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A B S T R A C T

Huntington’s disease (HD) is characterized by progressive neurodegeneration, often accompanied by disrupted 
iron regulation and altered white matter (WM) integrity. This study investigates iron content and microstructural 
changes in the anterior thalamic radiations (ATR) across different HD stages. Thirty-one gene carriers and 
twenty-four controls underwent neuropsychological assessment and 3 T-MRI scanning, including relaxometry 
and diffusion tensor imaging (DTI) sequences to assess iron content and WM microstructure. ATR changes were 
examined using average and along-the-tract analyses, with ANOVA and post-hoc Tukey tests to identify group 
differences and Spearman correlations to evaluate clinical associations. Machine-learning models were applied to 
assess the potential of MRI metrics as diagnostic biomarkers for HD, focusing on disease stage differentiation and 
presymptomatic detection. Premanifest individuals exhibited increased iron content and enhanced WM integrity 
bilaterally, while manifest patients maintained elevated left ATR iron levels alongside bilateral WM degenera
tion. Both ATRs contribute to the clinical manifestations of HD, including cognitive impairment and neuropsy
chiatric disturbances. Both along-the-tract relaxometry and DTI metrics emerged as promising biomarkers for 
distinguishing HD subgroups and identifying presymptomatic individuals. These findings highlight the interplay 
between iron dysregulation and WM disruption in HD, offering potential pathways for early diagnosis and tar
geted therapeutic strategies.

1. Introduction

The anterior thalamic radiations (ATRs) are critical structural path
ways within the cortico-basal ganglio-thalamo-cortical loops (Cho et al., 
2015; Kakou et al., 2017; Wakana et al., 2003), connecting the anterior 
and mediodorsal thalamic nuclei to frontal lobes, and their physiological 
role is primarily linked to cognition and emotion control (Fama and 
Sullivan, 2015; Jankowski et al., 2013; Mitchell, 2015; Pergola et al., 
2018).

In Huntington’s disease (HD), the primary neuropathological insult 

of the medium spiny neurons of the striatum (Han et al., 2010; Vonsattel 
et al., 1985) is accompanied by a complex interplay of factors, including 
a reduction of brain-derived neurotrophic factor (BDNF) (Han et al., 
2010; Muller and Leavitt, 2014) and an excess of glutamate signalled 
from the cortex towards the basal ganglia (Bano et al., 2011). Together, 
these mechanisms are thought to contribute to basal ganglia degenera
tion, disrupting the cortico-basal ganglio-thalamo-cortical loops 
(Blumenstock and Dudanova, 2020; Novak et al., 2015) and leading to 
secondary degeneration of the ATRs that may be due to anterograde 
transynaptic degeneration (Montoya-Filardi et al., 2022). Dysfunction 
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or disruption of the ATRs has been implicated in the cognitive and 
psychiatric symptoms (Martinez-Horta et al., 2016; McColgan and 
Tabrizi, 2018; Papoutsi et al., 2014) observed in gene carriers at various 
stages of the disease, even before the onset of motor symptoms.

Macroscopically, HD is characterized by grey matter (GM) and white 
matter (WM) atrophy, as stated by neuropathology (Reiner et al., 2011; 
Waldvogel et al., 2014) and evidenced by voxel-based morphometric 
(VBM) MRI studies (Aylward et al., 2011; Faria et al., 2016; Furlong 
et al., 2020; Stoffers et al., 2010). Early in the disease, degeneration 
predominantly affects the dorsal striatum, along with its associated 
white matter tracts (Aylward et al., 2011; Domínguez D et al., 2013; 
Tabrizi et al., 2013). As the disease progresses, this degeneration extends 
beyond the striatum, involving the cerebral cortex and other deep brain 
structures (Aylward et al., 2004; McColgan et al., 2015; Niccolini, 2014; 
Novak et al., 2015). The microstructural pathology of WM in HD is 
complex, including oligodendrocyte dysfunction with developmental 
myelination impairments and myelin breakdown (Bardile et al., 2019; 
Blockx et al., 2012b, 2012a; Gomez-Tortosa et al., 2001) as well as early 
axonal degeneration (Li et al., 2001). Compensatory increases in oligo
dendrocyte density have also been observed during early disease stages, 
reflecting the multifaceted nature of WM pathology in HD (Bardile et al., 
2019; Blockx et al., 2012b, 2012a; Gomez-Tortosa et al., 2001).

Diffusion tensor imaging (DTI) studies have detected microstructural 
WM tract anomalies in presymptomatic and symptomatic stages, before 
atrophy could be evident (Bourbon-Teles et al., 2019; Casella et al., 
2022, 2020; Della Nave et al., 2010; Estevez-Fraga et al., 2021; Matsui 
et al., 2015; Odish et al., 2015; Phillips et al., 2014; Rosas et al., 2018), 
highlighting the importance of investigating early-stage neurodegener
ative process. Manifest HD patients consistently exhibit significant 
microstructural disruptions in both ATRs (Bourbon-Teles et al., 2019; 
Estevez-Fraga et al., 2021; Gregory et al., 2019; Odish et al., 2015; 
Phillips et al., 2014; Rosas et al., 2018; Saba et al., 2017), but incon
sistent findings have been found in presymptomatic stages regarding the 
specific nature of these alterations. For example, Phillips et al. identified 
increases in RD and AD in both ATRs (Phillips et al., 2014), while Rosas 
et al. observed elevated RD exclusively in the right ATR near disease 
onset (Rosas et al., 2018). These findings suggest that ATR degeneration 
may occur early in HD, but the mechanisms underlying WM degenera
tion remain incompletely understood.

Iron is a key player in different neurodegenerative diseases, 
including HD, but its precise role remains elusive. Iron can act as both a 
primary and secondary trigger in the neurodegenerative process (Muller 
and Leavitt, 2014; Ward et al., 2014). On one hand, iron is involved in 
oxidative stress, neuroinflammation and ferroptosis (Latunde-Dada, 
2017; Wu et al., 2018). Alternatively, iron accumulation as a result of 
the neurodegenerative process itself may aggravate the main neuro
pathological traits (Kempuraj et al., 2016; Simmons et al., 2007; 
Thomsen et al., 2015). In the context of HD, mutant huntingtin (mHtt) 
has been related to disruptions in iron metabolism, including increased 
iron uptake (Niu et al., 2018) and iron accumulation in microglia 
inducing the proinflammatory microglial phenotype (Kempuraj et al., 
2016; Simmons et al., 2007; Thomsen et al., 2015). Despite these find
ings, the specific role of iron in HD neurodegeneration, and the rela
tionship between iron dysregulation and WM degeneration is not fully 
understood.

Disruptions in both WM integrity and iron homeostasis are recog
nized as critical contributors to the neurodegenerative process under
lying HD (Li and Conforti, 2013; Muller and Leavitt, 2014; Sun et al., 
2022). However, their interrelations and interactions are not fully un
derstood. It is possible that WM degeneration induces iron accumula
tion, which may, in turn, drive an ongoing loop where both factors 
interact and exacerbate one another (Kempuraj et al., 2016; Stephenson 
et al., 2018; Thomsen et al., 2015). Alternatively, primary iron accu
mulation could act as a trigger for WM degeneration, initiating the 
cascade of interrelated pathological processes (Latunde-Dada, 2017; Mi 
et al., 2019; Muhoberac and Vidal, 2013; Wu et al., 2018). These 

mechanisms might also function independently, without directly influ
encing one another, or they could become interdependent at specific 
stages of the disease. Clarifying the potential relationships between WM 
degeneration and iron alterations may advance our understanding of HD 
pathology and contribute to the identification of new therapeutic 
targets.

This study focuses on ATR degeneration in HD, employing a cross- 
sectional assessment of diffusion and relaxometry in controls and gene 
carriers. The assessment of presymptomatic and symptomatic stages 
aims to clarify the relationship between iron accumulation and WM 
disturbance, being either metachronous or synchronous and either 
interrelated or independent, in order to uncover the dynamics of the 
neurodegenerative mechanisms underlying HD, opening new avenues 
for future research directions. The spatial assessment comparing right vs 
left ATR investigates the presence of potential differential hemispheric 
vulnerability. Both average and along-the-tract methodologies were 
used to explore their sensitivities in detection of differences. Finally, 
translating MRI findings into clinical applications is critical. Machine 
learning algorithms were used to integrate WM and iron-level features 
from ATR, with the goal of identifying biomarkers for earlier diagnosis 
during presymptomatic stages and as endpoints in future clinical trials.

2. Materials and methods

2.1. Participants

This study is part of a larger research project conducted between 
2013 and 2016, during which clinical and MRI data were collected at 
two time points. Specifically, the present study focuses on the second 
time point, as T2*-weighted relaxometry images were only acquired at 
this stage. Due to participant attrition between the two time points, 
some individuals from the initial cohort were not available for follow- 
up. The first time point was composed by 35 controls, 22 presymp
tomatic gene carriers, and 25 symptomatic HD patients. The final sample 
used in this study consisted of 55 participants, comprising 31 gene 
carriers (8 males, 23 females) and 24 healthy controls (13 males, 11 
females) matched for gender (χ2

(1,n=55) = 3.49, p = 0.062), age (t(49.62) =

-0.08, p = 0.940) and years of education (t(50.13) = 0.36, p = 0.722). 
Gene carriers were further grouped into premanifest (N = 13) and 
manifest (N = 18) stages based on their Unified Huntington’s Disease 
Rating Scale (UHDRS) diagnostic confidence score for motor abnor
malities. When comparing the different subgroups, significant differ
ences in age and gender distribution were observed (age F(2,52) = 3.67, p 
= 0.032; gender χ2

(2,n=55) = 7.72, p = 0.021). Specifically, gender dis
tribution differed significantly between controls and premanifest par
ticipants, with a higher proportion of females in the premanifest 
subgroup (χ2

(1,n=37) = 5.89, p = 0.015). Age also differed significantly 
between premanifest and manifest participants, with the premanifest 
subgroup being younger (t(26.77) = -2.87, p = 0.008), as expected due to 
the natural course of disease progression in HD. No significant differ
ences were found in age or gender between controls and manifest pa
tients, nor in age between controls and premanifest participants (see 
Table 1 for participants’ demographic details).

None of the participants reported previous history of neurological 
disorders other than HD in patients. All participants were right-handed 
and provided written informed consent to participate in this study, in 
accordance with the Helsinki Declaration of 1975.

2.2. Clinical evaluation

Gene carriers underwent a set of clinical assessments carried out by 
clinicians specialized in movement disorders (Table 1). The UHDRS total 
motor score was used to assess the severity of motor symptoms. The 
verbal fluency test (FAS), the Symbol Digit Modalities Test (SDMT), the 
Trail Making Test (TMT), and the Stroop word-reading, color-naming 
and interference test were administered as part of the cognitive section 
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of the UHDRS. CAG-Age Product (CAP) score, computed as CAP =
100*age*(CAG–35.5)/627 (Ross et al., 2014), was used as a proxy of 
disease burden secondary to accumulated exposure to mHtt. PBA-s 
(Problem Behaviour Assessment − Short) test (Craufurd D et al., 2001; 
Enroll-HD, n.d.) from Enroll-HD composed by 5 composite scores 
(depression, irritability/aggression, psychosis, apathy, and dysex
ecutive) was administered to assess for psychiatric symptoms.

2.3. MRI acquisition and processing

MRI data was acquired at 3 T whole-body MRI scanner (Siemens 
Magnetom Trio), using a 32-channel phased array head coil. The se
quences performed included: a conventional high-resolution 3D T1 
MPRAGE sequence [208 sagittal slices, TR 1970 ms, TE 2.34 ms, IT 

1050 ms, flip angle 9◦, FOV 25.6 cm, 1 mm isotropic voxel with no gap 
between slices]; a dual spin-echo diffusion imaging sequence with 
GRAPPA (reduction factor of 4) cardiac gating [60 axial slices, TR 680 
ms, TE 92 ms, 2 mm isotropic voxels, no gap, FOV 23.6 cm, 64 non- 
collinear directions using a b-value of 1500 s/mm2 interleaved with 9 
non-diffusion b = 0 images]; and six consecutive T2*-weighted gradient 
echo-planar images [60 axial slices, TR 5000 ms, bandwidth 1120 Hz/ 
Pz, FOV 25.6 cm, matrix size 128*128*60, flip angle 90◦, 2 mm isotropic 
voxels] at different TE (6, 12, 20, 30, 45 and 60 ms).

2.4. Data analysis

2.4.1. T2*-weighted images processing
T2*-weighted volumes were post-processed accordingly to 

Table 1 
Sociodemographic and clinical characteristics of study participants.

Controls Premanifest Manifest Gene- 
carriers

Controls vs 
Gene carriers

ANOVA / 
Chi-square

Controls vs 
Premanifest

Controls vs 
Manifest

Premanifest vs 
Manifest

N 24 13 18 31 ​ ​ ​ ​ ​
Sex (M/F) 13/11 1/12 7/11 8/23 X2(1,N = 55) 

= 3.49 (p =
0.062)

X2(2,N ¼
55) ¼ 7.72 
(p ¼ 0.021)

X2(1,N ¼ 37) ¼
5.89 (p ¼ 0.015)

X2(1,N = 42) 
= 0.45 (p =
0.504)

X2(1,N = 31) =
2.38 (p = 0.123)

Age (years) 46.42 ±
11.14

40.62 ± 9.73 51 ± 10.23 46.65 ±
11.15

t(49.62) =
-0.08 (p =
0.940)

F(2,52) ¼
3.67 (p ¼
0.032)

t(27.79) = 1.64 
(p = 0.111)

t(38.30) =
-1.38 (p =
0.175)

t(26.77) ¼ -2.87 
(p ¼ 0.008)

Education (years) 12.54 ±
2.89

13.54 ± 2.67 11.33 ±
2.87

12.26 ±
2.95

t(50.13) =
0.36 (p =
0.722)

F(2,52) =
2.35 (p =
0.105)

t(26.53) = -1.05 
(p = 0.301)

t(36.91) =
1.35 (p =
0.186)

t(27.10) = 2.20 
(p = 0.036)

CAG ​ 42.77 ± 2.17 44.17 ±
3.13

43.58 ±
2.81

​ ​ ​ ​ t(28.97) = -1.47 
(p = 0.153)

CAP ​ 81.30 ± 16.97 112.13 ±
18.86

99.20 ±
23.58

​ ​ ​ ​ t(27.50) ¼ -4.76 
(p ¼ 0.000)

Age of onset ​ 50.17 ± 8.15 45.98 ±
9.59

47.74 ±
9.12

​ ​ ​ ​ t(28.14) = 1.31 
(p = 0.201)

UHDRS-motor ​ 0.38 ± 0.87 
(N = 13)

22.94 ±
13.78 (N =
17)

13.17 ±
15.31 (N =
30)

​ ​ ​ ​ t(16.17) ¼ -6.73 
(p ¼ 0.000)

UHDRS-cognitive ​ 328 ± 46.25 
(N = 13)

192 ±
62.22 (N =
15)

255.14 ±
87.91 (N =
28)

​ ​ ​ ​ t(25.47) ¼ 6.62 
(p ¼ 0.000)

UHDRS- 
functional

​ 24.92 ± 0.28 
(N = 13)

19.18 ±
5.43 (N =
17)

21.67 ±
4.97 (N =
30)

​ ​ ​ ​ t(16.11) ¼ 4.35 
(p ¼ 0.000)

Cognitive reserve ​ 15.54 ± 3.78 
(N = 13)

11.56 ±
3.71 (N =
18)

13.23 ±
4.18 (N =
31)

​ ​ ​ ​ t(25.74) ¼ 2.92 
(p ¼ 0.007)

Stroop 
Interferences

​ 49.08 ± 8.57 
(N = 13)

28.80 ±
11.93 (N =
15)

38.21 ±
14.58 (N =
28)

​ ​ ​ ​ t(25.21) ¼ 5.21 
(p ¼ 0.000)

TMT(B-A) direct ​ 36.23 ± 36.53 
(N = 13)

105.88 ±
63.50 (N =
17)

75.70 ±
63.32 (N =
30)

​ ​ ​ ​ t(26.28) ¼ -3.78 
(p ¼ 0.001)

PBA-Enroll ​ ​ ​ ​ ​ ​ ​ ​ ​
- Depression 

Component
​ 1.58 ± 3.00 

(N = 12)
2.76 ± 3.35 
(N = 17)

2.28 ±
3.21 (N =
29)

​ ​ ​ ​ Z = 79, p = 0.274

- Irritability 
Component

​ 0.67 ± 1.78 
(N = 12)

2.06 ± 4.39 
(N = 17)

1.48 ±
3.57 (N =
29)

​ ​ ​ ​ Z = 78, p = 0.204

- Psychosis 
Component

​ 0.17 ± 0.58 
(N = 12)

0.31 ± 1.01 
(N = 17)

0.25 ±
0.84 (N =
29)

​ ​ ​ ​ Z = 92, p = 0.762

- Apathy 
Component

​ 1.42 ± 2.71 
(N = 12)

3.00 ± 3.32 
(N = 17)

2.34 ±
3.13 (N =
29)

​ ​ ​ ​ Z = 60.5, p =
0.058

- Dysexecutive 
Component

​ 1.42 ± 2.02 
(N = 12)

2.94 ± 2.73 
(N = 17)

2.31 ±
2.54 (N =
29)

​ ​ ​ ​ Z = 65, p = 0.088

Data presented as mean ± standard deviation. Premanifest and manifest division based on Unified Huntington’s Disease Rating Scale diagnostic confidence score for 
motor abnormalities.
CAG = length of cytosine-adenine-guanine base repeats of the mutated allele; CAP = standardized CAG-age product; F = females; M = males; N = number of par
ticipants; PBA=Problem Behaviours Assessment; UHDRS-cognitive = Unified Huntington’s Disease Rating Scale total cognitive score; UHDRS-motor = Unified 
Huntington’s Disease Rating Scale total motor score. Age of onset calculated according to Langbehn formula.
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previously published methods (Baudrexel et al., 2009). In order to 
obtain the voxel-based relaxometry maps, each of the six T2*-weighted 
volumes were linearly aligned with the mean T2*-weighted volume; a 
voxel-by-voxel nonlinear least-squares fitting of the six TEs was per
formed to obtain a mono-exponential signal decay curve and relaxom
etry volumes were based on relaxation rates (i.e. relaxation rates 
R2*=1/T2*x1000). Finally, iron images (R2*) were registered into 
native DTI (Diffusion Tensor Imaging) space.

2.4.2. Pre-processing of DTI data
Diffusion-weighted images were automatically processed using 

FreeSurfer v6.0 software (http://surfer.nmr.mgh.harvard.edu/). More 
specifically, head motion and eddy-current correction were firstly per
formed, and the gradient matrix was rotated accordingly (Leemans and 
Jones, 2009). Subsequently, affine intra-subject alignment was per
formed between diffusion-weighted and anatomical images, and to an 
MNI152 template (Greve and Fischl, 2009).

The diffusion tensor was then reconstructed using a standard least 
squares tensor estimation algorithm and its corresponding eigenvalues 
were extracted to calculate the fractional anisotropy (FA), mean, radial 
and axial diffusivities (MD, RD, AD) maps.

2.4.3. Tractography dissections: Anterior thalamic radiation
Virtual in vivo DTI reconstruction of ATR was carried out using 

TRActs Constrained by UnderLying Anatomy (TRACULA), available as 
part of FreeSurfer image processing (Yendiki et al., 2011) and previously 
validated in HD (Rosas et al., 2018). TRACULA is a new gold-standard 
method for the automated reconstruction of the main WM pathways 
based on a global probabilistic approach using anatomical priors derived 
from a training set of manually labeled tracts in healthy individuals. 
These priors are based on the relative positioning of each tract with 
respect to surrounding anatomical structures, defined by FreeSurfer’s 
automated parcellation of each individual. Specifically, the anatomical 
model is aligned with the dissection protocol proposed by Wakana et al., 
2003, which defines the ATR pathway using a coronal slice selected at 
the level of the genu of the corpus callosum, where one ROI is placed on 
the anterior limb of the internal capsule, and a second ROI is defined at 
the anterior edge of the pons to include the entire thalamus. Streamlines 
extending outside the expected pathway, such as those crossing into the 
contralateral hemisphere via the corpus callosum, are excluded. While 
manual tractography approaches rely on explicit ROI placement, TRA
CULA automates this process, embedding prior anatomical knowledge 
into its reconstruction algorithms.

This approach enabled the reconstruction of the ATR’s volumetric 
distribution in native space, allowing for the extraction of both average 
and along-the-tract values of diffusion and relaxometry parameters. This 
processing pipeline included cortical and subcortical parcellation, 
correction of diffusion images for eddy current distortions, and ATR 
reconstruction for each participant. Quality control of the reconstructed 
ATRs was performed by a certified neuroradiologist (MDA) through 
visual inspection of each participant’s T1-weighted anatomical and 
diffusion data, along with the corresponding parcellations and final ATR 
reconstructions.

2.4.4. Statistical analysis
The statistical analysis was performed with R software (R Core Team, 

2024). Demographic differences were assessed using independent sam
ple t tests for numerical variables, Wilcoxon tests for ordinal variables 
(PBA-Enroll scores) and chi-square or Fisher’s exact test for gender 
(nominal variable).

Although HD is clinically diagnosed based on the onset of motor 
symptoms, neurodegeneration, accompanied by cognitive and neuro
psychiatric symptoms, often begins well before motor onset (Martinez- 
Horta et al., 2016). Therefore, in our cross-sectional assessment of iron 
accumulation and WM integrity, we performed group comparisons 
across disease stages (controls, premanifest, and manifest HD). 

However, for analyses exploring clinical correlations, we treated HD 
gene carriers (both premanifest and manifest) as part of a continuous 
disease spectrum, rather than categorically distinct subgroups.

To investigate cross-sectional differences in ATR microstructure and 
relaxometry across disease stages, both mean and along-the-tract mea
sures of DTI indexes and relaxometry of each ATR were assessed using a 
permutational analysis of variance (ANOVA). Group comparisons were 
conducted among three subgroups: healthy controls, presymptomatic 
gene carriers, and symptomatic (manifest) patients.

For the mean analysis, the permutational ANOVAs included sub
group as the independent variable of interest, age (factorized into three 
categories: ≤40, 41–50, >50 years) and gender as covariates. For the 
along-the-tract analysis, diffusion metrics and relaxometry were 
sampled at 45 points for the right ATR and at 47 points for the left ATR. 
This approach follows the standard protocol implemented in TRACULA, 
a tractography-based pipeline within FreeSurfer software (http://surfer. 
nmr.mgh.harvard.edu/), which automatically reconstructs major white 
matter pathways and samples diffusion measures along their length. 
Including the different points conforming the ATRs for each individual 
in the along-the-tract models warranted two phenomena. First, it in
corporates spatial information along the tract given that WM tracts are 
not anatomically or microstructurally homogenous; diffusion and 
relaxometry can vary systematically depending on the anatomical po
sition within the tract. Second, it increases statistical power by providing 
a higher number of observations per participant. This increased within- 
subject data density was accounted for by modelling subject as a random 
effect by the Error (1/subject) in the permutational ANOVAs framework. 
In these along-the-tract ANOVAs, subgroup was the independent vari
able of interest. Covariates included age (factorized into three cate
gories: ≤40, 41–50, >50 years), gender and point, that is, the index 
position along the ATR (45 levels for the right ATR, 47 for the left). The 
point variable was included to control for potential confounding effects 
of anatomical position within the ATR, as MRI values may vary along the 
tract independent of pathology.

Pairwise permutation post-hoc tests were performed to assess the 
pairwise subgroup differences in DTI indexes and relaxometry for each 
ATR. The test statistic used in these comparisons was the maximum test 
statistic (maxT) and p-values were adjusted using false discovery rate 
(FDR) correction.

To address potential hemispheric susceptibility, right-left differences 
in both mean and along-the-tract measures of DTI indexes and relax
ometry were assessed using permutational ANOVA. The independent 
variable of interest was the interaction between subgroup and hemi
sphere (right/left). Factorized age and gender were included as cova
riates, and, for the along-the-tract analysis, point (tract location) was 
also added as a covariate. Subject-level random effects were accounted 
for using the ‘Error (1/subject)’ term. Pairwise permutation post-hoc 
tests were applied to the subgroup x hemisphere interaction to explore 
the pattern of lateralization within each subgroup. Also, right-left and 
left–right differences in along-the-tract values were computed for each 
subgroup and compared using pairwise permutation post-hoc tests. 
Again, the maxT statistic was used, and FDR correction was applied to 
all p-values.

To understand the interrelationship between DTI metrics and 
relaxometry, partial Spearman correlations were performed between 
along-the-tract measures of WM indexes and relaxometry values, con
trolling by gender and factorized age in controls and by gender and CAP 
score in gene carriers, to disentangle their interdependence eliminating 
the possible influence of the illness in this interdependence. Moreover, 
paired partial Spearman correlations were also conducted to assess the 
interdependence of each paired combination of DTI parameters and 
relaxometry values, controlling for all the other variables.

In order to investigate the relationship between ATR microstructure 
and neurological deficits in gene carriers, partial Spearman correlations 
were conducted between average MRI-derived parameters (analysed 
separately for each ATR) and a range of clinical measures. CAP score and 
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UHDRS-functional score were used as markers of overall disease pro
gression. Motor symptoms were evaluated using the UHDRS-motor 
score. Cognitive function was assessed using UHDRS-cognitive score, 
as well as performance on the TMT (B–A) and Stroop Interference tests. 
Psychiatric disturbances were examined through PBA subdomains 
scores. The correlations concerning disease progression were adjusted 
for gender. All other correlations were performed twice, once control
ling for gender to assess associations potentially modulated by disease 
progression, and another controlling for both gender and disease burden 
(CAP score) to investigate associations that may reflect the specific 
physiological role of the ATR.

The FDR was used to correct pairwise permutation post-hoc tests and 
partial Spearman correlations. Results statistically significant with a p- 
adjusted (p-adj) value of < 0.05 were those reported in the manuscript, 
unless specified otherwise.

Finally, to evaluate the potential role of MRI metrics as biomarkers, 
three machine-learning models, namely boosted logistic regression 
(BLR), quadratic discriminant analysis (QDA) and support vector ma
chines with radial basis function kernel (SVMR), were assessed in three 
scenarios. The first scenario included the three subgroups to assess their 
capability to differentiate among subgroups. The second included the 
control and the presymptomatic subgroups, and the third, the pre
symptomatic and the symptomatic subgroups, with the aim to focus on 
the clinically relevant questions: the ability of the biomarkers in 
detecting presymptomatic subjects (positive class) regarding controls in 
order to initiate preventive measures and regarding symptomatic pa
tients in order to diagnose precociously the beginning of the illness. The 
dataset consisted of 2475 observations (45 points * 55 individuals) for 
each MRI metric (10 metrics in total, 5 metrics for each ATR). These 
observations were divided in two subsets: 80 % for training the model 
(training dataset) and the remaining 20 % for testing (test dataset) to 
assess the generalization of the trained models in unseen data. Each 
model in each scenario was trained twice using cross-validation, once 
with and once without recursive feature elimination (RFE). The models’ 
effectiveness was evaluated using confusion matrices with their derived 
statistical parameters (accuracy, kappa, precision, F1-score, recall or 
sensitivity, and specificity) and ROC-AUC curves to provide insight into 
classification accuracy and predictive power.

3. Results

3.1. Microstructural and iron characterization of ATR

3.1.1. Global differences in white matter ATR microstructure and iron 
levels

Diffusion-derived average metrics revealed significant bilateral 
group differences in MD (Right: F(2,45) = 11.62, p-adj < 0.001; Left: F 
(2,45) = 9.08, p-adj = 0.002), RD (Right: F(2,45) = 8.88, p-adj = 0.001; 
Left: F(2,45) = 7.82, p-adj = 0.003), and AD (Right: F(2,45) = 8.64, p- 
adj = 0.001; Left: F(2,45) = 6.70, p-adj = 0.005). Post-hoc analysis 
showed that these differences were primarily driven by overall higher 
diffusivity values in manifest HD. Specifically, manifest HD patients 
exhibited significant increases in MD (Right: maxT = 3.31, p-adj =
0.003; Left: maxT = 3.13, p-adj = 0.005), RD (Right: maxT = 2.96, p-adj 
= 0.006; Left: maxT = 2.74, p-adj = 0.009), and AD (Right: maxT =
3.00, p-adj = 0.008; Left: maxT = 2.93, p-adj = 0.010) when compared 
to controls. Similarly, significant differences were also observed when 
comparing manifest HD patients to premanifest individuals, with 
increased MD (Right: maxT = 2.93, p-adj = 0.005; Left: maxT = 2.87, p- 
adj = 0.006), RD (Right: maxT = 2.86, p-adj = 0.006; Left: maxT = 2.97, 
p-adj = 0.009), and AD (Right: maxT = 2,45, p-adj = 0.022; Left: maxT 
= 1.91, n.s.) for manifest patients.

No significant average differences among subgroups were present for 
FA (Right: F(2,45) = 1.24, p-adj = 0.299; Left: F(2,45) = 2.48, p-adj =
0.119) or R2* (Right: F(2,45) = 2.26, p-adj = 0.146; Left: F(2,45) =
0.45, p-adj = 0.642) (see Supplementary materials Table 1).

3.1.2. Differences along white matter ATR microstructure and iron levels
Group along-the-tract effects were in accordance to those obtained in 

the average assessment showing significant bilateral group differences 
in mean (Right: F(2,2116) = 277.09, p-adj < 0.001; Left: F(2,2170) =
156.29, p-adj < 0.001), radial (Right: F(2,2116) = 179.07, p-adj <
0.001; Left: F(2,2170) = 121.33, p-adj < 0.001), and axial (Right: F 
(2,2116) = 204.49, p-adj < 0.001; Left: F(2,2170) = 98.28, p-adj <
0.001) diffusivities. In addition, unlike the global analysis, group dif
ferences were also detected bilaterally in FA (Right: F(2,2116) = 21.65, 
p-adj < 0.001; Left: F(2,2170) = 33.03, p-adj < 0.001) and R2* values 
(Right: F(2,2116) = 29.42, p-adj < 0.001; Left: F(2,2170) = 23.48, p-adj 
< 0.001).

Further post-hoc analysis showed that manifest patients exhibited 
significant bilateral along-the-tract increases in MD, RD and AD 
compared to both premanifest individuals (MD: Right maxT = 9.39, p- 
adj < 0.001, Left maxT = 7.56, p-adj < 0.001; RD: Right maxT = 8.48, p- 
adj < 0.001, Left maxT = 7.58, p-adj < 0.001; AD: Right maxT = 8.08, p- 
adj < 0.001 Left maxT = 5.07, p-adj < 0.001) and controls (MD: Right 
maxT = 10.22, p-adj < 0.001, Left maxT = 8.47, p-adj < 0.001; RD: 
Right maxT = 8.26, p-adj < 0.001, Left maxT = 6.80, p-adj < 0.001; AD: 
Right maxT = 10.35, p-adj < 0.001, Left maxT = 8.93, p-adj < 0.001) in 
accordance with findings from the average assessment. In addition, 
manifest patients showed a significant along-the-tract decrease in FA in 
both ATR when compared to premanifest patients (Right maxT = -3.99, 
p-adj < 0.001; Left maxT = -5.14, p-adj < 0.001).

Interestingly, premanifest individuals exhibited a bilateral increase 
in FA values compared to controls (Right maxT = 3.04, p-adj = 0.004; 
Left maxT = 4.98, p-adj < 0.001), that was accompanied by a significant 
bilateral decrease in RD (Right maxT = -2.45, p-adj = 0.014; Left maxT 
= -2.68, p-adj = 0.007), and a left increase in AD (Left maxT = 2.87, p- 
adj = 0.004), differences not detected in the average analysis. Given that 
presymptomatic participants were, on average, younger than controls 
(mean age: controls = 46 vs. presymptomatic = 40 years; p = 0.111), a 
post-hoc pairwise permutation test was conducted to further examine 
whether the FA differences persisted when controlling for age. Specif
ically, age was factorized into three categories (≤40, 41–50, and > 50 
years), and group comparisons were conducted within each category. In 
the right ATR, significant FA increases in presymptomatic participants 
were observed in those aged ≤ 40 years (maxT = 2.87, p-adj = 0.004) 
and > 50 years (maxT = 2.40, p-adj = 0.045), but not in the 41–50 group 
(maxT = 0.01, p-adj = 0.991). In the left ATR, significant FA increases 
were detected in presymptomatic individuals older than 40, both in the 
41–50 age group (maxT = 3.84, p-adj < 0.001) and the > 50 group 
(maxT = 4.38, p-adj < 0.001), while no differences were found in par
ticipants aged ≤ 40 (maxT = 0.57, p-adj = 0.572). Additionally, because 
the presymptomatic subgroup included a higher proportion of women 
(1/13 men) compared to controls (13/24 men), another post-hoc pair
wise permutation test was conducted separately for males and females to 
account for potential gender bias. In both ATRs, increased FA in pre
symptomatic individuals was observed exclusively in women (right 
ATR: males maxT = 0.65, p-adj = 0.550; females maxT = 2.34, p-adj =
0.029; left ATR: males maxT = 0.92, p-adj = 0.481; females maxT =
5.10, p-adj < 0.001).

In contrast to the findings from the average analysis, manifest pa
tients demonstrated a significant decrease in R2* for both ATR 
compared to premanifest individuals (Right: maxT = -5.53, p-adj <
0.001; Left: maxT = -2.42, p-adj = 0.015) and for the right ATR 
compared to controls (Right: maxT = -2.25, p-adj = 0.025). However, 
manifest patients exhibited a significant increase in R2* for the left ATR 
compared to controls (Left: maxT = 3.86, p-adj < 0.001). Additionally, 
premanifest individuals also exhibited a significant increment of R2* 
bilaterally compared to controls (Right: maxT = 4.52, p-adj < 0.001; 
Left: maxT = 6.98, p-adj < 0.001).

Results are summarized in Supplementary materials Table 2. Fig. 1
depicts the along-the-tract values of both ATR separately.
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3.1.3. Interhemispheric differences in white matter ATR microstructure and 
iron levels

Regarding right-left asymmetries assessed in each group separately, 
no differences were observed in any of the average MRI measurements 
across the three subgroups (see Supplementary materials Table 3). 
However, right-left along-the-tract asymmetries were detected for R2*, 
MD and AD (see Supplementary materials Table 4). Specifically, the left 
ATR showed increased along-the-tract R2* for the three subgroups. The 
right ATR exhibited an increased along-the-tract MD for the three sub
groups, and an increased along-the-tract AD for controls and manifest 
patients. The loss of AD asymmetry in premanifest individuals may be 
related with the increased AD observed in the left ATR.

Given these differences of composition between ATRs, for illustrative 
purposes, the right-left differences were used for the assessment of dif
fusivities, and the left–right differences for the analysis of R2* (see 
Fig. 2). HD patients showed greater right-left differences for AD, MD and 
RD compared to both premanifest individuals (AD difference: maxT =
5.21, p-adj < 0.001; MD difference: maxT = 4.25, p-adj < 0.001; RD 

difference: maxT = 2.29, p-adj = 0.033) and controls (AD difference: 
maxT = 4.43, p-adj < 0.001; MD difference: maxT = 4.87, p-adj < 0.001; 
RD difference: maxT = 3.27, p-adj = 0.003). Moreover, HD patients and 
premanifest individuals had greater left–right R2* differences compared 
to controls (maxT = 7.16, p-adj < 0.001 for HD patients, maxT = 3.59, p- 
adj < 0.001 for premanifest individuals). HD patients also presented 
greater left–right R2* differences compared to premanifest subjects 
(maxT = 2.87, p-adj = 0.004). No right-left differences were detected for 
FA.

3.1.4. Coupling between white matter ATR microstructure and iron levels
To investigate the interdependence between R2*-relaxometry and 

DTI metrics, partial Spearman correlation analyses were conducted 
across all three subgroups (controls, presymptomatic, and symptomatic 
gene carriers), considering all the data points that form the length of 
both ATR. Analyses were controlled for gender and factorized age in 
controls, and for gender and CAP score in gene carriers, to reduce po
tential confounding effects of gender and disease burden in this 

Fig. 1. Along-the-tract profiles of MRI metrics in the anterior thalamic radiations. Separate line plots are shown for each MRI metric, representing the mean 
along the tract values across subgroups, (A) for the right ATR and (B) for the left ATR. ATR: anterior thalamic radiation. HD: symptomatic patients. PreHD: pre
symptomatic individuals.

Fig. 2. Right-Left differences in along-the-tract of MRI metrics. Separate density plots (A) and boxplots (B) for each MRI metric illustrate right-minus-left 
differences in along-the-tract mean values across subgroup. HD: symptomatic patients. PreHD: presymptomatic subjects.
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interdependence.
Across all subgroups and hemispheres, R2* consistently showed 

weak to strong negative correlations with diffusivity metrics. In both the 
right and left ATR, R2* was significantly inversely associated with AD, 
RD and MD. Specifically, in controls, R2* correlated negatively with AD 
(Right r = − 0.377, p-adj < 0.001, Left r = − 0.468, p-adj < 0.001), RD 
(Right r = − 0.499, p-adj < 0.001, Left r = − 0.464, p-adj < 0.001) and 
MD (Right r = − 0.549, p-adj < 0.001, Left r = − 0.521, p-adj < 0.001). 
Similar patterns were observed in presymptomatic gene carriers (AD: 
Right r = − 0.576, p-adj < 0.001, Left r = − 0.436, p-adj < 0.001; RD: 
Right r = − 0.543, p-adj < 0.001, Left r = − 0.494, p-adj < 0.001; MD: 
Right r = − 0.634, p-adj < 0.001, Left r = − 0.530, p-adj < 0.001) and 
symptomatic HD patients (AD: Right r = − 0.473, p-adj < 0.001, Left r 
= − 0.542, p-adj < 0.001; RD: Right r = − 0.495, p-adj < 0.001, Left r 
= − 0.361, p-adj < 0.001; MD: Right r = − 0.576, p-adj < 0.001, Left r 
= − 0.467, p-adj < 0.001). In contrast, R2* showed very weak to weak 
positive correlations with FA in all groups (Controls: Right r = 0.200, p- 
adj < 0.001, Left r = 0.222, p-adj < 0.001; PreHD: Right r = 0.176, p-adj 
< 0.001, Left r = 0.325, p-adj < 0.001; HD: Right r = 0.149, p-adj <
0.001, Left r = 0.111, p-adj = 0.006). Fig. 3 depicts the correlations 
between R2* and each of the DTI metrics for both ATR separately.

Furthermore, paired partial correlations were conducted to examine 
the unique association between each DTI metric and R2*, while con
trolling for the influence of the remaining DTI metrics and covariates (i. 
e., gender and factorized age in controls, gender and CAP score in gene 
carriers).

In the right ATR, for controls, R2* demonstrated a small-to-moderate 
negative correlation with FA (r = –0.192, p-adj < 0.001), a small posi
tive correlation with AD (r = 0.108, p-adj = 0.002), and very weak 
negative associations with both RD (r = –0.071, p-adj = 0.046) and MD 
(r = –0.071, p-adj = 0.046). In presymptomatic gene carriers, R2* 
showed a moderate negative association with FA (r = –0.213, p-adj <
0.001) and a small-to-moderate negative correlation with RD (r =
–0.158, p-adj < 0.001), while correlations with AD (r = –0.042, p-adj =
0.456) and MD (r = 0.010, p-adj = 0.819) were non-significant. In 

symptomatic individuals, similar associations were observed, with R2* 
negatively correlated with FA (r = –0.214, p-adj < 0.001) and RD (r =
–0.095, p-adj = 0.025); correlations with AD (r = 0.028, p-adj = 0.529) 
and MD (r = –0.026, p-adj = 0.529) remained non-significant.

In the left ATR, for controls, R2* was weakly to moderately nega
tively correlated with FA (r = –0.129, p-adj < 0.001) and RD (r =
–0.100, p-adj = 0.011), and showed a trend-level negative association 
with AD (r = –0.072, p-unc = 0.026, p-adj = 0.077), while no significant 
correlation was found with MD (r = 0.046, p-adj = 0.301). In pre
symptomatic gene carriers, no significant correlations were found be
tween R2* and any DTI metric (AD: r = –0.006, p-adj = 0.890; RD: r =
–0.043, p-adj = 0.460; MD: r = –0.034, p-adj = 0.480; FA: r = –0.042, p- 
adj = 0.460). In symptomatic patients, R2* showed a trend-level nega
tive association with MD (r = –0.088, p-unc = 0.018, p-adj = 0.070), 
with no significant associations with AD (r = –0.070, p-adj = 0.142), RD 
(r = 0.043, p-adj = 0.415), or FA (r = –0.032, p-adj = 0.470).

3.2. Clinical correlates

3.2.1. Relationship between white matter ATR microstructure and iron 
levels with neuropsychological assessments in gene carriers

Reported correlations include those statistically significant with an 
adjusted p-value (p-adj) < 0.05, as well as those showing a statistical 
trend, defined as an uncorrected p-value (p-unc) < 0.05 but a non- 
significant adjusted p-value (p-adj < 0.10). This broader approach 
aims to provide a more comprehensive overview, acknowledging that 
some potentially clinically relevant associations might be overlooked 
with stricter statistical thresholds (see Supplementary materials Table 5, 
and Fig. 4 for details).

Regarding disease progression, significant positive correlations were 
observed between CAP score and both MD and RD of the right (MD: r =
0.538, p-adj = 0.023; RD: r = 0.548, p-adj = 0.020) and left ATRs (MD: r 
= 0.517, p-adj = 0.036; RD: r = 0.515, p-adj = 0.037). A trend toward a 
positive association was also found between CAP score and AD of the 
right ATR (r = 0.488, p-unc = 0.016, p-adj = 0.064). In contrast, UHDRS 

Fig. 3. Correlations plots of the along-the-tract values between R2* relaxametry and each DTI metric, (A) for the right ATR and (B) for the left ATR. For 
illustrative purposes, these plots are not adjusted for specific covariates. ATR: anterior thalamic radiation. HD: symptomatic patients. PreHD: presymptomatic 
individuals.
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Fig. 4. Partial Spearman correlation plots between average MRI metrics and clinical measures. Scatter plots illustrate Pearson correlations between residual ranks 
of average MRI metrics (adjusted for controlling factors) and clinical scores assessing disease progression (A), cognitive impairments (B) and psychiatric disturbances 
(C). ATR: anterior thalamic radiation. HD: symptomatic patients. PreHD: presymptomatic individuals.
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functional scores showed significant negative correlations with MD of 
the right ATR (r = -0.344, p-adj = 0.023) and with RD of both ATRs 
(Right: r = -0.383, p-adj = 0.015; Left: r = -0.426, p-adj = 0.007). A 
trend toward a negative correlation was also observed between UHDRS 
functional scores and MD of the left ATR (r = -0.293, p-unc = 0.019, p- 
adj = 0.054).

In relation to motor symptoms, UHDRS-motor scores showed a trend 
toward positive correlation with RD in both the right (r = 0.429, p-unc 
= 0.049, p-adj = 0.095) and left (r = 0.441, p-unc = 0.041, p-adj =
0.082) ATRs.

Cognitive assessments showed significant associations with ATR 
microstructure. In the right ATR, MD and RD were significantly nega
tively correlated with UHDRS cognitive scores (MD: r = -0.480, p-adj <
0.001; RD: r = -0.521, p-adj < 0.001), as well as Stroop interference 
performance (MD: r = -0.404, p-adj = 0.013; RD: r = -0.390, p-adj =
0.015). In the left ATR, similar patterns were observed for MD and RD 
showing significant negative correlations with UHDRS cognitive (MD: r 
= -0.513, p-adj < 0.001; RD: r = -0.515, p-adj < 0.001) and Stroop 
interference scores (MD: r = -0.417, p-adj = 0.013; RD: r = -0.363, p-adj 
= 0.025). Additionally, MD and RD of the left ATR showed a trend to
ward positive association with TMT (B-A) scores (MD: r = 0.479, p-unc 
= 0.022, p-adj = 0.055; RD: r = 0.466, p-unc = 0.028, p-adj = 0.062). 
Moreover, AD of the right ATR showed negative trends with UHDRS 
cognitive scores (r = -0.310, p-unc = 0.016, p-adj = 0.064) and Stroop 
interference (r = -0.352, p-unc = 0.007, p-adj = 0.064).

When controlling for disease burden (CAP score) to explore the 
ATR’s physiological role in cognitive function, several associations 
remained significant. In the right ATR, MD and RD demonstrated sig
nificant negative correlations with UHDRS cognitive scores (MD: r =
-0.288, p-adj = 0.010; RD: r = -0.336, p-adj < 0.001) and Stroop 
interference performance (MD: r = -0.217, p-adj = 0.023; RD: r =
-0.190, p-adj = 0.040). In the left ATR, both MD and RD were negatively 
correlated with UHDRS cognitive scores (MD: r = -0.301, p-adj = 0.010; 
RD: r = -0.328, p-adj < 0.001), and MD also negatively correlated with 
Stroop interference (r = -0.206, p-adj = 0.036). Moreover, R2*- 
relaxometry of the left ATR showed a significant negative correlation 
with Stroop performance (r = -0.275, p-adj = 0.020). Trend-level 
negative correlations were observed between Stroop interference per
formance and RD of the left ATR (r = -0.154, p-unc = 0.024, p-adj =
0.062), and with AD of the right ATR (r = -0.199, p-unc = 0.010, p-adj =
0.064).

Concerning psychiatric disturbances, apathy scores showed a sig
nificant negative correlation with FA of the right ATR (r = -0.367, p-adj 
= 0.050). When controlling for disease burden, PBA-apathy scores were 
significantly negatively correlated with FA of both the right (r = -0.369, 
p-adj < 0.001) and left ATRs (r = -0.327, p-adj < 0.001), and with R2*- 
relaxometry of the right ATR (r = -0.295, p-adj = 0.020). A trend-level 
negative association was also observed between apathy and AD of the 
right ATR (r = -0.182, p-unc = 0.014, p-adj = 0.064). PBA-psychosis 
scores were significantly negatively correlated with RD of both the 
right (r = -0.171, p-adj = 0.049) and left ATRs (r = -0.193, p-adj =
0.037), and showed trend-level negative associations with MD of both 
the right (r = -0.141, p-unc = 0.030, p-adj = 0.067) and left ATRs (r =
-0.133, p-unc = 0.035, p-adj = 0.070). PBA-irritability scores showed a 
significant negative correlation with MD of the right ATR (r = -0.175, p- 
adj = 0.049), and trend-level negative associations with MD of the left 
ATR (r = -0.175, p-unc = 0.017, p-adj = 0.054) and with RD of the right 
ATR (r = -0.144, p-unc = 0.030, p-adj = 0.067). Lastly, trend-level 
negative correlations were found between PBA-depression scores and 
both MD (r = -0.152, p-unc = 0.026, p-adj = 0.065) and RD (r = -0.159, 
p-unc = 0.023, p-adj = 0.057) of the right ATR, and MD (r = -0.140, p- 
unc = 0.033, p-adj = 0.070) and RD (r = -0.153, p-unc = 0.026, p-adj =
0.062) of the left ATR.

3.2.2. Machine learning models in the assessment of MRI metrics as 
biomarkers

In the first scenario with the inclusion of the three subgroups (con
trols, presymptomatic, and symptomatic patients), models without RFE 
obtained better performance than those with RFE. Notably, BLR and 
SVMR models did not eliminate any feature during RFE, given that all 
variables had a relative weight, necessary to correctly separate sub
groups (see Supplementary materials Fig. 1A). The most discriminant 
variables were AD and MD of both ATR, as well as RD and R2* of the 
right ATR. Among the models, SVMR without RFE achieved the highest 
performance, with an accuracy of 70.3 %, a Cohen’s Kappa coefficient of 
0.53, and AUC values of 87.3 % for the macro-average and of 87.9 % for 
the micro-average. The sensitivities and specificities for each subgroup 
were the following: 80.9 % and 68.1 % for controls, 38.5 % and 92.9 % 
for presymptomatic subjects, and 78.9 % and 90.5 % for symptomatic 
patients. Precision and F1-scores were as follows: 66.4 % and 72.9 % for 
controls, 62.7 % and 47.7 % for presymptomatic subjects, and 80.2 % 
and 79.6 % for symptomatic patients. Overall statistics and subgroup- 
specific statistics for the models evaluated in this scenario are sum
marised in tables 2 and 3, respectively. The ROC-AUC curve with the 
corresponding confusion matrix for SVMR model without RFE is shown 
in Fig. 5A.

In the second scenario, which focused on differentiating presymp
tomatic individuals from controls, models with RFE performed better 
than those without RFE. Interestingly, the most discriminating variables 
for distinguishing these subgroups, based on RFE analysis, were the 
following in order of importance: left R2*, right R2*, left FA, right FA, 
and left AD (see Supplementary materials Fig. 1B). The SVMR with RFE 
provided the highest accuracy and performance values. The selected 
variables included R2*, FA, and AD from both ATRs, and RD from the 
left ATR, with R2* and FA of both ATRs and AD of the left ATR being the 
most discriminative. The model achieved an accuracy of 75.2 % with a 
Cohen’s Kappa coefficient of 0.44, and an AUC value of 81.3 %. Sensi
tivity and specificity were 58.3 % and 84.3 %, respectively, while pre
cision and F1-score were 66.7 % and 62.2 %, respectively.

In the third scenario, which differentiated presymptomatic subjects 
from symptomatic patients, models with RFE again performed better 
than those without RFE. Key variables for distinguishing these sub
groups were the following in order of importance: right MD, right AD, 
right RD, left MD, right R2*, left AD and left RD (see Supplementary 
materials Fig. 1C). The SVMR with RFE was the model with the highest 
accuracy and better performance measures. All variables were selected 
by RFE, with the most discriminant being MD, AD, RD and R2* of the 
right ATR, and MD of the left ATR. This model achieved an accuracy of 
88.2 % with a Cohen’s Kappa coefficient of 0.76, and an AUC of 95.8 %. 
Sensitivity and specificity were 90.6 % and 86.5 % respectively, while 
precision and F1-score were 82.9 % and 86.6 % respectively. Table 4
summarises the statistics for the models of the second and third 

Table 2 
Overall statistics of the machine learning models obtained from test datasets of 
the along-the-tract MRI metrics of both ATR including the three subgroups.

Accuracy Kappa AUC (macro- 
average)

AUC (micro- 
average)

LBR without 
RFE

0.646 0.449 0.741 0.756

LBR with RFE 0.624 0.359 0.690 0.725
QDA without 

RFE
0.585 0.330 0.735 0.757

QDA with RFE 0.545 0.225 0.679 0.716
SVMR without 

RFE
0.703 0.526 0.873 0.879

SVMR with 
RFE

0.698 0.517 0.869 0.875

AUC: area under the curve; LBR: logistic boost regression, QDA: quadratic 
discriminant analysis; RFE: recursive feature elimination; SVMR: support vector 
machines with radial basis function kernel.
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Table 3 
Statistics by subgroups of the machine learning models obtained from tests datasets of the along-the-tract MRI metrics of both ATR including the three subgroups.

Balanced Accuracy Sensitivity Specificity Precision Recall F1-score AUC

LBR without RFE
Class..Control 0.717 0.686 0.749 0.676 0.686 0.681 0.736
Class..PreHD 0.674 0.508 0.841 0.452 0.508 0.478 0.694
Class..HD 0.771 0.675 0.866 0.740 0.675 0.706 0.793

LBR with RFE
Class..Control 0.685 0.661 0.753 0.661 0.661 0.661 0.719
Class..PreHD 0.511 0.471 0.822 0.393 0.471 0.429 0.669
Class..HD 0.768 0.667 0.856 0.742 0.667 0.702 0.809

QDA without RFE
Class..Control 0.653 0.770 0.537 0.564 0.770 0.651 0.680
Class..PreHD 0.632 0.344 0.920 0.569 0.344 0.429 0.729
Class..HD 0.686 0.511 0.861 0.642 0.511 0.569 0.797

QDA with RFE
Class..Control 0.590 0.888 0.293 0.494 0.888 0.635 0.615
Class..PreHD 0.500 0.000 1.000 NA 0.000 NA 0.647
Class..HD 0.699 0.481 0.916 0.736 0.481 0.582 0.774

SVMR without RFE
Class..Control 0.745 0.831 0.664 0.658 0.831 0.734 0.823
Class..PreHD 0.657 0.333 0.945 0.653 0.333 0.441 0.868
Class..HD 0.847 0.789 0.898 0.789 0.789 0.789 0.908

SVMR with RFE
Class..Control 0.741 0.815 0.668 0.656 0.815 0.727 0.869
Class..PreHD 0.645 0.354 0.936 0.630 0.354 0.453 0.875
Class..HD 0.845 0.789 0.901 0.795 0.789 0.792 0.869

AUC: area under the curve; LBR: logistic boost regression, QDA: quadratic discriminant analysis; RFE: recursive feature elimination; SVMR: support vector machines 
with radial basis function kernel.

Fig. 5. Machine Learning Models evaluating MRI metrics as biomarkers. ROC-AUC curves and confusion matrices for classification performance (A1) SVMR 
model without RFE, including three subgroups (controls, PreHD, and HD); (A2) corresponding confusion matrix; (B1) SVMR models with RFE for classification in two 
scenarios, PreHD vs. controls, and PreHD vs. HD; (B2) corresponding confusion matrices. HD: symptomatic patients; PreHD: presymptomatic individuals; RFE: 
recursive feature elimination; SVMR: support vector machine model with radial basis function kernel.
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scenarios. The ROC-AUC curves with the corresponding confusion 
matrices for the SVMR models with RFE for these two scenarios are 
shown in Fig. 5B.

4. Discussion

The present study aims to examine the ATR neurodegeneration in HD 
gene carriers by using a cross-sectional multimodal approach, 
combining WM microstructure and iron deposits evaluated by DTI and 
quantitative relaxometry, respectively. By integrating along-the-tract 
analyses with machine learning models, we provide new insights of 
the ATR involvement in HD across disease stages.

Regarding ATR microstructure, significant bilateral differences were 
observed in both premanifest and manifest HD groups compared to 
controls. In particular, in accordance with previous literature (Bourbon- 
Teles et al., 2019; Estevez-Fraga et al., 2021; Gregory et al., 2019; Odish 
et al., 2015; Phillips et al., 2014; Rosas et al., 2018; Saba et al., 2017), 
manifest HD patients exhibited microstructural alterations in both ATR, 
evidenced by higher average values in MD, RD, and AD compared to 
controls and premanifest individuals. These group differences extended 
beyond average metrics, with along-the-tract assessments showing the 
same results but also revealing a bilateral decrease in FA compared to 
premanifest individuals. Although standard diffusion metrics, as the 
ones reported here are not specific in terms of the underlying neural 
mechanisms, previous research suggests that such microstructural 
alteration could result from a combination of myelin disintegration, 
chronic axonal injury, axonal loss and/or ongoing inflammation (Aung 
et al., 2013; Ferrari Bardile et al., 2023; Field et al., 2024; Gatto et al., 
2020; Jia et al., 2022; Li and Conforti, 2013; Pérot et al., 2024; Sun et al., 
2022; Winklewski et al., 2018). This is supported by observed bilateral 
increases in both average and along-the-tract RD and AD values, as 
proxies of alterations in myelin integrity and axonal loss, respectively 
(Aung et al., 2013; Winklewski et al., 2018). Notably, the degeneration 
of both ATR in manifest patients was asymmetrical being more severe in 
the right ATR given the higher along-the-tract right-left differences in 
MD, RD and AD compared to controls and premanifest individuals. 
Specifically, the assessment of right-left asymmetries demonstrated 
differential physiological traits in gene carriers and healthy controls 
consisting of a reduced integrity of the right ATR as depicted by 
increased along-the-tract MD and AD compared to the left ATR, and this 
asymmetry was accentuated in manifest patients. Thus, this difference in 
integrity might confer a different susceptibility to huntingtin patho
genesis with an increased vulnerability of the right ATR to pathology 
(Lubben et al., 2021). This susceptibility has been also proven in other 
diseases, such as schizophrenia (Mamah et al., 2010).

In premanifest individuals, no significant differences were observed 
in average DTI or relaxometry values compared to healthy controls. 
However, the along-the-tract analysis revealed a previously unreported 
increase in white matter integrity within both ATRs, characterized by 
bilateral increases in FA accompanied by decreases in RD. Post-hoc 
pairwise permutation tests controlling for age suggested that these FA 
increases were more likely attributable to disease-related processes 
rather than age differences, as the increases were also observed in older 
individuals. Likewise, post-hoc pairwise permutation tests controlling 
for gender indicated that the observed FA increases could not be solely 
explained by the higher proportion of women in the presymptomatic 
group, as differences remained evident when comparing female partic
ipants alone. However, the possibility of similar FA increases in pre
symptomatic males could not be fully assessed due to the limited male 
representation in our sample, underscoring the need for further research 
in more gender-balanced samples.

The observed FA increases in presymptomatic individuals may 
reflect an early compensatory reorganization mechanism within the 
ATRs, potentially reflecting changes in structural connectivity prior to 
overt degeneration. The observed increase in FA and decrease in RD 
could point to alterations in myelin organization or other factors that 
contribute to enhanced axonal integrity, such as an increase in oligo
dendrocyte density as a neurodevelopmental effect of mHtt in the 
morphogenesis of the brain (Casella et al., 2022; Ferrari Bardile et al., 
2023; Gomez-Tortosa et al., 2001) or a thickness increase in myelin 
sheath, as inferred from RD reductions and supported by early-stage 
increases in magnetization transfer, a proxy for myelin content 
(Winklewski et al., 2018; Pérot et al., 2024). This hypothesis is further 
supported by MR spectroscopy studies in HD mouse models showing 
early increases in choline and N-acetylaspartate (NAA), which have 
been interpreted as markers of compensatory mechanisms (Pérot et al., 
2024). Alternatively, these changes might indicate a neuroplastic 
response, where the brain attempts to compensate neuronal dysfunction 
for ongoing pathological processes (Estevez-Fraga et al., 2021; Papoutsi 
et al., 2014; Pérot et al., 2024). In this regard, aligned studies have 
identified enhanced functional connectivity between the striatum and 
prefrontal cortex in premanifest HD patients, especially in the middle 
frontal areas and the anterior regions of the executive control network 
centred in the dorsolateral prefrontal cortex (Kronenbuerger et al., 
2019; Werner et al., 2014; Wolf et al., 2014). In these studies, they have 
speculated that the enhanced functional connectivity of the striatum- 
prefrontal circuit could be indicating a compensatory mechanism to 
subserve functions that are affected. Moreover, a neuroinflammatory 
component in the left ATR cannot be excluded, as indicated by a left 
along-the-tract increase in AD, potentially indicating axonal repair with 

Table 4 
Statistics of the machine learning models obtained from tests datasets of the along-the-tract MRI metrics of both ATR in the scenario of presymptomatic subjects vs 
controls (A) and presymptomatic subjects vs symptomatic patients (B).

Accuracy Kappa Sensitivity Specificity Precision Recall F1-score AUC

A. Presymptomatic Subjects (positive class) vs Controls ​ ​
LBR without RFE 0.613 0.112 0.354 0.753 0.436 0.354 0.391 0.610
LBR with RFE 0.661 0.186 0.333 0.837 0.525 0.333 0.408 0.677
QDA without RFE 0.723 0.322 0.385 0.904 0.685 0.385 0.493 0.679
QDA with RFE 0.675 0.213 0.333 0.860 0.561 0.333 0.418 0.639
SVMR without RFE 0.737 0.394 0.521 0.854 0.658 0.521 0.581 0.821
SVMR with RFE 0.752 0.439 0.583 0.843 0.667 0.583 0.622 0.813

B. Presymptomatic Subjects (positive class) vs Symptomatic Patients ​ ​
LBR without RFE 0.738 0.463 0.698 0.767 0.684 0.698 0.691 0.798
LBR with RFE 0.725 0.431 0.646 0.782 0.681 0.646 0.663 0.793
QDA without RFE 0.738 0.476 0.781 0.707 0.658 0.781 0.714 0.836
QDA with RFE 0.751 0.505 0.823 0.699 0.664 0.823 0.735 0.823
SVMR without RFE 0.860 0.716 0.875 0.850 0.808 0.875 0.840 0.943
SVMR with RFE 0.882 0.761 0.906 0.865 0.829 0.906 0.866 0.958

AUC: area under the curve; LBR: logistic boost regression, QDA: quadratic discriminant analysis; RFE: recursive feature elimination; SVMR: support vector machines 
with radial basis function kernel.
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microglial proliferation (Field et al., 2024; Gatto et al., 2020; Jia et al., 
2022; Winklewski et al., 2018). In this sense, an increased AD in the ATR 
has been associated with circulating Th17 cells in bipolar disorder 
(Aronica et al., 2022), which could support the inflammatory theory.

Diverging findings compared to our results have also been reported 
in presymptomatic stages. For instance, Phillips et al., 2014 described an 
increase in average RD and AD in both ATR, while Rosas et al., 2018
found an increase in average RD exclusively in the right ATR in pre
symptomatic individuals near disease onset. These results were inter
preted as early signs of ATR degeneration, suggesting that the ATR may 
be particularly vulnerable to early disruption in HD. Such discrepancies 
could stem from differences in sample characteristics, particularly 
related to the estimated years to onset, and methodological differences, 
such as the assessment of along-the-tract values and the use of non- 
parametric mathematical analysis in our study. Altogether, all these 
hypothesised physio-pathological mechanisms inferred by our findings 
should be further investigated to better understand the biological 
mechanisms associated to the pathology of ATR in HD.

Concerning iron levels, the right-left asymmetry assessment revealed 
a consistent along-the-tract R2* increase in the left ATR compared to the 
right ATR, a pattern that appeared to be a constitutional physiological 
trait, common to both gene carriers and healthy controls. Differences in 
iron levels amongst subgroups were observed exclusively in the along- 
the-tract R2* values. Premanifest individuals exhibited a bilateral 
asymmetrical R2* increase when compared to healthy controls and 
symptomatic patients, with the left ATR showing a more pronounced 
R2* increase. In manifest patients, R2* increase was detected only in the 
left ATR compared to controls. While average R2* increase in the left 
ATR has been previously reported in presymptomatic individuals 
compared to manifest patients (Phillips et al., 2014), little is known 
about R2* increase in manifest patients with no reports found describing 
it.

Our findings suggest that iron accumulation may begin early in the 
disease course, with a more significant impact on the left ATR. Physi
opathologically, iron overload in HD has been linked to an up-regulation 
mediated by mutant huntingtin (mHTT) of iron regulation protein-1 
(IRP1) and transferrin receptor (TfR) (Niu et al., 2018). Furthermore, 
histopathologically, two different potential mechanisms have been 
proposed. On one hand, the increased density in oligodendrocytes 
described in postmortem brains of presymptomatic carriers long before 
the expected onset of the clinical phenotype (Gomez-Tortosa et al., 
2001) and remaining relatively stable with disease progression in ani
mal models (Blockx et al., 2012b, 2012a; Ferrari Bardile et al., 2023) 
could interplay a role in this iron accumulation given that these cells are 
those with the highest iron concentration in the brain (Connor and 
Menzies, 1996; LeVine and Macklin, 1990). On the other hand, the ferric 
iron and ferritin accumulation has been detected in dystrophic microglia 
(Simmons et al., 2007), visible in all histological grades of Vonsattel 
(from 0 to 4), as part of the chronic neuroinflammation present in HD 
that contributes to neurodegeneration and further influences disease 
progression (Kempuraj et al., 2016; Thomsen et al., 2015). In this regard, 
mice HD models studied by MR spectroscopy have expressed an increase 
in glutamine at early stages remaining elevated at later stages related to 
astrocytic reactivity in an inflammatory background favouring the in
flammatory hypothesis (Pérot et al., 2024).

Besides, the along-the-tract R2* decrease disclosed for the right ATR 
of manifest patients compared to healthy controls could be secondary to 
the further degeneration of the right ATR that might cause reductions of 
the relaxometry values, thereby limiting the ability to detect the R2* 
increase expected by the disease physiopathology (Phillips et al., 2014; 
Sánchez-Castañeda et al., 2015; Van Bergen et al., 2016). This hypoth
esis is supported by the explored correlations between relaxometry and 
diffusion tensor metrices, which could rely on the interrelated physical 
basis of both sequences. Specifically, the negative moderate correlations 
between relaxometry and diffusivities and the positive weak correlation 
between relaxometry and FA showed that reduced FA and increased 

diffusivities seen in manifest patients correlated with reduced 
relaxometry.

To gain a clearer insight into the interplay between iron alterations 
and microstructural changes, a correlation analysis between relaxom
etry values and diffusion tensor metrics was performed. We observed a 
positive correlation between white matter integrity and relaxometry 
values across the three groups (controls, premanifest and HD patients), 
suggesting an association between WM integrity and iron content. 
However, these findings not necessarily imply causality, that is, one 
factor may not directly result as a consequence of the other. For instance, 
in presymptomatic stages, it seems plausible that iron metabolism 
disruption associated with iron accumulation (Niu et al., 2018) along 
with an increase in oligodendrocyte density (Ferrari Bardile et al., 2023; 
Gomez-Tortosa et al., 2001) are synchronous processes, independent in 
nature, but partially interdependent in this early stage as oligodendro
cytes are the CNS cell with the highest iron content (Connor and Men
zies, 1996; LeVine and Macklin, 1990). Moreover, the negative 
correlation between relaxometry and RD supports the possibility that 
increased iron content might be associated with greater oligodendrocyte 
density, as reflected by a decrease in RD, which is considered a proxy of 
increased myelin integrity. In contrast, in symptomatic stages, the iron 
accumulation in the left ATR probably secondary to disruptions in iron 
metabolism (Niu et al., 2018) could potentially be synchronous with 
myelin loss linked to intrinsic oligodendroglial cell deficits driven by 
mHtt (Ferrari Bardile et al., 2023) and with axonal loss driven by hun
tingtin aggregates (Li et al., 2001). The ability to determine the rela
tionship between iron and WM microstructure is limited in the right ATR 
of symptomatic patients by the fact that the increases in diffusivities and 
the decreases in fractional anisotropy and relaxometry values could 
reflect the same histological issue, namely a loss in WM integrity, as 
explained previously. In addition, iron’s role in processes such as 
oxidative stress, ferroptosis (Berg and Youdim, 2006; Latunde-Dada, 
2017; Manoharan et al., 2016; Mi et al., 2019; Wu et al., 2018) and 
chronic neuroinflammation (Kempuraj et al., 2016; Thomsen et al., 
2015) could further contribute to the degeneration of the ATR in man
ifest patients. Nevertheless, while these observations point to a complex 
relationship between iron accumulation and WM microstructure, 
further studies are needed to better understand the coupling between 
these two processes.

Methodologically, the along-the-tract analysis was more sensitive to 
detect ATR anomalies in premanifest individuals, to identify subgroup 
differences regarding relaxometry values and to reveal laterality asym
metries and differences. This approach, previously applied to assess 
callosal integrity (Rosas et al., 2010), demonstrated similar enhanced 
sensitivity by revealing information that might be lost when examining 
tract means alone. Averaging DTI measures can blur part of the effects, 
adding the along-tract approach additional details (Shirazi et al., 2021). 
Microstructural properties vary along the length of a tract, showing 
localized sensitivity due to complex fiber configurations, such as 
dispersion, crossing fibers, and proximity to cerebrospinal fluid or gray 
matter, all of which can impact DTI metrics and relaxometry values (Hua 
et al., 2008; Pierpaoli and Basser, 1996; Szczepankiewicz et al., 2013).

Clinically, alterations in diffusion and iron-related microstructural 
properties of ATRs were significantly associated with clinical features of 
HD, supporting their involvement in disease progression, cognitive 
impairment, and psychiatric disturbances.

Regarding disease progression, CAP score, a proxy of disease burden, 
was significantly positively associated with both MD and RD of the right 
and left ATRs. Additionally, UHDRS functional scores showed signifi
cant negative associations with MD of the right ATR and RD of both 
ATRs. These findings suggest a bilateral, progressive disorganization of 
ATR white matter with advancing disease, reflecting a loss of micro
structural integrity due to neurodegenerative processes, clinically 
translated into poorer global functioning.

In relation to cognition, both MD and RD of the right and left ATRs 
demonstrated significant negative correlations with UHDRS-cognitive 
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scores as well as Stroop interference performance. In addition, relax
ometry values of the left ATR were significantly negatively associated 
with Stroop interference scores. Together, these results suggest a 
structural compromise in both ATRs associated with deficits in cognitive 
flexibility, and in executive and attention functions, in accordance with 
previous literature (Harrington et al., 2016; Matsui et al., 2015; Rosas 
et al., 2018) and further supporting the central role of the ATR in 
thalamo-cortical circuits underpinning cognitive control in HD.

Regarding psychiatric symptoms, apathy scores showed significant 
negative correlations with FA of both ATRs and with R2* relaxometry of 
the right ATR, indicating that reduced microstructural integrity and 
lower iron content in these regions are associated with increased 
apathetic symptoms. These findings suggest that the ATR, particularly 
the right hemisphere, plays a critical role in motivational regulation, 
consistent with previous studies linking fronto-thalamic disruption to 
apathy (Coenen et al., 2012; De Paepe et al., 2025, 2019;Torso et al., 
2015). Interestingly, whereas the iron accumulation in the right ATR 
could be protective for apathy, iron accumulation in the left ATR could 
be detrimental to cognition in agreement with previous literature 
underlining the poorer cognitive performance in iron accumulation 
(Ferreira et al., 2019; Kalpouzos et al., 2017; Spence et al., 2020; 
Zachariou et al., 2020). Moreover, psychosis scores correlated nega
tively with RD of both ATRs, and irritability scores with MD of the right 
ATR, which may indicate a predisposition to these symptoms driven by 
aberrant compensatory white matter changes or coexisting inflamma
tory processes, both potentially associated with early stages of HD.

Concerning the assessment of DTI metrics and relaxometry as po
tential diagnostic biomarkers in HD, machine learning models demon
strated strong capabilities for classifying disease stages and identifying 
presymptomatic individuals, specially the SVMR models which obtained 
the highest performance in terms of confusion matrix derived metrices. 
Notably, the SVMR models with RFE excelled in differentiating pre
symptomatic from symptomatic patients and from controls, achieving 
high accuracies (88.2 % and 75.2 %, respectively) and underscoring the 
importance of including these parameters to understand and charac
terize disease stages. These findings underscore the interplay between 
WM integrity and iron levels as sensitive indicators of neuro
degeneration, reflecting early structural and biochemical brain changes.

There are different limitations to consider in this study. The cross- 
sectional design restricts our ability to track the temporal progression 
of ATR neurodegeneration. Longitudinal studies with larger and more 
demographically balanced cohorts are required to validate these find
ings and better characterize disease-related changes over time. For 
example, although gender differences between presymptomatic partic
ipants and controls were statistically controlled in the models by 
including gender as a covariate, and further assessed in post hoc ana
lyses, the overrepresentation of females in the presymptomatic group 
may result in a limited extensibility of the results in males. This is 
especially relevant given the well-documented sex-related variability in 
white matter microstructure (Herlin et al., 2024). In addition, although 
age differences between presymptomatic participants and controls were 
not statistically significant, the presymptomatic group was on average 6 
years younger. To address this potential confound, age was also included 
as a covariate in the statistical models. Furthermore, post-hoc analysis 
were conducted to evaluate ATR integrity across different ages groups. 
These analyses indicated that the observed FA increases were not 
attributable to the younger age of presymptomatic individuals, sup
porting the interpretation that these changes are disease-related rather 
than solely age-driven. Nevertheless, future studies should aim to recruit 
more demographically matched samples to further minimize potential 
confounding effects and enhance the generalizability of the findings.

Another limitation is the inherent lack of specificity in DTI, which 
makes it challenging to distinguish between coexisting pathologies such 
as inflammation, demyelination, axonal loss and injury. DTI metrics can 
underestimate the extent of demyelination and to overestimate axonal 
injury, reducing their specificity in contexts where multiple pathological 

processes are present (Wheeler-Kingshott and Cercignani, 2009; Win
klewski et al., 2018). Additionally, although relaxometry is often used as 
an indicator of iron content, it has limitations due to its lack of speci
ficity. As a T2*-weighted gradient-echo sequence, the signal is influ
enced not only by substances that affect magnetic susceptibility, such as 
iron, blood products and calcium, but also by other tissue characteris
tics, including myelination and water content. Specifically, an increase 
in iron levels results in R2* increase, while tissue damage associated 
with increased water and demyelination results in a decrease in R2* 
measurements (Phillips et al., 2014; Van Bergen et al., 2016). Thus, 
relaxometry has the inherent limitation in differentiating between these 
two concomitant histopathological processes often presented in neuro
degenerative diseases (Berg and Youdim, 2006; Simmons et al., 2007; 
Wu et al., 2018), but combining relaxometry measures with diffusivity 
metrics can yield a more comprehensive understanding of the underly
ing pathology, being highly recommendable to consider the changes in 
relaxometry values alongside the changes in WM integrity. Future 
neuropathological studies are needed involving datasets to confirm and 
expand upon our findings. Lastly, a key limitation of the machine 
learning models lies in the assumption of independence among along- 
the-tract values. Since each individual contributes multiple spatially 
adjacent measurements along the tract, these observations are inher
ently correlated. Treating them as independent during model training 
and testing may overestimate model performance estimates. Future 
research should consider implementing modelling strategies that 
explicitly account for within-subject spatial dependencies to enhance 
robustness and generalizability of predictive models.

In conclusion, alterations in ATR microstructure and iron dysregu
lation take place across both premanifest and manifest stages of HD, 
potentially reflecting a metachronous pattern: the initial iron increase 
persisted across both disease stages, while white matter degeneration 
became evident in the manifest stage, potentially intensified by iron 
toxicity. Both ATRs are critically involved in mediating core clinical 
features of HD, including disease progression, cognitive dysfunction, 
and neuropsychiatric symptoms. Moreover, relaxometry values and DTI 
metrics of both ATR show promises in tested machine-learning models 
for accurately distinguishing disease stages, particularly in identifying 
presymptomatic individuals from both healthy controls and symptom
atic patients. Nevertheless, further refinement and inclusion of addi
tional metrics are needed to enhance the diagnostic performance of 
these models. Overall, our findings highlight the ATR as a key region of 
early vulnerability and progressive degeneration in HD, and underscore 
iron accumulation as a potentially important driver of white matter 
pathology. These insights warrant further longitudinal and multimodal 
investigations to better understand the mechanistic interplay between 
iron and white matter changes and to support biomarker development 
for early detection and disease monitoring in HD.
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