqujDzjl.UpkUql- (64)
Hence, the corrected indexing for Eq. (3) reads

Sk =N URUS 2DURRUY (65)
ijkl

In order, the correct unitary indices are pi, q7, pk, and ¢l, not pt,pj, ql, and ¢k as in the
original version. This was also numerically validated.

C True Classical Shadow Constraints

Here, we outline a possible implementation of classical shadow constraints on the spatial
v2RDM. Let r be the number of spatial orbitals for the molecule under consideration. This
corresponds to 2r spin-orbitals or qubits. Note that the conversion between qubit and
fermionic spin-orbital representation needs to be handled carefully using an appropriate
transformation, such as the Jordan-Wigner transform [JW28, WBAGI11]. The correct
treatment will depend on the quantum chemistry library used. As the classical shadows
technique is only defined for qubits, the ground state below, p, should be taken as being
in qubit representation.

Sample the unitary U from the Clifford group. Apply it to the ground state and measure
in the computational basis to obtain the 2r-bit measurement outcome, |[b) € {0,1}%".
Huang et al. provide the inverted channel for the Clifford group in [HKP20|. Apply the
inverted channel to construct a classical shadow:

p= 2 + 1)U DY B|U —1 (66)

Repeat this N times to obtain a collection of classical shadows. Since we wish to estimate
the 2-RDM, we construct the p* sample mean using

. 1 Y R
2ijl(p)(N’ 1) = N Z Tr(JW(aIG}alak)pn) (67)

n=1

where 4, j, k, and [ are indexed over the number of qubits, 2r. JW is the Jordan-Wigner
transform, which transforms the fermionic operator a;ra;alak to qubit representation before
applying it to the qubit state estimator p,. Repeat this P times to obtain the median of

means estimator,
2D}(N, P) = median {Djj()(N, 1), ..., 2D P (N, 1) } (68)

Now, let the p** shadow be given by

Sp =Y 2DY(N, P) [if) {Ik] (69)
ijkl

This can be used to constrain the spin-orbital version of the v2RDM. To apply it to the
spatial version, we first need to sum over the spin components to convert in to spatial
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representation, as per Eq. (49). Let 9; be the spatial shadow. Theorem 1 conveniently
provides the error bounds for our constraints on the SDP:

min E[2D]
2D
such that S, — el < 2D < 5 + €l forall 1<p<P (70)

Where € is determined by the desired sample complexity. The true value for 2D should
lie within the bounds above with probability 1 — §, where €, € [0,1]. Here, the number
of target functions is equal to the dimensions of S, i.e. M = (2r)? x (2r)? = 16r*. The
sample complexity is thus,

4
Nyt = O <log 16r A

Tr(Oy
. 0, — oD
€ 1<t<16r4

22r

|2 71
shadow | ( )

where Oy = JW(aIa}alak) for each unique permutation of 7, j, k and [. An initial attempt
to code this can be found in the classical_shadows.ipynb notebook in the GitHub
repository.

D Spatial m-v2RDM Code

The full spatial v2RDM code with measurements is given below. An example usage is
provided in Listing 2. Listing 3 contains the main SDP function. The code for handling
measurement constraints is given in Listing 4. Listing 5 contains the functions that inter-
face with OpenFermion to calculate the reduced Hamiltonian and 2Dpcy. The code for the
2@Q) and ?G mappings can be found in the dgg.py file in on GitHub.

from openfermionpyscf import run_pyscf
from openfermion import MolecularData

from helpers import get_spatial_D2, generate_measurement

# Create molecule
geom = [('H', (0.0, 0.0, x)) for x in range(4)]
molecule = MolecularData(geometry=geom, basis='sto-3G', multiplicity=1, description='H4')

molecule = run_pyscf (molecule, run_fci=True)

# Gather measurements

r = molecule.n_orbitals
n_measurements = 10

D2fci = get_spatial_D2(molecule)

measurements = [generate_measurement(D2fci, r) for _ in range(n_measurements)]

# Run SDP

result = run_sdp(molecule, conditions='DQ', measurements=measurements)

# Output
print ('FCI energy:', molecule.fci_energy)
print ('SDP Result:', result['primal'l)

Listing 2: How to run the spatial m-v2RDM for the hydrogen chain at 1.0A with 10 measurements.
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import cvxpy as cp
from molecule_helper import getK2
from dqg import Q2_cvxpy, G2_cvxpy

from measurements import make_measurement_constraint

def run_sdp(molecule, conditions='DQG', measurements=[], noisy=False, epsilon=1e-8):
r = molecule.n_orbitals

N = molecule.n_electrons

# Define optmization wvariable
D2 = cp.Variable((r**2, rx*2))

# Define objective function
K2 = getK2(molecule)
E = lambda D : cp.trace(X2 @ D) + molecule.nuclear_repulsion

objective = cp.Minimize(E(D2))

# Generate measurement constraints
measurement_constraints = []

for (Un, Sn) in measurements:

measurement_constraints += make_measurement_constraint(D2, Un, Sn, r, noisy, epsilon)

# Define DQG constraints

D_constraint = [D2 >> 0]

Q_constraint = [Q2_cvxpy(D2, r, N) >> 0]
G_constraint = [G2_cvxpy(D2, r, N) >> 0]
trace_constraint = [cp.trace(D2) == 0.5 * N * (N-1)]

# Build full constraints

constraints = measurement_constraints + \
(D_constraint if 'D' in conditions else []) + \
(Q_constraint if 'Q' in conditions else []) + \
(G_constraint if 'G' in conditions else []) + \

(trace_constraint if len(conditions) > 0 else [])

# Solve SDP
problem = cp.Problem(objective, constraints)

problem.solve(solver=cp.MOSEK, eps=1e-8)
# Get results
primal = E(D2) .value

dual = -constraints[-1].dual_value * 0.5 * Nx(N-1) # dual obtained from trace

return {'primal': primal, 'dual': dual, 'D2': D2.value}

Listing 3: The main function for the spatial m-v2RDM. Note that in quantum chemistry packages like
OpenFermion, the nuclear repulsion constant is typically separated from the one-body and two-body

integrals. Hence, it is added back during the energy calculation.
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import numpy as np
import cvxpy as cp

from scipy.stats import unitary_group

def generate_measurement(D2_fci, r, noisy=False, epsilon=1e-8):
Un = unitary_group.rvs(r) # returns Haar distributed unitary
UxU = np.kron(Un, Un)
Sn = np.diag(UxU @ D2_fci @ UxU.conj().T).reshape((r, r), order='C')
if noisy:
gaussian_noise = np.random.normal(loc=0.0, scale=epsilon, size=Sn.shape)
Sn = Sn + gaussian_noise

return Un, Sn.real # .real discards imaginary part in case of tiny errors

def make_measurement_constraint(Dvar, Un, Sn, r, noisy=False, epsilon=1e-8):
UxU = cp.kron(Un, Un)
X = cp.real(cp.diag(UxU @ Dvar @ UxU.conj().T)) .reshape((r, r), order='C')
if noisy:
return [Sn - 3 * epsilon <= X, X <= Sn + 3 * epsilon]
else:

return [Sn == X]

Listing 4: Functions to generate measurements and corresponding constraints.

import numpy as np

def getK2(molecule):

r, N = molecule.n_orbitals, molecule.n_electrons

K2 = np.zeros((r, r, r, )
hl = molecule.one_body_integrals
h2 = molecule.two_body_integrals.transpose(0, 1, 3, 2) # chemist -> physicist notation

for i, j, k, 1 in product(range(r), repeat=4):
# Embed one-body terms into two-body form
terml = hi[i, k] * (1 if j == 1 else 0)
terml += hi[j, 1] * (1 if i == k else 0)
K2[i, j, k, 1] = term1/(N-1) + h2[i, j, k, 1] # Add two-body integrals

return K2.reshape((r**2, r**2), order='C')

def get_spatial_D2(molecule):
r = molecule.n_orbitals
D2 = molecule.fci_two_rdm # returns spatial orbital wversion
D2 = 0.5 * D2.transpose(0, 1, 3, 2) # adjust for normalization and chemist's notation

return D2.reshape((r**2, r*+*2), order='C')

Listing 5: Functions used to obtain the reduced Hamiltonian and 2Dg¢; from OpenFermion. Note that
the two-body integrals and 2-RDM returned by OpenFermion are indexed using chemist’s notation.
Thus, transposition is required to convert to physicist's notation for energy calculations.
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