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Abstract: Extreme mass-ratio inspirals (EMRIs) are considered to be among the most promising
sources of low-frequency gravitational waves for the future space-based detector LISA. In this
project, the EMRI waveforms are simulated using the analytic kludge approach, which is based
on post-Newtonian approximations. The signal-to-noise ratio (SNR) is then computed for various
scenarios. To assess the ability to extract physical parameters from the observed signals, a Fisher
matrix analysis is performed to estimate the precision of parameters such as mass, spin, eccentricity
and luminosity distance. The present study explores how the numerical derivative step size, the
compact object mass, and the integration time affect parameter estimation accuracy. Our findings
quantify that extending the observation time and considering more massive compact objects lead to
substantial enhancements in parameter estimation precision, underscoring their critical importance
for future LISA data analysis emphasising the significance of these factors in the analysis of LISA
data.
Keywords: General Relativity, Gravitational Waves, Black Holes, Signal-to-Noise Ratio.
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I. INTRODUCTION

Extreme mass-ratio inspirals (EMRIs) are a primary
source of gravitational waves (GWs), which LISA, an
ESA space mission for a space-based gravitational wave
observatory that is already in the implementation phase,
will detect [1]. This EMRI system consists of a stellar-
mass compact object (CO), typically a black hole or
a neutron star, inspiralling into a massive black hole
(MBH) located in a galactic centre. The masses of the
MBH range from approximately ∼ 105-107M⊙, and for
the CO, from ∼ 1−50M⊙. Because of the large mass ra-
tios involved, the system orbits many times before plung-
ing, losing energy and emitting low-frequency gravita-
tional waves (in the mHz regime) [2].

EMRIs serve as ideal astrophysical laboratories due to
their strong-field regime, enabling precise tests of General
Relativity. The many orbital cycles in LISA’s frequency
range mean even tiny deviations from Kerr geometry will
affect the waveform. In contrast to comparable-mass
quasi-circular binaries, which are discernible by ground-
based detectors (if they are in the stellar-mass range),
EMRI systems are expected to exhibit significant eccen-
tricity and orbital inclination throughout their inspiral
phase. This requires the utilisation of waveform mod-
els that incorporate multiple harmonics and relativistic
corrections over extended timescales. A comparison of
the signal measured by LISA with template waveforms is
anticipated, with the objective of extracting parameters
such as the mass of the MBH or its spin.

These theoretical waveforms are generated using post-
Newtonian (PN) approximations of General Relativity.
This topic is discussed in more detail in Section II [3].
Furthermore, determining the precision with which we
can estimate the values from our waveform model is
of particular interest. This objective can be accom-

plished through the implementation of parameter esti-
mation techniques. Additionally, it is then possible to
compare how variation in different parameters affects this
estimate.
The main objective of this project is to simulate EMRI

waveforms and analyse the precision with which LISA
will be able to estimate the physical parameters of these
systems. The influence of the compact object mass, the
total observation time, and the numerical step size in
derivative calculations is given particular attention. In
order to address the objectives mentioned above, the pa-
per is structured in three main sections. Firstly, the fun-
damental equations governing the orbital evolution and
generation of waveforms are presented in Section II. Sec-
ondly, the numerical implementation and analysis of re-
sults is detailed in Section III. Finally, the conclusions
obtained are presented in Section IV.

II. THEORETICAL FRAMEWORK OF EMRI
WAVEFORMS AND PARAMETER ESTIMATION

A. EMRI Orbital Evolution and Waveform
Generation

The PN approximations can be used to calculate the
evolution of various parameters. These include the ec-
centricity (e), the frequency (ν), the mean anomaly (Φ),

the angle between L̂ × Ŝ and pericentre (γ̃), and the

azimuthal direction of L̂. This can be done using the
Equations presented in the Appendix (A1).
This determination is followed by the computation of the
waveform as outlined below:

hα,n(t) =
1

D

√
3

2

[
F+
α (t)A+

n (t) + F×
α (t)A×

n (t)
]
, (1)
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where F+,×
α (t) represent the antenna pattern functions

and the n-harmonic components of the polarisation co-
efficients, respectively. The former is applicable to the
+ polarisation, while the latter is applicable to the ×
polarisation. The total waveform is the sum of all the
harmonics:

hα(t) =
∑
n

hα,n(t), (2)

making α = I, II reference to each of the LISA inde-
pendent interferometric channels. After obtaining the
complete waveform, the next step is the signal analysis.

B. Quantifying Signal Detectability: The
Signal-to-Noise Ratio

The data stream produced by LISA consists of both
the GW signal and instrumental noise. For each detector
channel α the observed signal can be written as:

sα(t) = hα(t) + nα(t) , (3)

where hα(t) represents the GW waveform and nα(t) de-
notes the noise contribution in that channel. Assuming
that this form of noise is Gaussian and stationary, the
following definition of an inner product is proposed by
Cutler and Flanagan [4]:

(a|b) = 2
∑
α

∫ ∞

0

df
ã∗α(f)b̃α(f) + ãα(f)b̃

∗
α(f)

Sn(f)
, (4)

where ã(f) denotes the Fourier transform of a(t), and
Sn(f) is the one-sided power spectral density (PSD) of
the noise for all the channels (for simplicity they are
assumed to be statistical equivalent). Using this inner
product, the signal-to-noise ratio (SNR) for a given wave-
form h(t) is given by:

SNR2 ≡
√
(h|h) . (5)

In practice, this evaluates to:

SNR2 = 4
∑
α

∫ ∞

0

df
h̃∗
α(f)h̃α(f)

Sn(f)
. (6)

C. Precision Measurement: The Fisher
Information Matrix Approach

A central objective in gravitational wave data anal-
ysis is to determine the accuracy with which physical
parameters λa of a gravitational wave source can be esti-
mated from the observed signal. Given the assumptions
outlined above about the noise, the expected statistical
error in estimating a given parameter λa can be approxi-
mated using the inverse of the Fisher information matrix.

Specifically, the minimum standard deviation in param-
eter λa is given (via the Cramer-Rao bound) by:

∆λa ≥
√
(Γ−1)aa , (7)

where (Γ−1)aa denotes the a-th diagonal element of the
inverse Fisher matrix. In the high signal-to-noise regime
this coincides, with great approximation, with the cor-
responding component of the covariance matrix. The
Fisher matrix itself is defined, in the frequency domain
(using the scalar product of Eq. (4)) as:

Γab ≡
(

∂h

∂λa

∣∣∣∣ ∂h∂λb

)
, (8)

where h is the waveform in Eq. (1). The derivatives
∂h/∂λa are typically computed numerically as it is very
difficult to find analytical approximations. In this work,
the five-point central difference formula is employed for
this computation, which offers a fourth-order accurate
approximation:

dh

dx
=

1

12ϵ
[h(x− 2ϵ)− h(x+ 2ϵ) + 8h(x+ ϵ)

− 8h(x− ϵ)] +O(ϵ4) . (9)

The choice of the finite difference step size ϵ is critical. If
ϵ is too large, the derivative approximation suffers from
truncation error; instead, if it is too small, numerical
round-off errors may dominate. Thus, careful tuning of ϵ
is necessary to ensure accurate and stable estimation of
the Fisher matrix elements [5].
Having established a theoretical framework for our sim-
ulations and computations, the subsequent step is to
implement these equations and procedures numerically.
The initial step in this process is to calculate the signal-
to-noise ratio (SNR) for typical EMRI configurations.
This will enable an assessment of the detectability of
these signals.

III. NUMERICAL IMPLEMENTATION AND
ANALYSIS OF PARAMETER ESTIMATION

A. Simulating EMRIs and Assessing Detectability
(SNR)

To see how this model of waveforms works, let us sim-
ulate an EMRI system during 1 year of evolution and
calculate its SNR. The EMRI parameters are set as fol-
lows: M = 106M⊙, µ = 10M⊙, S/M

2 = 0.6, e0 = 0.4,

cos(λ) =
√
3/2, α0 = 0.2 rad, θs = 0.1 rad, Φk = 1.57

rad, θk = 0.3 rad, DL = 1 Gpc, ν0 = 0.6 × 10−3 Hz,
Φ0 = 1.57 rad, γ0 = 0 rad.
The evolution waveform is shown in Figure 1 returns a
SNR = 11.69, which is a pretty good value and matches
what was expected. Once it has been established that the
signals are detectable (SNR > 10, the standard thresh-
old for parameter analysis [2]), the next natural step is
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to determine what estimation accuracy can be achieved
using Fisher matrix analysis. As articulated by Barack
and Cutler [3], this methodology is especially well-suited
for EMRIs, given their elevated signal-to-noise ratio and
extensive duration within the LISA band. The Fisher
matrix has been demonstrated to facilitate the quantifi-
cation of the expected errors through the Cramér-Rao
limit [6], provided that SNR > 10, as evidenced by the
extant literature.

FIG. 1: Waveform of an EMRI system with typical parame-
ters. It shows a section of the gravitational wave signal h(t)
integrated during 1 year of evolution for a 10M⊙ compact
object orbiting a 106M⊙ central black hole with initial eccen-
tricity e0 = 0.4. The orbital parameters are: S/M2 = 0.6,
cosλ =

√
3/2, DL=1 Gpc, ν0 = 0.6× 10−3 Hz.

The same simulation for a CO mass µ = 1M⊙ results
in a SNR = 11.63, almost the same as in the previous
case, but smaller.

B. Optimizing Numerical Derivatives: Determining
the Fisher Matrix Step Size

Performing numerical differentiation implies the prob-
lem of choosing the step size ϵ. There are two error
sources: firstly, rounding error, which occurs when steps
are too short; and secondly, truncation error, which arises
from truncating the Taylor expansion of the derivative to
order n and it decreases as ϵ −→ 0.
One method of determining the correct value for the

step is to compute the Fisher matrix element Γaa us-
ing different values for ϵ in the differentiation and subse-
quently search for the range of values for which the result
is stable. As illustrated in Figure 2, the behaviour of the
matrix element varies with different steps.

The result indicates the presence of a stable zone with
a value of approximately ϵ ∼ 10−4 for the step. This
value can be considered a satisfactory outcome. It is ev-
ident that the rounding error is not apparent, which can
be attributed to the fact that the step is not sufficiently
small.
The following steps presented in Table I have been iden-
tified as offering the greatest stability in the context of

FIG. 2: Step size ϵ stability analysis for the computation of
numerical derivatives in the Fisher matrix. It shows the vari-
ation of the diagonal component Γaa of the Fisher matrix as a
function of ϵ (logarithmic scale). The stable zone (ϵ ∼ 10−4)
is identified where Γaa becomes step-independent. Truncation
errors dominate at large ϵ (> 10−3), while rounding errors ap-
pear for ϵ < 10−6.

the remaining parameters.
To make the parameter estimation analysis more
tractable and computationally efficient, the Fisher ma-
trix was computed using a reduced set of parameters,
while keeping the rest fixed at their fiducial values. The
selected subset includes parameters with strong physi-
cal relevance and a significant impact on the waveform:
the logarithm of the central black hole mass ln(M), the
dimensionless spin S/M2, the logarithm of the compact
object mass lnµ, the initial eccentricity e0, and the lumi-
nosity distance DL. This restriction allows us to focus on
the most informative parameters while reducing numeri-
cal noise and computational cost.

λa ln(M) S/M2 ln(µ) e0 DL

ϵ 10−4 10−4 10−3 10−4 10−3

TABLE I: Optimal step sizes (ϵ) for numerical derivatives in
the Fisher matrix calculation. Note the variation in orders of
magnitude between parameters: while ln(M) and e0 require
ϵ ∼ 10−4, parameters such as S/M2 allow larger step sizes
(ϵ ∼ 10−3).

It is also worthy to note that the larger the ϵ, the faster
the calculation of the Fisher matrix is executed.
Having determined the optimal step size, the next step is
to investigate how different physical parameters, initially
the mass of the compact object, affect the accuracy of
our estimates.
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C. Baseline Parameter Estimation: Initial Results
and Correlations

Considering the epsilon values in Table I, the Fisher
matrix is computed (see Figure 3).

FIG. 3: Visual representation of the Fisher matrix (absolute
values) quantifying the correlations between parameters of
the EMRI system. The viridis (logarithmic symmetric) colour
scale shows the magnitude of the Γaa elements. The numer-
ical values show the order of magnitude (scientific format).
The structure confirms that: (1) e0 is the best determined
parameter, and (2) there are non-trivial correlations between
S/M2 and ln(µ) that affect the error estimation. Data ob-
tained for µ = 10M⊙ and 1 year of observation.

The elevated values of the components that lie outside
the diagonal demonstrate a robust correlation between
the parameters. It is noteworthy that each parameter
exerts a distinct effect on the waveform.

Then, the next step is to obtain the errors ∆λa from
the covariance matrix, as explained in Equation 7, and
the results are presented in Table II.

λa ln(M) S/M2 ln(µ) e0 DL(Gpc)

∆λa 1.8 · 10−4 6.6 · 10−4 3.2 · 10−3 7.9 · 10−5 1.2 · 10−1

Error% 0.001 0.11 0.14 0.02 12

TABLE II: Parameter estimation accuracy for a 10M⊙ com-
pact object (1 year of observation). Absolute (∆λa) and rel-
ative (%) errors obtained from the diagonal of the Fisher ma-
trix are shown (Eq. 7).

It can be observed that the most accurate parame-
ter is the initial eccentricity e0, in accordance to its ele-
vated Fisher matrix diagonal value exposed before, and
the least accurate is the luminosity distance DL.

The election of the step size for the derivatives plays a
decisive role in Fisher matrix.

ϵ λa ln(M) S/M2 ln(µ) e0 DL(Gpc)

10−2 ∆λa 1.8 · 10−2 6.6 · 10−4 3.2 · 10−3 7.9 · 10−5 0.12

Error% 0.13 0.11 0.14 0.02 12

10−3 ∆λa 1.8 · 10−3 6.6 · 10−4 3.2 · 10−3 7.9 · 10−5 0.12

Error% 0.01 0.11 0.14 0.02 12

10−4 ∆λa 1.8 · 10−4 6.6 · 10−4 3.2 · 10−3 7.9 · 10−5 0.12

Error% 0.001 0.11 0.14 0.02 12

TABLE III: Parameter accuracy estimates and its relative
error for 1 year of evolution for different values for the step
size of the M derivative.

The changes in ϵ only affects significantly to the pa-
rameter itself, as seen in Table III for the mass of the
central black hole. As ϵ value drops, it parameter accu-
racy estimate decreases proportionally. All the values for
the step size are those located in the stable zone discussed
previously. Instead, varying the step size of the rest of
parameters within the stable range, the parameter accu-
racy estimates remain constant. It is also more time con-
suming computing the Fisher matrix with smaller step
sizes.

D. Impact of Compact Object Mass on Parameter
Precision

The computation is repeated changing the CO mass
from 10M⊙ to 1M⊙ and the following results presented
in Table IV are obtained.

λa ln(M) S/M2 ln(µ) e0 DL(Gpc)

∆λa 1.8 · 10−3 9.6 · 10−3 3.0 · 10−1 9.2 · 10−4 1.3

Error% 0.01 1.6 134 0.23 130

TABLE IV: Parameter accuracy estimates and its relative
error with respect the inserted value. All parameters are fixed
as previously with CO mass µ = 1M⊙.

It is observed that the values with the CO mass 10M⊙
presented in Table II are mostly an order of magnitude
smaller than those with CO of 1M⊙ presented in Table
IV. This shows that higher CO mass implies better ac-
curacy in parameter estimation.
This trend is due to the stronger gravitational wave signal
produced by a more massive compact object, resulting in
a higher signal-to-noise ratio, as were already prove in
Section IIIa. A higher SNR improves the precision with
which waveform parameters can be extracted. Further-
more, the bigger the mass ratio, the more the waveform
changes, and this reduces the error associated with the
main parameters.
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E. Influence of Observation Time on Parameter
Estimation Accuracy

The next step is to study the effect of the variation of
the total integration time on the accuracy of parameter
estimation. The previous results were obtained over a
period of one year. The same computation was performed
for two years and the results are presented in Table V.

λa ln(M) S/M2 ln(µ) e0 DL(Gpc)

∆λa 9.1 · 10−5 8.6 · 10−5 7.4 · 10−4 2.7 · 10−5 6.2 · 10−2

Error% 0.0007 0.01 0.03 0.007 6.2

TABLE V: Parameter accuracy estimates and its relative er-
ror with respect the inserted value for 2 years of evolution.
All is computed using the step sizes presented in Table I.

A comparison of these results with those obtained af-
ter one year of integration reveals a significant decrease
in parameter estimation errors, with some values improv-
ing by nearly an order of magnitude. This enhancement
is anticipated, as an extended observation period enables
the detector to accumulate a greater number of signal cy-
cles, thereby enhancing the signal-to-noise ratio (SNR).
Furthermore, an extended integration time facilitates
the detection of features that evolve more slowly, con-
sequently improving the estimation of parameters such
as eccentricity and distance. This shows Fisher matrix
accuracy depends strongly on integration time.

IV. CONCLUSIONS AND OUTLOOK

The present project has involved the modelling of ex-
treme mass-ratio inspirals (EMRI) systems and the in-
vestigation of the precision with which their physical pa-
rameters can be extracted from gravitational-wave sig-
nals using the Fisher information matrix formalism.
A crucial step in this study was the generation of theo-
retical waveforms, based on post-Newtonian approxima-
tions of the orbital evolution. The system of coupled
ordinary differential equations (ODEs) governing quan-
tities such as the orbital frequency, eccentricity, and pre-
cession angles was solved numerically. These evolving
parameters were then used to construct the waveform as
a sum over harmonics, incorporating the detector’s an-
tenna pattern functions. Finally, Fourier transforms of

the waveform were computed to obtain the signal in the
frequency domain, which is essential for both signal-to-
noise ratio (SNR) calculation and Fisher matrix estima-
tion.
The results presented in the preceding section permit

the formulation of several conclusions pertinent to the de-
tection and characterisation of EMRI systems with LISA.
The SNR obtained for typical EMRI configurations con-
firms that these signals will be detectable by LISA, even
for relatively small compact object masses and moder-
ate eccentricities. The estimation of parameters such as
the central massive black hole mass, its spin, and the
orbital eccentricity is a viable prospect under realistic
conditions. The initial eccentricity was found to be the
most precisely determined parameter, while the luminos-
ity distance was found to be the least constrained.
The choice of step size employed in numerical deriva-

tives for the Fisher matrix exerts a substantial influence
on the estimated uncertainties. A stable range of step
values was identified, which have been shown to provide
reliable results. An enhancement in the accuracy of pa-
rameters was observed, which increased in proportion to
the mass of the compact object and the duration of the in-
tegration period. Specifically, the prolongation of the ob-
servation period from one to two years led to a reduction
in uncertainties by up to an order of magnitude, thereby
underscoring the significance of extended duration ob-
servations. The analysis demonstrates the effectiveness
of the Fisher matrix as a preliminary step towards under-
standing the parameter estimation capabilities of LISA
for EMRI signals.
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Resum: Aquest treball se centra en la simulació de sistemes de raó de massa extrema (EMRI),
fonts rellevants d’ones gravitacionals per al futur observatori espacial LISA. Utilitzant aproxima-
cions post-Newtonianes, es calcula l’evolució orbital i la forma d’ona resultant, aix́ı com la seva
relació amb el senyal que LISA podria detectar. A més, s’aplica el formalisme de la matriu de
Fisher per estimar amb quina precisió es poden determinar paràmetres f́ısics com la massa i l’esṕın
del forat negre central, l’excentricitat inicial i la distància de lluminositat. Els resultats mostren
que tant la massa de l’objecte compacte com el temps d’integració són factors clau per a millorar
la precisió de l’estimació. Aquest estudi contribueix a entendre millor la capacitat de LISA per
fer ciència de precisió amb fonts EMRI. Paraules clau: Relativitat general, ones gravitacionals,
forats negres, raó de senyal i soroll.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures

El contingut d’aquest TFG, com a part d’un grau universitari en F́ısica, s’alinea amb l’ODS 4, especialment amb la
fita 4.4, ja que contribueix a l’adquisició de competències cient́ıfiques i tècniques en l’àmbit de la relativitat i l’anàlisi
de dades.
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Appendix A: ORBIT EVOLUTION EQUATIONS

In this Appendix are presented the system of coupled ordinary differential equations that governs the orbit evolution
of EMRIs:

de

dt
=− e

15
(µ/M2)(1− e2)−7/2(2πMν)8/3×[

(304 + 121e2)(1− e2)(1 + 12(2πMν)2/3)− 1

56
(2πMν)2/3((8(16705) + (12)(9082)e2 − 25211e4)

]
+ e(µ/M2)(S/M2)cosλ(2πMν)11/3(1− e2)−4[(1364/5) + (5032/15)e2 + (263/10)e4],

dν

dt
=

96

10π
(µ/M3)(2πMν)11/3(1− e2)−9/2{[1 + (73/24)e2 + (37/96)e4](1− e2)

+ (2πMν)2/3[(1273/336)− (2561/224)e2 − (3885/128)e4 − (13147/5376)e6]

− (2πMν)(S/M2)cosλ(1− e2)−1/2[(73/12) + (1211/24)e2 + (3143/96)e4 + (65/64)e6]},

dΦ

dt
=2πν,

dγ̃

dt
=6πν(2πMν)2/3(1− e2)−1

[
1 +

1

4
(2πMν)2/3(1− e2)−1(26− 15e2)

]
− 12πνcosλ(S/M2)(2πMν)(1− e2)−3/2,

dα

dt
=4πν(S/M2)cosλ(2πMν)(1− e2)−3/2.

(A1)
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