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Abstract: In this project, the transition between different quantum phases of ultracold bosonic
systems trapped in an optical lattice is studied using the exact diagonalization method. First, the
Mott Insulator to Superfluid transition is analyzed. Afterwards, the Density Wave phase is also
considered. Specifically, a Julia programming language code is used to find the ground state of a
system defined by a Bose-Hubbard Hamiltonian and the phase of this state is determined by means
of specific observables derived from the occupation levels.

I. INTRODUCTION

Ultracold atomic gases are physical systems composed
of identical atoms at near zero temperatures. If the atoms
in these systems are bosons, they can freely occupy the
same single-particle quantum state. This means that, as
they cool down, all but an infinitesimally small number
of atoms will settle into the same single-particle ground
state [1]. In this situation, the system reaches what is
known as Bose-Einstein condensation, a new state of
matter in which the wave functions of the bosons overlap
[1]. The Bose-Einstein condensate, first experimentally
realized in 1995 by Eric Cornell and Carl Wieman at
University of Colorado Boulder [2] andWolfgang Ketterle
at MIT [3], possesses interesting properties not present
in any classical system, exhibiting quantum phenomena
on a macroscopic scale.

Neutral bosons do not readily interact with static
electric fields, but they can be manipulated using optical
lattices. These can be created with counter-propagating
laser beams, resulting in standing waves that can trap
atoms in different separated wells due to the Stark
shift [4]. By tuning the amplitude and the spacing
of the different optical wells, also called ”sites”, the
chances of quantum tunneling between neighbor sites
can be modified. Moreover, the strength of interatomic
interactions can be tuned experimentally.

Since the temperatures are close to zero, classical
phase transitions do not play a role in ultracold atomic
gases, as there are no thermal excitations to affect the
system’s behavior. However, quantum fluctuations play a
central role, leading to the formation of distinct quantum
phases. The interactions between particles and their
relative strength depend on certain parameters of the
optical lattice, such as the depth of the potential wells
and the geometry of the sites.

By studying how the behavior of the ground state of
the system changes as the parameters are tuned, these
phases can be identified and classified, along with their
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phase transitions. Among the quantum phases that
ultracold bosonic systems can exhibit in optical lattices,
two of the most notable are the superfluid phase (SF)
and the Mott Insulator phase (MI) [5].

Superfluidity is a property of quantum fluids with
zero viscosity, which can flow without losing kinetic
energy, allowing for the formation of persistent currents
and quantized vortices. In the case of an optically-
trapped system, superfluidity is characterized by a single
wavefunction spanning all sites, with a well defined
phase. This means that there is long-range coherence
between the atoms, and the individual particles are
delocalized over the entire optical lattice [4]. This
leads to non-zero number fluctuation as well as non-zero
compressibility at all sites.

Mott Insulators are solid materials that are expected
to conduct electricity in electron band theory, but present
very strong Coulomb interactions between electrons that
block the electric current from flowing. This phase can
be realized in optically-trapped ultracold bosonic systems
when the repulsive contact interatomic interaction is
strong enough to stop tunneling between sites. When the
tunneling vanishes, the wavefunction becomes localized
in each site with a fixed number of atoms per well. For
this reason, the Mott Insulator phase lacks global phase
coherence and presents an energy gap corresponding to
the energy needed to create a particle-hole pair [4].

Another interesting phase that can be explored with
ultracold bosons in optical lattices is the so-called
Density Wave (DW) [6]. It appears when the atoms
interact repulsively with nearest neigbour sites. When
the atoms are charged or neutral, it is also known
as charge density wave (CDW) or mass density wave
(MDW), respectively. Due to the repulsion between
neighboring sites, it is characterized by an alternating
occupation pattern over the sites 1.

1 For example, for N = M we may observe an occupation pattern
2− 0− 2− 0− · · ·
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II. MODEL AND IMPLEMENTATION

A. The system

An ultracold atomic gas with N atoms trapped in
an optical lattice with M sites at zero temperature
can be described by means of the Bose-Hubbard (BH)
framework, with the following Hamiltonian:

H =− t
∑
i

(
b̂†i b̂i+1 +H.c.

)
+

U

2

∑
i

n̂i(n̂i − 1)

− µ
∑
i

n̂i + V
∑
i

n̂in̂i+1 , (1)

where b̂†i , b̂i and n̂i are the creation, annihilation
and number operators of one atom at the site i,
respectively. The tunneling strength is given by t, U
corresponds to the on-site interatomic interaction, V is
the interaction between neighboring sites, and µ is the
chemical potential.

This Hamiltonian encodes different interactions the
atoms may have with each other. We distinguish
the different terms in the following way [7]: Ht =

−t
∑

i

(
b̂†i b̂i+1 +H.c.

)
is the tunneling term, restricted

here only to first-neighbor interactions, which accounts
for the tunneling of an atom from one of the potential
wells to the next one. HU = U

2

∑
i n̂i(n̂i−1) is the on-site

interaction between particles, which for positive values of
U penalizes multiple atoms occupying the same site. For
a given total amount of particles N and sites M , these
two terms are enough to allow for the observation of the
MI and SF phases, and would represent the minimal BH
Hamiltonian with V = 0. The on-site chemical potential
term Hµ = −µ

∑
i n̂i is fixed for a given amount of

particles N , and penalizes low total occupation. The
last term we consider is HV = V

∑
i n̂in̂i+1. When

V > 0, it corresponds to a repulsive first-neighbors
density-density interaction [8]. This last term V is not
present in the simplest form of the BH Hamiltonian, as
it arises due to a power-law interaction that depends on
the presence of an external magnetic or electrical field to
polarize the bosons and vanishes as the distance between
sites increases. However, as we will show, this term is
needed in order to observe the DW phase. Additional
terms can be added to the Hamiltonian to include more
sophisticated interactions [7], such as the density assisted
hopping term and the pair-hopping term. These terms
give rise to other phases not considered here, such as
Staggered Super Fluids and Haldane Insulators [8].

While the M sites in optical lattices can be arranged in
a variety of ways, here we will only consider the following
three geometries: an open 1D array with unconnected
ends (line geometry), a cycle such that the first and last
sites are connected (ring geometry), and an M -simplex
in which the M sites are all connected to each other
(simplex geometry). It is worth noting that this last
configuration only has physical sense for M < 5, but is

still interesting to study, as it showcases an extreme case
of full connectivity in which all sites are first neighbors.
The different geometries are represented in Fig. 1.

FIG. 1: Schematic representation of line, ring and simplex
geometries for M = 4.

The differences in these geometries give rise to
differences in the connectivity of the sites. As such,
we expect phases characterized by more particle-particle
correlations to emerge more readily at the highly
connected simplex geometry rather than in the less
connected line geometry.

B. Observables

While many properties can be used to distinguish
between SF, MI and DW phases, in this work we will
consider the compressibility and the static structure form
factor, as in Ref. [8]. They are defined as 2:

∆nj = ⟨n̂2
j ⟩ − ⟨n̂j⟩2 , (2)

S(q) =
1

M2

M∑
j,k

⟨n̂j n̂k⟩ e−iq(j−k) . (3)

Compressibility, which we calculate through the number
fluctuation ∆nj in Eq. (2), as in [9], allows us to
distinguish between SF and MI phases, as the former
is compressible and the latter is not. To identify the
DW phase, we use the peaks of the static structure form
factor S(q) calculated using Eq. (3), as the alternating
occupation pattern results in a peak at the Fourier
component q = π not present in the other two phases.

C. Method

Since the object of our study is a quantum system at
zero temperature, the quantum states considered must
always be those with the smallest energy. For this, the
ground state of the Bose-Hubbard Hamiltonian must be
calculated. With this aim, we implemented a direct
diagonalization method in the programming language
Julia.
There are two ways in which the Bose-Hubbard

Hamiltonian can be constructed and diagonalized,

2 Notice that ∆n2
j may be more mathematically rigorous. We are

using the notation of Ref. [8].
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FIG. 2: MI-SF transition for M = 4 sites and varying N ,
with U = 1, V = 0 and µ = 0. The system forms a MI in the
dark blue region for all geometries, in the light blue region
for line and ring geometries, and in the orange region for line
geometry. Where it’s not in an MI phase for a given geometry
it is in a SF phase. In the red region, all systems are in SF.

depending on whether or not the total amount of particles
in the system is fixed or variable. When it is fixed, such
that the total amount of particles is N , all the eigenstates
of the Hamiltonian correspond to a state of N particles.
If N is not fixed, but the total amount of particles is
bounded by Nmax, a new block-diagonal Hamiltonian
must be constructed H = Diag(H1,H2, . . . ) where Hi

is the BH Hamiltonian with N = i. Since the eigenstates
of a block-diagonal matrix correspond bijectively to the
eigenstates of the individual blocks, the ground state of
H will be the ground state of a certain Hi, fixing N = i
as the amount of particles that minimize the Hamiltonian
with those coefficients.

Since all matrices involved are sparse, they are stored
as sparse arrays using the SparseArrays Julia package
to save memory. The BH hamiltonians need not be
fully diagonalized, as only the eigenstate with the lowest
eigenvalue is needed, so the Arpack package is used to
return the ground state and its corresponding energy.

III. RESULTS

A. MI-SF transition with V = 0

To investigate the MI-SF transition for a system with
a fixed number of sites M and a given number of
atoms N , we have obtained the ground state of the
Hamiltonian for different values of the tunneling strength
t/U and vanishing first neighbors interaction V = 0.
In Fig. 2 we have set M = 4, U ̸= 0 and µ = 0.
By calculating the ground state of the Hamiltonian at
different values of t/U , we can find the values at which
the MI and SF phases form for any given N . To find the
transition between these two phases, we have used the
compressibility in Eq. (2). More specifically, we assume
that the system is in the MI phase if max(∆n) < 0.1.
This threshold is arbitrary, as is explained below.

Fig. 2 shows that the low-compressibility MI phase can

FIG. 3: Value of max(∆n) for M = 4 sites in ring geometry
at different values of N as a function of t/U , with V = 0 and
µ = 0.

only form if the number of bosons N is a multiple of the
number of sites M . This is explained by the fact that
if the number of particles does not divide the number of
sites, at least one particle is left free to hop between sites,
remaining delocalized over the lattice. Moreover, as the
connectivity between the sites increases by changing the
geometry of the sites, the SF phase can appear at lower
values of the tunneling strength t/U . This is due to the
fact that for a more connected site geometry, the chances
of the boson tunneling to another site increase.

An interesting feature of the MI-SF transition for a
fixed N , as shown in Fig. 3, is that compressibility does
not change drastically with t/U as may be expected
in a phase transition, but rather gradually. It is for
this reason that the exact value at which the system
transitions from one phase to the other has to be
arbitrarily chosen [10]. However, the significant drop-
off from max(∆n) ≈ 0.24 to max(∆n) = 0 at t/U = 0
for N = 4 and N = 8 confirms that commensurability
between the number of sites and the number of bosons is
a key factor for the formation of a Mott Insulator.

We can study how the chemical potential µ/U affects
the occupation density of the system and the MI-SF
transition when the number of bosons is not fixed. Given
a chemical potential µ/U and a tunneling strength t/U ,
the ground state of the system settles into a number
of particles N . Fig. 4 shows the occupation density
n = N/M at different values of t/U, µ/U for M = 4 sites
and V = 0. One can see that, for large values of t/U , the
occupation density increases almost linearly with µ/U
and t/U . For low values of t/U , conversely, integer
values of occupation density appear more prevalently. In
the t/U = 0 limit, only integer occupation density is
possible. As seen above, the MI phase can only form in
these regions of integer occupation density.

In Fig. 5 we plot the compressibility along the t − µ
plane, finding differentiated regions where the ultracold
bosonic gas forms a MI. These are the well-known Mott
lobes of the 1D Bose-Hubbard model [7, 10]. The thin
strips of increasing occupation density on the right side
of Fig. 4 get progressively thinner with M , making
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FIG. 4: Occupation density n for M = 4 sites with ring
geometry, V = 0 and Nmax = 14.

the MI-SF transition more evident and sharp. Fig. 6
shows the first of these lobes for different values of
N = M superimposed on one another. The range of
µ/U values at any given t/U decreases with the number
of particles and sites added. In the highM limit, the lobe
closes down completely, as seen in Ref. [10], but this is
computationally impossible to calculate using the direct
diagonalization method.

By changing the geometry of the sites, the values of
t/U at which the system forms a MI change. The same
pattern as in Fig. 2 is found here, with compressibility
being always lower for line geometry than for ring
geometry, and it being the lowest for simplex geometry.
As expected, along a given Mott lobe, the compressibility
values are the same as in Fig. 3.

FIG. 5: max(∆n) for M = 4 sites with ring geometry, V = 0
and Nmax = 14.

B. MI-SF-DW transitions for V ̸= 0

Setting the first neighbors interaction V ̸= 0 in the
Hamiltonian, we introduce a new type of interaction in
the model. Namely, for V/U > 0 a repulsion between
particles in neighboring sites can be induced, and we
expect to see the DW phase arise. By comparing the
value of the Fourier component q = π in Eq. (3) to the
component q = 0, the MI-DW or SF-DW transitions can

FIG. 6: Contours of the n = 1 Mott lobe for M = 2 (red-
orange interface), M = 4 (orange-lightblue interface) and
M = 7 (lightblue-blue interface), overlapped; for a system
with ring geometry.

be observed. This is shown in Fig. 7, where the sharp
transition at V = 0.5U is evident for t < 0.05 U . For
V/U < 0.5, the S(π) component is much smaller than the
S(0) component, indicating the absence of a DW state,
while for V/U > 0.5 the system can form a DW. This
sudden change in behavior is consistent with the results
found in [8]. The region t > 0.05 U also presents a phase
transition, but it becomes less sharp.

FIG. 7: Ratio S(π)/S(0) for M = 6 sites and N = 6 particles
in ring geometry.

Examining the values of the average number density
n = N/M in the t − µ plane for V ̸= 0, we find
that new lobes appear at semi-integer values of n, as
shown in Fig. 8. These secondary lobes cannot be Mott
lobes, because the ultracold atomic system does not settle
into a Mott Insulator phase. This can be verified by
calculating the compressibility ∆n, resulting in the plot
on the left side of Fig. 9. The n = 0.5 lobe does not
present vanishing compressibility in the low t/U limit
characteristic of the Mott Insulator phase. Instead, as
shown in the plot on the right side of Fig. 9, the high
values of the S(π)/S(0) observable identify these half-
integer lobes as Density Waves, showing that our two
chosen observables are enough to distinguish between the
three phases we have studied.
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FIG. 8: Average number density n = N/M for a system of
M = 6 sites arranged in ring geometry with V = 0.4 U . At
low t, lobes appear for both integer and half-integer values of
n.

FIG. 9: Left plot: max(∆n) for a system of M = 6 sites
arranged in ring geometry with V = 0.4 U , showing the n =
1 lobe corresponds to a MI. Right plot: S(π) for the same
system, showing the n = 0.5 lobe that corresponds to a DW.

IV. CONCLUSIONS

In ultracold atomic systems trapped in optical lattices,
different exotic phases of matter arise and their quantum
phase transitions can be observed. In particular, bosonic
systems at zero temperature present the superfluid, Mott
Insulator and Density Wave states, depending on the
type of interatomic interactions present in the system.

The Bose-Hubbard Hamiltonian can be used to describe
the behavior of systems governed by a tunneling strength
t, an on-site interaction strength U , a chemical potential
µ and a first-neighbors interaction strength V .
Direct diagonalization of the BH Hamiltonian allows

us to find detailed information of the ground state
of a certain system for a wide range of values of U ,
t, V and µ. By using observables that depend only
on the occupation numbers, namely the compressibility
∆n and the static structure form factor S(q), we can
distinguish these phases and the transitions among them.
However, this method is very computationally costly,
scaling superexponentially with both the number of
particles N and the number of sites M . Some direct
consequences of this limitation are that the Mott lobes
do not fully close in the t − µ plane, so the MI-SF and
MI-DW transitions do not appear sharp but smooth, as
noted in Ref. [10]. For these reasons, further research
has been done in this field with more scalable tensor
network methods like Density Matrix Renormalization
Group (DMRG) [8].
Certain phases of the Bose-Hubbard Hamiltonian

only appear at certain values of n = N/M . The
Mott Insulator phase requires n to be an integer,
while the Density Wave phase requires a half-integer
value. Additionally, the geometry affects the values of
the parameters at which the phases are found, with
more connected geometries favoring the formation of a
superfluid.
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Juliá-Dı́az, Bruno. (2014). Cold bosons in optical lattices:
a tutorial for exact diagonalization. J. Phys. B: At. Mol.
Opt. Phys. 50 113001.

Treball de Fi de Grau 5 Barcelona, January 2025



Ultracold atoms in a 1D optical lattice: Mott-Superfluid transition Vı́ctor Rubio Jiménez
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Resum: En aquest Treball de Fi de Grau s’estudia amb el mètode de diagonalització exacta
la transició entre diverses fases quàntiques de sistemes bosònics ultrafreds atrapats en una xarxa
òptica. En concret, es fa servir un codi en llenguatge de programació Julia per trobar l’estat
fonamental d’un sistema definit per un Hamiltonià de Bose-Hubbard i es determina la fase d’aquest
estat mitjançant observables derivats dels nivell d’ocupació.
Paraules clau: Sistemes ultrafreds, Hamiltonià Bose-Hubbard, transicions de fase, Condensat de
Bose-Einstein, xarxa òptica.
ODSs: Aquest TFG està relacionat amb els Objectius de Desenvolupament Sostenible (SDGs)
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Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la pobresa 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible X 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures X

El contingut d’aquest TFG de la carrera de F́ısica a la Universitat de Barcelona es relaciona principalment amb
l’ODS 9, ”Indústria, innovació, infraestructures”, ja que els sistemes atòmics ultrafreds com els estudiats en aquest
treball podrien tenir un gran impacte en el desenvolupament tecnològic futur. Per aquest mateix motiu el treball
es relaciona amb l’ODS 7, ”Energia neta i sostenible”. D’una manera més indirecta, el treball es relaciona també
amb l’ODS 4, ”Educació de qualitat”, per ser fruit del treball d’un estudiant de f́ısica, supervisat per investigador
predoctoral i una professora universitària.
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