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Abstract: Using the Deffuant model of opinion dynamics, in which the agents in a network
can only influence each other if the discrepancy in their opinions is less than the confidence bound
parameter, we observe the formation of clusters during the dynamic. In this process there is a fraction
of agents that stay isolated and don’t change their opinion or they form really small clusters that
barely change their opinion from the start and stay in the extreme opinions. This work is centered
on studying this fraction of isolated agents, how the probability changes for different topologies,
dynamics and stages.
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I. INTRODUCTION

Arriving at a consensus is key to design urban policies
and for taking climate action by all agents (citizens, en-
terprises and governments). This study about the factors
that influence the reaching of strong consensus gives in-
sight in the processes of participation and communication
that reinforce the acceptance of sustainable projects.

Recently there is an interest in the application of statis-
tical physics into opinion dynamics in complex networks.
The first models on opinion dynamics used binary opin-
ions (”in favor”=1 and ”against”=0). These simple mod-
els fail to show the complexity of human behavior; to get
over this limitation it’s considered a continuous opinion
where each agent of the network can be at any point in
the spectrum of opinions [1].

These models introduce the concept of bounded confi-
dence; this makes it so that the agents in the network can
only influence each other if the difference in their opinion
is less than a threshold d. This is to show things like con-
firmation bias or homophily and simulates the resistance
to dialogue with people with an opinion really different.
The Deffuant model [1] proposes that each agent starts
with an opinion xi ∈ [0, 1] and for each interaction a
couple of connected nodes is chosen. If they satisfy the
confidence bound condition, they interact and influence
each other to have similar opinions; this is repeated until
the network arrives at a stationary configuration.

A particular effect we observe is the formation of
”wings”, groups of agents that stay isolated or low in-
fluenced by the majority. The topology of the network
changes the result; in a well-mixed case, there is a fast
and uniform convergence and isolation is minimal, but
in a more realistic network, the results show a higher
probability of isolation. This can be interpreted as a
radicalization or lack of integration. This study is cen-
tered around the probability of isolation in Erdös-Rényi
random graphs for different times: the initial condition,
the early times of the dynamic and the final configura-

tion. We focus on the dependency with the parameter
that characterizes the network (the average connectivity
k) and the dynamic.

II. MODEL

Let G(N, p) be an Erdős–Rényi graph with N nodes
and probability p of having an edge between two nodes, so
that the average connections per node are k = p(N − 1),
and the number of neighbors per node, i.e. its degree is
deg(i) ∼ Bin(N − 1, p) [3].
Assign to each node i an opinion xi ∈ [0, 1] following

a uniform distribution and fix a threshold d ∈ [0, 1]. We
define a node as ”isolated” if all its neighbors j satisfy
|xi − xj | ≥ d
For each iteration, a random edge is chosen; the two

nodes i and j, if their opinions satisfy |xi − xj | < d the
interaction will be:

xi(n+ 1) = xi(n) + µ(xj(n)− xi(n))

xj(n+ 1) = xj(n) + µ(xi(n)− xj(n)) (1)

The parameter µ is the speed at which the agents influ-
ence each other. For µ = 0, there is no influence, and
for µ = 0.5, the agents end up with the same opinion af-
ter one interaction. After all the interactions the system
arrives at a consensus where the opinions don’t change
anymore. This consensus in the simulation is defined as
the moment when the change in opinions for a certain
number of interactions (10N) is less than a fixed toler-
ance (10−6). For the complete mixing case, the number of
clusters formed at the end is the integer part of 1/2d [2].
All simulations in this work are done on an Erdős–Rényi
graph with 900 nodes, d = 0.3, and µ ∈ [0.001, 0.5]. Av-
erages are performed over 1000 samples, except for sec-
tion C, where the simulation is done with 10000 nodes
over different values of d. In fig 1 we see how the major-
ity falls into consensus while an isolated minority creates
these ”wings” by barely changing their opinion.
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FIG. 1: Final opinion (vertical axis) vs initial opinion (hori-
zontal axis) for average connectivity 4, d = 0.3 and 900 nodes.
The bars show the number of connections of each node.

III. PROBABILITY OF ISOLATION

A. Initial isolation

For a node with opinion x the probability of a neighbor
being inside the confidence parameter d, if we assume a
uniform distribution of opinions, is:

f(x) =


x+ d, 0 ≤ x < d

2d, d ≤ x ≤ 1− d

1− x+ d, 1− d < x ≤ 1

(2)

Conditioning on the value xi = x of the node’s opinion
and the number of neighbors m, we have

P (i isolated | x,m) = [P (|xj − x| ≥ d)]
m

= [1 − f(x)]
m

(3)

Since deg(i) ∼ Bin(N − 1, p), the probability of a node
i being isolated is:

Piso =

N−1∑
m=0

(N − 1

m

)
p
m
(1 − p)

N−1−m
∫ 1

0

(1 − f(x))
m
dx (4)

Exchanging the sum and integral and using the binomial
theorem, the following compact form is obtained

Piso =

∫ 1

0

[1 − pf(x)]
N−1

(5)

When N → ∞ with fixed k (recall k = p(N − 1))

[1 − pf(x)]
N−1 ≈ e

−kf(x)
(6)

and

Piso =

∫ 1

0

e
−kf(x)

dx = 2
e−kd(1 − e−kd)

k
+ (1 − 2d)e

−2kd
(7)

This expression summarizes as a function of k and d
the probability that a node is isolated at the start of
the dynamic (fig 2). In general if the initial distribution
is ρ(x) the probability of having k′ neighbors connected
(|xj − x| < d) given a node with k neighbors is:

P (k′|k, x, ρ(x)) =
(
k

k′

)
(a(x))k

′
(1− a(x))k−k′

(8)

FIG. 2: Probability of isolation for the initial configuration
as a function of the average connectivity for d = 0.3

Where a(x) is the probability of a node with opinion x
being connected to one of its neighbors.

a(x) =

∫ min(1,x+d)

max(0,x−d)

ρ(y)dy

For a uniform distribution:

P (k′|k, x, ρ(x)) =
(
k

k′

)
(f(x))k

′
(1− f(x))k−k′

(9)

and for k′ = 0 we recover equation (3). For a Gaussian
distribution centered at 0.5 and normalized in [0,1]:

a(x) =
1

Z

[
Φ

(
min(1, x + d) − 0.5

σ

)
− Φ

(
max(0, x − d) − 0.5

σ

)]

Where

Φ(t) =
1√
2π

∫ t

−∞
e−u2/2du

and

Z = Φ

(
0.5

σ

)
− Φ

(
−0.5

σ

)

B. Phase transition

Erdős-Rényi networks show a second order percolation
transition in k = 1. The order parameter is S, the frac-
tion of nodes that belong to the biggest connected com-
ponent in the graph. So S = 0 for k < 1 and S ∼ (k−1)β

for k > 1 with β = 1. The mean size of the rest of the
components <s> ∼ |k − 1|−γ , with γ = 1, is the suscep-
tibility of this transition [3]. In our case for the initial
distribution of opinions and the confidence bound we ob-
serve that the parameter d defines a temporal network
[4] with an effective connectivity in the graph keff so the
phase transition is at keff = 1.

keff = kP (|xi − xj | ≤ d)
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P (|xi − xj | ≤ d) =

∫ 1

0

∫ 1

0

1|xi−xj |≤ddxidxj = 2d− d2

So the condition for the critical point is:

d = 1−
√
1− 1

k

In fig 3 we observe the percolation transition where the
theory predicts keff = 1.

FIG. 3: Size of the largest connected component as a function
of d and the mean component size excluding the largest. The
vertical line indicates where the theory predicts the phase
transition. Simulation with k = 5

C. Early times

We use simulations where we take the list of edges in
the network and only make one interaction for each edge
in a random order. Thus, each node will interact with
all of its neighbors once. After all the interactions, we
look at how many nodes were left isolated. We look at
the isolation in two different intervals of opinions, the
bulk (x ∈ [d, 1− d]) and the tails (x ∈ [0, d] ∪ [1− d, 1]).
Simulations are done for different values of µ and k.

Let’s look first at the isolation in the tails. For the
initial configuration we had the probability of isolation
to be the isolation in the tails 2e−kd(1 − e−kd)/k plus
the isolation in the bulk (1 − 2d)e−2kd. Looking at the
isolation in the tails for a small µ, we expect to find a
similar isolation to the initial one because for a small
number of iterations and small µ it is less probable to
have significant changes in opinions. And that is exactly
what we find in fig 4. For big values of µ (∼ 0.5) we
observe that the theoretical curve doesn’t fit as well but it
still is a good approximation. For k < 5 the dependency
on µ accounts for changes around 1% and for bigger k
around 0.4% as we can see in fig 6.
Now let’s look at the bulk region. Following the same

reasoning as before we expect the isolation in the bulk to
follow something similar to (1− 2d)e−kd. However, what
we see is that the isolation has decreased very quickly
with these few iterations compared to the initial isolation

FIG. 4: Probability of isolation in the tails for early times
dynamics

(fig 5). Again, the dependency on µ is a small contribu-
tion that goes to 0 very fast when k increases. As we

FIG. 5: Probability of isolation in the bulk for early times
dynamics

can see the isolation is dependent on k and has a weak
contribution depending on µ. In the tails for small k
the probability decreases with µ , but when k increases
the tendency changes, for small values of µ (<∼ 0.2) the
isolation is constant in µ and for larger values of µ the
isolation increases (see fig 6).

D. Final configuration

When we let the system evolve with random interac-
tions, we arrive at a point where there are no changes in
opinions due to cluster formation with the same opinion;
in our case, all the simulations finished in 1 big cluster
with opinion 0.5 and a small portion of nodes left in the
tails. There are two ways in which we looked at the iso-
lation. The first is the same way we saw before: for each
node, we check if all its neighbors are at a greater dis-
tance than d. The other way is to check all the nodes
that didn’t fall into the main cluster. This second way is
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FIG. 6: Probability of isolation in the tails for early times
dynamics as a function of µ

not isolation by definition, but may be useful to study the
lack of integration and the formation of extreme opinions
in society. The idea is that for example a node ends with
3 neighbors only, with the same opinion, and an opinion
very close to their initial, then we consider these nodes
to not have participated in the dynamic because they
started and ended at the same point and only interacted
within a small bubble.

First, we take a look at completely isolated nodes. We
observe something similar to before, the dependency with
k follows Piso ≈ e−kd/k (this is an ansatz, and works bet-
ter for small µ) (fig 7). With µ, again, there is a clear
dependency which is small compared to the changes in k
(<∼ 1%) (fig 8). Lastly, we consider the second way to see

FIG. 7: Probability of isolation for the final configuration as
a function of k

the fraction of nodes that don’t fall in the central clus-
ter. Once more the difference in magnitude of the effects
between k and µ are similar, in this case µ has a bigger
contribution (∼ 2%) than before and it is notable when
k increases because the probability is close to zero and a
2% change is relevant. The probability as a function of k
follows a tendency that looks like the previous cases, but
doesn’t quite fit with any of the functions proposed, the
only observation is that for k ≤ 4 the probability behaves

FIG. 8: Probability of isolation for the final configuration as
a function of µ

like (fig 9)

P =
A

ln(k)
−B ; 2 ≤ k ≤ 4 (10)

where A and B are constants that are different for every
value of µ. If we plot A(µ) and B(µ) it looks linear with
a lot of dispersion (R2 ≈ 0.7) (fig 10), this is because the
probability in function of µ has a high variance (fig 12).

A(µ) ≈ 0.50− 0.05µ

B(µ) ≈ 0.26− 0.04µ (11)

FIG. 9: Probability of isolation for the final configuration as
a function of 1/ln(k)

IV. CONCLUSIONS

The probability of isolation is governed mainly by k,
while the effects of µ are a small contribution that is more
noticeable when k increases and the probability drops. µ
it’s a parameter whose principal effect is just to change
the time of convergence, it doesn’t change the macro-
scopic result. The probability of isolation at the final

Bachelor’s Thesis 4 Barcelona, June 2025



Study of bounded confidence models of opinion dynamics on networks Néstor Rovira Yélamos

FIG. 10: Coeficients A and B as a function of µ

FIG. 11: Probability of isolation for different times and µ =
0.25

FIG. 12: Probability of isolation (non-integrated nodes)

consensus follows the empirical law P = e−kd/k. The
small effects of µ are to decrease the isolation for small k
when we increase µ and around k = 15 the tendency flips
and increases the probability with µ. This indicates that
for well-connected networks, the sudden changes due to a
big µ make a few nodes that don’t have time to interact
isolated. We also observe that most of the isolation hap-
pens in the tails, while in the bulk decreases very quickly,
for high values of k go to zero.

For the final configuration, the nodes that don’t fall
into the consensus decrease quickly with k and for 2 ≤
k ≤ 4 follow equation (10). With A,B depending lin-
early on µ (equation (11)), but with a lot of dispersion
(R2 ≈ 0.7). This shows how after k = 4 the probability
saturates close to 0. Due to the confidence bound con-
dition there is a temporal network with an effective con-
nectivity keff and the phase transition we see for k = 1 is
at the initial configuration there is a threshold keff = 1
(with keff = k(2d−d2)) that shows the same phase tran-
sition as an Erdös-Rényi graph.
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Estudi de models de confiança acotada de dinamica d’opinions en xarxes
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Resum: Utilitzant el model de Deffaunt de dinàmica d’opinió, en què els agents d’una xarxa
només poden influir-se mútuament si la discrepància en les seves opinions és inferior al paràmetre
del llindar de confiança, s’observa la formació de clústers durant la dinàmica. En aquest procés, hi
ha una fracció d’agents que es manté äıllada i no canvia la seva opinió, o bé forma clústers molt
petits que gairebé no modifiquen la seva opinió des del principi i es mantenen en posicions extremes.
Aquest treball se centra a estudiar aquesta fracció d’agents äıllats i com varia la probabilitat segons
diferents topologies, dinàmiques i etapes. Paraules clau: Dinàmica d’opinions, confiança acotada,
xarxes Erdős-Rényi, transició de fase, percolació, nodes äıllats
ODSs: Educació de qualitat

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles X

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat 13. Acció climàtica X

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures
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