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Abstract: Accurate band gap prediction of two-dimensional materials holds significant scientific
and technological value for the development of electronic and optoelectronic devices. In contrast to
the high computational cost associated with traditional first-principles methods, machine learning
offers a promising and cost-effective alternative for band gap prediction. In this work, we demon-
strate that the combination of artificial neural networks and an active learning algorithm leads to a
highly data-efficient method for predicting band gaps of 2D materials while maintaining accuracy,
with L1-regularization analyzing feature selection. This approach achieves a computational cost
reduction by shrinking the original dataset by 80% compared to traditional training approaches.
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I. INTRODUCTION

Two-dimensional (2D) materials, first brought to light
with the discovery of graphene, have opened up a great
deal of scientific and technological possibilities [1]. These
materials are composed of a single atomic layer held to-
gether by strong covalent bonds. This unique atomic
composition, high surface-to-volume ratio, and reduced
dimensionality give 2D materials exceptional electrical
conductivity, thermal transport, and mechanical strength
[2, 3].

Among their extensive range of electronic properties,
the customizable band gap plays a crucial role in vari-
ous applications. However, its theoretical calculation can
become computationally expensive, depending on the re-
quired accuracy.

Machine learning (ML) has been used to predict var-
ious material properties, but it requires training data.
Such data is scarcer in the field of 2D materials, where
the number of discovered materials is significantly smaller
than in traditional three-dimensional systems. Active
Learning (AL) is a machine learning strategy that im-
proves model performance by selecting the most informa-
tive samples for labeling, thereby reducing the associated
computational costs without compromising accuracy. In
contrast, Deep Learning (DL) excels at automatically ex-
tracting complex features but depends on large labeled
datasets for training [4]. Therefore, combining these ap-
proaches enables the development of high-performance
models trained efficiently on a minimal dataset.

In this project, we employ a computational approach
to predict the electronic band gaps of 2D materials us-
ing artificial neural networks (NNs) combined with AL
to improve prediction efficiency with a limited amount
of labeled data. The structure of the work is as follows:
first, the fundamental principles of NNs and AL are intro-

duced, including the construction of the network and the
training process. Next, a model is developed that inte-
grates AL, NNs, and regularization techniques. Finally,
the model’s performance is evaluated using a dataset
of 2D materials from the Computational 2D Materials
Database (C2DB).

II. METHODS

An NN is a ML model inspired by the brain’s struc-
ture and functionalities, particularly its non-linearity and
dense connectivity, features that underlie human cogni-
tive flexibility [5].
A NN is composed of interconnected units called

perceptrons. A perceptron is a mathematical func-
tion that takes an ni-dimensional (ni-D) input vector,
x ∈ Rni , and maps it linearly into a scalar output,
y =

∑
i=0 ωixi + b, with w ∈ Rni and b ∈ R being free

parameters commonly referred to as the mixing weights
and the output bias respectively. This output is then
passed through a non-linear function z = f(y), typically
a sigmoid due to its resemblance to a neuron’s response.
Such a description, although simple, serves as the basis
for binary classifiers and is the building block of an NN.
A combination of these perceptrons is known to be

an effective method for approximating a non-linear func-
tion due to the universal approximation theorem [6],
which states that any no-D vector field, y ∈ Rno , can
be represented as a given linear combination of non-
linear functions (more details in Appendix V. D). There-
fore, each of its perceptron components can be given by
y
mα+1

k =
∑

j ωkjz
mα
j + b

mα+1

k , where the weights ωkj

and biases b
mα+1

k can be arranged in the form of an
mα+1 × mα matrix, W , and an mα+1-D vector, b, re-
spectively. Furthermore, the mα-D vector zmα is given
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by a collection of perceptrons connected to the input and
is known as a layer. Each of the components of zmα

is computed in analogy with the previous discussion as
zmα

k = f (
∑

i ωkixi + bmα

k ), where now the connecting
weights ωij and biases bmα

k are arranged as an mα × ni

matrix Wni→mα and a mα-dimensional vector bm
α , re-

spectively.
The entire discussion above forms the foundation for

more complex NNs. To this end, let us start by con-
sidering a mα-D perceptron layer (H) vector, zmα , con-
nected to a previous mα−1-D perceptron layer (H-1) vec-
tor, zmα−1 , via the weight matrix WH,H−1

mα−1→mα
and the

bias vector bmα , as depicted in Fig. 1. Therefore, each
component of that hidden layer is given by

zmα

k = f

∑
j

ωH,H−1
kj z

mα−1

j + bmα

k

 . (1)

This is an iterative relation that connects an arbitrary
ni-D input to an n0-D output through a sequence of
matrix-vector products involving all the weight matrices,
W 1,0,W 2,1, . . . ,WH,H−1, associated with each of these
H hidden layers. In this project, H=2, α = 1, 2.

······ ······
FIG. 1: Architecture of a neural network with two

hidden layers, showing the size of each layer (mα) and
the weight matrices (Wmα−1→mα) connecting them with

zmα = f(ymα) = f(Wmα−1→mαz
mα−1 + bmα).

As mentioned before, the ultimate success of an NN
depends on the set of weight matrices, collectively de-
noted as W (from this point on, we will incorporate both
the weights and the bias into the W to ease the nota-
tion), used to compute the output. A training process is
required to obtain this set of parameters. This involves
randomly initializing the parameters and then iteratively
minimizing an error or loss function concerning them. In
the present work, the error function is the mean squared
error (MSE), which is defined as:

L(y,yexp;W ) =
1

no

no∑
i=1

(yi(W )− yexp,i)
2, (2)

here, yi is the i-th component of the network’s output
vector (which, in this case, is the predicted band gap),

and yexp,i is the corresponding true value of the band
gap. There are many procedures used to obtain the
weights that minimize the loss function. We chose the
Stochastic Gradient Descent (SGD) algorithm since it
is efficiently implemented in many libraries and can be
parallelized to process the dataset in mini-batches rather
than as a whole. Once the algorithm has cycled through
all batches, it is said that an epoch has been completed,
and the process is typically repeated over several epochs
until the parameters converge [5]. The idea behind this
algorithm is that if we start with random weights, we can
get closer to the minimum of the loss function by iter-
ating the weights parameters according to the following
relation:

We+1 = We − lr∇WL(y,yexp), (3)

here, lr is the learning rate, and ∇WL(y,yexp) is the
gradient of the loss function, computed using the back-
propagation method (explained in Appendix V. A). The
differentiability of all operations described so far is cru-
cial for computing the gradient and applying back-
propagation. Additionally, the choice of the learning
rate is critical to ensure faster convergence; therefore,
we used the Adam optimizer, which enables a dynamic
adjustment of learning rates for each parameter [5]. This
makes it particularly effective in scenarios with sparse or
noisy gradients, resulting in faster and more stable con-
vergence.
To evaluate the performance of the NN for band gap

prediction, a feedforward NN was trained. This model
consisted of two hidden layers with 8 and 32 neurons,
respectively. The data was divided into batches Bn, D =
{(xk, yk)}Nk=1 = ∪NB

n=1Bn, with 16 samples per batch.

A. Data preparation and feature engineering

As the main source of our data, we considered the
C2DB [7], which contains the band gaps of thousands
of 2D materials computed theoretically using density
functional theory (DFT) [8]. In DFT, the many-body
electronic problem is mapped onto a system of non-
interacting electrons moving in an effective potential,
allowing the ground-state energy to be found by min-
imizing it concerning the electron density. All com-
plex many-body effects, such as exchange and cor-
relation, are contained within an approximate func-
tional [9]. One of the most popular approximations is
the Perdew–Burke–Ernzerhof (PBE) functional, which
is computationally efficient but systematically under-
estimates band gaps. The Heyd–Scuseria–Ernzerhof
(HSE06) hybrid functional offers an improvement by in-
corporating a fraction of exact exchange, which partially
corrects for the self-interaction error inherent in the PBE
functional. While HSE06 performs well for bulk semicon-
ductors, its performance for the band gaps of 2D mate-
rials can be more variable [10]. Finally, the GW approx-
imation includes many-body effects perturbatively, and
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although it is more computationally demanding, it offers
significantly higher accuracy [9, 10]. The C2DB contains
many band gaps computed using the three methods. To
ensure accuracy, we selected only those materials with a
finite direct band gap (Eg > 0) within the GW method.
The resulting dataset was preprocessed to handle miss-

ing values (NaNs), and features that were trivially related
to the band gaps or the conduction and valence bands
were eliminated.

B. Active learning and regularization

We chose a pool-based active learning framework
where an algorithm selects the most informative data to
train an ML system based on a continuous feedback loop
between the oracle, which is the source of the data la-
bels, and the learner, which is the surrogate model that
intends to describe the dataset; in this case, a NN that
predicts the band gaps of 2D materials [11, 12].

At each iteration, the NN model identifies the most
informative samples, xN , by estimating its uncertainty
over the unlabelled pool X . The discrepancy between
the predicted and true band gap values is then computed
for each sample. In the next iteration, the sample xN+1

to be labeled is selected as the one with the highest er-
ror, allowing the model to focus on poorly predicted re-
gions. This process enables the model to gain knowledge
about previously unknown regions and distinguish be-
tween informative points and outliers. The learner then
uses the updated predictions to decide which sample to
query next.

These newly labeled samples are added to the train-
ing set, refining the NN and progressively improving its
accuracy. With each query, the surrogate model incorpo-
rates new data, enhancing its approximation of the band
gap function across the materials domain. (Pseudocode
in Appendix V. C).

While training is performed exclusively on the actively
selected subset L, predictions are generated over the en-
tire dataset X . This allows the surrogate model to gener-
alize band gap estimates across all candidate materials,
leveraging the information gained from the most infor-
mative samples.

Several challenges may arise during model training and
evaluation, one of the most common being overfitting.
Overfitting occurs when a model learns the training data
too well, including its noise and outliers, resulting in
poor generalization to unseen data. Developing strate-
gies to reduce overfitting systematically is a key and on-
going area of research in machine learning. We use L1-
regularization due to its simple yet efficient implementa-
tion [5]. In this method, the loss function is modified in
the following way:

L′ = L+ λ
∑
n

wn (4)

where the parameter λ > 0 includes a penalty over

large absolute values of the model parameters, thus
encouraging the model to reduce unnecessary com-
plexity by reducing some of the model parameters
to zero. Such behavior also makes L1-Regularization
a well-suited approach for feature selection, as when
applied to the initial layer, it forces the model to train
only with the most relevant inputs. In this project,
we employ the LASSO (least absolute shrinkage and
selection operator) method (Tibshirani, 1995) [5], which
combines L1-regularization with a least-squares cost
function to generate models that are both interpretable
and robust, as it automatically selects a relevant sub-
set of input features while reducing the risk of overfitting.

Our primary goal is to train an NN with a minimal
training dataset selected efficiently using AL. We will
assume that labeling or generating a dataset is compu-
tationally expensive, whereas validation—evaluating the
band gap through the surrogative model—is not. To as-
sess the quality of the approach, we compared the pre-
dicted value against the real band gap. We consider a
perfect fit when the resulting curve matches the iden-
tified function (y = x), and a reasonable error margin
would be 1.5% around the identity.
In parallel, we will apply LASSO to select the most

relevant features, and we will analyze their physical sig-
nificance in the Results section. Since LASSO does not
provide a direct way to classify those features, we will
use the elbow method (see Pseudocode in Appendix V.
B) to determine a threshold based on the trade-off be-
tween model complexity and performance. Such thresh-
old is found at the point of maximum curvature in a plot-
ted curve of sorted feature importances. Features above
this threshold are retained, resulting in a more compact
dataset with both a reduced sample size and a reduced
set of informative features.
The refined dataset from the combined methodology

would then be used to train the NN. The effectiveness
of this approach is again measured by how closely the
predicted versus actual band gap values align with the
y = x, yielding a prediction error of 5 %.

III. RESULTS

To evaluate the potential variability in the effective-
ness and accuracy of our AL methodology, we perform
a statistical study and consider 100 whole iterations of
the model. The NN requires a dataset of 356 2D ma-
terials and 77 features as input. The first analysis in
Fig. 2 compares the predicted band gaps of all 2D mate-
rials in the validation set. The predictions are obtained
using AL (Fig. 2. A and Fig. 2. C) and NN (Fig. 2. B and
Fig. 2.D) approaches before (Fig. 2. A and Fig. 2. B) and
after LASSO (Fig. 2. C and Fig. 2.D) feature selection.
The training based on AL yields a better prediction

in both cases before applying feature selection and after
selecting the features. On the other hand, the perfor-
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mance of the NN—trained on a dataset with the same
number of features and samples as the AL training set
but composed of randomly selected 2D materials—is also
evaluated. This comparison highlights the superior per-
formance of AL, which selects training samples based
on uncertainty, leading to more informative and efficient
learning.
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FIG. 2: Linear regression analysis of predicted versus real
band gap values obtained from the GW model. Panels
A) and B) illustrate the prediction performance before
applying LASSO for feature selection. Panels C) and
D) present the performance after LASSO-based feature
selection. The blue and orange markers show AL results,
and the green and red markers show NN results.

The second analysis in Fig. 3A shows the distribution
of the root mean squared error (RMSE) to evaluate the
regression performance of the ML models. This is vi-
sualized with violin plots, which display the spread of
the data and how often values occur at different levels.
The AL model achieves a lower RMSE, with a distri-
bution more tightly concentrated around the mean, in-
dicating greater consistency and lower variability across
iterations. In contrast, the NN model exhibits a broader
RMSE distribution, with higher mean RMSE values, in-
dicating less stable and less accurate predictions. The
increased variability observed in the NN, both before and
after LASSO, is due to the random selection of training
points. When features are reduced, information is lost,
and the effect of randomness becomes more pronounced.

During the feature selection process, LASSO is applied
in each iteration to identify the most informative fea-
tures. The analysis, summarized in Fig. 3B, shows the
average selection frequency of each feature across all it-
erations. The six features with a selection frequency ex-

FIG. 3: A. Regression performance of both
methodologies, represented by the RMSE. On the left,
the performance of the AL algorithm is illustrated

through the RMSE distribution and its corresponding
mean, with orange representing the results before

feature selection and blue representing the results after
feature selection. On the right, the RMSE distribution

for the NN is displayed, with green indicating
performance before feature selection and pink after.
B. Feature selection frequency is represented in a
matrix format, where the tens digit of each feature

index is placed along the vertical axis and the unit digit
along the horizontal axis. The color bar indicates the
average selection frequency of each feature across all

iterations. Features highlighted in red are those with a
selection frequency of 50 % or higher.

ceeding 50 % are listed and described in Table. I. The

TABLE I: Selected features used in the model with
their descriptions and physical units [7].

Index Feature Description Units

12 etot Total energy eV

21 dim nclusters 2D Number of disconnected atomic
clusters in the 2D unit cell

1 (dimensionless)

41 hform Heat of formation eV/atom

60 alphax el Static interband polarisability
along x

Å

61 alphay el Static interband polarisability
along y

Å

65 E B Binding energy eV

selected features are physically meaningful descriptors of
the properties that govern the band gap in 2D materials
(more details in Appendix V. E). Features 12 and 41 char-
acterize electronic stability, where stable configurations
exhibit clearer band gap separations. Cluster connec-
tivity (21) directly affects electron delocalization: more
disconnected clusters confine electrons locally, widening
the bandgap, while connected structures allow extended
wavefunctions and narrower gaps. Static polarizabilities
(60, 61) quantify how easily electrons respond to exter-
nal fields—higher polarizability indicates greater electron
mobility and smaller bandgaps. Finally, binding energy
(65) measures the rigidity of atomic bonds; stronger bind-
ing reduces electronic flexibility, which in turn influences
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the magnitude of the gap. Since the width of the band
gap determines whether a material behaves as a semi-
conductor or an insulator, these features are crucial for
predicting the properties of a broader range of materials.
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FIG. 4: Distributions of the optimal values found af-
ter multiple optimization iterations for different hyper-
parameters: (A) number of features selected (FS) per
iteration; (B.i) percentage of the dataset used for train-
ing the second AL; (B.ii) percentage of the dataset used
for training the first AL. Dashed lines indicate the mean
(red) and quartiles (orange).

Finally, a statistical analysis is presented in Fig. 4,
showing that, on average, in Fig. 4A, 12 features are
selected in each iteration (12.11 ± 4.25). Additionally,
Fig. 4B.ii) illustrates that in over 50% of the iterations,
the original C2DB dataset is reduced by approximately
40% (the mean is 29.59±9.46). In the second active learn-
ing algorithm in Fig. 4B.i), the dataset is further reduced
by about 50% relative to the first reduced dataset (the
mean is 67.32± 19.79).

IV. CONCLUSIONS

As the results demonstrate, in agreement with the the-
oretical framework presented, the active learning model
developed in this TFG successfully predicts the band gap
while using only approximately 40% of the first train-
ing data. This reduction is achieved without compro-
mising prediction accuracy and significantly lowers com-
putational costs. On the one hand, AL has proven to
outperform a NN trained on a randomly selected sub-
set of the same size by prioritizing the most informative
samples. On the other hand, integrating AL with LASSO
Feature Selection in the second training enhances perfor-
mance and efficiency, enabling accurate predictions while
minimizing computational requirements. Moreover, the
ability to select the most relevant features enables a bet-
ter understanding of the key characteristics that most
significantly influence the band gap of 2D materials. This
means that if only these features are experimentally or
computationally available, the model can still be effec-
tively trained. This contributes to a more sustainable
and time-efficient workflow, guiding future material stud-
ies to focus on the most informative descriptors.
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Resum: La predicció precisa del band gap en materials bidimensionals té un valor cient́ıfic i
tecnològic significatiu per al desenvolupament de dispositius electrònics. En contrast amb el cost
computacional elevat associat als mètodes tradicionals basats en primers principis, l’aprenentatge au-
tomàtic ofereix una alternativa prometedora i eficient per a la predicció del band gap. En aquest tre-
ball, demostrem que la combinació de xarxes neuronals artificials amb un algoritme d’aprenentatge
actiu dona lloc a un mètode altament eficient en dades per predir el band gap de materials 2D
mantenint l’exactitud. Aquest enfocament permet una reducció del cost computacional reduint el
conjunt de dades original en un 80 % en comparació amb els mètodes d’entrenament tradicionals.
Paraules clau: Ciència de Materials, F́ısica Computacional

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest Treball de Fi de Grau, emmarcat en un grau universitari de F́ısica, es relaciona amb l’ODS
7 (fita 7.3), ja que la reducció del cost computacional derivada de l’ús de tècniques d’aprenentatge actiu contribueix
a una millora de l’eficiència energètica en la recerca cient́ıfica. També es vincula amb l’ODS 9 (fita 9.5), atès que el
desenvolupament de models de ML aplicats a materials 2D representa un avenç significatiu en la investigació cient́ıfica
i impulsa la innovació en àmbits com la f́ısica computacional i la ciència de materials. Aix́ı mateix, es relaciona amb
la fita 9.4, ja que l’estudi eficient de les propietats electròniques d’aquests materials pot afavorir el desenvolupament
de tecnologies més netes, sostenibles i eficients. Finalment, es vincula amb l’ODS 13 (fita 13.1) perquè els materials
2D poden ser clau en la generació d’energia renovable, contribuint a la mitigació del canvi climàtic.
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V. APPENDIX

A. Theory framework of Backpropagation

Let z0 = x be the input and zH+1 = y the final output.
Then:

zα = σ(Wα,α−1zα−1 + b(α)),

where the activation function σ is applied element-wise.
In index notation:

zαm = σ

(
mα−1∑
n=1

Wα,α−1
mn zα−1

n + b(α)m

)
.

Assume a quadratic loss function:

L(y) = ∥yexp − y∥2 =

nH+1∑
i=1

(yexpi − yi)
2.

Then,

∂L

∂yi
= −2(yexpi − yi).

Gradients of the Weights

We aim to compute:

∂L

∂Wα,α−1
mn

=
∂L

∂zαm
· ∂z

α
m

∂uα
m

· ∂uα
m

∂Wα,α−1
mn

,

where uα
m =

∑
n W

α,α−1
mn zα−1

n + b
(α)
m . Thus,

∂uα
m

∂Wα,α−1
mn

= zα−1
n .

So:

∂L

∂Wα,α−1
mn

= δαm · zα−1
n ,

with:

δαm =
∂L

∂zαm
· σ′(uα

m).

Recursive Formulation: Backpropagation of Errors

To compute the derivative with respect to zαm, we use
the chain rule:

∂L

∂zαm
=

mα+1∑
l=1

∂L

∂zα+1
l

·
∂zα+1

l

∂uα+1
l

·
∂uα+1

l

∂zαm
.

But:

∂uα+1
l

∂zαm
= Wα+1,α

lm .

So:

∂L

∂zαm
=

mα+1∑
l=1

δα+1
l Wα+1,α

lm .

Putting it all together:

δαm = σ′(uα
m)

mα+1∑
l=1

δα+1
l Wα+1,α

lm .

Matrix Form of Backpropagation

Define α as the vector of deltas at layer α, and let ⊙
denote the Hadamard (element-wise) product. Then:

δα =
(
(Wα+1,α)T δα+1

)
⊙ σ′(uα).

And the gradient of the loss with respect to weights is:

∂L

∂Wα,α−1
= δα · (zα−1)T .

B. Elbow Method

Algorithm 1 elbow method for feature importance
threshold

1: input: sorted list of importances {w1, w2, . . . , wn} in de-
scending order

2: define P = {(i, wi)}ni=1 as list of (index, importance) co-
ordinates

3: let a = P1, the first point
4: let b = Pn, the last point
5: compute direction vector v⃗ = b−a

∥b−a∥
6: for each point Pi in P do
7: compute u⃗i = Pi − a
8: project onto v⃗: p⃗i = (u⃗i · v⃗) · v⃗
9: compute orthogonal vector: d⃗i = u⃗i − p⃗i

10: compute distance: di = ∥d⃗i∥
11: end for
12: find i∗ = argmaxi di
13: return i∗ and wi∗ as elbow threshold
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C. Pseudocode AL

Algorithm 2 Active Learning Process

Require: Dataset X , labels y, scalers scaler X, scaler y,
number of iterations T , initial percentage p0, increment
percentage p, neural network architecture, training pa-
rameters

1: Train a NN model Nfs on (X , y)
2: Analyze weights of Nfs for feature selection
3: Initialize labeled set L ← random subset of X with pro-

portion p0
4: Set unlabeled pool U ← X \ L
5: Compute real target values yreal from y using scaler y

6: for t = 1 to T do
7: Train a model Nt on L
8: Predict band gap for all X : ŷ ← Nt(X )
9: Inverse-transform ŷ to get descaled predictions

10: Compute RMSE on labeled set L
11: if convergence criteria met (slope ≈ 1, intercept ≈ 0)

then
12: break
13: end if
14: Compute uncertainty for each x ∈ U as |ŷx − yx|
15: Select top k most uncertain points S ⊂ U based on

uncertainty
16: Update labeled set: L ← L ∪ S
17: Update unlabeled pool: U ← U \ S
18: end for
19: Plot final predictions vs real values on labeled set

D. Universal approximation theorem

Demonstration that neural networks with only one in-
ternal layer and an arbitrary continuous sigmoidal non-
linearity can approximate any desired function [6]. Cy-
benko’s Universal Approximation Theorem states that
for any continuous sigmoidal function σ, finite sums

of the form G(x) =
∑N

j=1 cjσ(w
T
j x + bj) are dense in

C(In), the space of continuous functions on In, where
In = [0, 1]n is the n-dimensional unit hypercube. Given
any f ∈ C(In) and ϵ > 0, there exists a sum G(x) such
that |G(x)− f(x)| < ϵ for all x ∈ In.
While Cybenko’s theorem is formally stated for the

unit hypercube [0, 1]n, it extends naturally to any com-
pact domain K ⊂ Rn through linear transformations.
For a function defined on an interval [a, b], we can ap-
ply the transformation x′ = (x− a)/(b− a) to map it to
[0, 1], approximate the transformed function, and then
map back to the original domain. This equivalence en-
sures that the universal approximation property holds for
any bounded interval.

The sigmoid function is defined as σ(x; a, b) =
1

1+e−a(x−b) where a controls the steepness and b shifts

the function horizontally. A function σ is sigmoidal if
σ(x) → 1 as x → +∞ and σ(x) → 0 as x → −∞.
The target function is f(x) = x

1+|x| for x ∈ [0, 30].

Although this domain differs from the canonical
[0, 1] interval, the approximation principle remains

valid due to the domain extension property men-
tioned above. The approximation is constructed as

G(x) =
∑N

j=1 cjσ(w
T
j x + bj) where N = 40 neurons

are used. In this one-dimensional case, this simplifies

to G(x) =
∑N

j=1 hjσ(a · (x − bj)) with positions bj
uniformly distributed in [−20, 20] to adequately cover
the target domain [0, 30] with sufficient margin, and
steepness parameter a = 100,000 to ensure that sigmoids
approximate step functions.
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FIG. 5: Approximation of the target function f(x) =
x

1+|x| using a single hidden layer neural network with

40 sigmoidal neurons. The red line shows the target
function, while the blue vertical lines represent the in-
dividual contributions of each neuron σ(100, 000(x− bj))
positioned uniformly across the interval [-20, 20]. The

approximation G(x) =
∑40

j=1 hj · σ(100, 000(x− bj)) em-
pirically demonstrates the Universal Approximation The-
orem [6].

E. Dependence of the features

The dependence of the selected features in Table. I is
represented in Fig. 6. It is observed that all features ex-
hibit a certain trend concerning the bandgap. There-
fore, the static interband polarizability in the x and y
directions, Fig. 6 D) and E), shows a trend where ma-
terials with high polarizability typically have more mo-
bile electrons and more dispersed bands, which tends to
reduce the band gap, following the relationship α2D

i ∝
1/Eband gap [7].
Additionally, the binding energy between layers in 2D

materials is shown in Fig. 6 F). A low binding energy can
indicate more weakly bound or molecular-like structures,
where electronic levels are more confined, resulting in a
higher band gap according to EB = Eband gap/4 [7].
Finally, the heat of formation shown in Fig. 6 C) rep-

resents the formation energy of the compound from its
constituent elements. A material with negative forma-
tion energy is thermodynamically stable. As this feature
becomes more negative, it tends toward materials with
higher band gaps than conductors, such as semiconduc-
tors or insulators, following hform ∝ ln(Eband gap + 1).
Regarding the total system energy, although the band
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gap does not have a clear relationship with total energy,
more stable materials (those with lower total energy)
tend to form more compact structures with greater elec-
tronic delocalization, which can correlate with smaller
bandgaps. In Fig. 6 A), this has been fitted with a 5th-
order polynomial regression.

On the other hand, Fig. 6 B) shows the number of dis-
connected atomic clusters in the 2D unit cell. This is
characterized by the principle that more clusters lead to
greater electronic isolation, less delocalization, and con-
sequently a larger bandgap. However, for this feature, the
dataset does not capture the actual number of connected
clusters, but rather whether this material had them or
not, using a binary value of 1 and 0. Therefore, it has
not been possible to study the trend with respect to the
band gap, despite knowing that cluster connectivity is as-
sociated with crystalline samples, which tend to be more
semiconducting.
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FIG. 6: Study of the dependence of the features
selected in Table. I concerning the real band gap [eV].

In all plots, blue dots represent the experimental
observations while the red line shows the fitted model

for each feature.

This feature set coincides with the framework pro-
posed by Zhang et al. [13], who identified thermodynamic
and structural descriptors—such as formation enthalpy
(Hform), total energy, volume, and cell area—as key pre-
dictors for band gap estimation. While retaining vali-
dated thermodynamic features (heat formation and to-
tal energy), the present selection incorporates electronic-
specific descriptors (static interband polarisability) and
2D-optimized topological measures (Number of discon-
nected atomic clusters in the 2D unit cell), which in-
dicate the unique structural characteristics of materials
that directly influence electronic properties. These de-
scriptors reflect how the atomic arrangement and con-
nectivity within a single or a few atomic layers affect
electron confinement and delocalization, key factors that
determine the band gap. By quantifying features such as
dimensionality and cluster connectivity, they provide in-
sight into the quantum mechanical behavior of electrons
confined to two dimensions, which conventional metrics
cannot fully describe.
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