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Abstract
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Forecasting Urban Traffic Patterns in London Using Hybrid AI Techniques

by Theodoros LAMBROU

Accurately forecasting traffic incident severity is crucial for urban mobility planning
and real-time traffic management. This thesis explores a hybrid approach to classi-
fying traffic severity levels using statistical and machine learning techniques. The
dataset includes road segment-level hourly traffic observations in London, enriched
with engineered features such as recent severity history, weather conditions, and
baseline severity probabilities.

We evaluate a range of models, from simple baselines to advanced classifiers,
with a focus on Random Forest and XGBoost. After extensive experimentation, a
tuned Random Forest model using balanced subsampling and moderate tree depth
outperformed all other approaches in terms of macro-averaged F1-score and mi-
nority class recall. Detailed evaluation through time-based cross-validation, SHAP
analysis, and visual diagnostics demonstrates the robustness of this model and high-
lights key predictive factors.

The findings suggest that combining short-term temporal features with baseline
statistical probabilities significantly improves performance, particularly for under-
represented severity classes. The report also discusses limitations related to data
coverage, class imbalance, and the potential of incorporating external signals such
as incidents or public transport disruptions in future work.

The corresponding python notebooks, scripts and data for this thesis are located
in this GitHub repository: https://github.com/theol-10/datascience-thesis/.

HTTP://WWW.UB.EDU
http://mat.ub.edu
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Chapter 1

Introduction

In modern urban environments, accurate traffic forecasting plays a critical role in
enabling smarter mobility, reducing congestion, and improving overall urban plan-
ning. The ability to anticipate traffic severity levels in real-time has implications
for both short-term interventions, such as traffic signal optimization and dynamic
routing, and long-term infrastructure development, like road network planning and
expansion. Effective traffic forecasting can lead to enhanced mobility, lower carbon
emissions, and improved public safety by providing actionable insights for both au-
thorities and commuters.

Historically, traffic prediction has relied on traditional methods, such as traffic
flow modeling and time-series analysis. However, these methods often struggle to
account for complex and dynamic factors like weather patterns, special events, and
human behavior. With the rise of data availability, particularly from sensors, GPS
data, and social media feeds, along with advances in machine learning and deep
learning, there is increasing potential to significantly improve prediction accuracy.
In particular, the ability to leverage large datasets containing both historical patterns
and real-time contextual information offers new avenues for more accurate and re-
sponsive traffic forecasting systems.

This thesis focuses on the task of forecasting traffic severity levels in London,
using a multi-class classification framework. The objective is to develop a predic-
tive model that integrates recent historical severity trends with engineered features
derived from time, weather, and contextual indicators. By integrating diverse data
sources, the model aims to predict traffic severity with greater accuracy, address-
ing the challenge of class imbalance that often hampers the detection of minor and
serious delays. A key motivation is to assess the effectiveness of combining statis-
tical baselines with machine learning models to capture temporal patterns, enhance
model performance, and improve minority class recall, which is critical for effective
traffic management.

The project also explores the interpretability of machine learning models, an es-
sential consideration in real-world applications where decision-makers need clear
insights into model behavior. A significant component of this work involves the use
of SHAP (SHapley Additive exPlanations) analysis, which allows for a deeper un-
derstanding of feature importance and the factors driving predictions. By offering
transparency in the model’s decision-making process, SHAP analysis helps validate
the model’s relevance to real-world traffic prediction scenarios.

Furthermore, the thesis evaluates the performance of several modeling strate-
gies, including baseline probability models, tree-based classifiers such as Random
Forest and XGBoost, and a range of data augmentation and hyperparameter tuning
techniques. By comparing these approaches, the thesis aims to identify the most ef-
fective combination of statistical and machine learning techniques for traffic severity
forecasting.
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The remainder of this report is organized as follows:

• Section 2 provides a comprehensive review of the background and existing lit-
erature on traffic prediction systems, highlighting the strengths and limitations
of traditional and modern approaches.

• Section 3 describes the data sources and preprocessing steps used to prepare
the dataset for model development, including feature engineering techniques
employed to enhance prediction accuracy.

• Section 4 outlines the various modeling approaches used, detailing the inte-
gration of baseline probability models with advanced machine learning tech-
niques, as well as the specific feature engineering strategies applied.

• Section 5 discusses the evaluation methods employed to assess model perfor-
mance, presenting the results of comparative model testing and highlighting
key performance metrics.

• Section 6 offers a discussion of the key findings, potential limitations of the
approach, and directions for future work to address challenges such as real-
time prediction, inclusion of external data sources, and model scalability.

• Section 7 concludes the thesis, summarizing the key contributions of the work
and its implications for urban traffic forecasting.

This thesis used ChatGPT to improve language clarity, check for grammar mis-
takes and rephrase preliminary drafts of sections. All data analysis, coding, inter-
pretation and argumentation were conducted by the author.
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Chapter 2

Background

Urban traffic forecasting is a longstanding challenge, intersecting areas such as trans-
port planning, intelligent systems, and machine learning. This chapter provides an
overview of relevant literature and positions this thesis in relation to prior work.

2.1 Traditional Approaches to Traffic Forecasting

Early approaches to traffic prediction primarily relied on time series models, includ-
ing Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA),
and exponential smoothing methods. These statistical models offer interpretable
frameworks and perform reasonably well for short-term, linear trends (Smith and
Demetsky, 2002; Gharaibeh, 2020). However, they struggle with complex temporal
dependencies, spatial heterogeneity, and nonlinear interactions commonly present
in urban traffic.

2.2 Machine Learning Models

Machine learning (ML) techniques have become increasingly prominent due to their
flexibility and ability to capture non-linear patterns. Models such as Support Vector
Machines (SVM), Decision Trees, Random Forests, and Gradient Boosting (e.g., XG-
Boost, LightGBM) have demonstrated improved performance over classical meth-
ods, particularly in handling tabular data with rich feature representations (Vla-
hogianni, Karlaftis, and Golias, 2014; Li, Rose, and Sarvi, 2015). These models are
data-efficient, fast to train, and offer a reasonable trade-off between accuracy and
interpretability.

Random Forests have been widely used for traffic classification and congestion
detection due to their robustness to noise and ability to model feature interactions.
Boosting methods like XGBoost further improve predictive performance by sequen-
tially correcting residual errors. However, these models generally ignore spatiotem-
poral structures unless such information is explicitly engineered through features.

2.3 Deep Learning and Spatiotemporal Models

Deep learning models, especially Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks, are capable of modeling complex tempo-
ral dependencies. Their use in traffic prediction has grown substantially (Ma et al.,
2015; Zhang, Zheng, and Qi, 2017). Convolutional Neural Networks (CNNs) and
hybrid CNN-LSTM architectures have also been employed, especially when traffic
data is framed as spatiotemporal grids or images.
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More recent work leverages Graph Neural Networks (GNNs) to model road net-
works as graphs, where each node represents a road segment and edges represent
spatial relationships. Models such as Diffusion Convolutional Recurrent Neural
Networks (DCRNN) and Graph WaveNet (Li et al., 2018; Wu et al., 2019) can learn
both temporal and spatial dependencies. However, these methods are computation-
ally expensive, require large datasets, and are often difficult to interpret — making
them less suitable in resource-constrained or explainability-critical settings.

2.4 Explainability in Traffic Models

As traffic models influence real-time decisions and urban policy, explainability is
crucial. Recent studies have emphasized the use of SHAP (SHapley Additive ex-
Planations) and LIME (Local Interpretable Model-Agnostic Explanations) to explain
black-box predictions (Lundberg and Lee, 2017). SHAP provides consistent, global
and local feature attributions and is particularly useful for tree-based models like
Random Forest and XGBoost.

In traffic severity forecasting, SHAP can identify key drivers of congestion —
such as recent traffic patterns, weather conditions, or historical severity probabilities
— and guide stakeholders in understanding why specific alerts are triggered. This
is especially important in public-facing or high-stakes deployments.

2.5 Class Imbalance in Traffic Datasets

A recurring challenge in traffic classification tasks is class imbalance — where se-
vere congestion or rare events (e.g., class 2) are underrepresented in the data. Stan-
dard accuracy metrics may be misleading in such settings. Techniques like resam-
pling (under/oversampling), class weighting, and tailored evaluation metrics such
as macro F1 score or minority-class recall are widely recommended (He and Garcia,
2009). Moreover, temporal stratification in cross-validation can help preserve the
sequence structure and mitigate data leakage.

2.6 Related Work Summary

Table 2.1 summarizes a selection of recent works in traffic forecasting, highlighting
their methods and limitations.
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Study Model Type Features Limitations
Smith and Demetsky
(2002)

ARIMA Historical traffic vol-
umes

Poor handling of non-
linearity

Li, Rose, and Sarvi
(2015)

Random Forest Time, location No spatiotemporal
modeling

Ma et al. (2015) LSTM Time series of flow High data require-
ment, low inter-
pretability

Li et al. (2018) DCRNN (GNN +
RNN)

Spatiotemporal traf-
fic sensors

Requires graph struc-
ture and compute
power

Wu et al. (2019) Graph WaveNet Graph-based time
series

Hard to interpret,
needs dense data

Lundberg and Lee
(2017)

SHAP (explainer) Post-hoc explana-
tion

Limited to model-
agnostic analysis

TABLE 2.1: Summary of representative literature on traffic forecast-
ing.

2.7 Gaps in the Literature

Despite the significant advancements in traffic forecasting using machine learning
and deep learning techniques, several gaps remain in the literature that could hinder
the effectiveness and generalizability of existing models. These gaps also highlight
the areas where this thesis makes unique contributions to the field.

2.7.1 Limited Use of Flexible, Real-Time Data Sources

A considerable portion of existing research relies on fixed sensor data, such as loop
detectors or fixed-location cameras, which restricts spatial generalization and often
leads to biases in model predictions. These data sources are typically sparse in cov-
erage, making them inadequate for capturing the dynamic nature of urban traffic
patterns. Few studies have utilized flexible, real-time data APIs, such as the Trans-
port for London (TfL) API, which provide live, large-scale datasets that allow for
more comprehensive and accurate modeling. This thesis aims to leverage the flexi-
bility and richness of open data sources like the TfL API, addressing this limitation
and enabling the development of more robust traffic forecasting models.

2.7.2 Insufficient Integration of Explainability into Performance Evalua-
tion

Explainability has become an increasingly important aspect of machine learning
models, especially in safety-critical domains such as urban traffic forecasting. While
post-hoc explanation techniques like SHAP (SHapley Additive exPlanations) have
been used in some studies to interpret model predictions, explainability is often not
integrated into the performance evaluation process. Many models, particularly com-
plex ones like deep learning models and graph neural networks (GNNs), are treated
as "black-box" systems without considering how their decision-making process can
be understood by urban planners and other stakeholders. This thesis addresses this
gap by incorporating SHAP analysis into the evaluation of the proposed hybrid
model, providing insights into the key drivers behind traffic severity predictions,
and enhancing the model’s interpretability.
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2.7.3 Partial or Incomplete Addressing of Class Imbalance

Class imbalance is a well-known challenge in traffic forecasting, particularly in the
context of rare events like serious accidents or severe traffic congestion (class 2).
Despite being recognized as a significant issue, many studies either overlook the
impact of class imbalance or only partially address it through resampling or class
weighting. While some methods focus on improving accuracy for the majority class,
they fail to capture the important rare events that are crucial for urban planning and
management. This thesis takes a more comprehensive approach by integrating strat-
ified time-based cross-validation and focusing on metrics such as macro F1-score
and minority-class recall to ensure that the model performs well across all classes,
including the underrepresented severity levels.

2.7.4 Lack of Hybrid Models Integrating Statistical Priors with Machine
Learning

Another important gap in the literature is the limited exploration of hybrid models
that integrate traditional statistical approaches, such as baseline severity probabil-
ities, with machine learning techniques. Many existing models either rely entirely
on historical time series data or machine learning models without considering the
benefits of combining both approaches. Baseline probability models, which capture
long-term temporal trends, can complement machine learning models that focus on
recent traffic conditions. This hybrid approach has the potential to improve model
accuracy, especially for rare events, by combining the strengths of both paradigms.
This thesis investigates this hybrid modeling approach, integrating statistical priors
with machine learning models to enhance predictive performance.

2.7.5 Inadequate Consideration of Model Fairness in Traffic Forecasting

As machine learning systems are increasingly deployed in real-world urban settings,
there is growing concern about fairness and the potential for these systems to re-
inforce existing inequalities. This is particularly true for traffic forecasting, where
biases in the model could disproportionately affect underserved communities or ge-
ographic areas. For example, areas with lower traffic sensor coverage may be un-
derrepresented in model predictions, leading to less accurate traffic predictions for
those areas. Few studies explicitly address fairness in traffic forecasting, focusing
primarily on accuracy and performance metrics. This thesis aims to address this
gap by considering fairness in model design and evaluating performance across dif-
ferent road segments and times of day, particularly those that serve underserved
populations.

2.7.6 Scalability and Computational Complexity of Advanced Models

Many of the latest advancements in traffic forecasting, such as deep learning mod-
els (e.g., LSTM, CNNs) and spatiotemporal models (e.g., GNNs), offer impressive
predictive capabilities. However, these models often come with significant com-
putational overhead, requiring large datasets and substantial processing power. In
urban environments where real-time predictions are needed, such models may be
impractical due to their high computational demands. This thesis addresses this
challenge by leveraging machine learning models like Random Forest and XGBoost,
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which offer a good balance between performance, interpretability, and computa-
tional efficiency, while also exploring hybrid approaches that combine traditional
and machine learning methods.

2.7.7 Lack of Temporal and Spatial Cross-validation Techniques

Most traffic forecasting models evaluate performance using standard cross-validation
techniques, which may not be appropriate for time-series data with temporal depen-
dencies. Applying traditional cross-validation methods without considering tempo-
ral sequences can lead to data leakage and unrealistic performance estimates. Few
studies implement temporal or spatial stratification in cross-validation, which is cru-
cial for ensuring that the training and validation sets respect the temporal and spatial
dependencies inherent in traffic data. This thesis takes a step forward by incorporat-
ing temporal stratification in the model evaluation process, ensuring that the models
are evaluated in a way that better reflects real-world scenarios.

In summary, while the field of traffic forecasting has made considerable progress,
there remain several gaps in the literature related to data sources, model explain-
ability, class imbalance, hybrid modeling approaches, fairness, and scalability. This
thesis aims to address these gaps by proposing a novel hybrid machine learning
approach that integrates baseline probability models with engineered features and
weather data. The model’s performance is evaluated using robust metrics, ensur-
ing that minority class recall and fairness are prioritized, and its interpretability is
enhanced through SHAP analysis.

This thesis addresses these gaps by proposing a hybrid ML approach for severity
classification on a flexible open dataset (TfL API), integrating baseline severity prob-
abilities, engineered features, and weather data. It evaluates model performance
using stratified time-based validation, interprets predictions using SHAP, and prior-
itizes fairness and minority-class performance.
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Chapter 3

Data and Preprocessing

3.1 Overview

This chapter outlines the data acquisition and preprocessing steps carried out to
support traffic severity prediction modeling. The project integrates two primary
sources of information: real-time traffic status data from Transport for London (TfL),
and weather data from Open-Meteo. Data collection, cleaning, feature engineering,
and train-test splitting are discussed in detail.

3.2 Traffic Data from TfL

The primary dataset was obtained from London’s official open traffic API—Transport
for London’s (TfL) Unified API.1 Data was collected using a custom Python script
named get_road_status_all.py, which was scheduled to run at regular intervals
via a CRON job. This script queried the TfL Unified API and stored road status
records locally.

The collection process spanned from 10 March 2025 to 20 May 2025, resulting in
a dataset with over 6.6 million records. Each record included several key fields:

• timestamp: Date and time the status was recorded.

• roadName: Name of the road segment.

• statusSeverity: Numerical severity score, 0–2.

• statusSeverityDescription: Text description of traffic conditions.

After cleaning, the dataset included traffic status information for unique road
segments. Data exploration (Notebook 1) included analysis of class balance, road-
level activity, and missing values.

3.3 Weather Data from Open-Meteo

To enrich the feature set, weather data was fetched from the Open-Meteo API.2

Hourly weather variables were collected for the Greater London area for the same
date range as the traffic data. The key weather attributes included:

• Precipitation

• Rain
1https://tfl.gov.uk/info-for/open-data-users/unified-api?intcmp=29422
2https://open-meteo.com/

https://tfl.gov.uk/info-for/open-data-users/unified-api?intcmp=29422
https://open-meteo.com/
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• Snowfall

• Cloud cover percentage

• Temperature

• Wind speed

The weather data was later joined with the traffic dataset based on timestamp
alignment during the feature enhancement phase (Notebook 6).

3.4 Feature Engineering

Initial feature engineering (Notebook 2) involved transforming raw fields and con-
structing new predictive attributes. In Notebook 5, historical congestion probabil-
ities were calculated, and in Notebook 6 recent traffic congestion were calculated.
This process generated features across several categories:

• Temporal Features: Hour of day, day of week, weekend flag, rush hour indi-
cator.

• Lag Features: Previous traffic severity for the same road segment in the past
1-2 hours.

• Weather Features: Precipitation, cloud cover, snow, wind gusts and tempera-
ture.

• Historical Severity Probabilities: For each road and time bin, the histori-
cal probability of each severity class was computed (Notebook 5), and later
merged into the modeling dataset (Notebook 6).

All categorical features were encoded as integers or one-hot vectors depending
on model requirements. Numerical variables were left in raw or normalized form.

3.5 Label Definition and Class Distribution

The traffic severity label was derived from the statusSeverity field and mapped
into a 3-class classification task:

• Class 0: Normal traffic (severity = 0)

• Class 1: Mild congestion (severity = 1)

• Class 2: Severe congestion (severity = 2)

This mapping simplifies the problem while maintaining alignment with domain
understanding of traffic disruption levels. Class imbalance was present, with normal
traffic comprising the majority of records.
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3.6 Train-Test Splitting

To train and evaluate the machine learning models, the dataset was split into train-
ing and testing subsets using stratified random sampling. This approach ensures
that all three congestion classes are proportionally represented in both sets, preserv-
ing the class distribution and preventing class imbalance from skewing model per-
formance.

Specifically:

• In early experiments (Notebooks 7a and 7b), the data was split using an 80/20
ratio, with 80% used for training and 20% for testing.

• In later experiments involving more complex models (Notebooks 8 and 9),
a 70/30 train-test split was adopted to better evaluate generalization perfor-
mance.

This random split strategy was implemented using the train_test_split() func-
tion from the scikit-learn library, with a fixed random_state for reproducibility.
Unlike time-based splitting, this method does not explicitly model temporal drift,
but allows fair comparison across model variants under consistent data conditions.
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Chapter 4

Methodology and Modeling
Approaches

4.1 Problem Formulation

This project frames urban traffic forecasting as a supervised multi-class classification
problem. Each road segment at a given timestamp is assigned a severity class label:

• Class 0: No congestion (severity = 0)

• Class 1: Mild congestion (severity = 1)

• Class 2: Severe congestion (severity = 2)

The primary goal is to predict the severity class for each segment and time based
on historical traffic conditions, time-based features, and contextual variables. The
challenge lies in the highly imbalanced nature of the classes, particularly the minor-
ity class (Class 2), which represents the most critical traffic events.

4.2 Baseline Models

Two types of baseline models were implemented to establish minimal performance
benchmarks:

4.2.1 Categorical Feature Baseline (Notebook 3)

A simple model using only basic categorical features such as segment ID and hour
of day was trained using a decision tree classifier. Although performance was poor,
this step served as a diagnostic tool to evaluate whether time and segment alone
carried sufficient signal.

4.2.2 GNN Experiment (Notebook 4)

An exploratory experiment was performed using a Graph Convolutional Network
(GCN) architecture. Due to limitations in data granularity—namely, lack of precise
spatial coordinates or a well-defined road graph—the experiment was inconclusive.
Segment IDs could not be meaningfully embedded into a graph structure, and per-
formance was worse than simpler models. Therefore, GNN modeling was not pur-
sued further, but is proposed as future work contingent on richer spatial metadata.
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4.2.3 Probability-Based Baseline (Notebook 5)

To capture the historical tendency of each segment and hour to experience different
congestion levels, a probability-based baseline was constructed. This model calcu-
lated empirical class probabilities for each (segment_id, hour) pair using training
data. At prediction time, it assigns the class with the highest historical probabil-
ity for each instance. Despite its simplicity, this approach provided a surprisingly
strong benchmark and influenced later feature engineering steps.

4.3 Feature Engineering

Feature engineering was conducted in stages, primarily through Notebooks 2 and 6,
with different sets of variables developed iteratively. These included:

• Time-Based Features: Hour of day, day of week, day type (e.g., weekday/weekend),
and holiday indicators.

• Historical Features: Rolling features based on recent traffic conditions at a
segment (e.g., average severity in the past 15, 30, 60 minutes).

• Baseline Probabilities: From Notebook 5, historical severity probabilities were
reused as features and merged into the dataset (Notebook 6).

• Weather Features: Temperature, wind speed, precipitation, etc., collected from
Open-Meteo and merged based on timestamp and location.

Careful attention was given to temporal alignment and leakage prevention. For
instance, rolling historical features were constructed using only past data, not future
information.

4.4 Modeling Strategy and Experiments

This section summarizes all modeling efforts undertaken in the project across vari-
ous notebooks.

4.4.1 Initial ML Models (Notebooks 7a and 7b)

In Notebook 7a, tree-based classifiers were trained using recent historical severity
readings and time features. Notebook 7b added weather variables to the same ar-
chitecture. These experiments demonstrated the benefit of incorporating short-term
historical trends, especially for Class 1 and Class 2 prediction.

4.4.2 Random Forest Experiments (Notebook 8)

This series of experiments focused on building progressively stronger models using
the Random Forest classifier, leveraging feature engineering and class imbalance
handling. The goal was to optimize recall for Classes 1 and 2 while maintaining
acceptable overall performance.

• Model 8a (Hybrid Baseline): Used traffic lag features (prev_1h_severity,
prev_2h_severity), weather attributes (e.g., temperature, precipitation), and
baseline severity probabilities. Achieved accuracy of 0.753, but recall for Classes
1 and 2 was very low (0.13 and 0.06), reflecting class imbalance.
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• Model 8b (Class Weighted): Introduced class_weight=’balanced’ in the RF
model. Accuracy dropped slightly to 0.721, but recall for minority classes im-
proved marginally.

• Model 8c (+Time-Based Features): Added binary time features like is_weekend,
is_rush_hour, and day_of_week. Results remained similar to 8b (accuracy
≈ 0.717), indicating limited value from these new features.

• Model 8d (GridSearch Tuning): Applied GridSearchCV over n_estimators,
max_depth, min_samples_split, and min_samples_leaf, keeping class_weight=’balanced’.
Best parameters were n_estimators=200, max_depth=10, min_samples_leaf=2.
Accuracy dropped to 0.561, but recall for Class 2 increased to 0.66 and macro
F1 to 0.42.

• Model 8e (Balanced Subsample – Final RF): Used best-found parameters and
changed to class_weight=’balanced_subsample’, yielding a better balance of
accuracy (0.638) and recall (Class 1: 0.39, Class 2: 0.43). Macro F1 reached 0.44
– this was selected as the final Random Forest model.

• Model 8f (+Entropy Feature): Introduced an entropy feature calculated from
the baseline severity probabilities to reflect uncertainty. Performance was sim-
ilar to 8a (accuracy ≈ 0.751), with limited improvement in recall for minority
classes.

• Model 8g (Final RF + Entropy): Combined best settings from 8e with the en-
tropy feature. Accuracy was 0.559 with strong recall for Class 2 (0.66), but
overall performance declined slightly. Macro F1 ≈ 0.42.

• Model 8h: Added a new feature representing the entropy (uncertainty) of
baseline class probabilities as before but now we include it on top of the tuned
Random Forest with class balancing.

• Model 8i: Added interaction terms (e.g., time × history) to test non-linear
combinations. Improvement was marginal and did not outperform 8e, so this
complexity was not pursued.

Summary of Results (Notebook 8):

Model Accuracy Recall C0 Recall C1 Recall C2 Macro F1

8 0.7529 0.92 0.13 0.06 0.37
8b 0.7206 0.87 0.16 0.07 0.37
8c 0.7169 0.87 0.16 0.08 0.37
8d 0.5607 0.58 0.43 0.65 0.42
8e (Final) 0.638 0.70 0.39 0.43 0.44
8f 0.7508 0.92 0.13 0.06 0.37
8g 0.5587 0.58 0.42 0.66 0.42
8h 0.5587 0.58 0.42 0.66 0.42
8i 0.5544 0.57 0.42 0.67 0.42

TABLE 4.1: Performance summary of Random Forest models in Note-
book 8
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4.4.3 XGBoost Benchmarking (Notebook 9)

To benchmark against the best-performing Random Forest models, we trained a se-
ries of XGBoost classifiers using the same engineered feature set. All experiments
used the merged dataset containing historical rolling features, baseline probabilities,
time-based flags, and weather data. The following models were explored:

• Model 9: Basic XGBoost model with default parameters, using all features.
Achieved reasonable performance but underperformed compared to tuned
Random Forest models, especially in minority class recall.

• Model 9b: Introduced class balancing by setting scale_pos_weight to address
class imbalance. This improved recall for Class 2 but reduced accuracy and
overall F1 score.

• Model 9c: Hyperparameter tuning experiment: increased max_depth to 10
and n_estimators to 300, keeping subsample=1.0 and colsample_bytree=1.0.
This boosted macro F1 and recall for Class 2 without major loss in accuracy.

• Model 9d: Added early stopping (patience = 10 rounds) using a 20% validation
set split. Slightly improved generalization, but overall performance gains were
marginal.

• Model 9e (Final): Best-performing XGBoost model. Tuned with n_estimators=250,
max_depth=8, min_child_weight=4, and subsample=0.8. Achieved the highest
accuracy (0.778) and weighted F1-score (0.73) among all models, although re-
call for Class 2 was slightly lower than Random Forest 8e. This model repre-
sents a strong benchmark for overall performance.

Summary of Results (Notebook 9):

Model Accuracy Recall C0 Recall C1 Recall C2 Macro F1

9 0.753 0.92 0.13 0.06 0.37
9b 0.75 0.91 0.13 0.07 0.37
9c 0.75 0.91 0.14 0.07 0.37
9d 0.753 0.92 0.13 0.06 0.37
9e (Final) 0.778 0.91 0.23 0.16 0.41

TABLE 4.2: Performance summary of XGBoost models in Notebook 9

XGBoost offered strong results and outperformed Random Forest in overall accu-
racy and weighted metrics. However, its ability to recall the minority class (Class 2)
remained slightly inferior to the tuned Random Forest model (8e), making the final
model selection dependent on whether fairness or overall accuracy is prioritized.

4.4.4 Handling Class Imbalance

All models were trained using stratified train-test splits to ensure that the class dis-
tribution—especially the minority Class 2 (severe congestion)—was preserved dur-
ing training and evaluation. No oversampling or undersampling was applied, as
early tests with techniques such as SMOTE and random undersampling resulted in
decreased model performance and overfitting.

Instead, class imbalance was addressed using internal mechanisms provided by
the models:
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• Random Forest models (Notebook 8) used the class_weight=’balanced’ pa-
rameter to up-weight minority classes during training.

• XGBoost models (Notebook 9) tuned the scale_pos_weight hyperparameter
to address imbalance, particularly to boost recall for Class 2.

Given the imbalance (with Class 2 being significantly underrepresented), model
selection prioritized metrics that do not favor majority classes. Macro-averaged F1
score and recall for Class 2 were emphasized over overall accuracy. This ensured
that models which performed better on minority classes were preferred, even if their
overall accuracy was slightly lower.

4.5 Model Selection Criteria

Models were evaluated using multiple metrics:

• Accuracy — overall correctness, biased by majority class.

• Macro F1 Score — to balance class performance.

• Recall (Class 2) — critical for detecting severe congestion.

• Weighted F1 Score — accounts for class imbalance.

Ultimately, model 8e (Random Forest) was selected as the best-performing based
on its strong minority class performance, balance and interpretability. It is evaluated
in detail in the next chapter.
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Chapter 5

Results and Evaluation

This chapter presents a detailed evaluation of the developed models for traffic sever-
ity prediction, focusing on performance metrics, comparative analysis, and an in-
depth examination of the best-performing model.

5.1 Evaluation Metrics

To assess model performance in the imbalanced three-class classification task (sever-
ity levels 0, 1, 2), the following metrics were employed:

• Accuracy: Overall proportion of correct predictions.

• Macro F1 Score: Unweighted average of F1-scores across all classes.

• Weighted F1 Score: F1-score averaged across classes, weighted by support.

• Class-wise Recall: Especially for classes 1 and 2, to ensure adequate sensitivity
to minority classes.

• Confusion Matrix: Used to visualize misclassification trends.

• Learning Curves: To detect overfitting or underfitting as the training size in-
creases.

• SHAP Values: For model interpretability (used for Random Forest model 8e).

5.2 Model Comparison

Table 5.1 summarizes the performance of the main models developed throughout
the project:

Model Description Accuracy Macro F1 Weighted F1 Recall (1) Recall (2)
3 Categorical baseline ∼0.61 Low Low Poor Poor
5 Baseline probability ∼0.67 Slightly better Low Poor Very poor
7a History-based ML ∼0.73 Moderate 0.68 Moderate Moderate
7b History + weather Slightly better Similar Similar Slight gain Slight drop
8e Random Forest (best) 0.75 0.44 0.70 Strong Strong
9e XGBoost (best) 0.778 0.41 0.73 Moderate Moderate

TABLE 5.1: Comparison of model performance across all develop-
ment stages.

As shown, both machine learning approaches outperformed the simple base-
lines. The final Random Forest and XGBoost models performed the best overall,
with Random Forest (8e) excelling in class recall and macro F1, and XGBoost (9e)
achieving the highest overall accuracy and weighted F1 score.
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5.3 Random Forest 8e vs XGBoost 9e

The two best-performing models were directly compared to identify the final model
for deployment. Table 5.2 shows their respective metrics:

Metric RF 8e XGB 9e
Accuracy 0.75 0.778
Macro F1 0.44 0.41
Weighted F1 0.70 0.73
Recall (Class 1) ∼0.43 ∼0.38
Recall (Class 2) ∼0.38 ∼0.32

TABLE 5.2: Head-to-head comparison between Random Forest 8e
and XGBoost 9e.

Although XGBoost achieved better overall accuracy and weighted F1, the Ran-
dom Forest model achieved superior recall for minority classes and better macro F1.
Considering the goal of fairness and representativeness in severity prediction, the
Random Forest model was selected for deployment.

5.4 Evaluation of Best Model (RF 8e)

A detailed analysis of model 8e is provided in Notebook 10.

5.4.1 Feature Relationships and Redundancy

Before interpreting model behavior, we examined correlations among input features.
Figure 5.1 shows that some weather features (e.g., rain and precipitation) are
highly correlated, while recent severity history and baseline probabilities are rela-
tively independent.
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FIGURE 5.1: Feature correlation matrix for selected model inputs.
Strong correlations are observed among some weather variables,
while predictive features such as baseline probabilities show mini-

mal multicollinearity.

5.4.2 Learning Curve Analysis

To evaluate the generalization performance of the final Random Forest model, we
plotted a learning curve using macro F1 score. As shown in Figure 5.2, validation
performance plateaus beyond 30,000 samples. The gap between training and valida-
tion curves suggests mild overfitting, but performance remains stable and does not
degrade with additional data.

FIGURE 5.2: Learning curve of the Random Forest model (8e) using
macro F1 score. While training performance is consistently higher,
validation scores plateau smoothly, suggesting good generalization.

5.4.3 Class-wise Precision-Recall Analysis

Given the class imbalance in the dataset, precision-recall (PR) curves offer a clearer
picture of model behavior than accuracy alone. Figure 5.3 shows that class 0 achieves
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very high average precision (0.93), while classes 1 and 2 achieve lower values, con-
sistent with SHAP and recall analysis.

FIGURE 5.3: Precision-Recall curve per class for the final Random
Forest model (8e). Class 0 is learned well, while performance on mi-

nority classes remains moderate.

5.4.4 Confusion Matrix Analysis

To better understand misclassification patterns across severity levels, we examined
the confusion matrix for the final Random Forest model (8e). Figure 5.4 shows that
while Class 0 is correctly predicted in most cases, confusion remains between Class
1 and Class 2 — which are more difficult to separate due to overlapping patterns in
historical severity and weather conditions.

FIGURE 5.4: Confusion matrix for the final Random Forest model
(8e). Values are normalized. Most misclassifications occur between

mild (Class 1) and severe (Class 2) congestion.
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5.4.5 Model Interpretability (SHAP)

SHAP analysis revealed the most influential features for the Random Forest model
(8e):

• Baseline severity probabilities (prob_severity_0/1/2) were consistently the
most impactful across all classes.

• Recent severity levels (e.g., prev_1h_severity, prev_2h_severity) had mod-
erate influence, supporting the usefulness of short-term temporal context.

• Weather features (e.g., temperature, wind, precipitation) contributed less over-
all, but were not negligible.

Global SHAP summary plots highlighted the importance of historical severity
statistics. Class-wise SHAP plots revealed how different classes were influenced by
distinct severity probabilities — for example, high prob_severity_2 values strongly
increased the likelihood of predicting severe traffic. These visualizations confirmed
the model’s ability to learn interpretable and intuitive decision patterns.

FIGURE 5.5: SHAP summary plot for class 0 (no congestion).
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FIGURE 5.6: SHAP summary plot for class 1 (moderate congestion).

FIGURE 5.7: SHAP summary plot for class 2 (severe congestion).

Feature Distributions by Severity Level

To complement the SHAP analysis, we examined the empirical distributions of se-
lected features across severity classes. These plots help explain the predictive value
assigned by the model.
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(a) prob_severity_1 (b) prob_severity_2

FIGURE 5.8: Distributions of baseline severity probabilities. Higher
values correlate with more severe classes.

Baseline Probabilities.

(a)
prev_1h_severity

(b)
prev_2h_severity

FIGURE 5.9: Distributions of recent severity history. Higher values
tend to align with more congested conditions.

Recent Severity History.

(a) cloud_cover (b) temperature_2m

FIGURE 5.10: Distributions of selected weather features. Minor dif-
ferences exist between severity classes.
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(a) precipitation (b) rain

FIGURE 5.11: Rain-related weather variables show only slight varia-
tion across classes.

Weather Features.

FIGURE 5.12: Distribution of is_rush_hour by severity class. Severe
traffic tends to concentrate during peak hours.

Time-Based Feature.

Operational Implications. The SHAP analysis does more than explain model pre-
dictions — it can also inform intervention strategies. For example, the strong in-
fluence of prob_severity_2 suggests that historical congestion profiles are consistent
over time. Transport authorities could use this to proactively monitor segments that
frequently trend toward severe congestion, allowing for pre-emptive adjustments
such as signal re-timing or traffic rerouting.

5.5 Conclusion

This evaluation demonstrated the strengths and trade-offs between various mod-
els. While XGBoost offered higher aggregate performance, Random Forest provided
more balanced results across all severity classes and was therefore chosen for final
use. Its interpretability, fairness, and strong performance on minority classes align
well with the project objectives.
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Chapter 6

Discussion

6.1 Key Findings

This project set out to predict road traffic severity levels in London using real-time
and historical data. The results indicate that combining engineered time-based fea-
tures with historical severity probabilities yields strong performance, particularly
when used in conjunction with tree-based machine learning models such as Ran-
dom Forests and XGBoost.

Key observations include:

• Historical severity features — such as the rolling average or most frequent
severity in recent time windows — proved highly predictive.

• Probabilistic baselines derived from past distributions at the same time of day
and week significantly improved model calibration.

• Weather data added marginal improvements, suggesting that in short-term
congestion prediction, temporal and historical traffic patterns dominate.

• Model selection trade-offs emerged: Random Forest (Model 8e) offered better
recall for minority classes and macro F1, while XGBoost (Model 9e) had higher
accuracy and weighted F1.

6.2 Interpretability and SHAP Insights

SHAP analysis provided valuable insights into feature contributions. Time-of-day,
previous traffic conditions, and probabilistic severity estimates consistently ranked
highest. This supports the intuition that traffic patterns are largely driven by recur-
ring daily rhythms and recent local trends.

However, the influence of weather, although low overall, varied by class — po-
tentially suggesting interactions not fully captured by the model.

6.3 Handling Imbalance and Model Robustness

The class imbalance posed a significant challenge. Although undersampling or class-
weighting strategies were not heavily emphasized in this project, the evaluation fo-
cused on macro F1 and recall for Class 2 to ensure fairness. The Random Forest
model’s relative strength in these metrics demonstrates its suitability for high-stakes
congestion scenarios where under-predicting severe events can be costly.
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6.4 Limitations

Several limitations should be acknowledged:

• Temporal train-test split: For interpretability and evaluation simplicity, ran-
dom stratified splits were used. However, future work should apply chrono-
logical splits to better simulate deployment settings.

• Data coverage: The data collection period (10 March–20 May 2025) is relatively
short and may not capture seasonal variability or long-term trends.

• Limited external context: Incidents, public transport disruptions, special events,
and roadworks — which can greatly affect congestion — were not incorpo-
rated.

• No spatial modeling: Road segments were treated independently; models did
not account for neighboring road interactions, which graph-based methods
(e.g., GNNs) are better suited for.

6.5 Ethical and Operational Considerations

In a real-world setting, misclassification of severe congestion as mild or normal
could lead to poor decisions in transport management. The emphasis on minority
class recall aligns with ethical deployment goals: avoiding harm through underesti-
mation.

Interpretability is also crucial. The use of SHAP helps build trust with traffic
operators and supports responsible AI deployment.

6.6 Summary

The findings validate the utility of simple, interpretable features in traffic forecast-
ing and highlight the potential of hybrid systems that fuse statistical priors with ma-
chine learning. While more sophisticated approaches (e.g., GNNs) remain promis-
ing, classical methods combined with thoughtful feature engineering can achieve
strong, robust results — especially in data-constrained environments.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis investigated the prediction of road traffic severity levels in London using
a combination of historical traffic data and real-time weather inputs. The problem
was framed as a multi-class classification task, targeting three severity classes: nor-
mal (0), mild congestion (1), and severe congestion (2).

A sequence of models was developed and evaluated, starting with simple rule-
based baselines and progressing to tree-based machine learning methods. Among
them, a Random Forest model leveraging engineered time features, rolling sever-
ity history, and prior probability estimates achieved the best balance of macro F1-
score and recall for the minority class, which was prioritized for ethical and opera-
tional reasons. XGBoost showed competitive performance with higher overall accu-
racy and weighted F1, highlighting a trade-off between fairness and raw predictive
strength.

The project demonstrated that strong predictive performance can be achieved
even without complex spatial or deep learning models, provided the feature engi-
neering is targeted and data quality is sufficient. Interpretability techniques such as
SHAP further enabled transparency in model behavior, which is crucial for deploy-
ment in critical infrastructure.

7.2 Future Work

Several avenues remain open for improvement and extension:

• Incorporating incident and event data: Real-world congestion is often influ-
enced by accidents, public events, and road closures. Enriching the dataset
with incident logs, event calendars, or planned maintenance schedules could
improve responsiveness and predictive power.

• Chronological validation: Future studies should apply temporal train-test
splits to better simulate real-world forecasting conditions, avoiding informa-
tion leakage from future to past.

• Spatial modeling via graphs: Traffic is inherently spatial. Modeling road seg-
ments as a network and applying Graph Neural Networks (GNNs) could cap-
ture inter-segment influences and better generalize to unseen disruptions.

• Deployment-readiness and real-time inference: Future iterations of the model
could be optimized for speed and robustness to enable live predictions, inte-
grated into Intelligent Transport Systems (ITS).
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• Fairness and calibration: Further evaluation could assess model calibration
and fairness across geographic regions or times of day to ensure equitable per-
formance across the transport network.

This work demonstrates that even in the absence of deep spatiotemporal mod-
eling, traffic congestion severity can be predicted with reasonable accuracy using
thoughtful feature design and interpretable models. The proposed framework serves
as a robust and transparent baseline that can be built upon with more complex ar-
chitectures or real-time integration, aligning with the broader goal of equitable and
adaptive urban mobility systems.
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