
Keynes’ Principle of Effective Demand: A Statistical Mechanics Approach

Author: Pol Rabanal Cajal, prabanca20@alumnes.ub.edu
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Miquel Montero Torralbo, miquel.montero@ub.edu

Abstract: This paper constructs a model of the macroeconomy using Ensemble Theory. This
approach, although more complex, is far more rewarding since more rigorous results are obtained.
In particular, this model successfully proves Keynes’ Principle of Effective demand. This is, raising
demand of goods in the economy boosts its Gross Domestic Product (GDP). Moreover, the model
is calibrated with Spanish data from 2019 and 2020 to further enhance its robustness. A more
broad aim of this paper is to expand the Economics toolkit by incorporating Statistical Mechanics
concepts, in order to get Economics closer to the analysis of natural sciences.
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I. INTRODUCTION

The study of economics occupies a unique position
among the sciences: it has been historically considered
a social science, shaped by human behavior and institu-
tional contexts rather than by immutable natural laws.
As such, it has never settled on a single paradigm. The
most mythical debate in the context of Macroeconomics
was open as early as 1776 with Adam Smith, who ex-
posed the pivotal role supply has over GDP [8]. He was
the first Classical, whose position is well summarized by
Say’s law: “Supply creates its own demand” [7], ; this
is, supply will create demand, and thus, is the driver of
GDP. The antagonist position was led by Keynes and its
Principle of Effective Demand [3], which states that ac-
tually, it is demand which checks supply, and thus, Gross
Domestic Product (GDP). This lack of consensus has of-
ten been cited as evidence that economics cannot attain
the same scientific rigor found in physics or chemistry.
Yet, beginning in the nineteenth century, scholars en-
deavored to bridge this gap through mathematical for-
malism and analogies to physical systems. William Stan-
ley Jevons’, pioneered this approach by treating equilib-
rium as a calculable state akin to mechanical balance and
by applying differential equations to marginal utility [2].
This thesis aims to contribute to Jevons’ plan, and set
economic science closer to a natural science. Previous
research [6] has proved that incorporating more complex
mathematical modeling techniques can be used to find
new relationships between economic variables. Continu-
ing with the trend, this thesis will apply ensemble theory
to give arguments that support Keynes’ Principle of Ef-
fective Demand.
Statistical Mechanics is very useful discipline to apply
to macroeconomic analysis because it allows to describe
systems (be them physical or social) that are composed
by a great amount of elements, such that it is impossible
to analytically study all of its interactions. Consider, for
example one mole of an ideal gas. Since the system has a
number of particles of the order of N ∼ 1023, no theory

can describe the dynamics of all particles. However, sta-
tistical mechanics provides a framework that describes
macroscopic properties of such system. This is, the ideal
gas macro-state can be described by pV = nRT , with p
its pressure, V its volume, R a constant and T its tem-
perature.
An economy may not be much different than this gas. It
is composed by a great amount of agents (citizens, com-
panies, public agencies, etc.) for which it is impossible
to model all interactions. However, decades of research
have shown that there exists aggregate variables that can
be related and characterize an economy.

II. FOUNDATIONS OF ENSEMBLE THEORY

As shown on [5], the microcanonical ensemble provides
a good theoretical background to hold ensemble theory.
From it, we borrow its main postulates:

• Postulate 1 (The Equiprobability Postu-
late): All microstates compatible with the same
macrostate in an isolated system are equally prob-
able.

• Postulate 2: The number of microstates corre-
sponding to two systems in thermodynamical equi-
librium and isolated with the rest of the universe
(denoted by Ω), is maximum with respect any of
the variables of any of the two systems.

A. The canonical ensemble

We will use the canonical ensemble to set the grounds
of the grand canonical ensemble, which will be the build-
ing block of the model. The natural variables of the
canonical ensemble are (T,N, V ), temperature, number
of particles and volume, respectively. The central result
of this ensemble is the canonical partition function, which
acts as the generating function of the macro-state of the
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system:

Z(T,N, V ) ≡
∑
Er

Ω(Er)e
−βEr =

∑
r

e−βEr , (1)

with r denoting possible microstates of the system, Er

the possible energy values, and β ≡ 1/kBT , being kB ≈
1.38 ·10−23 J/K the Boltzmann constant, and T the tem-
perature.

B. The grand canonical ensemble

In this ensemble, the macro state of the system is char-
acterized by variables µ, V and T , chemical potential,
volume and temperature, respectively. Its main result is
the grand canonical partition function:

Q ≡
∞∑

Ns=0

∑
Er

Ω(Er, Ns)e
−βEr−αNs =

∞∑
Ns=0

∑
r

e−βEr−αNs ,

(2)
with Ns and Er possible values of energy and number
of particles the system can have, and α ≡ −µ/kBT .
The grand canonical partition function can be written
in terms of the canonical partition function:

Q(z, V, T ) =

∞∑
Ns=0

∑
Er

Ω(Er, Ns) e
−βEr zNs

=

∞∑
Ns=0

Z(Ns, V, T ) z
Ns ,

(3)

where z ≡ e−α = eβµ is the fugacity of the system.

III. THE MACROECONOMIC MODEL

To model the macroeconomy, we follow the usual strat-
egy of defining aggregate supply and aggregate demand
function, and study the equilibrium case, where markets
clear (supply equals demand). This is justified because
when supply and demand are not balanced, there are in-
centives for economic agents to return to the market equi-
librium, and thus this will be what we will most likely
observe. This principle is analogous to Le Chatelier’s
principle [4], physical systems tend to be in equilibrium
by contrasting external shocks.

A. Aggregate supply

Assume the economy is composed by K ∈ N sectors
and, for simplicity, consider the only input sectors use to
produce is labor. Each sector differentiates itself because
it has different productivities c1 < c2 < · · · < cK , defined
as the infinitesimal increase in production (yk) of each
sector 1 ≤ k ≤ K given by an infinitesimal increase in

labor employed (nk) ck ≡ dyk/dnk, which are constant.
The number of employed workers in the economy is con-

strained by N ≡
∑K

k=1 nk. The total number of workers,
L is exogenously given. Therefore, unemployment in this
model is U = L − N . Finally, aggregate supply, this is,
the total production of this economy is given by:

Y =

K∑
k=1

yk =

K∑
k=1

cknk. (4)

B. Aggregate demand (AD)

Aggregate demand is the sum of the amount of goods
and services economic agents would like to consume. In
demand models of the macroeconomy, it is divided into
demand of goods for consumption of households, for in-
vestment by each sector, for the government and for ex-
porting (net of imports). However, since the goal of this
thesis is to analyze the effect of aggregate demand on
GDP, it is not necessary to provide a complex structure
to aggregate demand. Therefore, in the model, we take
aggregate demand as exogenously given, D ∈ R.

C. Equilibrium in the model

In reality, GDP is constrained by aggregate demand,
because sectors seek for producing only the quantity to
be sold. Demand is subject to many fluctuations since it
is the aggregation of a great number of decisions. Conse-
quently, GDP also fluctuates stochastically. In this model
we assume that, in the short term, D is constant on aver-
age, exogenous, and stochasticity is concentrated on the
supply function. The equilibrium condition is:

⟨Y ⟩ = D, (5)

with this condition, and using postulates 1 and 2, it can
be proved that sectorial GDP in this economy is expo-
nentially distributed.
At this point, we have a system of N particles and K
energy levels with energy ck per particle and arbitrary
degeneration. Moreover, nk is the occupation number
of each level, and average energy D is fixed. This sys-
tem follows the Maxwell-Boltzmann statistics. Nonethe-
less, it is subject to constraints, N =

∑K
k=1 nk and

D =
∑K

k=1 cknk [10].
Now, to get the output probability distribution, we need
to obtain the labor productivity distribution, since labor
is the only input in production for this model. This is
a combinatorial problem equivalent to distributing N in-
distinguishable balls into K boxes. The combinatorial
number that represents allocation vector n = (n1, ..., nk)
is :

Wn =
N !∏K

k=1 nk!
. (6)
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Since the number of all possible ways to allocate N differ-
ent balls into K different boxes is KN , the probability of
obtaining a particular allocation vector n = (n1, ..., nk)
is:

P (n) =
Wn

KN
=

1

KN

N !∏K
k=1 nk!

. (7)

To find the labor allocation in equilibrium, Postulate 2
states that the equilibrium labor allocation will be the
one that maximizes P (n) under macroconstraints of the
economy, that is:

max
{ni}i=1,...,K

1
KN

N !∏K
k=1 nk!

s.t. D =
∑K

k=1 dknk

N =
∑K

k=1 nk.

(8)

To make calculations easier, we can maximize logP (n)
instead of P (n). Using the Stirling approximation for-
mula (valid for large arguments):

logP (n) = logN !−N logK −
∑K

k=1 log nk!

≈ N logN −N −N logK +N −
∑K

k=1 nk log nk

=
∑K

k=1 nk(logN − log nk − logK)

=
∑K

k=1 nk log pk −
∑K

k=1 nk logK.
(9)

Ignoring constants, as it is a maximization problem, (11)
is equivalent to:

max
{ni}i=1,...,K

S = −
∑K

k=1 pk log pk

s.t. D =
∑K

k=1 dknk

N =
∑K

k=1 nk,

(10)

with pk ≡ nk/N . We can now solve (12), setting up the
Lagrangian:

L = −
K∑

k=1

nk

N
log

nk

N
+α

[
N −

K∑
k=1

nk

]
+β

[
D −

K∑
k=1

dknk

]
.

(11)
The First Order Conditions are, for k = 1, ..,K

[nk] : log
nk

N
= −1− αN − βNdk. (12)

This are equivalent to

nk

N
= exp[−1− αN − βNdk]. (13)

Since nk/N sums up to one, we obtain:

nk

N
=

e−βNdk∑K
k=1 e

−βNdk

. (14)

This is the Boltzmann distribution. Now, since nk can be
interpreted as the number of cases where sectorial output

takes value Yk, the following result can be reinterpreted
as the probability of Yk:

g(Y ) =
e−βYi∑
i e

−βYi
. (15)

Because of (17), this economy can be studied with the
canonical ensemble, since sectorial output, as energy in a
physical system, is exponentially distributed. Thus, the
canonical partition function for the economy is:

Z =
∑
i

e−βYi . (16)

However, the summation over the allocation of work-
ers into productivity-organized workplaces is difficult to
compute. It is easier to work our calculation using the
grand canonical partition function.

Φ =

∞∑
N=0

zNZN , (17)

where zN = eβµ the fugacity of the system. In ensemble
theory, µ is the chemical potential, and it measures the
marginal contribution in terms of energy of an additional
particle to the system.
It is also assumed that the number of workers at a firm
with productivity ck is constrained by fk, the num-
ber of potential jobs sites with productivity cj (nk ∈
{0, 1, ..., fk}). fk can be described by a Markov model,
and Appendix A shows that, in equilibrium, it follows a
power law distribution f(ck) ∼ c−α

k with α > 1.
Using the canonical partition function (18), the definition

of fugacity and constraint N =
∑K

k=1 nk, a functional ex-
pression of the grand canonical partition function arises:

Φ =

K∏
j=1

[1 + eβ(µ−cj) + ...+ efjβ(µ−cj)]. (18)

(20) acts as a generator of macro-state properties. In
this case, its derivative with respect to µ provides the
expected value of employed agents ⟨N⟩:

1

β

(
∂

∂µ
log Φ

)
=

1

β

(
∂

∂µ
log

( ∞∑
N=0

eβµNZN

))
=

1

β

(
β
∑∞

N=0 NeβµNZN∑∞
N=0 e

βµNZN

)
=

∞∑
N=0

N p(N) = ⟨N⟩.

(19)

Therefore, using (20):

⟨N⟩ =
1

β

[
∂

∂µ
log Φ

]
=

1

β

K∑
j=1

∂

∂µ
log
(
1 + eβ(µ−cj) + · · ·+ efjβ(µ−cj)

)
=

K∑
j=1

[
e−(fj−1)β(µ−cj) + 2e−(fj−2)β(µ−cj) + · · ·+ fj

e−fjβ(µ−cj) + e−(fj−1)β(µ−cj) + · · ·+ 1

]
.

(20)
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This equation also provides the expected value of the
number of workers employed on each sector:

⟨nj⟩ =
[
e−(fj−1)β(µ−cj) + 2e−(fj−2)β(µ−cj) + · · ·+ fj

e−fjβ(µ−cj) + e−(fj−1)β(µ−cj) + · · ·+ 1

]
.

(21)
Equation (23) determines the distribution of workers
across job sites with different levels of productivity. This
distribution depends on the aggregate demand level via
β < 0. From (13), β = ∂S

∂D . Because of (16), we can as-
sociate lower values of beta to higher values of aggregate
demand.

FIG. 1: Stochasticity in the model, extracted from [9]

Figure 1 shows the model mechanics. This economy fea-
tures employed and unemployed agents. There is a pool
of unemployed, regulated by µ, which plays a similar role
to the reservation wage in standard models. When µ is
high, the unemployed worker is “choosy”, and vice versa.
When aggregate demand is high (β = −∞), ⟨nk⟩ = 0
for ck < µ. In contrast, when aggregate demand is low
(β = 0), ⟨nk⟩ = fk/2 for all values of ck. This is, when
demand allows, no workers take jobs whose productiv-
ity is lower than µ. The number of employed workers
evolves stochastically depending on aggregate demand
and µ, with expected value (22). Workers stochastically
move back and forth from the unemployment pool and
between different productivity levels, with expected value
of the employed workers in each sector given by (23).

IV. KEYNES’ PRINCIPLE OF EFFECTIVE
DEMAND

Consider a simple calibration of the model, assuming
that the level of productivity is c1 = 1, ..., c200 = 200. µ
is set to 25 and the labor force is assumed to be L = 630.
The number of potential jobs is fj = 10 for c1, ..., c50,
while it declines for the other productivity levels accord-
ing to fj ∼ 1/c2j . This economy can be simulated using

Matlab with different levels of aggregate demand (see fig-
ure 2):

FIG. 2: Average number of employees (thousands) per sec-
tor for a simulation with c1 = 1, ..., c200 = 200, fj = 10 for
c1, ..., c50, and fj ∼ 1/c2j for the rest, µ = 25 and L = 630.

The red line corresponds to a case with low aggregate
demand (β = −0.02), while the blue line is associ-
ated to high aggregate demand (β = −0.05). In both
cases, nk increases up to j = 50 and then declines from
j = 51− 200. In the model, workers strive to obtain bet-
ter jobs offered by firms with higher productivity. This
is why the number of workers nk increases as the level
of productivity rises in the relatively low productivity
region. Remember that, in this region, fj is constant
(virtually, no ceiling). The number of workers nk turns
out to be a decreasing function of productivity ck in the
high productivity region because the number of poten-
tially available jobs fj declines as cj rises.
When aggregate demand D increases, the distribution
shifts such that more workers are employed at high pro-
ductivity jobs. Moreover, the number of employed work-
ers N, which corresponds to the area below the curve,
increases. Specifically, Nβ=−0.05 = 618 and Nβ=−0.02 =
582. Thus, when aggregate demand raises, employment
raises accordingly, and workers occupy more productive
jobs. This implies that GDP raises, exactly as Keynes’s
Principle of Effective Demand states.

V. EMPIRICAL EVIDENCE

We ought to test if the model can successfully replicate
empirical data. For the case study, Spanish data for pro-
ductivity and employment was taken from [1] for 2019
and 2020. These two years were selected strategically,
since 2020 showed a very low aggregate demand relative
to 2019 because of the COVID-19 crisis. This will allow
us to test the model in a wide range of aggregate de-
mand values for more robustness. We plot the data and
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calibrate the model with reasonable parameters. Take
L = 37.000 thousands of workers and 35 sectors with ck
according to the labor productivity brought by the data
(appendix B). Figures 3 and 4 show the fit of the model:

FIG. 3: Average number of employees (thousands) per sector
for 2019 and 2020. The scatterplot is real data for Spain,
while the lines are the calibration of the model.

Calculating the Mean Absolute Percentage Errors, it is

found that MAPE2019 = 4.6% and MAPE2020 = 3.2%.
Therefore, on average, the model’s sectoral employment
predictions miss the observed Spanish values by less than
5%, which is an acceptable prediction given the stochastic
nature of statistical mechanics. We find that the model
fits well the data for 2019 with β2019 = −0.002, and
β2020 = −0.001 for 2020. This is what it was expected,
lower aggregate demand because of the crisis.

VI. CONCLUSIONS

As it was also shown in [6], this thesis also stresses
the necessity of the economics toolkit to expand beyond
calculus. In this case, the adoption of Ensemble Theory
has provided new and rich conclusions not foreseen by
classic economic analysis.

• At a theoretical level, this new model has suc-
cesfully provided a framework that proves Keynes’
Principle of Effective Demand. Increasing demand
pushes employment and provides a more produc-
tive labor distribution, which boosts GDP.

• At an empirical level, The model is able to repli-
cate spanish data for different levels of aggregate
demand, so we are confident that the model adapts
to the current economic reality for Spain.
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équilibres chimiques. Comptes Rendus Hebdomadaires
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Resum: Aquest article construeix un model macroeconòmic partint de la teoria de col·lectivitats.
Aquest enfocament, tot i ser més complex, resulta molt més enriquidor, ja que permet obtenir
resultats més rigorosos. En particular, l’anàlisi proporciona un model que demostra el principi
de demanda efectiva de Keynes, que exposa que un augment de la demanda de béns i serveis a
l’economia impulsa el seu Producte Interior Brut (PIB). A continuació, el model es calibra amb
dades espanyoles dels anys 2019 i 2020 per reforçar-ne la robustesa. Un objectiu més ampli d’aquest
treball és ampliar les tècniques d’anàlisi de l’economia mitjançant la incorporació de conceptes de la
mecànica estad́ıstica, amb l’objectiu d’apropar l’economia a l’anàlisi pròpi de les ciències naturals.
Paraules clau: F́ısica estad́ıstica, simulació computacional, model estocàstic.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats X

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic X 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X
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Appendix A: Dynamics of Potential Job
Creation/Destruction

In this model, the dynamics of the potential jobs follow
a discrete state jump Markov process [6].
Over a short time interval dt, the productivity level c of
a given job site may increase by one unit with proba-
bility w+(c) dt, or decrease by one unit with probability
w−(c) dt. Without loss of generality, we assume the step
size is one. The functions w+(c) and w−(c) represent the
transition rates for the processes c → c+1 and c → c−1,
respectively, and both depend on the current level of c.
These changes in productivity can be due to a wide

variety of factors. They may reflect technical progress
or innovation. In other cases, productivity varies due
to changes in demand conditions faced by firms. For in-
stance, when demand for a firm’s products drops, produc-
tivity may decline as a result of labor hoarding (see Fay
& Medoff, 1985). Such dynamics are modeled through
the transition rates w+(c) and w−(c) within a Marko-
vian framework.

Additionally, we assume new job sites are created with
productivity level c = 1 at a rate p dt. Conversely, a job
site with productivity c = 1 may disappear if c drops to
zero, with an exit probability given by w−(1) dt.
Under this framework, the evolution of the average

number of job sites with productivity c at time t, de-
noted by f(c, t), follows the master equation:

∂f(c, t)

∂t
= w+(c−1) f(c−1, t) + w−(c+1) f(c+1, t)

−w+(c) f(c, t)− w−(c) f(c, t) + p δc,1
(A1)

We now consider the stationary regime of Eq. (A1), as-
suming that ∂f(c, t)/∂t = 0. Under this condition, the
steady-state distribution f(c) can be obtained by apply-
ing the boundary condition w−(1) f(1) = p, which leads
to:

f(c) = f(1)

c−1∏
k=1

w+(c− k)

w−(c− k + 1)
. (A2)

To proceed, we impose a simplifying assumption on the
transition rates w+(c) and w−(c): we suppose that the
likelihood of upward or downward productivity changes
depends on the current productivity level. In particular,
we assume that the higher the productivity c, the more
likely it is to experience a change. This leads us to define:

w+(c) = a+ cα, w−(c) = a− cα,

where a+, a− are positive constants, and α > 1. Under
these assumptions, Eq. (A2) simplifies to:

f(c) =
f(1)

1− f(1)/C(α)
· (1− f(1)/C(α))

c

cα
≃ c−αe−c/c∗ ,

(A3)

where C(α) is a normalizing constant and c∗ is a char-
acteristic scale for the exponential cutoff. To ensure
consistency with Eq. (A3), we make use of the relation
a+/a− = 1−f(1)/C(α). The approximation in Eq. (A3)
is justified under the condition n(1)/C(α) ≪ 1, which en-
sures that the exponential cutoff becomes relevant only
as c approaches a threshold value c∗.
Nevertheless, since c∗ tends to be sufficiently large in

practice, the exponential decay becomes negligible over
a broad range of c, allowing the distribution n(c) to
exhibit a power-law behavior f(c) ∝ c−α across a wide
interval of productivity levels. Therefore, under this
plausible assumption, the stationary distribution of job
sites, fj , follows a power-law.

Appendix B: Data files

Data from figures is extracted from [1], and it is used
to test the model in figure 3.

FIG. 4: Spanish data for sectorial labor productivtiy and em-
ployed workers for 2019 and 2020, taken from [1].

Appendix C: Matlab codes

This section contains two codes made with Matlab.
Figure 5a) contains the code that generated the simula-
tion in figure 2, and figure 5b), the simulations and plots
of data shown in figure 3.
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FIG. 5: FIG. 5a) (left) and 5b) (right): Matlab code for the simulations in figures 2 and 3.
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