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Abstract: We study a topological invariant in the 2D Kitaev honeycomb model: the Chern
number. This model consists of a spin 1

2
hexagonal lattice that can be divided into two triangular

sublattices. By applying an external perturbation we can induce a non-trivial phase for some
coupling configurations that yields a non-zero Chern number. First we set a theoretical basis in
order to understand the results. Then we study how different parameters affect the Chern number.
More exactly; finite-size effects, an external perturbation, different coupling configurations and
strengths.We will see how each of these variations change the Chern number.
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I. Introduction

Topology is the branch of mathematics that studies
geometric properties preserved under continuous defor-
mations. The classical example is to think of a doughnut
and a mug as topologically equivalent as they have
the same number of holes so you can deform one into
another; however, if you try to do it with a sphere you
cannot, as you would have to cut it somewhere. The
interest physicists have had in topology was limited
until the 1980’s when topological considerations were
used to describe the integer quantum Hall effect [1]
[2] and the fractional quantum Hall effect [3]. Later
on, Haldane presented a model [4] in which topology
played a central role. However, the boom in the study of
topology of quantum systems began in the 2000’s, with
the theoretical discovery of a 2D quantum spin Hall
insulator phase [5].

Topological phases of matter are phase transitions
that cannot be explained through Landau’s theory of
phase transitions. The physical properties of these
phases can not be explained locally, as they emerge as
consequences of topological considerations of the system
as a whole. These phases are characterised by topological
invariants. These invariants are similar to Landau local
order parameters but the key difference is that they are
discrete. That means that if the system experiences
some continuous transformation, this parameter will
remain the same unless the system undergoes a phase
transition. In this work we are interested in the study
of a particular topological invariant in the Kitaev
honeycomb model: the Chern number.

This document is organized as follows. In Section
II, we will introduce the Berry phase and its relation to
the Chern number. After that, in Section III, we are
going to introduce the Kitaev honeycomb model. Then
we will show our simulation and results in Section IV
before the conclusions in Section V.

II. Berry phase and the Chern number

Let
∑
q

H(q) denote the Hamiltonian of some trans-

lational invariant system in momentum representation.
Then the Berry connection [6] is defined as

Γn(q) = i ⟨eiϕn(q)un(q)|∂qeiϕn(q)un(q)⟩
= i ⟨un(q)|∂qun(q)⟩ − ∂qϕn(q),

(1)

where |eiϕn(q)un(q)⟩ is the n-th eigenstate of the
Hamiltonian. The Berry connection measures how
|eiϕn(q)un(q)⟩ changes with q. The ”field strength” of
the Berry connection is defined as

Fn
ij(q) = ∂qiΓ

n
qj − ∂qjΓ

n
qi .

And the Berry phase as∮
dq · Γn(q).

In essence, the Berry phase is a parallel transport of the
eigenstate eiϕn(q) |un(q)⟩ through a closed path. The first
Chern number of the n-th band is defined as its Berry
phase alongside the first Brillouin zone (BZ) divided by
2π [6]

Chn
1 =

1

2π

∫
BZ

dqxdqy · Fn
xy(q) =

1

2π

∮
BZ

Γn(q)dq, (2)

The second equality comes from Stokes theorem. The
first Chern number gives information on how the Berry
phase ”curls” in the BZ.

If it helps the reader, we can draw a parallel be-
tween the Berry connection and the relativistic form of
electromagnetism (EM) [7]. If we consider the Berry
connection as our gauge potential, the electric and
magnetic fields are contained in the field strength. This
analogy is quite useful as we can translate our knowledge
from EM to the study of topological phases. However,
we need to keep in mind that we are not operating in
the physical space, but rather in the momentum space.
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III. The Kitaev honeycomb model

The Kitaev honeycomb model [8] is defined as an hexag-
onal lattice of spin- 12 fermions that can be divided into
two triangular sublattices as shown in fig.(1). Nearest-
neighbour interactions can be divided into three types
depending on their direction as shown in fig.(2). The
Hamiltonian of this model is

H = −Jx
∑

x−links

σx
j σ

x
k −Jy

∑
y−links

σy
j σ

y
k−Jz

∑
z−links

σz
jσ

z
k.

(3)

FIG. 1: Honeycomb lattice. Black and white vertices
show the two different sublattices.

FIG. 2: Type of bonds.

In (3) we have chosen an orientation where j belongs
to the white dotted sublattice and k belongs to the black
dotted sublattice.

We are going to present a mapping to Majorana
fermions that solve the Hamiltonian (3). Given a set of
labels L = {1 . . . L}, Majorana fermions are operators
that satisfy the following properties.

φα = φ†
α, {φα, φβ} = 2δαβI ∀α, β ∈ L.

We associate four Majorana fermions with each vertex
s of the honeycomb lattice {bxs , bys , bzs, cs}. The operators
bxs , b

y
s , b

z
s are respectively associated with the x-link, the

y-link, and the z-link sticking out of vertex s. We observe
that the operators σ̃α

s = ibαs cs, α ∈ {x, y, z} constitute
a (representation of the) algebra of Pauli matrices. The
substitution σα

s −→ σ̃α
s for all vertex of the honeycomb

lattice maps the spin Hamiltonian (3) to the following
Majorana fermion Hamiltonian

H̃ =
i

4

∑
j,k

Âjkcjck, (4)

where Âjk = 2Jαjkûjk if j and k are linked, otherwise

Âjk = 0. For each link of the lattice (j, k), the operator
ûjk is defined as ibαj b

α
k , where α denotes the type of link

(x, y, z). These operators commute with H̃, with one
another, and satisfy ûjk = −ûkj . Their eigenvalues are
ujk = ±1.

Another important operator is W̃p =
∏

(j,k)∈p

ûjk, which

is the product of every ûjk around the boundary of an
hexagon p. This operator also commutes with the Hamil-
tonian and the corresponding eigenvalue is the product
of the eigenvalues of ûjk. This value is also interpreted as
the magnetic flux through the hexagon p. If wp = −1 we
say that this hexagon carries a vortex. The total Hilbert
space can be written as a direct sum of what we call
sectors, represented by w. A sector is a certain configu-
ration of all possible wp values. We can also divide the
Hamiltonian into these sectors as it commutes with the
magnetic flux operator, H̃ =

⊕
w H̃w. In each sector w,

the Hamiltonian H̃w is quadratic and thus solvable.
What Kitaev wanted to achieve by representing the

system with Majorana fermions was not only to solve
the Hamiltonian. Indeed, with this model, it is possible
to get Majorana modes that could be used as topological
qubits that offer some robustness against decoherence [9].

For our purposes, we need to identify the sector
that contains the ground state. Using a result by Lieb
[10] we can prove that the ground state of (4) is given
when wp = 1 ∀p. This sector is called the vortex free
configuration. This also means a change of sign of any
Jα does not change the ground state because it can be
reverted by setting all the ujk in the α direction to -1.
Also interchanging the value of the coupling parameter
of two directions leaves the system the same because it
is equivalent to rotating the whole system 120º or 240º
degrees. This rotation does not change the system as it
has rotational symmetry.

The vortex free configuration possesses translational
symmetry. This is very useful because we can perform a
Fourier transformation to go to the momentum repre-
sentation. The Hamiltonian in momentum space (5) is
a sum of block diagonal matrices where every block is a
2× 2 matrix, as shown in (6).

H =
i

2

∑
q,λ,µ

Ãλµ(q)a−q,λaq,µ. (5)

iÃ(q) =

(
0 i · f(q)

−i · f(q)∗ 0

)
, (6)

where f(q) = 2(Jxe
i(q,n1) + Jye

i(q,n2) + Jz) and q ∈ Bz.
It follows that the energy dispersion is ϵ(q) = ±|f(q)|.
We see that the relationship between the coupling pa-
rameters defines whether this spectrum is gapped or not.
More specifically, if |Jx|, |Jy|, |Jz| satisfy the triangle in-
equalities the spectrum is gapless, these configurations
belong to phase B, if not we are in phase A. These
phases can be represented when Jx, Jy, Jz ≥ 0 by the
diagram in fig.(3).
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FIG. 3: Phase dependency on coupling parameters that
satisfy Jx + Jy + Jz = 1 in the positive octant.

Non-zero values for the Chern number can be achieved
by applying the following perturbation.

Ṽ = ih
∑
m,n,o

umncmco. (7)

In this sum, m and o are nearest-neighbours of the ver-
tex n as shown in fig.(4). This perturbation allow us
to still use the previous mathematical development as it
preserves translational invariance.

FIG. 4: Example of three contiguous vertex in the
honeycomb lattice.

This perturbation modifies (6) and the energy disper-
sion as

iÃ(q) =

(
∆(q) i · f(q)

−i · f(q)∗ −∆(q)

)
, (8)

ϵ(q) = ±
√

|f(q)|2+|∆(q)|2. (9)

The term ∆(q) = 4h(sin(q,n1) + sin(q,−n2) +
sin(q,n2 − n1)) opens the gap in phase B.

Finally, we can compute the Chern number. From
(8) we can now consider the global spectral projector in

the momentum space P̃ (q) which projects the matrix
onto the occupied band subspace (those eigenstates with
negative energy):

P̃ (q) =
1

2
(I − sgn(iÃ(q)). (10)

The connection between P̃ (q) and (2) is discussed in [11].
The conclusion is that the first Chern number of the n-th

occupied band is computed as:

Chn
1 =

1

2πi

∫
Tr

(
P̃ (

∂P̃

∂qx

∂P̃

∂qy
− ∂P̃

∂qy

∂P̃

∂qx
)
)
dqxdqy, (11)

we will refer to the first Chern number as just the Chern
number as we will not use any other Chern number. In
our case, we only have one band (see fig.(6) in Section
IV) so n = 1. At this point, time-reversal symmetry, T ,
plays an interesting role in the computation of the Chern
number.

T iÃ(q) = iÃ(−q) =

(
−∆(q) if(q)∗

−if(q) ∆(q)

)
= −(iÃ(q))T

T P̃ (q) = P̃ (−q) =
1

2
[I − sgn(iÃ(−q))]

=
1

2
[I + sgn((iÃ(q))T )]

If ∆(q) = 0, then sgn((iÃ(q))T ) = sgn(iÃ(q)) so

P̃ (−q) = I − P̃ (q). Because the Chern number is in-
variant under time-reversal symmetry when ∆(q) = 0 it
must satisfy

Ch1
1 =

=

∫
Tr

2πi

(
P̃ (−q)(

∂P̃

∂(−qx)

∂P̃

∂(−qy)

− ∂P̃

∂(−qy)

∂P̃

∂(−qx)
)
)
d(−qx)d(−qy)

=

∫
Tr

2πi

(
(I − P̃ (q))(

∂P̃

∂qx

∂P̃

∂qy
− ∂P̃

∂qy

∂P̃

∂qx
)
)
dqxdqy

= −Ch1
1

= 0.

This means that to get a non-zero Chern number we need
∆(q) ̸= 0. However, this condition is necessary but not
sufficient. Kitaev proves in [8] that the Chern number in
phase A is always 0 and in phase B Ch1

1 = sgn(h) = ±1.

One of the main characteristics of these non-trivial
topological phases is the presence of edge states. These
states can cross the gap and they usually transport
charge in quantum Hall systems. Here, Majorana
fermions cannot carry charge as they are chargeless;
they actually only transport thermal energy. Conformal
field theory (CFT) predicts that there are edge energy
currents:

I =
π

24
Ch1

1T
2. (12)

Although we are not going to use this, it is important to
highlight the magnitude being carried to gain insight of
the system and to differentiate it from other topological
phases.
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IV. Simulation and Results

Our simulation begins in (8) with the unit cell and vector

basis n⃗1 = ( 12 ,
√
3
2 ) and n⃗2 = (− 1

2 ,
√
3
2 ) as shown in fig.(5).

Before we compute the Chern number we started by rep-
resenting the energy dispersion in phase B throughout
the BZ to get an idea of the band structure we will work
with in fig.(6). We can see two points where the gap
closes in fig.(6a) with conic singularities and how the per-
turbation opens a gap in fig.(6b).

FIG. 5: Unit cell of the honeycomb lattice and real
space basis vectors.

(a) (b)

FIG. 6: Band structure of phase B in the Brillouin
Zone with all coupling parameters set to J=1.The

perturbation is set to h=0 for (a) and h=0,055 for (b).

First, we have tested how the Chern number evolves
with the perturbation for different configurations of
Jx, Jy, Jz. Our results are shown in fig.(7), fig.(8) and
fig.(9).

FIG. 7: Points used in fig.(8).

FIG. 8: Evolution of the Chern number with h for differ-
ent couplings Jx, Jy, Jz with system size 27 × 27 points.

FIG. 9: Evolution of the Chern number with the pertur-
bation for different couplings Jx, Jy, Jz. Red, brown and
purple corresponds to a system size of 28×28 and orange,
green and blue to a system size of 27 × 27. Red and or-
ange correspond to the couplings: Jx = 0, 31, Jy = 0, 49,
Jz = 0, 2. Green and brown correspond to the couplings:
Jx = 0, 3, Jy = 0, 5, Jz = 0, 2. Blue and purple corre-
spond to the couplings: Jx = 0, 29, Jy = 0, 51, Jz = 0, 2.

In fig.(8) we observe how effective the Chern number
works as a topological invariant to distinguish between
phase A and phase B. If we focus on the orange and red
dots or the blue and green dots in fig.(7), we see how
when the coupling parameters configuration stays away
from the phase transition, the Chern number becomes
more robust in fig.(8). In fig.(9) we show how for two
different system sizes the Chern number evolves with h
in the transition between A and B phases. We observe
that the Chern number still differentiates both phases
until we get to the phase transition (green and brown
lines). Here the Chern number is found to be ∼ 0, 5.

To see how important finite-size effects may be we
can look at fig.(9) and fig.(10), where we have plotted
the evolution of the Chern number when all coupling
parameters are set to J = 1 (this configuration corre-
sponds to the blue dot in fig.(7)) but for different system
sizes.
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FIG. 10: Size-dependency of the Chern number in a n×n
grid.

We see in both fig.(9) and fig.(10) how the bigger the
system size gets the more robust the Chern number is.
Finally, if we compare the blue line in fig.(8) and fig.(10)
we see that the stronger the coupling parameters are,
the more robust the Chern number is. This effect can be
greater than finite-size effects given that in fig.(10) the
purple line is closer to 1 than the blue line in fig.(8) even
though the system is smaller.

V. Conclusions

In conclusion, in this work we have studied the robustness
of the Chern number for the Kitaev honeycomb model in

the vortex free configuration. This configuration corre-
sponds to the ground state of the Hamiltonian (4). The
vortex free configuration can be divided into phases A
and B depending on the coupling parameters. Phases A
are characterised by a gap in the energy dispersion when
no perturbations are applied, in these phases the Chern
number is always equal to 0. Phase B on the other hand,
does not have a gap when the system is not perturbed
and the Chern number equals ±1 when the perturba-
tion (7) is applied. We have studied the evolution of the
Chern number with the perturbation, different coupling
parameters of (3) and the size of the system. We have
concluded that the Chern number is more robust when
the system is bigger and the further the coupling param-
eters configuration is from the phase transition in fig.(7).
We have also seen how stronger coupling parameters lead
to more robust values of the Chern number.
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Resum: En aquest treball hem estudiat com evoluciona un invariant topològic del model
honeycomb de Kitaev: el nombre de Chern. Basant-nos en el seu paper de 2006 hem calculat
el valor del número de Chern amb l’ajuda d’un codi en què hem treballat en l’espai de Fock de
Majorana en espai de moments. Hem vist com aquest invariant topològic evoluciona en funció
d’una pertorbació, de la dimensió del sistema i dels paràmetres d’enllaç entre els vèrtex de la malla.
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ODSs: Educació de qualitat.

Objectius de Desenvolupament Sostenible (ODSs o SDGs)

1. Fi de la es desigualtats 10. Reducció de les desigualtats
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Treball de Fi de Grau 6 Barcelona, June 2025


