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Abstract: The goal of this work is to study the distortion of the Wigner function of a heavy
quark interacting by a Coulomb potential in a quark gluon plasma. To carry it out, we programmed
a model using FORTRAN 77 that integrates the Wigner function for a Coulomb wave function.
With that we want to test if the approximation of using a free particle wave function to calculate
the Wigner function of the unbound particles in the Coalescence model is a good approximation.
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I. INTRODUCTION

It is believed that in the early stages of the universe,
it existed a form of matter called Quark-Gluon plasma
(QGP), a hot and dense fluid where quarks and gluons
are not confined inside hadrons. Nowadays, through
experiments such as ALICE or RHIC, we are able to
recreate the quark-gluon plasma by high-energy nuclear
collisions. Unlike other particles such as electrons,
quarks are found confined, forming bound states in
the form of hadrons. Only in specific conditions of
temperature and density, we can observe unbound
quarks and gluons.

In the standard model, QCD is the theory that
explains strong interaction. QCD considers that every
quark and gluon has a color charge, there are three
different possible color states. On one hand, quarks have
mass and electric charge while gluons don’t. Gluons,
on the other hand, play a very important role being
the mediators of strong interactions, allowing quarks to
change between different color states during interactions.
Only states with a singlet state of color are observable;
this is called color confinement. Thus for mesons, the
only possibility for observable states is a color-anticolor
state. Color confinement implies that quarks as well as
gluons cannot be observed as free unbound particles,
they have to be bound in order to have a global color
charge equal to 0.

It is interesting to study heavy quarks produced in
heavy ion collision because, as studies show, they are all
produced at the early stages of the collisions [1], since
more energy is needed to produce them due to their mass,
and ”their abundances remain essentially frozen for the
entire duration of the collisions” [2], serving us as a
probe to characterize the QGP. In this work we are going
to focus in the study of cc since they are more abundant
as products of said collisions. b and b have larger masses
than c and c, (mc,c = 1.5GeV,mb,b = 4.2GeV )[3], it
is for that reason that they require more energy to be
produced and so they are produced with less frequency.

In the same way, we are going to discard t, t states since
they are greatly unstable.

In heavy ion collision, when the two heavy ions first
collide at ultra-relativistic velocities, particles quickly
interact releasing great quantities of energy in a reduced
volume which produces high temperatures and densities,
at certain values of temperature and density we can
see a phase transition in which a new state of matter
is formed. Said conditions enable quarks and gluons
to be unconfined from nucleons thus forming this new
state of matter, QGP. In this context, the formation of
bound states of cc, such as J/ψ, can be impaired by the
screening of the binding force due to high temperature
and density of the QGP, this phenomenon is called
suppression. Suppression of J/ψ can also happen due
to collisions with particles from the plasma as stated
in [2]. The opposite can also happen, at temperatures
above the phase transition temperature, recombination
of quarks and gluons into hadrons can occur.

We can calculate the number of states that recombine
in each instant of time using the coalescence model
[4]. Since small relative distances and momenta are
necessary for the recombination of quarks, coalescence
models are developed in phase space. The mathematical
tool used to work in phase space is the Wigner function.
In the coalescence model the probability to form bound
states is proportional to the convolution of the Wigner
function of the bound state and the Wigner function
that correspond to the distribution of the N particles
that form the bound state [5]. It is very common to
approximate the Wigner function of the distribution of
the N particles, in our case 2 quarks, to the product
of the Wigner function of every particle that forms the
bound state, thus assuming independent quarks. In our
work we want to test if assuming free independent par-
ticles for the non-bounded state is a good approximation.

As stated in [5], we can calculate the probability dis-
tribution as a function of pt (momentum of the particles
that are formed in the perpendicular direction to the par-
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ticle beams of the ion collision) of the formed mesons as
follws:

d2PΨ

dp2T
= gΨ

∫ 2∏
i=1

d3ri d
3pi

(2πℏ)3Ei
Wq (r1, p1)Wq̄ (r2, p2)

×WΨ (r1, p1; r2, p2) δ (pT − p1,T − p2,T )

(1)

Wq, Wq̄ and WΨ are the Wigner functions of the
quark, antiquark and the recombined meson respectively,
pi and ri are the momentum and spatial coordinates,
and gΨ is a probability factor of forming a white meson.

Coulomb interaction in a QGP arises from QCD’s
asymptotic freedom, which states that at shorter dis-
tances, interaction between particles is weaker than at
longer distances, therefore, as stated in [5], ”at short in-
terquark distances, the interaction is dominated by one-
gluon exchange and we might expect a Coulomb-like po-
tential”. It is shown that the potential for r ≤ 0.1fm is
given by:

V (r) = −4

3

αs

r
(2)

Where αs is the strong coupling constant which indicates
the strength of the interaction, and 4

3 is the factor of
color C for a singlet state. Although αs increases with
r, for our study, we can neglect this variation and take
αs constant and equal to 0.5.

In a thermal distribution, all directions are equally
probable, therefore the Wigner function of free unbound
quarks in this regime can be calculated using s-waves,
wave functions corresponding to angular momentum
equal to 0, which only depend on the radius.

For this work we are going to make a set of assump-
tions:
1. We are going to work at constant temperature
although ”local thermalization of the system created in
heavy ion collision is yet to be tested” [6].
2. We are going to take the non-relativistic approach
since the rest mass of cc is larger than the typical kinetic
energy.

In section II we are going to state the principles of
the Wigner function. In section III, we are going to
calculate the Wigner function of an s-wave free particle.
With that, and calculating the Wigner function of the
Coulomb wave function, we are going to study the
distortion of the Wigner function by a Coulomb poten-
tial. In section IV we are going to comment the results
obtained in the previous section. The code used for
the numerical calculations will appear in the appendix A.

II. PRINCIPLES OF THE WIGNER FUNCTION

As stated in [7] ”The Wigner function is a phase
space description of the density operator, which in turn
represents a quantum state.”

The Wigner function is a real function that takes
real values of position and momentum. It holds all
the information of the quantum state contained in the
density matrix.

The Wigner function is a pseudo probability since it
can take negative values. Although we can’t directly
interpret the regions where the Wigner distribution is
negative since it is not clear what a ”negative probabil-
ity” would mean [7]; we know that those regions indicate
that the system behaves purely quantum and it cannot
be described classically.

The Wigner distribution can be calculated as follows:

W (r⃗, p⃗) =

∫ ∞

−∞
eiξ⃗·p⃗⟨r⃗ + 1

2
ξ⃗|ρ̂|r⃗ − 1

2
ξ⃗⟩dξ⃗ (3)

We arrive to this result by taking the normalized

Fourier Transform of the element matrix ⟨r⃗ + 1
2 ξ⃗|ρ̂|r⃗−

1
2ξ⟩

that describes the jump from the position eigenstate ⟨r⃗+|
to the position eigenstate |r⃗−⟩, where ρ̂ is the density

matrix of the c, c and r⃗ is the position vector, and ξ⃗ is
the conjugate of the momentum and the variable over
which we are integrating.

Note that if we integrate over all p, we get by con-
struction the probability distribution of r. The same
holds if we integrate over all r, we get the probability
distribution of p

The above result is the Wigner function for a mixed
state. In this work we are going to study only pure states.
For a pure state, the density operator is defined as:

ρ̂ = |ψ⟩⟨ψ| (4)

Substituting in equation (3), we obtain:

W (r⃗, p⃗) =

∫ ∞

−∞
e−ip⃗ξ⃗/ℏ

〈
r⃗ +

1

2
ξ⃗

∣∣∣∣ ψ〉〈
ψ

∣∣∣∣ r⃗ − 1

2
ξ⃗

〉
dξ⃗

(5)

=

∫ ∞

−∞
e−ip⃗ξ/ℏψ

(
r⃗ +

1

2
ξ⃗

)
ψ∗

(
r⃗ − 1

2
ξ⃗

)
dξ⃗ (6)

This equation provides a phase space description of
an arbitrary state ψ [7].
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III. INTEGRATING THE WIGNER
DISTRIBUTION

To integrate the Wigner distribution we programmed a
Monte Carlo method in FORTRAN 77 in which we have
done the calculations in spherical coordinates, where we

have chosen a random uniformly distribution for ξ⃗ (ξ⃗ is
the conjugate of the momentum).
We have calculated for r⃗ ∥ p⃗ :

r±∥ ≡ |r⃗ ± 1

2
ξ⃗| =

√
r2 +

ξ2
4

± rξ cos θ (7)

And for r⃗ ⊥ p⃗ :

r±⊥ ≡ |r⃗ ± 1

2
ξ⃗| =

√
r2 +

ξ2
4

± rξ sin θ sinϕ (8)

Where ξ⃗ = (ξ sin θ cosϕ, ξ sin θ sinϕ, r cos θ).

To calculate the distortion of the Wigner function by a
Coulomb potential, first we note that the wave function
of a plane wave is:

ψp⃗0
(r⃗) =

1

(2π)3/2
eip⃗0r⃗ (9)

To project it on a s-wave:

ψs
P0
(r) = Y00(Ω)

∫
dΩ′ψp⃗0

(r⃗)Y00 (Ω
′)

=
2π

4π(2π)3/2

∫ π

0

dθ sin θeip0r cos θ

=
1

(2π)3/2
sin (p0r)

p0r

(10)

Now for the Coulomb wave function we have:

ψ(r) = N
uE(

√
2µEr)√
4πr

(11)

Where we have calculated uE with the subroutine
COUL90 from [7] and N is a normalization constant.

We have chosen N so that for large r, the coulomb
wavefunction resembles the s-wavefunction of a free par-
ticle. Note that:

limρ→∞ uE(ρ) ∼ sin

(
ρ−

√
µα2

2E log(2ρ) + arg

(
1 + i

√
µα2

2E

))
(12)

Using the normalization convention from [8]:

ψ(r) =

√
µ

2π2
√
2µE

uE(
√
2µEr)

r
(13)

Substituting in the Wigner function:

WC
p0
(r, p) =

µ

2π2p0

∫
dξ3e−ip⃗ξ⃗ uE (p0r

+)

r+
uE (p0r

−)

r−

(14)

Where p0 corresponds to the chosen energy and we
calculate for r+ and r− parallel and perpendicular.

This integral is very difficult to calculate since the in-
tegrant oscillates very quickly for large r± . We can fix
this by subtracting the oscillating part which we can cal-
culate analytically. So if we note that from eq. (12),
sin(ρ) is the radial s-wavefunction of a free particle, we
obtain:

WC
p0
(r, p) =

µ

2π2p0

∫
dξ3 e−ip⃗ξ⃗

×
(
uE (p0r

+)

r+
uE (p0r

−)

r−
− sin (p0r

+)

r+
sin (p0r

−)

r−

)
+Wfree

(15)

Where Wfree is equation (50) of [8]:

Wfree =
2pr2 sin θ

πp0
J0

(
2
√
p2 − p20r sin θ

)
(16)

Here θ is the angle between r⃗ and p⃗, and J0 denotes
the Bessel function of order 0. This equation vanishes
when θ = 0 and θ = π, i.e. when r⃗ and p⃗ are parallel
or antiparallel (angular momentum equal to 0). It also
vanishes if p > p0. Equation (16) reaches a maximum
for p = p0.

IV. RESULTS

We expect to see a better approximation for high
energies since in that case, the influence of the Coulomb
potential is negligible compared to the energy of the
quark. Therefore, for the high energy regime, we expect
the distortion of the Wigner function to go to 0 so that
we can approximate the quark in a Coulomb potential
for a free quark, thus replace the wavefunction of the
quark to that of a free state.

We also expect to see the Wigner function we have
calculated go to 0 for large r since by construction,
the Coulomb wave function approximates to the s-wave
projection of a plane wave for large r, as we have seen in
equation (12).
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FIG. 1: Distortion of the Wigner function for E = 200MeV
and r⃗ ∥ p⃗.

FIG. 2: Distortion of the Wigner function for E = 200MeV
and r⃗ ⊥ p⃗.

FIG. 3: Distortion of the Wigner function for E = 600MeV
and r⃗ ∥ p⃗.

FIG. 4: Distortion of the Wigner function for E = 600MeV
and r⃗ ⊥ p⃗.

FIG. 5: Distortion of the Wigner function for E = 1000MeV
and r⃗ ⊥ p⃗.

FIG. 6: Distortion of the Wigner function for E = 1000MeV
and r⃗ ∥ p⃗.

FIG. 7: Distortion of the Wigner function for E = 2000MeV
and r⃗ ∥ p⃗.

FIG. 8: Distortion of the Wigner function for E = 2000MeV
and r⃗ ⊥ p⃗.

For both r⃗ ⊥ p⃗ and r⃗ ∥ p⃗ the expected results show.
We can see very similar figures for both cases, for small
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r and p the modification of the Wigner function is
considerable, and for the rest it goes to 0. We can also
see that the distortion of the Wigner function decreases
as energy increases. For small r and p the graphs look
very oscillating, This is due to the lack of precision of
the implemented method. In these regions of the graphs
it is most likely that if we took the absolute value it
would be close to zero since the distortion of the Wigner
function is oscillating around it. We cannot see this
because of the commented lack of precision.

V. CONCLUSION

We have studied how the Wigner function is distorted
by a Coulomb potential in order to tell if we can ap-
proximate the Wigner function of the N unbound states
used in the Coalescence model to N Wigner functions of
a free s-wave. With the calculations we have done we can
conclude that for large r and p the approximation holds.
For small r and p, the Monte Carlo method used to in-
tegrate does not allow us to get to the wanted precision,

as we can see in the figures. This is because the func-
tions we are integrating are very oscillating, therefore,
other methods such as the Fast Fourier Transform, could
be more suitable. However, the size of the modifications
obtained indicate large modifications in the region relle-
vant for charmonium physics. Note that the typical value
of the radius of a bound state of charmonium is 0.5fm
and its typical momentum is 400MeV . In summary, al-
though the Monte Carlo integration did not achieve the
level of accuraccy that we expected, we have obtained
indications that the inclusion of the Coulomb potential
might be needed to obtain accurate predictions for re-
combination with the coalescence model.
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Resum: L’objectiu d’aquest treball és estudiar la distorsió de la funció de Wigner d’un quark
pesat que interactua mitjançant un potencial de Coulomb en un plasma de quarks i gluons. Per
dur-ho a terme, hem programat un model utilitzant FORTRAN 77 que integra la funció de Wigner
per a una funció d’ona de Coulomb. Amb això volem veure si fer l’aproximació d’utilitzar una
funció d’ona d’una part́ıcula lliure per calcular la funció de Wigner de les part́ıcules no lligades en
el model de coalescència és una bona aproximació.
Paraules clau: Distribució de Wigner, plasma de quarks i gluons, charmonium, model de
Coalescència.
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ABSTRACT GRÀFIC

FIG. 9: Distorsió de la funció de Wigner per E = 1000MeV
i r⃗ ⊥ p⃗.

FIG. 10: Distorsió de la funció de Wigner per E = 1000MeV
i r⃗ ∥ p⃗.
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Appendix A: Code

PROGRAM TFG
IMPLICIT NONE
DOUBLE PRECISION XSI(100),THETA(100),PHI(100),HP,HR,CTEPL
DOUBLE PRECISION R, P, INT, ERROR, INTPERP,PMIN, RMIN, PCERO
DOUBLE PRECISION PI,MASSAR,G(100), RMAX,F(100),PMAX
DOUBLE PRECISION FC(100), GC(100), FCP(100), GCP(100), E
DOUBLE PRECISION FPL(100), FPP(100), A0, PAU
INTEGER N, I, L, M, J, ISEED, K, IFAIL
COMMON/DADES/PI, MASSAR, N
EXTERNAL RMPARALLEL, RMPERPENDICULAR

ISEED=20447725
CALL SRAND(ISEED)

PI=4.D0*DATAN(1.D0)
MASSAR=1549.D0
N=100

PMAX=800.D0
PMIN=0.D0
RMIN=0.D0/PMAX
RMAX=0.025D0
E=200.D0
PCERO=DSQRT(2.D0*MASSAR*E)
L=0
M=0

HR=(RMAX-RMIN)/DBLE(N)
HP=(PMAX-PMIN)/DBLE(N)

CALL VUNIFORME(XSI, THETA, PHI, 0.025D0)

OPEN(1, FILE="COULOMB_PARALLEL_1.DAT")
DO I=1, N

DO J=1, N
R=RMIN+(I*HR)
P=PMIN+(J*HP)
CALL PARALLEL(XSI, THETA, PHI, E, R, P, F)
INT=0.D0
DO K=1, N

INT=INT+(F(K))
ENDDO
INT=2.D0*1970.D0*PI*PI*INT/(N*P)
WRITE(1,*)R*197.D0, P, INT

ENDDO
WRITE(1,*)

ENDDO
CLOSE(1)
OPEN(2, FILE="COULOMB_PERP_1.DAT")
DO I=1, N

DO J=1, N
R=RMIN+(I*HR)
P=PMIN+(J*HP)
CALL PERPENDICULAR(XSI, THETA, PHI, E, R, P, F)
INT=0.D0
DO K=1, N

INT=INT+(F(K))
ENDDO
INT=2.D0*1970.D0*PI*PI*INT/(N*P)
WRITE(2,*)R*197.D0, P, INT

ENDDO
WRITE(2,*)

ENDDO
CLOSE(2)

END PROGRAM TFG

SUBROUTINE VUNIFORME(XSI, THETA, PHI, LIM)
IMPLICIT NONE
DOUBLE PRECISION XSI(N), THETA(N), PHI(N), PI, MASSAR, LIM
INTEGER N, I
COMMON/DADES/PI, MASSAR, N

DO I=1, N
XSI(I)=(LIM*RAND())
THETA(I)=PI*RAND()
PHI(I)=2.D0*PI*RAND()

ENDDO
RETURN
END

C CALCULA EL MODULO DE R+XSI/2=RMA Y R-XSI/2=RME PARA P Y R PARALELOS
SUBROUTINE RMPARALLEL(XSI, THETA, R, RMA, RME)
IMPLICIT NONE
DOUBLE PRECISION XSI(N), R, RMA(N), RME(N), PI, THETA(N), A
DOUBLE PRECISION MASSAR
INTEGER I, N
COMMON/DADES/PI, MASSAR, N

DO I=1, N
A=DCOS(THETA(I))
RMA(I)=DSQRT((R**2)+((XSI(I)*0.5D0)**2)+(R*XSI(I)*A))
RME(I)=DSQRT((R**2)+((XSI(I)*0.5D0)**2)-(R*XSI(I)*A))

ENDDO

RETURN
END SUBROUTINE

C CALCULA LA FUNCION A INTEGRAR PARA R Y P PARALELOS
C N: DIMENSION DE LOS ARRAYS
C RMA Y RME: ARRAYS R+ Y R_
C Y: ARRAY CON AS
C ETAP: CONSTANTE DE SOMMERFELD, ALPHAS CTE DE INTERACCION FIUERTE

SUBROUTINE PARALLEL(XSI, THETA, PHI, E, R, P, F)
IMPLICIT NONE
DOUBLE PRECISION BRA(N), XB, FC(1), GC(1), FCP(1), GCP(1)
DOUBLE PRECISION Y(N), KET(N), RME(N), XK, THETA(N), XSI(N), R, P
DOUBLE PRECISION K, CTE, T, PI, RMA(N), ALPHAS, F(N), PHI(N)
DOUBLE PRECISION MASSAR, ETAP, E, A(N), B(N), C(N), D(N)
INTEGER IFAIL, I, N
COMMON/DADES/PI, MASSAR, N

CALL VUNIFORME(XSI, THETA, PHI, 10.D0/P)
CALL RMPARALLEL(XSI, THETA, R, RMA, RME)
ETAP=MASSAR*0.5D0/(DSQRT(E*2.D0*MASSAR))
K=DSQRT(2.D0*MASSAR*E)

C PSI PARA R+
DO I=1, N

XB=RMA(I)*K
CALL COUL90(XB, ETAP, 0.D0, 0, FC, GC, FCP, GCP, 0, IFAIL)
BRA(I)=FC(1)/RMA(I)

ENDDO
C PSI PARA R_

DO I=1, N
XK=RME(I)*K
CALL COUL90(XK, ETAP, 0.d0, 0, FC, GC, FCP, GCP, 0, IFAIL)
KET(I)=FC(1)/RME(I)

ENDDO

DO I=1, N
A(I)=MASSAR/(2.D0*(PI**2)*K)*DCOS(P*XSI(I)*DCOS(THETA(I)))
B(I)=DSIN(THETA(I))*(XSI(I)**2)
D(I)=(BRA(I)*KET(I))
C(I)=(DSIN(K*RMA(I))*DSIN(K*RME(I)))/(RMA(I)*RME(I))
F(I)=(A(I)*B(I)*(D(I)-C(I)))

ENDDO

RETURN
END SUBROUTINE

C CALCULA EL MODULO DE R+XSI/2=RMA Y R-XSI/2=RME PARA P Y R PERPEDICUALRES
SUBROUTINE RMPERPENDICULAR(XSI, THETA, PHI, R, RMA, RME)
IMPLICIT NONE
DOUBLE PRECISION XSI(N), R, RMA(N), RME(N), PI, THETA(N), A
DOUBLE PRECISION MASSAR, PHI(N)
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INTEGER I, N
COMMON/DADES/PI, MASSAR, N

DO I=1, N
A=DSIN(THETA(I))*DSIN(PHI(I))
RMA(I)=DSQRT((R**2)+((XSI(I)*0.5D0)**2)+(R*XSI(I)*A))
RME(I)=DSQRT((R**2)+((XSI(I)*0.5D0)**2)-(R*XSI(I)*A))

ENDDO

RETURN
END SUBROUTINE

C CALCULA LA FUNCION A INTEGRAR PARA R Y P PARALELOS
C N: DIMENSION DE LOS ARRAYS
C RMA Y RME: ARRAYS R+ Y R_
C Y: ARRAY CON AS
C ETAP: CONSTANTE DE SOMMERFELD, ALPHAS CTE DE INTERACCION FIUERTE

SUBROUTINE PERPENDICULAR(XSI, THETA, PHI, E, R, P, F)
IMPLICIT NONE
DOUBLE PRECISION BRA(N), XB, FC(1), GC(1), FCP(1), GCP(1)
DOUBLE PRECISION Y(N), KET(N), RME(N), XK, THETA(N), XSI(N), R, P
DOUBLE PRECISION K, CTE, T, PI, RMA(N), ALPHAS, F(N), PHI(N),ETAW
DOUBLE PRECISION MASSAR, ETAP, E, WL(N), RW, A(N), B(N), C(N),D(N)
INTEGER IFAIL, I, N
COMMON/DADES/PI, MASSAR, N

CALL VUNIFORME(XSI, THETA, PHI, 10.D0/P)
CALL RMPERPENDICULAR(XSI, THETA, PHI, R, RMA, RME)
ETAP=MASSAR*0.5D0/(DSQRT(E*2.D0*MASSAR))
K=DSQRT(2.D0*MASSAR*E)

C PSI PARA R+
DO I=1, N

XB=RMA(I)*K
CALL COUL90(XB, ETAP, 0.D0, 0, FC, GC, FCP, GCP, 0, IFAIL)
BRA(I)=FC(1)/RMA(I)

ENDDO
C PSI PARA R_

DO I=1, N
XK=RME(I)*K
CALL COUL90(XK, ETAP, 0.d0, 0, FC, GC, FCP, GCP, 0, IFAIL)
KET(I)=FC(1)/RME(I)

ENDDO

RW=2.D0*DSQRT(K**2-P**2)*R
ETAW=0.D0
CALL COUL90(RW, ETAW, 0.d0, 0, FC, GC, FCP, GCP, 0, IFAIL)
DO I=1, N

WL(I)=(2.D0/(K*PI))*P*(R**2)*FC(1)
ENDDO

DO I=1, N
A(I)=MASSAR/(2.D0*(PI**2)*K)*DCOS(P*XSI(I)*DCOS(PHI(I)))
B(I)=DSIN(THETA(I))*(XSI(I)**2)
D(I)=(BRA(I)*KET(I))
C(I)=(DSIN(K*RMA(I))*DSIN(K*RME(I)))/(RMA(I)*RME(I))
F(I)=(A(I)*B(I)*(D(I)-C(I)))+WL(I)

ENDDO

RETURN
END SUBROUTINE
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