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Abstract: The mass term of the Chiral Lagrangian at leading order mixes the strangeness-zero
states. In order to perform calculations of physical quantities such as decay rates and scattering
amplitudes involving the neutral π0, η and η′ mesons, the mass matrix of the Lagrangian needs
to be diagonalized. In this work, we find the relation between the Lagrangian and physical states
in terms of mixing angles as well as the expressions for the corresponding physical meson masses.
We also incorporate mixing with the axion, thus preparing the Lagrangian for applications in axion
phenomenology.
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I. INTRODUCTION

The π0, η and η′ are neutral pseudoscalar mesons that
arise from the spontaneous breaking of chiral symmetry
in Quantum Chromodynamics (QCD). Although ideally
these states would be pure flavor eigenstates, isospin-
breaking effects, due to the mass difference between the
up and down quarks, introduce a small but significant
mixing among them. Moreover, since the π0, η, and η′

all possess the same quantum numbers (JPC = 0−+),
such mixing is not forbidden by symmetry principles
and is naturally accommodated within the theory. As a
result, the physical meson states are linear combinations
of the original flavor states. Understanding this π0-η-η′

mixing is crucial since it has notable phenomenological
consequences, particularly in processes such as radiative
decays and electromagnetic transitions.

Beyond the meson sector, a key unresolved issue in
the Standard Model (SM) is the so-called strong CP
problem, which refers to the absence of CP violation
in strong interactions despite the presence of a term in
the QCD Lagrangian that would naturally induce it.
To address this issue, Peccei and Quinn (PQ) proposed
a dynamical mechanism involving the introduction of
a new global U(1) symmetry, which is spontaneously
broken. This mechanism predicts the existence of a
hypothetical pseudoscalar particle known as the axion [1].

In addition to addressing the unnatural smallness of
the QCD θ-angle, axions, and more generally, axion-like
particles (ALPs), have emerged as compelling candidates
for dark matter and mediators of new physics beyond
the SM. Their weak coupling to SM particles and their
light masses allow them to evade current experimental
constraints while giving rise to rich phenomenology.

Motivated by these considerations, in this work, we
present a theoretical analysis of the mixing within the
π0-η-η′ system. We will find the relation between the

original and physical states in terms of mixing angles
and the expressions for the physical meson masses.
In addition, we extend our analysis of the π0–η–η′

system to include mixing with the axion. This inclusion
not only enriches the theoretical framework but also
prepares the effective Lagrangian for applications in
axion phenomenology.

This work is structured as follows. In Section II, we
outline the theoretical framework, presenting the leading-
order chiral perturbation theory (ChPT) Lagrangian and
deriving the π0–η–η′ mixing. In Section III, we ex-
tend the formalism by incorporating the axion into the
mesonic sector, thus making the framework suitable for
axion phenomenology. Finally, in Section IV, we summa-
rize our main results and present our conclusions.

II. THEORETICAL FRAMEWORK

A. Chiral Perturbation Theory and mass mixing
matrix

Chiral Perturbation Theory (ChPT) is the effective
low-energy theory that systematically describes the in-
teractions of the lightest mesons originating from the
spontaneous breaking of chiral symmetry in QCD [2]. In
the present analysis, we adopt the ChPT Lagrangian at
leading-order (LO), which reads:

LχPT, LO =
f2
π

4
Tr[∂µU

†∂µU ]

+
f2
π

4
Tr[2B0(MU +MU†)]− 1

2
m2

0η
2
0 ,

(1)

where M = diag(mu,md,ms) is the quark mass matrix,

U = exp
(

i
√
2Φ

fπ

)
, Φ is the matrix containing the pseu-

doscalar meson fields (see Appendix A), fπ is the pion
decay constant and B0 is a low energy constant related
to the quark condensate.
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The quadratic mass term in Eq. (1) mixes strangeness-
zero chiral mesons fields π3, η8 and η0. We can ex-
press these quadratic Lagrangian terms as LχPT, LO ⊃
− 1

2ϕ
TM2ϕ with ϕ = (π3, η8, η0), and where the mass

matrix is given by:

M2 =

 m2
π3

m2
π3η8

m2
π3η0

m2
π3η8

m2
η8

m2
η8η0

m2
π3η0

m2
η8η0

m2
η0

 , (2)

where the explicit expressions for the constituent ele-
ments of this matrix are detailed in Appendix A. In order
to obtain the physical meson states π0, η and η′, the mass
mixing matrix given by Eq. (2) must be diagonalized.

B. η-η′ mixing

To elucidate the mixing structure in a simplified set-
ting, we first consider the isospin limit, where the mass
of quark up and is the same as the quark down. In this
case, the off-diagonal mass terms m2

π3η8
and m2

π3η0
van-

ish, and the mass matrix in Eq. (2) simplifies such that
only the η8 and η0 fields mix. The physical η and η′

states are then obtained by performing a rotation of the
η8-η0 subsystem via:(

η8
η0

)
=

(
cos θηη′ sin θηη′

− sin θηη′ cos θηη′

)(
η
η′

)
, (3)

where θηη′ is the mixing angle characterizing the rota-
tion between the flavor and mass eigenstates. If we do
the corresponding diagonalization of 2× 2 submatrix we
obtain the expressions for the physical meson masses,

m2
η,η′ =

1

2

[
(m2

η8
+m2

η0
)∓

√
(m2

η8
−m2

η0
)2 + 4m4

η8η0

]
,

(4)
and the mixing angle obeys the equation

tan 2θηη′ =
2m2

η8η0

m2
η0

−m2
η8

. (5)

C. π0-η-η′ mixing

Having established the physical masses of the η and η′

mesons and the associated mixing angle θηη′ , we now ex-
tend the analysis to incorporate isospin symmetry break-
ing. This inclusion introduces mixing among the π0, η,
and η′ states. The transformation between the symmetry
eigenstates (π3, η8, η0) and the physical mass eigenstates
(π0, η, η′) is expressed through the following rotation [3]:π3

η8
η0

 =

 1 −ϵπη −ϵπη′

ϵπηcθηη′ + ϵπη′sθηη′ cθηη′ sθηη′

ϵπη′cθηη′ − ϵπηsθηη′ −sθηη′ cθηη′

π0

η
η′

 ,

(6)

with sθηη′ = sin θηη′ and cθηη′ = cos θηη′ .

To systematically diagonalize the mass matrix, we
proceed by treating the mixing in subsystems. The
full rotation matrix can be factorized as: R =
R1(θηη′)R2(ϵπη)R3(ϵπη′), where:

R =

1 0 0
0 cθηη′ sθηη′

0 −sθηη′ cθηη′

 1 −ϵπη 0
ϵπη 1 0
0 0 1

 1 0 −ϵπη′

0 1 0
ϵπη′ 0 1

 .

(7)

Here, we assume that the mixing angles ϵπη and ϵπη′ are
small, allowing us to apply a Taylor expansion for the
sine and cosine functions, retaining only leading-order
terms.

The first subsystem η-η′ has already been diagonalized
in the previous section. Therefore, we now focus on di-
agonalizing the π0-η and π0-η′ mixings. The resulting
expressions for the small mixing angles are:

ϵπη =
m2

π3η0
sin θηη′ −m2

π3η8
cos θηη′

m2
η1

−m2
π3

, (8)

ϵπη′ =
m2

π3η8
sin θηη′ +m2

π3η0
cos θηη′

m2
π1

−m2
η′
1

, (9)

where m2
η1

and m2
η′
1
refers to the mass eigenvalues of the

diagonalized η − η′ subsystem, Eq. (4). Finally, the new
expressions for the physical meson masses, accounting for
the full mixing structure, are:

m2
η,π1

=
1

2

[
m2

η1 +m2
π3

±
[
(m2

η1 −m2
π3
)2

+ 4(m2
π3η8cθηη′ −m2

π3η0sθηη′)2
] 1

2

]
, (10)

m2
π,η′ =

1

2

[
m2

η′
1
+m2

π1
∓
[
(m2

η′
1
−m2

π1
)2 + 2(m4

π3η0 +m4
π3η8)

+ 2(m4
π3η0 −m4

π3η8)c2θηη′ + 4m2
π3η0m

2
π3η8s2θηη′

] 1
2

]
.

(11)

In Eq. (10), the upper (plus) sign corresponds to the
physical η mass, m2

η, while the lower (minus) sign corre-

sponds to m2
π1
, which is an intermediate pion mass eigen-

value after the R2(ϵπη) rotation. In Eq. (11), the upper
(minus) sign yields the final physical pion mass, m2

π, and
the lower (plus) sign gives the physical η′ mass m2

η′ .

III. INCLUSION OF THE AXION IN THE
NEUTRAL PSEUDOSCALAR MESON SECTOR

A. Axion-meson mixing

In the context of low-energy QCD, axions can couple
to the gluon field-strength topological term via the
anomaly, leading to interactions with mesons through
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mixing. As such, their inclusion in chiral perturbation
theory (ChPT) naturally extends the framework to
accommodate potential signatures of new physics in
mesonic processes. In this section, we incorporate an
axion into the mesonic sector in order to study its
impact on neutral meson and to make the formalism
suitable for axion phenomenology.

From now on, we will adopt the leading order ALP-
XPT Lagrangian [4, 5]:

LXPT, LO
ALP =

1

2
∂µa∂

µa− 1

2
M2

��PQ a2 − 1

2
m2

0

(
η0 −

QG√
6

fπ
fa

a

)2

+
f2
π

4
Tr[∂µU

†∂µU ] +
f2
π

4
Tr[2B0(Mq(a)U +Mq(a)U

†)] ,

(12)

where Mq(a) is the ALP-dependent quark mass matrix
(Appendix A) and M��PQ represents a bare PQ-breaking
contribution to the ALP mass. In this framework, the
mass-squared matrix that governs the mixing among the
neutral pseudoscalar mesons and the axion is given by:

M2 =


m2

π3
m2

π3η8
m2

π3η0
m2

aπ3

m2
π3η8

m2
η8

m2
η8η0

m2
aη8

m2
π3η0

m2
η8η0

m2
η0

m2
aη0

m2
aπ3

m2
aη8

m2
aη0

m2
aa

 . (13)

The flavor eigenstates π3, η8, η0, and a can be re-
lated to the physical mass eigenstates π0, η, η′, and aphys

through a unitary rotation:π3

η8
η0
a

 =

θπ3π3
θπ3η8

θπ3η0
θπ3a

θη8π3
θη8η8

θη8η0
θη8a

θη0π3
θη0η8

θη0η0
θη0a

θaπ3
θaη8

θaη0
θaa


 π0

η
η′

aPhys

 . (14)

In the limit where M��PQ = 0, which corresponds to the
case of the QCD axion, the mass of the physical axion
maphys receives a contribution induced by its mixing with
the meson sector. This mass can be expressed as [5]:

m2
aphys =

det(M2)

det(M2
<)

, (15)

where det(M2
<) is the determinant of the 3×3 submatrix

obtained from M2 by removing the last row and last col-
umn. This expression arises from the standard method
for extracting the eigenvalue associated with a small per-
turbative coupling. At leading order in the expansion
parameter fπ/fa, this result provides a predictive expres-
sion for the axion mass generated by meson-axion mixing,
which is:

m2
aphys =

B0mumdmsQ
2

(mumd +mums +mdms +
6B0mumdms

m2
0

)

f2
π

f2
a

,

(16)
where Q = Qu +Qd +Qs +QG.

On the other hand, the mixing parameters θij can be
obtained by solving the eigenvalue problem for the mass
matrix M2,

(M2 −m2
aphysI)

θπ3a

θη8a

θη0a

θaa

 = 0, (17)

which implies a system of four equations. The axion-
meson mixing coefficients have been computed with the
help of Mathematica (a symbolic computation software)
and their expressions are given by:

θ(PQ)
aπ3

= −fπ
fa

1

1 + ϵ

[
Qumu −Qdmd

mu +md
+

mu −md

mu +md

QG

2
+ ϵ

Qu −Qd

2

]
,

(18)

θ(PQ)
aη8

= −fπ
fa

√
3

2

1

1 + ϵ

[
3Qs +QG

3
−

ϵ
(Qu +Qd + 2QG/3) +

2B0ms

m2
0

(Qu +Qd − 2Qs)

1 + 6B0ms

m2
0

]
,

(19)

θ(PQ)
aη8 = −fπ

fa

1√
6

1

1 + ϵ

[
QG+ϵ

QG − 6B0ms

m2
0

(Qu +Qd +Qs)

1 + 6B0ms

m2
0

]
,

(20)

θ(PQ)
aa = 1 ,

(21)

where ϵ = mumd

ms(mu+md)

(
1 + 6B0ms

m2
0

)
.

B. Numerical Estimation of the QCD Axion Mass

In this section, we provide a quantitative estimation of
the QCD axion mass, based on phenomenological inputs
from low-energy QCD and chiral perturbation theory.
We begin by determining the parameter B0 from the

pion mass. At leading order in chiral perturbation theory,
the pion mass is expressed as m2

π = B0(mu+md), which
leads to:

B0 =
m2

π

mu +md
≈ 2.6 GeV, (22)

where we have used the experimental values mπ ≈ 135
MeV, mu ≈ 2.2 MeV, and md ≈ 4.7 [6]. The anomaly-
induced mass parameter m2

0 can be approximated using
the relation:

m2
0 ≈ m2

η +m2
η′ −B0(mu +md + 2ms), (23)
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which yields m0 ≈ 850 MeV when employing the exper-
imental masses mη and mη′ . The anomaly coefficient
Q = Qu + Qd + Qs + QG depends on the specific axion
model under consideration. For instance, in the KSVZ
model (hadronic axion), Q ≈ QG, while in the DFSZ
model (where axions couple to quarks and leptons), Q de-
pends on the Peccei-Quinn charge assignments. For esti-
mation purposes, we adopt Q ∼ 1. Substituting these pa-
rameters into the expression for the physical axion mass
and simplifying, we obtain:

maphys ≈ 5.8 µeV

(
1012 GeV

fa

)
. (24)

In summary, the QCD axion mass is estimated to be
approximately 5.8 µeV for a Peccei-Quinn scale of fa =
1012 GeV.

C. ALPs-meson mixing

In the previous subsection we have estimated the QCD
axion mass. We now consider the case where the PQ
symmetry is explicitly broken, corresponding to a finite
M��PQ mass (when the ALP is no longer the QCD axion).
Assuming fa ≫ fπ and neglecting terms of O(θ2aϕ), where
ϕ = π3, η8, η0, the mass-squared of the physical ALP is:

m2
a =

(
m(PQ)

a

)2
+M2

��PQ , (25)

where
(
m

(PQ)
a

)2
is the QCD axion mass, Eq. (16).

Also we can obtain the new ALP meson mixing angles,
which are given by:

θaπ3 = θ(PQ)
aπ3

(
1 +

M2

��PQ

m2
π −m2

a

)
, (26)

θaη8 = θ(PQ)
aη8

(
1 + cos2 θηη′

M2

��PQ

m2
η −m2

a

+ sin2 θηη′
M2

��PQ

m2
η′ −m2

a

)

+ θ(PQ)
aη0 · sin 2θηη

′

2

(
M2

��PQ

m2
η′ −m2

a

−
M2

��PQ

m2
η −m2

a

)
, (27)

θaη0 = θ(PQ)
aη0

(
1 + sin2 θηη′

M2

��PQ

m2
η −m2

a

+ cos2 θηη′
M2

��PQ

m2
η′ −m2

a

)

+ θ(PQ)
aη8 · sin 2θηη

′

2

(
M2

��PQ

m2
η′ −m2

a

−
M2

��PQ

m2
η −m2

a

)
. (28)

In deriving these expressions, we have neglected mixing
between the π0-η and the π0-η′. We have also assumed
small mixing angles, allowing a first order Taylor expan-
sion: tan(θaϕ) ≈ θaϕ.

Note that these expressions exhibit pole singularities:
the mixing angles diverge when the ALP mass approaches
the mass of any of the pseudoscalar mesons. However, if
we do not use the small-angle approximation, these sin-
gularities are regularized and the mixing angles remain

finite. The qualitative behavior remains the same; the di-
vergence is simply replaced by a large but finite enhance-
ment. We can plot the mixing angle θaπ as a function of
the ALP mass to illustrate this behavior (FIG. 1):

FIG. 1: Comparison of the mixing angle between the exact
and approximate solutions. The red dashed curve represents
the approximate solution for the mixing angle, while the blue
curve shows the exact result. The black vertical line indicates
the specific pion mass value at which the mixing diverges.

As can be seen in FIG. 1, when the ALP mass ap-
proaches the pion mass, a divergence occurs. This diver-
gence arises from the pole structure in Eq. (26). Al-
though this is not clearly visible at this scale (corre-
sponding to small mixing angles), the blue curve (exact
solution) saturates at an angle of ±π

4 , whereas the red
curve (approximate solution) diverges to ±∞. It is im-
portant to emphasize that for the exact values ma = mπ,
ma = mη and ma = m′

η the physical ALP state cannot
exist. This is because the mathematical conditions re-
quired for consistent diagonalization lead to a vanishing
mixing term, as discussed in Appendix B.

D. Phenomenological examples

With the diagonalization of the π0-η-η′-axion system
complete, and the physical masses and mixing angles
established, the Lagrangian is prepared for phenomeno-
logical analysis. As an illustrative application, in this
section we will calculate the amplitude and correspond-
ing branching ratio for the decay process η(′) → π0π0a.

From the Eq. (12), we can obtain the corresponding
leading-order amplitudes. To achieve this, we expand the
matrix U and calculate the trace Tr[Mq(a)U+Mq(a)U

†].
Finally, we identify the coefficient of interest, which cor-
responds to a term containing one η meson, two π0

mesons, and one axion (a). In this manner, we obtain
the Eq. (29) which compactly encodes the amplitudes
for both decay processes:

A(η(′) → π0π0a) =
m2

π

f2
π

[
Cη(′)

muAu +mdAd

mu +md
+O(ϵπη)

]
,

(29)
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where we have defined:

Cη =
cos θηη′
√
3

− sin θηη′√
3/2

, (30)

Cη′ =
cos θηη′√

3/2
+

sin θηη′
√
3

, (31)

Au =
fπ
fa

Qu + θaπ +
θaη8√

3
+

θaη0√
3/2

, (32)

Ad =
fπ
fa

Qd − θaπ +
θaη8√

3
+

θaη0√
3/2

. (33)

With our results for the leading order amplitudes we can
now extract the branching ratios for the single ALP de-
cays η → π0π0a and η′ → π0π0a whit the process de-
scribed in the Appendix C. Plotting the branching ratios
as a function of the ALP mass we obtain the FIG. 2:

FIG. 2: (Branching ratios)×(fa/Q)2 for η → π0π0a (blue
line) and η′ → π0π0a (red line), as a function of the ALP
mass, ma. We have considered gluon-dominance. Since our
small mixing approximations are not valid when ma ≈ mπ

and ma ≈ mη we have masked out this regions in grey.

IV. CONCLUSIONS

Our work provides a comprehensive theoretical analy-
sis of neutral pseudoscalar meson mixing within Chiral

Perturbation Theory, extended to include the axion. We
began by outlining the theoretical framework of leading-
order ChPT and deriving the mixing relations for the
π0 η, and η′ mesons. We systematically diagonalized
the mass matrix, first considering the η-η′ mixing in the
isospin limit and then incorporating isospin symmetry
breaking to account for the full π0-η-η′ mixing. This
allowed us to derive expressions for the mixing angles
and the physical meson masses.

A significant part of this work was dedicated to
incorporating the axion into the neutral pseudoscalar
meson sector. We analyzed both the QCD axion limit,
estimating its mass around 5.8µeV for fa = 1012 GeV
and the more general case of axion-like particles (ALPs)
with explicit Peccei-Quinn symmetry breaking. For
the PQ-breaking scenario, we obtained expressions for
the ALP mass and its mixing angles with the mesons,
finding resonant enhancements when the ALP mass
approaches those of the pseudoscalar mesons.

Finally, we demonstrated the phenomenological utility
of our extended theoretical framework by calculating the
amplitudes and branching ratios for the decay processes
η → π0π0a and η′ → π0π0a. These calculations provide
concrete examples of how our derived mixing angles and
masses can be used to predict observable signatures in
experiments, offering avenues for probing new physics be-
yond the Standard Model through axion phenomenology.
The presented analysis lays the groundwork for further
investigations into axion-meson interactions and their im-
plications for particle physics and cosmology.
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Resum: El terme de massa del Lagrangià Quiral a primer ordre (Leading Order) barreja els
estats amb estranyesa zero. No obstant això, per realitzar càlculs de quantitats f́ısiques, com ara
taxes de decäıment i amplituds de dispersió que involucren els mesons neutres π0, η i η′, la matriu
de masses del Lagrangià ha de ser diagonalitzada. En el present treball, trobarem la relació entre
els estats del Lagrangià i els estats f́ısics en termes d’angles de mescla, aix́ı com les expressions per a
les masses dels mesons f́ısics. Aix́ı mateix, hem inclòs la barreja amb l’axió, preparant el Lagrangià
per a aplicacions en fenomenologia d’axions.
Paraules clau: Axió i ALPs, Lagrangià Quiral, simetria de trencament d’isosṕı
ODSs: Aquest TFG està vinculat amb l’Objectiu de Desenvolupament Sostenible número 4, i
més concretament amb la fita 4.4, ja que contribueix a la millora de l’educació en l’àmbit universitari.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats

2. Fam zero 11. Ciutats i comunitats sostenibles

3. Salut i benestar 12. Consum i producció responsables

4. Educació de qualitat X 13. Acció climàtica

5. Igualtat de gènere 14. Vida submarina

6. Aigua neta i sanejament 15. Vida terrestre

7. Energia neta i sostenible 16. Pau, just́ıcia i institucions sòlides

8. Treball digne i creixement econòmic 17. Aliança pels objectius

9. Indústria, innovació, infraestructures
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Appendix A: Notation and definitions

Throughout this work, certain mathematical expressions have been used without explicit definition, under the
assumption that the reader is already familiar with them. This choice was made primarily because some of these
expressions are lengthy and not central to the main discussion. Nevertheless, for completeness and clarity, they are
provided in this section.

The matrix containing the pseudoscalar mesons fields, Φ, is defined as:

Φ =


1√
2
π3 +

1√
6
η8 +

1√
3
η0 π+ K+

π− − 1√
2
π3 +

1√
6
η8 +

1√
3
η0 K0

K− K̄0 − 2√
6
η8 +

1√
3
η0

 (A1)

The elements of the mass matrix of Eq. (2) and Eq. (13) are defined as:

m2
π3

= B0(mu +md) , (A2)

m2
π3η8

=
B0√
3
(mu −md) , (A3)

m2
π3η0

=

√
2

3
B0(mu −md) , (A4)

m2
η8

=
B0

3
(mu +md + 4ms) , (A5)

m2
η8η0

=

√
2

3
B0(mu +md − 2ms) , (A6)

m2
η0

= m2
0 +

2

3
B0(mu +md +ms) , (A7)

m2
aπ3

=
fπ
fa

B0(muQu −mdQd), (A8)

m2
aη8

=
fπ
fa

B0√
3
(muQu +mdQd − 2msQs) , (A9)

m2
aη0

=
fπ
fa

√
2

3
B0(muQu +mdQd +msQs)−

fπ
fa

m2
0QG√
6

, (A10)

m2
a =

f2
π

f2
a

B0(muQ
2
u +mdQ

2
d +msQ

2
s) +

f2
π

f2
a

m2
0QG

6
+M2

̸PQ . (A11)

The ALP-dependent quark mass matrix, Mq(a) is given by:

Mq(a) =

mue
iQua/fa

mde
iQda/fa

mse
iQsa/fa

 . (A12)

Appendix B: ALP with pseudoscalar mesons mass

Let us consider the case where the axion-like particle (ALP) can mix with the pion. The mass matrix is given by:

M2 =

(
m2

π3
m2

π3a

m2
π3a m2

a

)
. (B1)

After diagonalizing this matrix, we obtain the physical masses:

m2
π =

1

2

[
(m2

π3
+m2

a)−
√
(m2

π3
−m2

a)
2 + 4m4

π3a

]
, (B2)
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m2
aphys =

1

2

[
(m2

π3
+m2

a) +
√
(m2

π3
−m2

a)
2 + 4m4

π3a

]
. (B3)

Now, suppose that the physical masses of the pion and the ALP are equal. In that case, we must have:

m2
aphys −m2

π = 0 =
√
(m2

π3
−m2

a)
2 + 4m4

π3a . (B4)

This implies two conditions must be simultaneously satisfied:

(m2
π3

−m2
a)

2 = 0 and m2
π3a = 0 . (B5)

However, these conditions also imply that there is no mixing between the ALP and the pion. Therefore, we conclude
that an ALP with a physical mass equal to that of the pion cannot exist, as it would require the absence of any mixing
(contradicting the assumption of mixing in the first place).

Appendix C: Formal Derivation of Branching Ratios from Decay Amplitudes

The theoretical determination of branching ratios for particle decay processes is a fundamental aspect of particle
physics, connecting theoretical models with experimental observables. This section details the methodology employed
to calculate the branching ratio for the decay process η(′) → π0π0a.

The foundation of this calculation is the partial decay rate (Γ), which quantifies the probability per unit time for
a particle to decay into a specific final state. For a three-body decay such as η(′) → π0π0a, the partial decay rate is
given by the phase space integral of the squared decay amplitude. Incorporating the identical nature of the two π0

particles in the final state, which introduces a symmetry factor of 1/2!, the partial decay rate is expressed as [4]:

Γ(η(′) → π0π0a) =
1

2!

1

(2π)3
1

32m3
η(′)

∫ smax

smin

ds

∫ tmax(s)

tmin(s)

dt |A(s, t, u)|2 , (C1)

where mη(′) represents the mass of the decaying η or η′ meson, A(s, t, u) is the Lorentz-invariant decay amplitude. It
is a function of the Mandelstam variables s, t, and u, which describe the squared invariant masses of different particle
combinations in the decay.

The boundaries for the integration variables s and t are determined by kinematic constraints to ensure physical
decay products. The integration limits for t are dependent on s and are given by:

tmax/min(s) =
1

2

[
m2

η(′) +m2
a + 2m2

π0 − s±
λ1/2(s,m2

η(′) ,m
2
a)λ

1/2(s,m2
π0 ,m2

π0)

s

]
, (C2)

where ma is the axion mass, mπ0 is the neutral pion mass, and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the
Källen function, which frequently appears in phase space calculations.

The allowed range for the Mandelstam variable s is bounded by the threshold for creating two pions and the
maximum energy available for the system containing the axion and one pion:

smin = (2mπ0)2 , smax = (mη(′) −ma)
2 . (C3)

Finally, the branching ratio (BR) for a specific decay mode is defined as the proportion of decays that proceed via
that particular channel. It is calculated by normalizing the partial decay rate by the total decay rate (ΓTotal) of the
parent particle:

BR(η(′) → π0π0a) =
Γ(η(′) → π0π0a)

ΓTotal
. (C4)

The total decay rate, ΓTotal, is the sum of all possible decay modes of the η(′) meson and is typically obtained from
experimental measurements.
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