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Abstract

Coffee adulteration is a growing concern in the food industry due to economic and quality
implications. This study evaluates a rapid, non-targeted fingerprinting method based on
flow injection analysis—mass spectrometry (FLIA-MS) for detecting common coffee adulter-
ants. A total of 119 samples were analyzed, including 43 coffee samples and 76 samples of
common coffee adulterants (16 chicory, 10 barley, and 50 flour samples). FIA-MS combined
with chemometric analysis allowed for the classification of pure and adulterated coffee
samples with over 95% accuracy. Compared to LC-MS, the FIA-MS method showed a
similar performance while offering significantly faster analysis and lower solvent consump-
tion, making it a practical and sustainable option for high-throughput screening. For PLS
regression studies, calibration and prediction errors were consistently below 0.91% and
11.7%, respectively. Furthermore, the methodology was compared with a non-targeted
LC-MS approach, showing an excellent performance.

Keywords: flow injection analysis—mass spectrometry (FIA-MS); rapid analysis; coffee
authentication; food adulteration; chemometrics

1. Introduction

Coffee, one of the most popular and widely consumed beverages globally, plays a vital
role in the global economy, particularly in countries that rely on its production and export.
Its appeal extends beyond its distinctive aroma and taste, as it also possesses bioactive prop-
erties associated with health benefits, such as antioxidant activity, thanks to compounds
like phenolic acids, polyphenols, and alkaloids. However, this widespread popularity has
made coffee a common target for fraud and adulteration, practices aimed at maximizing
economic profits at the expense of product quality and safety and consumer trust [1-4].

Coffee adulteration can take various forms. Commonly, lower-value coffee beans, such
as Robusta, are added to blends labeled as 100% Arabica, misleading consumers about
the quality of the product. In other cases, unrelated substitutes, such as chicory, barley,
corn, rice, and various flours, are introduced, altering both the chemical composition and
organoleptic properties of the coffee. These additives can significantly change the sensory
and nutritional profile of the product, affecting its authenticity. For instance, chicory, which
has historically been used in certain regions as a coffee complement, imparts distinctive
flavors and alters the concentration of essential bioactive compounds. Similarly, barley
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and flour introduce carbohydrates and proteins that are absent in pure coffee, affecting its
perceived quality [5-7].

Beyond the economic deception, adulteration poses health risks, especially when
added materials contain allergens or contaminants. Detecting these practices is challenging,
as adulterants are often present in small quantities and do not visibly alter the appearance
of the product, yet they impact its molecular profile and functionality. This presents a
challenge for both regulators and producers, who must ensure their products meet the
quality standards set by international regulations [5,8-10].

In this context, the development of advanced analytical techniques has become crucial
for detecting and preventing adulterations in coffee. Traditional methodologies such as
liquid chromatography (LC) or gas chromatography (GC) coupled to mass spectrome-
try (MS) have proven effective [7,11]. LC-based methods often involve reversed-phase
separations followed by ultraviolet (UV), fluorescence (FL), or mass spectrometry (MS)
detection. For example, Bressanello et al. [12] employed an HPLC-UV non-targeted method
to analyze non-volatile compounds in coffee, with the aim of identifying chemical patterns
associated with taste attributes. In another work, Wan et al. [13] applied an HPLC-FLD
method to determine EU-priority PAHs in coffee samples, aiming to evaluate how the
roasting degree and brewing methods influence PAH levels and their transfer into the final
beverage. In another example, Nufiez et al. [14] used untargeted HPLC-UV-FLD finger-
printing combined with chemometric analysis to evaluate coffee authenticity and detect
adulteration with common additives, such as chicory, barley, and various flours. Moreover,
LC-MS techniques are still widely used for the comprehensive analysis of coffee-related
compounds [7,11]. For instance, Arténcio et al. [15] proposed a UHPLC-Orbitrap HRMS
method for the non-targeted analysis of Brazilian coffee, using a C18 column for chromato-
graphic separation and collecting full-scan data in both positive and negative ESI modes
over an m/z window of 100-1500. Alternatively, GC-based methods usually employ MS
detection [16]. For example, Nufiez et al. [17] utilized HS-SPME-GC-MS with chemometric
data analysis to characterize and classify coffee samples, including different coffee varieties
and origins, chicory, and soluble coffees, based on their volatile compound profiles.

These methods offer excellent analytical performances; however, they are often hin-
dered by drawbacks such as long analysis times, high operational costs, extensive sample
preparation, or limited suitability for on-site or high-throughput environments. In this
context, more agile methods are being explored, such as flow injection analysis coupled
with mass spectrometry (FLIA-MS), which allows for the detection of adulterants with high
sensitivity in significantly less time. This technique eliminates the need for prior chromato-
graphic separation, making it ideal for analyzing large volumes of samples. FIA-MS is
particularly advantageous for quality control in the coffee industry, as it provides rapid and
accurate results without compromising sensitivity or specificity. Furthermore, although
portable NIR or GC-IMS instruments allow for rapid in-field screening, FIA-MS provides a
laboratory-based, high-throughput alternative that combines speed with enhanced chemi-
cal selectivity and sensitivity, which is particularly valuable for the detection of complex
coffee adulterations [18,19].

Several recent studies have focused on the use of FIA-MS for food analysis, illustrating
its growing relevance and effectiveness in this area. For instance, Campmaj6 et al. [20]
explored the potential of FIA-HRMS fingerprinting for food authentication, particularly for
distinguishing between red wine, paprika, and vegetable oils. This approach, which was
combined with chemometrics, demonstrated excellent classification accuracies when used
to assess the geographical origins and quality categories of the food products. Furthermore,
the study by Vila et al. [21] highlighted the power of FIA-MS fingerprinting in differentiating
between various types of tea and detecting adulterants like chicory. In a similar vein,
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Zhang et al. [22] demonstrated the FIA-MS/MS effectiveness in quantifying ochratoxin A
in food samples like corn and grape juice. FIA-MS/MS showed comparable results to those
of traditional LC-MS/MS techniques, but with a significantly reduced analysis time. In
a more specific application, Calvarro et al. [23] employed FIA to measure the fluorescent
compounds formed during the Maillard reaction in cookies. These works demonstrated
the potential of FIA-MS for rapid screening and classification in food matrices such as tea.
However, its application to coffee authentication and adulteration detection remains largely
unexplored. The present study expands this application to roasted coffee, a matrix with
greater chemical complexity due to roasting and a higher risk of economic adulteration,
thereby testing the method under more challenging conditions.

The aim of this work was to develop and validate a rapid, efficient, and robust analyti-
cal strategy based on FIA-MS fingerprinting, and to comprehensively compare its classi-
fication performance, greenness, and practical applicability with a conventional LC-MS
approach for the authentication of roasted coffee. The proposed approach is based on non-
targeted chemical fingerprinting using FIA-MS, offering high-throughput capabilities. To
complement and reinforce the accuracy and reproducibility of the results, a parallel method-
ology using LC coupled to a QTRAP mass spectrometer (LC-MS) was also implemented.

2. Materials and Methods

2.1. Chemicals and Solutions

HPLC-grade methanol (Chromosolv™, >99.9%) suitable for HPLC analyses was pro-
cured from PanReac AppliChem (Barcelona, Spain). Formic acid (>98%) was obtained from
Sigma-Aldrich (St. Louis, MO, USA). Ultrapure water was produced using an Elix 3 system
coupled to a Milli-Q purification unit (Millipore, Bedford, MA, USA), equipped with an
integrated 0.22 um membrane of nylon filter to ensure particle removal.

2.2. Samples

As described in Table 51 (in the Supplementary Materials), 119 samples were analyzed.
The dataset comprised 43 coffee samples, including both Arabica and Robusta varieties,
as well as blends, sourced from various Vietnamese and Cambodian coffees. To simulate
diverse adulteration scenarios, 76 samples of common coffee adulterants were also in-
cluded, comprising 16 chicory samples from different commercial brands, 50 flour samples
encompassing wheat, rice, rye, cornmeal, and oatmeal flours from various organic and
integral product lines, and 10 barley samples covering both malted and pearled forms. This
carefully selected sample set was designed to reflect realistic and varied cases of coffee
adulteration encountered in the market.

To evaluate the robustness of the chemometric models and the repeatability of the
analytical procedures, a quality control (QC) solution was prepared by mixing 50 puL from
each of the 119 extracts (including both genuine coffees and adulterated samples). This QC
solution resulted in a pooled sample representative of the overall chemical variability. This
QC was used to monitor the signal consistency and instrument performance throughout
the analytical sequence.

The adulteration studies were performed using Arabica coffee samples from Vietnam
and chicory, barley, and flour as the adulterants. Three different adulteration scenarios were
evaluated: Vietnamese Arabica vs. chicory, Viethamese Arabica vs. flour, and Vietnamese
Robusta vs. barley. In each case, the calibration set consisted of mixtures prepared at
adulteration levels of 20%, 40%, 60%, and 80%, together with the corresponding 100% pure
coffee samples, as shown in Table S2 (in the Supplementary Materials). The validation set
included mixtures at adulteration levels of 15%, 25%, 50%, 75%, and 85%. All adulterated
mixtures were prepared in quintuplicate, resulting in a total of 55 sample extracts per case.
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Furthermore, a sample adulterated at 50% concentration was employed as the QC for each
type of system.

2.3. Sample Treatment

Coffee and adulterant samples that were already in powdered form were used directly.
Whole-bean samples were ground using a coffee grinder prior to extraction.

To accurately simulate realistic scenarios of coffee adulteration, all barley and flour
samples were subjected to a roasting process before extraction. For this, 80.00 g of each
sample was spread evenly on a stainless-steel tray and roasted in a conventional oven (Teka
HE 510 Me, Barcelona, Spain) for 7 min at 180 °C. The sample layer was kept consistent at an
approximately 5 mm thickness to ensure reproducible heating conditions across all batches.

For the extraction, 1.00 g, accurately weighed, of each sample was placed into a 15 mL
PTFE centrifuge tube (Serviquimia, Barcelona, Spain), followed by the addition of 10 mL of
a 50:50 (v/v) methanol-water mixture. The resulting suspension was vortexed for 2 min
using a Vortex mixer (Stuart, Stone, UK). Subsequently, the sample was centrifuged at
3500 rpm for 5 min with a Rotanta 460 RS centrifuge (Hettich, Tuttlingen, Germany). The
resulting aqueous methanolic extracts were then filtered through 0.45 um nylon filters
(discarding the first mL) into injection vials, and the filtered extracts were stored at —4 °C
until analysis (within 48 h to ensure stability and minimize degradation).

2.4. Instrumentation

The analysis of the coffee samples was carried out using an Agilent 1100 Series liquid
chromatograph (Agilent Technologies, Palo Alto, CA, USA) with a vacuum degasser
(model G1322A), a binary pump (model G1312A), and an autosampler (model G1367A).
This chromatographic system was coupled with an Applied Biosystems 4000 QTrap hybrid
triple quadrupole/linear ion trap mass spectrometer (AB Sciex, Framingham, MA, USA) for
both FIA-MS and LC-MS studies. Data acquisition and instrument control were managed
using Analyst software version 1.7.3.

The FIA-MS involved direct injection of 5 uL. of sample into a carrier solution of 0.1%
formic acid (v/v) at a steady flow rate of 150 uL/min, allowing for rapid analysis with a
total runtime of 1.5 min and 144 scan cycles over the entire FIA peak. Data acquisition was
performed in negative electrospray ionization (ESI) mode using enhanced mass spectrome-
try (EMS) scan mode over an m/z range of 100-550, summing two scans per spectrum. The
scan rate was faster at 4000 Da/s.

For the LC-MS method, chromatographic separation was carried out on a Kinetex®
C18 reversed-phase column (100 mm X 4.6 mm, 2.6 um particle size) manufactured by
Phenomenex, Torrance, CA, USA. The mobile phase consisted of ultrapure water with
0.1% formic acid (v/v) (solvent A) and methanol (solvent B), delivered at a flow rate of
0.4 mL/min. The gradient elution began at 3% solvent B, increasing linearly to 75% over
30 min, followed by an increase to 95% between 30 and 32 min, held constant for 2 min,
and then returned to initial conditions with a 6 min equilibration. Data acquisition was
performed in negative ESI mode, as indicated in the FIA-MS method, with a total analysis
time of 40 min comprising 1837 scan cycles over the entire chromatogram.

In the two methods, all samples were randomly analyzed to minimize the influence of
instrumental drifts; quality control (QC) samples (see Section 2.2) were injected periodically
every ten samples to assess the reproducibility throughout the analysis.

2.5. Data Preprocessing

Data obtained from the FIA-MS and LC-MS/QTRAP techniques were processed as
described below. To simplify the dataset, an absolute intensity threshold of 10* was applied
using the open-source software MSConvert v3.0. The resulting filtered files were then
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analyzed with MZmine-2.53, generating Excel spreadsheets containing identified chemical
features, including ion signals linked to m/z values (for both techniques) and retention
times (specific to LC-MS). During processing in MZmine-2.53, exact mass detection was
performed to create a mass list of individual ions for each MS spectrum across the dataset,
applying a noise cutoff at 1 x 10*. Finally, all mass lists were curated to remove remaining
artefacts by applying the FTMS shoulder peak filter. Following this, the parameters,
including an FIA peak time range of 0.05-2 min (0.05—39.95 min in the case of LC-MS),
an m/z tolerance of 5 ppm, and an intensity threshold of 2.0 x 10, were established. This
range was selected based on the total ion chromatograms (TICs) across all samples and
included the full FIA peak, from the injection front to the tailing zone, while excluding
baseline regions.

In the LC-MS analysis, the chromatogram builder method was used to align exact
mass signals detected in consecutive scans of each sample. Chromatogram deconvolution
was then carried out to separate individual peaks within each detected fingerprint. The join
aligner tool matched the exact masses found across the samples (using a mass tolerance of
5 ppm) with their respective retention times (allowing a tolerance of 2.5 min).

Ion signal intensity data from both FIA-MS and LC-MS were exported as Excel files,
producing a data matrix structured by samples versus variables, where the variables
included the m/z values and, for LC-MS, the chromatographic retention times. The resulting
chemical fingerprints were filtered to remove sporadic features that appeared in only a few
samples and did not represent consistent patterns; only features detected in at least five
samples were kept. In this study, a chemical fingerprint is the pattern of ion signals defined
by their m/z ratio and intensity, along with retention time for LC-MS, obtained from the
mass spectrometry data of a single sample. It represents the chemical profile of that sample
without identifying specific compounds and is used to compare and classify samples.

2.6. Data Analysis

The final matrices, containing 699 features for FIA-MS and 10,288 features for LC-MS,
were subsequently utilized for PCA, PLS-DA, and PLS using SOLO 8.6 software from
Eigenvector Research (Manson, WA, USA) [24]. The theoretical underpinnings of these
chemometric methodologies are discussed elsewhere [25].

For every employed methodology, the X-data matrices prepared for PCA and PLS-
DA comprised the metabolomic information corresponding to the analyzed samples and
QCs. In all instances, a normalization pretreatment was applied to ensure similar weights
across all samples using the closest QC as the reference. The Y-data in the PLS-DA defined
the class membership of each coffee sample. Scatter plots of scores derived from the
principal components (PCs) were generated to evaluate the robustness of the employed
methodology and the classification patterns exhibited by the samples. For the PLS-DA,
scatter plots depicting scores from latent variables (LVs) were utilized to analyze the
distribution of samples.

Paired PLS-DA models were developed and validated using independent prediction
sets. To this end, the PLS-DA calibration used 70% of the randomly selected sample group,
and the remaining 30% constituted the prediction set.

For the PLS models, validation was performed using prediction sets with adulteration
levels of 15%, 25%, 50%, 75%, and 85%, as outlined in Section 2.2.

The optimal number of LVs for both PLS-DA and PLS was determined as the first sig-
nificant minimum point of cross-validation (CV) errors following a Venetian blind strategy.
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3. Results and Discussion
3.1. High-Throughput FIA-MS and LC-MS Fingerprints

The main objective of this study was to investigate whether chemical fingerprints,
obtained by FIA-MS and LC-MS, could be effectively used to discriminate between pure
coffee samples and common adulterants, as well as to differentiate coffee types based
on their variety and geographical origin. The FIA-MS and LC-MS methodologies were
operated under negative ESI, covering a m/z range of 100 to 550.

Sample extracts, prepared as described in Section 2.3, were analyzed by both FIA-MS
and LC-MS to generate chemical fingerprints without compound-specific identification. As
representative examples, Figure 1 and Figure S1 (in the Supplementary Materials) show
the chemical fingerprints of selected samples (Vietnamese Arabica and Robusta coffee,
Cambodian coffee, chicory, wheat flour, and barley) obtained by FIA-MS and LC-MS,
respectively. These fingerprints correspond to the peak intensities of the extracted ion
features at each m/z value obtained after Mzmine processing. Each plot displays the m/z
values (x-axis) and their corresponding signal intensities (yy-axis, expressed as peak areas)
for one representative sample.
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Figure 1. Non-targeted FIA-MS fingerprints for selected (a) Vietnamese Arabica coffee, (b) Viethamese
Robusta coffee, (¢) Cambodian coffee, (d) chicory, (e) flour, and (f) barley.

In the FIA-MS dataset (Figure 1), the most intense signals were concentrated in the
low-m/z region (100-250). For instance, the ion at m/z 111.18 was highly intense in Viet-
namese Arabica and Robusta coffees but absent or very weak in chicory and flour samples,
while chicory showed prominent signals at m/z 113.14 and 115.03, which were consid-
erably less intense in the coffee profiles. Barley presented a distinct signal at m/z 113.10,
which was also detected in coffee samples but with markedly different relative intensities.
Despite the absence of chromatographic separation, the FIA-MS fingerprints were highly
reproducible and sufficiently specific for each matrix. Signals in the medium- and high-m/z
ranges (m/z > 250) were also observed, although they appeared less frequently and with
lower intensities. The rapid acquisition time (~1.5 min per sample) further highlights the
suitability of FIA-MS for high-throughput screening purposes.

In contrast, the LC-MS profiles (Figure S1) incorporated reversed-phase chromato-
graphic separation, which provided an additional temporal dimension and higher spectral
resolution. Although the m/z range was identical to that of the FIA-MS, the LC-MS data
revealed a broader distribution of signals across the entire spectrum, including medium
(m/z 250-400) and high (m/z > 400) regions, where well-defined peaks were observed in
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several matrices. Coffee samples displayed complex and distributed fingerprints, while
adulterants such as flour and chicory showed more discrete and isolated peaks. The
enhanced separation enabled improved discrimination, even between samples with over-
lapping spectral patterns. Marker ions such as 7/z 111.18 and 113.14 were identified as
useful features for distinguishing coffee from non-coffee matrices in both techniques, with
their retention time behavior in LC-MS contributing to increased specificity.

In summary, FIA-MS and LC-MS offer different, but complementary, advantages. FIA-
MS enables the rapid acquisition of high-throughput feature-based fingerprints, making
it suitable for the high-throughput screening of large sample sets. Thus, the use of both
techniques enables the generation of reliable chemical descriptors for sample classification
and authentication.

3.2. PCA Exploration

PCA was employed as an exploratory tool to evaluate the ability of the FIA-MS and
LC-MS data to capture the main sources of chemical variability among the studied coffee
samples and adulterants. Autoscaling was applied to the ion intensity values to ensure the
equal contribution of all variables. Additionally, a QC-based normalization strategy was
applied to correct for instrumental drift over time: for each feature, the peak area intensity
of a given sample was divided by the corresponding value in the nearest QC sample. This
approach allowed for signal correction throughout the sequence, improving the clustering
structure observed in multivariate models. Hence, this normalization procedure stabilized
the overall dataset and enhanced the interpretability of the results.

Figure 2 shows the PCA score plots obtained using (a) FIA-MS and (b) LC-MS data.
Although the percentages of variance explained by PCs are low, this is expected in non-
targeted MS fingerprinting studies, where data dimensionality is high and many variables
contribute modestly to the total variance. However, the PCA projections still reveal class-
related trends, supporting their usefulness for exploratory purposes. In both cases, a
clear clustering pattern is observed, with coffee samples distinctly separated from each
of the adulterants along the first principal component (PC1). In the case of FIA-MS data
(Figure 2a), the separation of pure coffee samples from adulterants indicates remarkable
chemical differences, as captured by the FIA-MS fingerprint. Similarly, the PCA model built
using LC-MS data (Figure 2b) shows a comparable clustering pattern. Once again, coffee
and adulterant samples occupy well-separated regions in the score plot. Notably, although
the main objective was to differentiate coffee from its potential adulterants, the results also
highlight that chicory, flour, and barley form compact and well-defined individual clusters,
further emphasizing the distinct chemical profiles captured by the method. Coffee samples,
in contrast, are positioned on the opposite side of the plot, reinforcing the effectiveness of
the model for discriminative analysis.

The absence of overlap between coffee and adulterants supports the discriminative
capacity of the non-targeted chemical descriptors. These results confirm that both the
FIA-MS and LC-MS methodologies provide robust and informative chemical fingerprints
that can distinguish authentic coffee samples from common non-coffee additives without
needing prior compound identification.

Furthermore, taking advantage of the availability of coffee samples from different
varieties (Arabica and Robusta) and geographical origins (Cambodia and Vietnam), a
complementary study was conducted to evaluate the distribution of samples according
to these attributes. The clustering results with FIA-MS and LC-MS data are presented in
Figure S2 of the Supplementary Materials. The score plots reveal clear grouping according
to variety or origin, demonstrating that the proposed non-targeted fingerprinting strategies
are also capable of capturing intrinsic chemical differences within coffee. These findings
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support the applicability of FIA-MS and LC-MS data not only for detecting adulteration

but also for coffee authentication based on variety and geographical origin.
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Figure 2. PCA score plots obtained using (a) FIA-MS and (b) LC-MS data to study coffee samples in
front of chicory, flour, and barley adulterants.

3.3. PLS-DA for Classification of Coffee and Adulterant Samples

Supervised PLS-DA was applied to the chemical fingerprints obtained via non-targeted
FIA-MS and LC-MS to explore class discrimination based on subtle differences in chemical
composition, focusing on the identification of coffee versus chicory, flour, and barley.

For each PLS-DA model, the X-data matrix comprised the fingerprints generated by
each analytical technique, and the Y-data matrix coded the class membership of each sample.
Autoscaling pretreatment was applied to normalize the contribution of each variable.

Figure 3 shows the score plots resulting from the PLS-DA models for coffee vs. adul-
terant from the FIA-MS (Figure 3a) and LC-MS (Figure 3b) datasets. Clear visual separation
between the coffee samples and the three adulterants is observed across both datasets, sup-
porting the discriminative capacity of each analytical platform. The score plots reveal the
distinct clustering of each sample class, not only differentiating coffee from the adulterants
but also distinguishing between the different classes of adulterants themselves. Beyond
this study, PLS-DA was also applied to classify the coffee samples according to variety
(Arabica and Robusta) and geographical origin (Vietham and Cambodia). The results
of these classification models are presented in the Supplementary Materials (Figure S3).
In the case of FIA-MS, Figure S3(a.1) shows an acceptable separation between Arabica
and Robusta samples, while Figure S3(a.2) demonstrates a clear discrimination based on
geographical origin. For LC-MS, an excellent classification performance was achieved, as
shown in Figures S3(b.1) and S3(b.2), with well-defined clusters corresponding to both
variety and origin, respectively.

Table S3 presents the performance metrics for each PLS-DA model, including the
number of LVs and sensitivity, specificity, and classification error values. For the cof-
fee vs. adulterant, three LVs were used. The FIA-MS-based models achieved excellent
performances, with sensitivity and specificity higher than 87.5% and 90.8%, respectively,
and classification errors lower than 6%. The LC-MS models outperformed the FIA-MS,
achieving 100% values in sensitivity and specificity and 0% classification errors across
all sample types.

Regarding the coffee variety, the FIA-MS and LC-MS models achieved sensitivity and
specificity of 100%. Similarly, classification by geographical origin was successful with
FIA-MS and LC-MS fingerprints, with 100% sensitivity and specificity values (see Table S3).
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Figure 3. PLS-DA score plots for (a) FIA-MS and (b) LC-MS data to study coffee samples in front of
chicory, flour, and barley adulterants.

It is worth noting that while LC-MS provides a slightly superior classification perfor-
mance, the FIA-MS platform offers significant advantages in terms of speed and simplicity.
FIA-MS enables sample analysis in approximately 1.5 min (while the chromatographic
run lasts 40 min). This makes FIA-MS an ideal choice for rapid screening applications,
particularly in high-throughput environments, where slightly lower accuracy may be ac-
ceptable in exchange for faster turnaround. Moreover, it significantly reduces solvent use
and reagent waste, making the method more environmentally sustainable and aligned with
the principles of Green Analytical Chemistry and operational applicability assessments.
This aspect will be further discussed in the greenness evaluation presented in Section 4.

3.4. PLS-DA Validation Through Paired Models

To assess the discrimination power of the FIA-MS and LC-MS methods, paired PLS-
DA models were employed to classify the coffee samples against their common adulterants.
Each model focused on binary comparisons between the coffee samples and a specific
adulterant: chicory, flour, or barley. Additionally, paired comparisons were also conducted
for the classification of the coffee samples by variety (Vietnamese Arabica vs. Vietnamese
Robusta) and by geographical origin (Vietnam vs. Cambodia).

For each case, 70% of the samples from both classes were randomly selected to
construct the calibration model, while the remaining 30% were reserved for prediction.
The number of LVs and the values of the sensitivity, specificity, and classification er-
rors for both calibration and prediction models are summarized in Table 1. Addition-
ally, Figure 4 displays representative paired PLS-DA prediction plots. The sample num-
ber illustrates the clear class separation achieved using both the FIA-MS and LC-MS
datasets for all coffee vs. adulterant (chicory, flour, barley) comparisons. Similar plots
for the classification by coffee variety and geographical origin region are shown in the
Supplementary Materials (Figure S4).

As reported in Table 1, the classification performance was outstanding across all
models. In the paired comparisons between coffee and each adulterant (chicory, flour,
barley), the FIA-MS method achieved 100% sensitivity and specificity in both calibration
and prediction sets, resulting in 0% classification errors. The LC-MS method also delivered
an excellent performance, with perfect classification in most cases. Minor decreases were
observed in the prediction metrics for the coffee vs. flour and coffee vs. barley, with
sensitivity and specificity above 90% and classification errors below 5%. This slight decrease
in the classification performance for the LC-MS method could be attributed to partial
overlap in the chemical profiles of some adulterants (e.g., flour and barley) with coffee.
This overlap may be related to common roasting-derived compounds or matrix effects,
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which can reduce the discrimination capacity of the LC-MS fingerprinting in certain binary
comparisons. In contrast, the FIA-MS method achieved perfect classification in both
comparisons, with 0% classification errors. These results suggest that, although LC-MS
may offer slightly enhanced resolution for chemically complex or overlapping samples due
to chromatographic separation, in this study, FIA-MS actually yielded an equal or even
superior classification performance in these specific cases.

Table 1. LVs and sensitivity, specificity, and classification error values obtained for calibration and
prediction on paired PLS-DA models when studying the classifications of the analyzed samples by
the FIA-MS and LC-MS non-targeted methods.

Calibration Prediction
Sensitivity Specificity Classification Sensitivity Specificity Classification
Method  LVs Class %) %) Error (%) %) (%) Error (%)
Coffees vs. Chicory
Coffee 100 100 0 100 100 0
FIA-MS 2
Chicory 100 100 0 100 100 0
Coffee 100 100 0 100 100 0
LC-MS
Chicory 100 100 0 100 100 0
Coffee vs. Flour
Coffee 100 100 0 100 100 0
FIA-MS 2
Flour 100 100 0 100 100 0
Coffee 100 100 0 100 90 5.0
LC-MS 2
Flour 100 100 0 90 100 5.0
Coffee vs. Barley
Coffee 100 100 0 100 100 0
FIA-MS 2
Barley 100 100 0 100 100 0
Coffee 100 100 0 100 92.3 4.0
LC-MS 2
Barley 100 100 0 92.3 100 4.0
Arabica Coffee vs. Robusta Coffee
Arabica 100 100 0 100 100 0
FIA-MS 4
Robusta 100 100 0 100 100 0
Arabica 100 100 0 100 100 0
LC-MS 2
Robusta 100 100 0 100 100 0
Vietnamese Coffee vs. Cambodian Coffee
Vietnam 100 100 0 100 100 0
FIA-MS 3
Cambodia 100 100 0 100 100 0
Vietnam 100 100 0 100 100 0
LC-MS 2
Cambodia 100 100 0 100 100 0

Furthermore, as Table 1 shows, the classifications according to the coffee variety
and coffee geographical origin for both methods show 100% sensitivity and specificity
values. These results confirm the high discriminatory capability of the chemical fingerprints
obtained by both FIA-MS and LC-MS. The consistent performance across all the studied
cases highlights the potential of these non-targeted approaches for the rapid, reliable
authentication of coffee samples, even in the presence of adulterants.

It is worth noting that the present study employed the same type of coffee and
adulterant samples as those used in previous works where PLS-DA paired models were
developed using non-targeted HPLC-UV /FLD fingerprinting [14] and HS-SPME-GC-
MS [17] methodologies. This allows for a direct comparison of the results across different
analytical platforms.
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Figure 4. Paired PLS-DA score plots of Y predictions vs. samples for the data obtained using the
(a) FIA-MS method and (b) LC-MS method to evaluate (1) coffee vs. chicory, (2) coffee vs. flour,
and (3) coffee vs. barley. Filled and empty symbols correspond to calibration and prediction sets,
respectively. Red lines represent the threshold between classes.

For instance, Ntriez et al. [14] validated HPLC-UV and HPLC-FLD fingerprinting
strategies using paired PLS-DA to classify coffee against chicory, flour, and barley. Perfect
classification (100% sensitivity and specificity) was achieved in both calibration and vali-
dation sets across all comparisons. However, FLD-based models exhibited minor sample
dispersion, particularly in the coffee versus barley comparison. The chromatographic runs
required over 40 min per sample in the HPLC-UV and HPLC-FLD separations. In contrast,
the FIA-MS paired models demonstrated an equivalent classification performance, achiev-
ing 100% sensitivity and specificity in all cases, including the most challenging comparisons
(e.g., coffee vs. barley).

The classification results obtained using the paired PLS-DA models based on GC-MS
fingerprinting [17] also demonstrate the effectiveness for coffee authentication according to
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sample origin and variety. The sensitivity and specificity values were consistently high,
often reaching 100% for calibration and prediction. In comparison, the paired models
developed in this study using FIA-MS exhibited equivalent classification performances
across all evaluated scenarios.

These findings highlight FIA-MS as a highly efficient and reliable alternative to chro-
matographic fingerprinting techniques for coffee authentication. The method combines
rapid analysis with robust classification capabilities, offering significant advantages for
high-throughput screening and routine quality control applications in the coffee industry.

3.5. PLS Regression for Coffee Adulteration Detection and Quantification

PLS regression was applied to evaluate the capabilities of the developed non-targeted
FIA-MS and LC-MS methodologies for detecting and quantifying coffee adulterations.
As a proof of concept, Vietnamese Arabica coffee was used as the base matrix, and three
common coffee substitutes—chicory, flour, and barley—were studied because of their
potential economic and sensory impacts on the final product quality.

Three adulteration cases were assessed independently. As shown in Table 52 (Sup-
plementary Materials), calibration models were built using a range of adulteration levels
(0-100%), while prediction models were evaluated at intermediate levels (15-85%). More
design details are presented in Section 2.2.

Table 2 summarizes the PLS regression results for the three FIA-MS and three
LC-MS datasets.

Table 2. Evaluation of the coffee adulteration cases by PLS using obtained FIA-MS and LC-MS data
as sample chemical descriptors.

Coffee Adulterant IVs Cahbrat(l)on Predlctls)n Errors
Errors (%) (%)
hi 4 31 97
Vietnamese Chicory 03 6.9
FIA-MS Arabica Flour 4 0.27 10.31
Coffee Barley 4 091 117
hi 4 1
Vietnamese Chicory 3 043 915
LC-MS Arabica Flour 2 1.77 7.48
Coffee Barley 4 0.52 9.59

FIA-MS yielded the lowest calibration errors (<0.91%) and prediction errors, rang-
ing from 6.97% to 11.70%, depending on the adulterant. LC-MS also demonstrated
a good performance, with calibration errors between 0.43% and 1.77% and prediction
errors below 9.59%.

Although both platforms showed remarkable predictive capabilities, FIA-MS achieved
slightly lower calibration errors overall, while LC-MS provided improved prediction accu-
racy in some cases. These findings confirm the suitability of both non-targeted approaches
for quantitative adulteration assessment. The acceptable error ranges support their use in
the routine screening and quality control of coffee authenticity, particularly where FIA-MS
offers advantages in speed and cost-effectiveness.

A similar design was previously studied employing the HPLC-UV and HPLC-FLD
non-targeted methods by Ntfiez et al. [14]. Compared with the current results, the cali-
bration and prediction errors were consistently low, with values below 1.4% and 1.9% for
HPLC-UYV, respectively, and below 0.5% and 2.2% for HPLC-FLD, respectively, in quantify-
ing chicory, barley, and wheat flour in Vietnamese Arabica coffee adulterations. FIA-MS
data yielded calibration and prediction errors below 0.91% and 11.7%, respectively, con-
firming an acceptable quantitation. As a result, it is important to consider the substantial
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advantages offered by FIA-MS as a rapid, high-throughput, and cost-effective alternative
for coffee adulteration screening. These benefits make FIA-MS particularly attractive for
routine quality control, where speed and operational simplicity are essential.

3.6. FIA-MS and LC-MS Greenness and Blueness Evaluation

To provide a comprehensive perspective on the analytical suitability of the proposed
methods for coffee classification and authentication, both the environmental sustainability
and operational applicability were systematically evaluated (Figure 5). The AGREE (An-
alytical GREEnness Metric Approach) and BAGI (Blue Applicability Grade Index) tools
were employed to assess the greenness and blueness scores.

(a.1)

Figure 5. Greenness and blueness evaluation of the proposed FIA-MS and LC-MS methods. (a) Circu-
lar diagram generated with the Analytical Greenness Calculator v.0.4 based on the AGREE metric,
and (b) molecular-like diagram obtained from BAGI beta 0.9 software, for (1) FIA-MS and (2) LC-MS
in both cases.

In Figure 5, the colors used in the greenness assessment (red, yellow, green, etc.)
represent the performance of each individual criterion, where green indicates higher
compliance with sustainability principles and red indicates lower compliance. For the
blueness assessment, the shades of blue correspond to the scores of digitalization-related
criteria, with darker blue representing a higher performance. This color coding allows for
an intuitive visualization of the performance of the method in terms of environmental and
digitalization metrics.

The AGREE methodology, implemented via Analytical Greenness Calculator v.0.4 soft-
ware [26], evaluated the methods against the 12 principles of Green Analytical Chemistry
(GACQ). Figure 5(a.1),(a.2) show the FIA-MS and LC-MS scores across multiple domains
(0.62 and 0.6, respectively, with 1 being the maximum score), including low sample con-
sumption, lack of derivatization, reduced number of preparation steps, and minimal
generation of analytical waste. These characteristics reflect the well-established strengths of
MS-based techniques when aligned with green chemistry principles. FIA-MS demonstrated
a considerably higher sample throughput, achieving approximately 30 samples per hour,
in contrast to ~1 sample/hour for LC-MS. This significantly improves its energy efficiency
and reduces the environmental burden per analysis. Despite these strengths, no method
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supports in situ measurements (both being laboratory-based and off-line). Nevertheless, the
overall AGREE profiles reflect a good environmental performance, with FIA-MS standing
out as the greener alternative due to its higher efficiency and lower per-sample resource
demand. While FIA-MS demonstrates several environmentally friendly aspects, its AGREE
score of 0.62 indicates moderate sustainability rather than an excellent level. Therefore,
the method should be considered relatively sustainable, with room for improvement in
green metrics. The explained criteria for the FIA-MS and LC-MS greenness evaluation are
in Table S4 (Supplementary Materials).

To assess the practical feasibility of implementing these techniques in routine labo-
ratory workflows, the blueness was evaluated through the BAGI software (beta version
0.9) by Manousi et al. [27]. This tool provides a multi-parametric evaluation based on
ten distinct operational criteria. Figures 5(b.1) and 5(b.2) show that FIA-MS and LC-MS
achieved high scores across multiple domains (75 and 55, respectively, with 100 being the
maximum score for this evaluation).

Both FIA-MS and LC-MS delivered multi-analyte qualitative information for more
than 15 compounds and relied on advanced instrumentation and commercially available
reagents. However, important differences influenced the overall applicability scores. FIA-
MS demonstrated superior throughput. In terms of automation, both methods were
semi-automated systems with non-standard devices, incorporating autosamplers. Despite
this, FIA-MS benefits from a reduced analytical time and streamlined operational workflow,
ultimately enhancing its practical utility. Cumulatively, the BAGI results indicated that
FIA-MS is better suited for high-efficiency environments, where speed and minimal manual
intervention are critical. In contrast, LC-MS may be more appropriate in targeted or low-
throughput applications where detailed separation is prioritized over processing speed.
Table S5 provides the BAGI criteria for FIA-MS and LC-MS.

4. Conclusions

This work presents a comprehensive evaluation of FIA-MS and LC-MS for the char-
acterization, classification, and authentication of coffee samples in the context of food
adulteration detection.

Through exploratory PCA, the inherent chemical differences among pure coffee and
its most common adulterants (chicory, flour, and barley) were reflected in distinct clustering
patterns for both employed methodologies. Furthermore, PCA also revealed consistent
groupings of coffee samples according to their botanical variety (Arabica vs. Robusta) and
geographical origin (Vietnam vs. Cambodia).

The application of supervised PLS-DA models demonstrated an excellent classification
performance across all evaluated scenarios and for both the FIA-MS and LC-MS non-
targeted methods. Global models built to separate all coffee from all adulterants (and
different types of coffees from each other) yielded excellent sensitivity and specificity values,
with classification errors below 5% in most cases. Moreover, successful discrimination
between coffee varieties and origins was also achieved.

From a comparative standpoint, LC-MS offered a slightly superior classification accu-
racy, especially when dealing with chemically similar classes, due to the added benefit of
chromatographic separation. This advantage was particularly evident in the classification
of origin and subtle adulterations, where the complexity of the matrix required finer signal
discrimination. However, FIA-MS proved to be a remarkably efficient alternative, deliver-
ing excellent classification metrics in only 1.5 min per sample, making it highly attractive
for rapid, high-throughput screening workflows.

Furthermore, compared to our previous fingerprinting study based on HPLC-UV-
FLD detection, the implementation of FIA-MS enables the acquisition of richer and more
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informative spectral profiles. The use of full-scan mass spectrometry provides access to
a broader range of compounds, thereby offering an enhanced chemical dimensionality
essential for untargeted classification. In addition, the direct-injection FIA-MS workflow
significantly reduces the analysis time, allowing for the high-throughput screening of coffee
samples in a fraction of the time required for conventional HPLC-UV-FLD methods.

The AGREE and BAGI evaluation revealed clear contrasts between the two tested
methodologies. FIA-MS obtained an AGREE score of 0.62 and a BAGI score of 75/100,
reflecting a favorable environmental profile and strong practical performance, particularly
due to its high sample throughput. In comparison, LC-MS achieved slightly lower scores,
with an AGREE value of 0.60 and a BAGI score of 55/100, mainly limited by its slower
workflow. The results indicate that FIA-MS is the more sustainable and versatile option
for implementation in routine food authentication protocols. These findings reinforce the
utility of greenness and blueness metrics as decision-making tools in the development and
selection of modern analytical approaches. LC-MS is optimal for confirmatory analysis
requiring more resolution and accuracy, while FIA-MS offers a faster and more scalable
approach for routine or preliminary screening applications. The successful implementation
of both methods reinforces the value of non-targeted strategies in food authentication.

In summary, this study demonstrates that a strategy based on FIA-MS fingerprinting
combined with chemometric analysis offers a rapid, reliable, and relatively environmen-
tally friendly approach for coffee authentication and adulteration detection. While LC-MS
remains the optimal option for confirmatory testing, FIA-MS achieves a comparable clas-
sification accuracy in most scenarios, with the added advantages of faster analysis and
higher throughput. This makes it especially suitable for routine screening and large-scale
monitoring applications in the coffee industry.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/foods14172931/s1, Table S1: Description of the analyzed samples;
Table S2. Coffee concentration levels used in the calibration and validation sets for each adulteration
case, where X denotes the original coffee sample and Y represents the adulterant coffee sample;
Table S3. LVs and sensitivity, specificity, and classification error values obtained by PLS-DA when
studying the classifications of the analyzed samples with data obtained from the FIA-MS and LC-MS
non-targeted methods; Table S4. Evaluation of the environmental sustainability of the proposed
FIA-MS and LC-MS methods using the Analytical Greenness Calculator v.0.4 (2020), which is based
on the AGREE (Analytical GREEnness Metric Approach) methodology developed by Pena-Pereira
et al. (Pena-Pereira et al., 2020) [26]. Each of the twelve principles of Green Analytical Chemistry
(GACQ) is scored individually, and the rationale for each selected input is also provided; Table S5.
Evaluation of the practical applicability of the proposed FIA-MS and LC-MS methods using the
BAGI beta 0.9 software, following the methodology described by Manousi et al. (Manousi et al.,
2023) [27]. The table includes the ten BAGI criteria, the selected input for each one, the corresponding
score, and the justification for the choice; Figure S1. Non-targeted LC-MS fingerprints for selected (a)
Vietnamese Arabica coffee, (b) Vietnamese Robusta coffee, (c) Cambodian coffee, (d) chicory, (e) flour,
and (f) barley; Figure S2: PCA score plots obtained when (a) FIA-MS and (b) LC-MS fingerprints
were used as sample chemical descriptors to study coffee samples according to their (1) variety
(Arabica vs. Robusta) and (2) geographical production region (Vietnam vs. Cambodia); Figure S3:
PLS-DA score plots obtained when (a) FIA-MS and (b) LC-MS fingerprints were used as sample
chemical descriptors to study coffee samples according to their (1) variety (Arabica vs. Robusta) and
(2) geographical production region (Vietnam vs. Cambodia); Figure S4: Paired PLS-DA score plots of
Y predictions vs. samples for (a) FIA-MS- and (b) LC-MS-obtained fingerprints according to the (1)
coffee variety (Arabica vs. Robusta) and (2) geographical production region (Vietnam vs. Cambodia).
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