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I. INTRODUCTION

From a profound perspective, Maxwell’s electrodynam-
ics represents the simplest example of a Lorentz and
gauge invariant theory for a four-vector fieldAµ. In terms
of its field strength Fµν , defined as:

Fµν = ∂µAν − ∂νAµ , (1)

Maxwell’s Lagrangian is given by

LMax =
1

4
FµνF

µν , (2)

where the overall factor has been set to 1
4 for the sake

of convenience. As a matter of fact, we will be us-
ing throughout the document natural units in which
c = µ0 = ε0 = 1 and the sign convention for the
Minkowski metric ηµν = diag(1,−1,−1,−1).
However, as we have learnt in the last century in the-

oretical physics, symmetries are the guiding principle to-
wards the finding of the fundamental laws that rule the
universe. In this context, one may argue whether there
are other Lorentz and gauge invariant theories of electro-
dynamics beyond Maxwell’s theory. It is a straightfor-
ward exercise to note that any theory for a four-vector
Aµ which is built by Lorentz scalars formed by contrac-
tions of its field strength Fµν will meet such requirements.
Since the subsequent theories will provide equations of
motion which are no longer linear in the derivatives of
Fµν , these are called theories of non-linear electrodynam-
ics.
However, as it turns out, Maxwell’s theory possesses

two additional symmetries: it is conformal and is in-
variant under electromagnetic duality rotations (we will
review these transformations later). As a consequence,
it is a natural question to explore the existence of non-
linear electrodynamics beyond Maxwell which share the
same symmetries as Maxwell: Lorentz and gauge invari-
ance, conformal symmetry, and duality invariance. The
purpose of this article is to show that there is a one-
parameter generalization of Maxwell’s theory that pre-
serves these symmetries. The resulting family of theo-
ries is called ModMax and we will show how this theory

predicts a modification of Coulomb’s law and the phe-
nomenon of birefringence in vacuum.

II. THEORIES OF NON-LINEAR
ELECTRODYNAMICS

Define the following invariants:

s ≡ 1
4FµνF

µν = 1
2

(
B2 − E2

)
(3)

p ≡ 1
4Fµν(⋆F )µν = E⃗ · B⃗ (4)

where ⋆ stands for the Hodge dual transformation:

(⋆F )µν =
1

2
ϵµναβFαβ (5)

Our first goal will be to show that any theory of non-
linear electrodynamics built out of Lorentz scalars formed
through the contraction of field strengths Fab is a func-
tion of the invariants s and p.
To this end, consider a Lorentz scalar I constructed

with N field strengths, so that we may write schemati-
cally I ∼ FN . We will now see how if we form a scalar
with this quantity we end up with something that de-
pends on s and p. To show it one may compute the
eigenvalues of the field strength F b

a and see that these
are given by:

λ1 = ±f(s, p) , λ2 = ±g(s, p) . (6)

Where f(s, p) and g(s, p) are functions which depend only
on the invariants s and p. This calculation does not add
any insight and these two functions are not very elegant,
so we are not going to write their explicit form. Since any
invariant will be expressed in terms of these eigenvalues,
we conclude that I must be solely a function of s and p.
If we notice that out of the four eigenvalues, two are of

opposite sign and the other two are also opposite in sign,
then we can also conclude that an odd contraction of
the electromagnetic tensor with itself will result in zero.
That it to say that Tr(F 2k+1) = 0, where k ∈ Z since:

Tr((F ·η)2k+1) = λ2k+1
1 −λ2k+1

1 +λ2k+1
2 −λ2k+1

2 = 0 (7)
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The next thing we could think is that several different
contractions between F and ⋆F are possible. However,
the identity

F b
a F c

b − (⋆F ) b
a (⋆F ) c

b = 2s1 c
a (8)

guarantees that it doesn’t matter how we contract the
field strength and its dual with each other, it will always
result in something that depends only on s and p. Finally,
noting that:

F b
a(⋆F

c
b ) = pδca , (9)

we conclude that any Lorentz-invariant Lagrangian built
out from contractions of the field strength is a function
of s and p.

A. Field equations

Let us start by reviewing the equations of motion of
Maxwell’s electrodynamics. These are given by:

∂µF
µν = 0 (10)

∂µ(⋆F )µν = 0 (11)

The first equation comes from the extremisation of the
Maxwell Lagrangian LMax = s, while the second equation
is a consequence of the definition of Fab and is called the
Bianchi identity. While the Bianchi identity will remain
unmodified for all theories on non-linear electrodynamics,
this will no longer be the case for the first equation above.

Indeed, in a given theory of non-linear electrodynamics
L, the equations of motion are given by:

∂α

(
∂L

∂Fαβ

)
= 0 , ∂µ(⋆F )µν = 0 . (12)

We want to write the equations of motion in terms of
the invariants s and p. For that, using the chain rule:

∂L
∂Fαβ

=
∂L
∂s

∂s

∂Fαβ
+

∂L
∂p

∂p

∂Fαβ
(13)

Now we only need to compute two more derivatives:

∂s
∂Fαβ

= 1
4η

µϵηνδ(δ α
µ δ β

ν Fϵδ + Fµνδ
α
ϵ δ β

δ )

= 1
2 (F

αβ) (14)

∂p
∂Fαβ

= 1
8 (δ

α
µδ

β
νϵ

µνϵδFϵδ + Fµνϵ
µνϵδδ α

ϵ δ β
δ )

= 1
2 (⋆F )αβ (15)

With these two derivatives we now may rewrite (12) and
(13) into the following form:

∂α

(
∂L
∂s

Fαβ +
∂L
∂p

(⋆F )αβ
)

= 0 (16)

This last equation together with the Bianchi identity
form our new field equations.

III. ELECTROMAGNETIC DUALITY

Inspired by the form of the equations of motion for
a general theory of non-linear electrodynamics, define a
new contravariant tensor Hµν ≡ −2 ⋆ ∂L

∂Fµν
. This tensor

in Maxwell’s theory is:

Hab = −2 ⋆ ∂L
∂Fab

= −2 ⋆
(
− 1

4 (2 δaµδ
b
νη

µϵηναFϵα)
)
=

= ⋆F ab (17)

Consider the following SO(2) rotation producing the new
fields [7] H ′ and F ′:(

F ′

H ′

)
=

(
cosα − sinα
sinα cosα

)(
F
H

)
(18)

In order for this transformation to be a symmetry, the
relation between H ′ and F ′ must be formally the same as
the relation between H and F . In the case of Maxwell’s
theory, we note that:

⋆F ′ = H ′ →
→ cos(α) ⋆ F − sin(α) ⋆ H = sin(α)F + cos(α)H →

→ sin(α)(F + ⋆H) = cos(α)(⋆F −H) (19)

If equation (19) is to hold for all α then:

⋆F −H = 0 (20)

If we apply the Hodge operator to (20) and we remem-
ber that ⋆⋆ = −1 we can see that imposing (20) also
means that F +⋆H = 0, which makes (19) hold for all α.
Equation (20) proves exactly what we were looking for:
SO(2) duality rotations leave, in Maxwell’s equations, the
functional form of H invariant. This is a peculiarity of
Maxwell electrodynamics and this property does not hold
in general.
Therefore, we now aim to find more general theories of

non-linear electrodynamics satisfying this property of du-
ality invariance, which amounts to the requirement that
H ′ = F(F ′) if H = F(F ), where F is a certain function
of the field strength Fµν .

Let us now derive an equation that allows us to com-
pute such Lagrangians. To do that it suffices to make
our Lagrangian invariant under infinitesimal SO(2) du-
ality transformations. From (18) if we differentiate with
respect to α and take the limit as α → 0 then:

δH ′ = δαF (21)

δF ′ = −δαH (22)

Now if we take into account that H ′ = H ′(F ) then the
variation of H ′ is:

δH ′
ab =

∂Hab

∂Fcd
δFcd (23)

and if we now use (21) and (22) we have our result:

−∂Hab

∂Fcd
δαHcd = δαFab (24)
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Now if we use the definition of the H tensor Hab = −2 ⋆
∂L

∂Fab then (24) transforms into:

Fab = −2
(
⋆ ∂2L
∂Fab∂Fcd

)
Hcd

= 4 1
4ϵabgh

∂2L
∂Fgh∂Fcd

ϵcdlm
∂L

∂Flm
(25)

If we now contract both sides of (25) with 1
2ϵ

rsab then:

1
2ϵ

rsabFab =
1
2ϵ

rsabϵabgh
∂2L

∂Fgh∂Fcd
ϵcdlm

∂L
∂Flm

= (26)

= δrsgh
∂2L

∂Fgh∂Fcd
ϵcdlm

∂L
∂Flm

(27)

where in (27) we have used the following property of the
levi-civita symbol:

ϵabcdϵcdlm = 2δablm (28)

the delta in (28) represents the generalised Kronecker
delta. If we compute the contraction of the right-hand
side of (27) we get:

δrsgh
∂2L

∂Fgh∂Fcd
ϵcdlm

∂L
∂Flm

= (29)

= 2 ∂2L
∂Frs∂Fcd

ϵcdlm
∂L

∂Flm
(30)

then (27) finally transforms into:

1

2
ϵrsabFab = 2

∂2L
∂Frs∂Fcd

ϵcdlm
∂L
∂Flm

(31)

We now notice that the right-hand side looks like a chain
rule:

2
∂2L

∂Frs∂Fcd
ϵcdlm

∂L
∂Flm

= ϵcdlm
∂

∂Frs

(
∂L
∂Fcd

∂L
∂Flm

)
(32)

and therefore (31) turns into:

1

2
ϵrsabFab = ϵcdlm

∂

∂Frs

(
∂L
∂Fcd

∂L
∂Flm

)
(33)

Now if we integrate both sides with respect to F and set
all integration constants to zero we get:

1

4
ϵrsabFabFrs =

∂L
∂Fcd

∂L
∂Flm

ϵcdlm (34)

which is functional relation to find Lagrangians invariant
under duality rotations. Now finally, if we use our def-
initions of s and p we can make this equation explicitly
depend on s and p, after using the chain rule on (34) and
using (14) and (15) we get:

1 = −L2
p −

2s

p
LpLs + L2

s (35)

where Lp ≡ ∂L
∂p and Ls ≡ ∂L

∂s . This is one of the equations

we will use from now on to find the, possibly multiple,
Lagrangians of our new theory.

IV. CONFORMAL SYMMETRY

The conformal symmetry consists of the invariance of
the action under the following coordinate transforma-
tions:

x′µ = Ωxµ (36)

Where Ω is a constant. if the action is to remain invariant
under this transformation then:

S′[L′] = S[L] (37)

which implies: ∫
d4x′L′ =

∫
d4xL (38)

Under these transformations our tensor field transforms
as follows:

F ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν Fαβ = Ω−2Fµν (39)

Taking into account (39) and remembering the definition
of s and p (38) implies:∫

d4xL(s, p) =
∫
d4x′L(s′, p′) =

∫
d4x|∂x

′

∂x |L(s
′, p′) =

=
∫
d4x Ω−4L(Ω4s,Ω4p) (40)

where in (40) we use the Jacobian determinant to trans-
form the volume element.
If (40) is to hold for all s and p then the Lagrangian

must be a homogeneous function of degree one in order
to cancel out the Ω−4 term. There is a theorem called
”Euler’s homogeneous function theorem” which guaran-
tees that all homogeneous functions of degree one must
satisfy, in our case, the following differential equation:

s
∂L
∂s

+ p
∂L
∂p

= L(s, p) (41)

With this final result we have two non-linear partial dif-
ferential equations, namely (41) and (35), to compute
Lagrangians which follow: Conformal symmetry, Lorentz
invariance, Gauge symmetry and electromagnetic dual-
ity.

V. MODMAX LAGRANGIAN

We now perform the following change of variables in
equations (41) and (35):

α ≡ s; β ≡
√

s2 + p2 (42)

q ≡ 1
2 (α+ β) ; l ≡ 1

2 (α− β) (43)

after this change they change to an easier form:

LqLl = 1 (44)

qLq + lLl = L(q, l) (45)
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Euler’s theorem guarantees that all functions obeying
(41) and (45) must be homogeneous. The most general
homogeneous function is:

L(q, l) = qg(l/q) (46)

where g(l/q) is an arbitrary function. If we now use this
piece of information and introduce it in (44) we get:

(g(u)− g′(u)u) g′(u) = 1 (47)

where u ≡ l/q. To solve this non-linear differential equa-
tion we choose as an Ansatz the most general function
possible:

g(u) ≡
∞∑
i=0

aiu
i (48)

After distributing the product of functions we get:

∞∑
i=0

∞∑
k=0

ui+k−1k (aiak − iaiak) = 1 (49)

If this is to be 1 for all u then it’s obvious that, as long
as k ̸= 0, then:

aiak (1− i) = 0 , for k ≥ 2− i . (50)

We now fix a0 = 1/c where c is a constant. if we do
that then by (50), ak≥2 = 0. Which means our solu-
tion is linear. To find a1 we simply introduce our re-
sults in (49) and we get that a1 = c. Then finally af-
ter undoing every change of variable and noticing that(

1
2c +

c
2

)2 −
(

1
2c −

c
2

)2
= 1, we are led with a unique

family of duality- and conformally invariant theories of
non-linear electrodynamics which take the form:

L(s, p) = cosh(γ)s+ sinh(γ)
√
s2 + p2 , (51)

where γ is a dimensionless parameter. This family of
theories is called ModMax [1] and reduces to Maxwell
electrodynamics in the limit γ = 0.

VI. MODIFIED COULOMB’S LAW AND
BIREFRINGENCE IN THE VACUUM

Now we want to see how the field equations change
with this new Lagrangian. Introducing the ModMax La-
grangian into (16) we get:

cosh γ∂µF
µβ + sinh γ∂µ

(
sFµβ+p(⋆F )µβ√

s2+p2

)
= 0 (52)

∂µ(⋆F )µν = 0 (53)

We can also think about the easiest way to couple (51)
with a current, which is to introduce into the Lagrangian
a −JµAµ term to transform (52) into:

cosh γ∂µF
µβ +sinh γ∂µ

(
sFµβ + p(⋆F )µβ√

s2 + p2

)
= Jβ (54)

To see how Coulomb’s law changes let us consider Aµ =(
ϕ(r), 0⃗

)
. With this four potential it can be shown that

p = 0 and our equation (54) changes to a familiar form:

esgn(s)γ∂µF
µβ = Jβ (55)

It can also be shown, by calculating the contraction with
p = 0, that for a charge at rest s < 0. These equations
are the dynamic Maxwell equations but just with a dif-
ferent ”effective” charge which depends on γ. We know
the solution of Maxwell equations when the current is a
point charge at rest, and since the functional form of the
equation is the same then we can guarantee that:

ϕ(r) =
eγq

4πr
(56)

On the other hand we know that Coulomb’s law is very
precise, that means that γ must be very small. The
PVLAS experiment, that can be found in [2], has set
a lower bound which is −3 · 10−22 ≤ γ ≤ 0.

Another important aspect of every theory in physics
is that it must be causal. In section (2.1) of [3] they
explain the constrains of every Lagrangian, in the context
of non-linear electrodynamics, in order for it to be obey
causality.

Lagrangians which obey causality must be convex
down functions in terms of s and p. That is to say Lss < 0
and Lpp < 0. It is important to notice that in many ar-
ticles they define s and p with opposite signs. If we did
that the Lagrangian should be convex up instead. Using
this piece of information it is easy to see that γ must be
negative.

Before studying birefringence, which arises in vacuum
under this Lagrangian when a strong background mag-
netic field is present, we first define what birefringence
is: It is a phenomenon predicted by Maxwell’s equations,
but only when light passes through a material with spe-
cific properties. It consists of a single light beam be-
ing split into two distinct beams. However in the vac-
uum Maxwell’s equations predict no splitting, even under
strong background magnetic fields.

Let us define Fµν = fµν + Fµν
B , where Fµν

B is the
background field and fµν is the small perturbation of
an electromagnetic wave going through the vacuum. We
now proceed to make a Taylor expansion of (52) up to
second order in Fµν and around Fµν

B . After computing
the first and second derivatives we arrive to:

L =
1

2
Gµν

B fµν+
1

8
Qµναβ

B fµνfαβ+
1

4
c1fµνf

µν+
1

4
c2fµν(⋆f)

µν

(57)
Where we defined the following background fields:

Gµν
B = c1F

µν
B + c2(⋆F )µνB (58)

Qµναβ
B = d1F

µν
B Fαβ

B + d3(⋆F )αβFµν + d3F
αβ(⋆F )µν

+ d2(⋆F )µν(⋆F )αβ (59)
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while the constants (c1, c2, d1, d2, d3) are defined as fol-
lows:

c1 ≡ ∂L
∂s

∣∣∣
B
; c2 ≡ ∂L

∂p

∣∣∣
B

d1 ≡ ∂2L
∂s2

∣∣∣
B
; d2 ≡ ∂2L

∂p2

∣∣∣
B

d3 ≡ ∂2L
∂s∂p

∣∣∣
B

Where the ”B” subscript means that the derivative is
evaluated around the background field. We now write
our new set of equations:

∂µ
(
Gµν

B + 1
2Q

µναβfαβ + c1f
µν
)
= 0 (60)

∂µ(⋆f)
µν = 0 (61)

Here it is interesting to check that if we set c1 = 1 and
the other constants to zero we end up with Maxwell’s
equations again.

Assuming a constant magnetic field as background,
then:

∂µ
(
1
2Q

µναβfαβ + c1f
µν
)
= 0 (62)

∂µ(⋆f)
µν = 0 (63)

It can be proved that under these circumstances pB =
1
4 ((⋆F )µν)B(Fµν)B = 0 which means that d3 ∝ p = 0.

To continue we also make use of the fact that Fαβfαβ =

2 B⃗ · b⃗ ; (⋆F )αβfαβ = −2 B⃗ · e⃗ where capital letter
means background field and lowercase letter means the
perturbative field.

With all this information now we may write (60) in a
more familiar way:

(ν = 0) ∇ · e⃗+ d2

c1
∇(B⃗ · e⃗) · B⃗ = 0 (64)

(ν = 1, 2, 3) − d1B⃗ ×∇(B⃗ · b⃗) + d2B⃗∂t(B⃗ · e⃗) =
= c1(−∂te⃗+∇× b⃗) (65)

and (61):

∇× e⃗+ ∂t⃗b = 0, ∇ · b⃗ = 0 (66)

Now with these equations we use the planar wave Ansatz:

e⃗ ≡ e⃗0e
i(k·x−ωt); b⃗ ≡ b⃗0e

i(k·x−ωt) (67)

where e⃗0 and b⃗0 are constant amplitudes. After intro-
ducing this Ansatz into (64)-(66) we are left with a set of
linear equations whose determinant must be zero to avoid
trivial solutions. The condition for the determinant to be
zero is the following:

ω2
1 = k2

(
1 + d1

c1
(B⃗ × k̂)2

)
(68)

ω2
2 = k2

(
1− d2

−c1+d2B2 (B⃗ × k̂)2
)

(69)

If we apply this solution to the ModMax Lagrangian,
then c1 = cosh γ + sinh γ and d2 = sinh γ

|s| = 2 sinh γ

B⃗2
. The

other constants, namely c2, d1 and d3 are zero. This is a
consequence of p = 0 in our specific case. Therefore:

ω2
1 = k2 (70)

ω2
2 = k2

(
cos2 β + e2γ sin2 β

)
(71)

Where cosβ = k̂·B⃗
|B⃗|

. As a consequence, we observe that

there are two modes that propagate with different ve-
locities and in different directions. Indeed, while there
is always one mode that propagates at the speed of light
(see (70)), the second mode (71) is subluminal, for γ < 0,
whenever the direction of propagation is not parallel to
the uniform magnetic field. This is precisely the phe-
nomenon of birefringence in vacuum, by which the veloc-
ity of propagation depends on the direction of polariza-
tion of the incoming wave.

Conclusions

We have identified all theories of non-linear electrody-
namics which are gauge-, Lorentz, conformal and duality-
invariant. These form a one-parameter family of the-
ories — containing Maxwell’s electrodynamics — that
are known as ModMax. In particular, we have explic-
itly shown that there are no additional theories of non-
linear electrodynamics beyond this class which share the
same symmetries as Maxwell theory. Afterwards, we em-
barked on the study of this novel class of electrodynam-
ics. We have focused our efforts on the examination of
the subsequent Coulomb’s law and the phenomenon of
birefringence in vacuum. In this regard, we were able to
show that Coulomb’s law is modified and electromagnetic
waves in the vacuum suffer from Birefringence.
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Resum: Estudiem extensions de l’electrodinàmica de Maxwell que respecten la invariància de
Lorentz, la simetria de gauge, la simetria conforme i que són invariants sota rotacions de dualitat
electromagnètica. Derivem acuradament i mostrem que existeix una famı́lia única de teories amb
un sol paràmetre que preserva totes aquestes propietats. Aquesta rep el nom de ModMax, i
examinem com es modifica la llei de Coulomb dins d’aquest conjunt de teories i l’aparició de la
birefringència al buit. Paraules clau: Electrodinàmica no lineal, Invariància sota la dualitat,
Invariància conforme.
ODSs: Educació de qualitat, innovació.

El contingut d’aquest TFG està relacionat amb l’educació de qualitat i amb la innovació. El primer punt es relaciona
amb el treball, ja que aquest TFG aprofundeix en aspectes de l’assignatura d’electrodinàmica que no es poden veure
per manca de temps (les seves simetries, per exemple). El segon punt és clar, ja que mostrem el fenomen de la
birrefringència en el buit, que és força exòtic i innovador.
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