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Abstract: In this work, a study of the B+ → π+µ+µ− decay is performed in the new data
collected during Run 3 of the LHCb experiment. A Boosted Decision Tree (BDT) algorithm is used
to select the events corresponding to this decay and mass fits are performed to extract its yield. The
B+ → π+J/ψ(→ µ+µ−) decay is used as a control channel. Using the yield of the control channel,
the expected signal yield is found to be 1.64±0.22. No signal events have been found by performing
a fit directly, which is compatible with the expectations.
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I. Introduction

A. The Standard Model

The Standard Model of particle physics (SM) is our
current best theory in high energy physics (HEP) that de-
scribes the fundamental components of matter along with
three of their interactions: the electromagnetic, strong,
and weak forces.

In this model, particles are divided into two large
groups: fermions and bosons. Fermions are particles with
half-integer spin and define the fundamental particles of
matter. They are divided into two groups: quarks and
leptons, each divided into three pairs, called generations.
The first generation is the lightest and most stable one
of all three. Quarks and leptons differ in the forces they
experience. Quarks interact via electromagnetic, strong,
and weak interactions, whereas leptons only interact via
the electromagnetic and weak forces. On the other hand,
bosons are particles with integer spin and act as force
carriers. There are six bosons: the photon (carrier of the
electromagnetic force), the gluon (carrier of the strong
force), twoW bosons (W+ andW−) and the Z boson (all
carriers of the weak force), and the Higgs boson, which
gives mass to the other particles.

Even though the SM is the most complete theory we
have in particle physics, and has successfully predicted
a great variety of experimental results, it is still incom-
plete. Examples of problems the SM does not solve are:
the gravitational force, the nature of dark matter and
dark energy, the large matter-antimatter asymmetry, and
the nonzero neutrino mass. Models beyond the standard
model (BSM) have been theorized, but more experimen-
tal measures are needed to see if physics BSM exists.

B. The LHCb experiment at CERN

The Large Hadron Collider (LHC) is the world’s largest
particle accelerator, with a 27 km ring in which pro-
tons are accelerated to a nominal energy of 6.8TeV thus
achieving a total collision energy of 13.6TeV. The ring
is located in a tunnel 100 meters underground at CERN

(Conseil Européen pour la Recherche Nucléaire), on the
Franco-Swiss border. The accelerator holds four main ex-
periments: ALICE, ATLAS, CMS and LHCb. Since the
end of its construction in 2008, there have been three runs
in which experimental data has been recorded: Run 1
(2009-2013), Run 2 (2015-2018), and Run 3 (2022-2026).
The Large Hadron Collider beauty (LHCb) is an ex-

periment that uses the LHC to explore the interactions of
particles containing the beauty (b) quark and the charm
(c) quark [1]. The detector is a single-arm forward spec-
trometer 21 meters long, and it is oriented towards the
direction of the beam. It is oriented this way because
hadrons containing b and b̄ quarks are produced mostly
in the same forward or backward cone [2]. The detec-
tor is made of three main parts: the tracking system,
the Particle Identification system (PID), and the trigger
system.
The tracking system consists of the Vertex Locator sys-

tem (VELO), the Upstream Tracker (UT) and the Scintil-
lating Fibre Tracker (SciFi). The tracking system is used
to reconstruct the particle trajectories and measure their
momenta. The PID system consists of two Ring-Imaging
Cherenkov detectors (RICH), four muon stations (M2-5)
and a calorimeter system, and is in charge of identifying
the detected particles. Lastly, the trigger system consists
of a High Level Trigger (HLT), which is a software trig-
ger designed to reject uninteresting events, and is used
to reduce the amount of data stored [3].

C. The B+ → π+µ+µ− decay

One of the decays studied in LHCb is a decay of the
B+ meson, made of an up quark and a beauty antiquark
(ub̄) to a pion (π+) made of an up quark and a down
antiquark (ud̄) and two muons, which are leptons. The
decay is expressed as follows: B+ → π+µ+µ−.
This decay is a b → d flavor-changing neutral-current

process (FCNC), which is suppressed in the SM because
the b → dl+l− does not include tree-level contributions,
proceeding only through higher-order loop diagrams [4].
This decay could be affected by the presence of parti-
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cles predicted by extensions of the SM, especially in mod-
els in which the flavor structure is different from that of
the SM [4]. Therefore, this type of decay can be a good
test for physics BSM.

This decay has already been detected and studied in
previous runs of the LHCb experiment [4]. Therefore, the
main objective of this work is to develop a dedicated se-
lection for the particular conditions of the data collected
during Run 3 (2024) using Machine Learning (ML) algo-
rithms.

D. Data classification: Boosted Decision Trees

In HEP, to separate the events of interest (called
Signal) from the rest of measured events (called Back-
ground), supervised learning methods are typically used.
In these algorithms, a model is trained to classify sig-
nal and background events. In this work, the separation
algorithms used are Boosted Decision Trees (BDT). A
decision tree is structured as a collection of nodes that
can be connected to other nodes in a tree-like pattern.
Each node is divided into other nodes based on an input
parameter, thus forming node branches. The last nodes
of each branch (called leaves) give the final assigned prob-
abilities [5]. BDTs are an ensamble of multiple decision
trees therefore being able to perform more complex cat-
egorizations.

E. Datasets

In this work, two datasets (DS), or tuples, are used:
the experimental DS, which includes all the registered
data from the LHCb experiment; and the simulation DS,
which includes data from simulated events using Monte-
carlo (MC) simulations.

These tuples are stored in ROOT files [6], which are
structured in a table-like manner, in which each row in-
dicates a given event and each column a variable for that
event (for example, the mass of the B+ meson or its mo-
mentum).

In this work, the datasets are divided into two modes,
depending on the value of the squared invariant mass of
both muons q2 = (pµ+ + pµ−)2:

• Rare mode. Corresponding to the region in which
q2 < 8GeV2. The desired decay is found in this
region, therefore, the BDT is trained in this mode.

• J/ψ mode. Corresponding to the region in which
8GeV2 < q2 < 11GeV2. This channel corresponds
to the B+ → π+J/ψ(→ µ+µ−) decay and will be
used as a control channel.

The branching ratios of both decays are [7]:

BR(B+ → π+µ+µ−) = (1.78± 0.23)× 10−8

BR(B+ → π+J/ψ) = (3.92± 0.09)× 10−5

Therefore, the ratio between them is:

BR(B+ → π+µ+µ−)

BR(B+ → π+J/ψ)
= (4.54± 0.60)× 10−4 (1)

II. Methodology

A. Preselection

To improve the BDT performance, several cuts can
be applied to the data before training the algorithm, so
that some of the background can be eliminated while
losing the least amount of signal possible. This process
is known as a preselection. In this study, three types of
preselection cuts have been applied: cuts to “PROBNN”
variables, mass swap cuts and Triggered on Signal (TOS)
cuts.

To aid with the selection of the variables used for the
preselection, a large list of variables from the tuples has
been plotted, superposing both the experimental data
and the MC simulation data. These are called discrimi-
nation plots and they have been done in the rare mode.
Examples of these plots can be found in appendix A. Us-
ing them, a cut can be chosen in which a large part of
background is removed while keeping the signal almost
intact.

“PROBNN” variables are the output of a Neural Net-
work that classifies the detected particles in different
species (π, µ, etc.). They represent the probability
that a particle that is reconstructed is indeed that par-
ticle, or is a different one. For example, the variable
“Mup PROBNN E” gives the probability that a particle
reconstructed as a µ+ is actually a e+. To decide where
these cuts should be applied, these variables have been
plotted and a cut has been chosen such that the events
in which the particle is the least likely to be the one de-
tected are left out. All “PROBNN” cuts can be found in
table III, in appendix B.

Mass swap cuts refer to the removal of the events in
which one or more of the children particles have been
misidentified. This can happen because in the recon-
struction of the events, the masses of the different chil-
dren particles are assumed, not measured. This can cause
that particles that don’t belong in the studied decay are
considered as particles that do. In this case, three of
these particle swaps have been studied, all coming from
the decay of a D0 meson: D0 → h+h− where h is ei-
ther K or π and has been misidentified as a µ. For these
three swaps, the mass of the µ+µ− pair has been calcu-
lated changing the mass hypothesis (mswap) and a veto
|mswap −MD0 | < 12MeV has been applied.

Lastly, TOS variables are boolean (True or False)
variables in the tuples that express whether an event
sets off specific software triggers. Triggered on sig-
nal means that the selection criteria have to be ful-
filled by candidate particles of the decay of interest.
Two of these triggers have been selected for the pre-
selection: “Bu Hlt1TwoTrackMVADecision TOS” and
“Bu Hlt1TrackMuonMVADecision TOS”. Both triggers
require that the detected particles have enough energy
and transverse momentum. The first variable is a trigger
for pairs of tracks, while the second one is for particles
detected in the muon chambers.
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B. Classification using a BDT

In order to classify the experimental data with a BDT,
the algorithm has to be trained and then, applied to the
experimental DS.

The first step in training the BDT is selecting which of
the many variables present in the DSs will be used. These
variables are called features. In order to choose them, a
large set of variables used in previous analyses of the
studied decay have been plotted in discrimination plots
(see appendix A for an example) using data outside the
signal window (which is the region in the reconstructed
B+ mass in which signal is expected). Then, the vari-
ables in which the experimental data and the simulation
show more discrimination power have been selected. In
total, 22 features have been selected. The selected fea-
tures are related to the dynamics of the particles and to
the quality of the reconstruction of their trajectories. A
more detailed description of the types of features used
can be found in appendix C.

Once all the variables have been selected, a BDT is
trained using the python library xgboost [8]. To train
the BDT, data from the experiment outside the signal
window is used as background, and data from simulations
as signal. The full data sample is split in two uneven
parts: 80% of the data is used for training and the other
20% to test the trained model. Because the studied decay
is in the rare mode, the BDT is trained and tested in this
mode.

After training, a collection of outputs is plotted. These
outputs are:

• Feature importance. This plot shows how much
a feature is used in the decision trees (F score).

• Probability plots. These plots are histograms
that show the probability, assigned by the BDT,
that each event is signal or background. These
plots are shown for both the signal and background
samples and for the training and testing samples.
Ideally, the probabilities of the background samples
should be close to zero, while those of the signal
samples should be close to one.

• ROC curve and AUC score. A ROC (Receiver
Operating Characteristic) curve is a True Positive
Rate (TPR) vs False Positive Rate (FPR) plot that
shows the relationship between these two values for
different BDT cuts. The area under each curve (or
AUC) is also determined. Ideally, the AUC should
be close to 1. This plot is done for both the training
and testing samples.

C. Optimization of the BDT cut using a Figure of
Merit

With the BDT trained and all tests done, an optimal
cut to the probability needs to be found. To find this
cut, a Figure of Merit (FoM) is used. A FoM is a func-
tion that depends on the signal and background yields

measured for different BDT cuts. Finding the best BDT
cut is equivalent to optimizing the FoM. The FoM used
in this work is the significance function, and is expressed
in equation 2. In this equation, S and B are the expected
signal and background yields, respectively, for each BDT
cut.

FoM =
S√
S +B

(2)

In order to find the signal yield for each cut, the cut
efficiency is calculated by dividing the number of events
in the MC simulation after the given cut by a reference
value, which is the number of MC events for a cut at
0.2. Then, the signal yield is found by multiplying this
efficiency by the reference signal yield, which is obtained
from data using the cut at 0.2.
To find the background yield, a fit is done outside the

signal window in the experimental data for each cut and
the yield in the signal window is extrapolated.
For simplicity, the FoM is optimized in the J/ψ mode.

D. Mass Fit

Even after optimizing the BDT cut and applying it,
there is some background in the data. In order to find
the actual signal yield, fits to the different signal and
background contributions are done both in the rare mode
and in the J/ψ mode.
In the J/ψ mode, four background contributions are

considered:

• Combinatorial background: detections of a π+, a
µ+ and a µ− coming from other processes.

• B+ → K+J/ψ where K+ is misidentified as a π+.

• B0 → K∗0J/ψ where K∗0 → K+π− and K+ is not
reconstructed.

• B0 → ρ0J/ψ where ρ0 → π+π− and π− is not
reconstructed.

The combinatorial background follows an exponential
profile and therefore, it is modeled as such. On the other
hand, the other contributions are fitted using a Double
Sided Crystal Ball [9]. This probability density function
(PDF) is a Gaussian function near its mean value, but
decays as a different power-law in each of its tails.
In the rare mode, because the number of events re-

maining is low, the background is considered to be fully
combinatorial. Again, this background is modeled as an
exponential.
In both modes, the signal is fitted with a Gaussian

curve.
In the J/ψ mode, the parameters of each PDF are

fixed, leaving only the yield of each contribution variable.
To find the parameters of the combinatorial background
contribution, a fit is done outside the signal region. To
extract the shapes of the distribution of the other contri-
butions, fits are done in MC simulations of these back-
ground decays.
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On the other hand, in the rare mode, because of the
small number of events left after applying the BDT, all
the parameters of both curves are left variable.

III. Results

A. BDT outputs

The BDT outputs explained in section II B are shown
in this section for the trained model.

The feature importance plot is shown in figure 8, and
can be found in appendix C along with an explanation
of the different kinds of features it presents.

The probability plot (in logarithmic scale) is shown in
figure 1. It can be seen that the Train and Test samples
show very similar curves for both signal and background
data. This is indicative that the BDT has not been over-
trained, which would mean it has been overtuned to fit
the training sample, therefore it would not be able to
discriminate well enough when exposed to new data.
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FIG. 1: Probability plot for the trained BDT in logarithmic
scale.

Finally, the ROC curve and the AUC score can be seen
in figure 2. The training and the testing samples show
really similar curves and an AUC score close to 1, which
is a good indicative that the BDT can perform a good
classification.

B. FoM results

Figure 3 shows the figure of merit obtained for this
BDT. It also shows a vertical line corresponding to the
optimal cut, which has been found to be at 0.8774 ±
0.0002. The evolutions of S and B yields used to calculate
the FoM can be found in appendix D.
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FIG. 2: ROC curve and AUC score for the trained BDT.
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FIG. 3: Figure of Merit for the trained BDT.

C. Mass Fit results

1. J/ψ mode

After applying all the data selection, a total of 9467
entries remain in the J/ψ mode. The results of the mass
fit in the J/ψ mode can be seen in figure 4 The yields
of each contribution in this mode can be found in table
I. Using equation 1, the expected yield in the rare mode
can be computed to be 1.64± 0.22.

TABLE I: Yields of the different contributions in the J/ψ
mode fit.

Channel Yield

B+ → π+J/ψ 3620± 60
Combinatorial 2950± 90
B+ → K+J/ψ 720± 60
B∗0 → K∗0J/ψ 290± 170
B0 → ρ0J/ψ 1920± 150

Treball de Fi de Grau 4 Barcelona, June 2025
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FIG. 4: Mass fit in the J/ψ mode after data selection.

2. Rare mode

After the data selection, a total of 135 events remain
in the rare mode. The results of the mass fit in the rare
mode can be seen in figure 5. The low number of remain-
ing events causes the error bars to be much larger than
in the J/ψ mode fit. The yields of each contribution in

5000 5200 5400 5600 5800 6000
]2) [MeV/c-µ+µ+πm(

0

2

4

6

8

10

12

14

E
ve

nt
s 

/ (
 3

3.
33

33
 )

Total Fit

Signal

Combinatorial

Total Fit

Signal

Combinatorial

4−
2−
0
2

FIG. 5: Mass fit in the rare mode after data selection.

this mode can be found in table II. In this fit, no events
have been found for the decay of interest. This result is
compatible with the expected yield found with the J/ψ
mode fit.

TABLE II: Yields of the different contributions in the rare
mode fit.

Channel Yield

B+ → π+µ+µ− 0± 10
Combinatorial 135± 12

IV. Conclusions

In this work, a BDT has been trained and applied to
data collected during Run 3 in the LHCb experiment, in
order to perform a selection of B+ → π+µ+µ− events.
On top of that, in order to approximate the expected
event yield, the B+ → π+J/ψ channel has been used.

By applying the BDT and using mass fits of the differ-
ent expected background contributions in the J/ψ mode,
the expected signal yield has been found to be 1.64±0.22.
Doing the mass fits directly in the rare mode has led to
no events being found, which is compatible with what
was expected.

The results don’t show a significant number of events
for the studied decay, but a number of steps could be
taken in order to improve the selection. Firstly, comput-
ing the FoM in the rare mode instead of the J/ψ mode
could provide better results. On top of that, an opti-
mization of the hyperparameters of the BDT could be
performed.
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Resum: En aquest treball, es realitza un estudi de la desintegració B+ → π+µ+µ− per les noves
dades obtingudes durant la Run 3 de l’experiment LHCb. S’utilitza un Arbre de Decisió Potenciat
(en anglès: Boosted Decision Tree, BDT) per seleccionar els esdeveniments corresponents a aquesta
desintegració i es realitzen ajustos a les masses per tal d’extreure’n el nombre d’esdeveniments de
senyal. La desintegració B+ → π+J/ψ s’utilitza com a canal de control. A partir del nombre
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A. Preselection discrimination plots

In this appendix, two discrimination plots are shown.
The plot in figure 6 shows the discrimination plot

for the variable “Mum PROBNN MU” which shows the
probability that a particle reconstructed as a µ+ is in-
deed a muon. It can be seen that applying a cut
at “Mup PROBNN MU” > 0.8 removes a substantial
amount of background events (in blue) without practi-
cally affecting the signal (in orange). In this case, this
plot has been used to select a cut for the preselection.
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FIG. 6: Discrimination plot for the variable
“Mum PROBNN MU”.

The plot in figure 7 shows the discrimination plot for
the variable “Bu MAXDOCA”. In this plot, the simula-
tion (in orange) and data (in blue) distributions show a
large discriminating power. Therefore, this variable has
been used as a feature to train the BDT.
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FIG. 7: Discrimination plot for the variable
“Bu MAXDOCA”.

B. Preselection PROBNN cuts

A table with all the “PROBNN” cuts applied in the
preselection can be found in table III. The cuts are di-
vided by the reconstructed particle.

TABLE III: PROBNN cuts for each child particle.

Particle Cut

π+
Pip PROBNN GHOST < 0.2

Pip PROBNN PI > 0.5
Pip PROBNN K < 0.2

µ+

Mup PROBNN E < 0.2
Mup PROBNN GHOST < 0.2

Mup PROBNN K < 0.2
Mup PROBNN MU > 0.8
Mup PROBNN PI < 0.4

µ−

Mum PROBNN E < 0.2
Mum PROBNN GHOST < 0.2

Mum PROBNN K < 0.2
Mum PROBNN MU > 0.8
Mum PROBNN PI < 0.4

C. Feature importance plot

The following figure shows the F scores of all the se-
lected features:
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FIG. 8: Feature importance plot for the trained BDT.

In the figure, the following kinds of variables can be
found:

• “ CHI2”: A variable that assesses the quality of
how the particle trajectories belong to a single
event. It is the χ2 value of the fit done to all the
hits that form the trace.

• “ BPVIP”: Best Primary Vertex Impact Parame-
ter. It represents the closest approach of a particle
trajectory to the primary vertex (the point where
the initial collision of protons occurs).
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• “ BPVIPCHI2”: A variable similar to “ BPVIP”
but accounting for experimental uncertainties. It
is computed by fitting the primary vertex with and
without the trace of interest and assessing how the
χ2 value changes.

• “ PT”: The transverse momentum of the particle.

• “ ETA”: The pseudorapidity (η) of the particle.

• “ MAXDOCA”: The Maximum Distance of Clos-
est Approach between pairs of children particles.

• “ CHI2DOF”: A variable that assesses the quality
of the reconstruction of particle traces. It is the
value of the “ CHI2” variable divided by the num-
ber of degrees of freedom in the fit.

The particle that each feature refers to is specified at
the beginning of the variable name.

D. S and B plots

The evolution of the expected signal (S) and back-
ground (B) yields for different BDT cuts can be found
in figures 9 and 10, respectively.
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FIG. 9: Evolution of the signal yield for different BDT cuts.
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FIG. 10: Evolution of the background yield for different BDT
cuts.
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