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CSRR chemical sensing in uncontrolled
environments by PLS regression

Javier Alonso-Valdesueiro, Luis Fernández, Agustín Gutiérrez-Gálvez, and Santiago Marco

Abstract— Complementary Split Ring Resonators (CSRRs) have been
extensively studied as planar sensors in the last two decades. However,
their practical use remains limited to controlled environments and
classification problems. Their performance reliance on high-end Vector
Network Analyzers (VNAs), highly repeatable laboratory conditions,
and special sample holders or microfluidic circuits hinders its regular
use in chemistry laboratories as analytical tool. Temperature drifts
and humidity variations during measuring, uncertainties in the elec-
tromagnetic properties of the sample containers, and careles sample
handling introduce significant uncertainties in measurements, leading
to unreliable results. Therefore, the prediction of target compounds
concentration in samples have been out of the research focus up to
now. Machine Learning algorithms can help to mitigate these uncer-
tainties and open the applicability of CSRR sensors to quantification
problems, where is necessary to determine the amount of a substance
in a liquid (or solid) sample.
This work presents a novel approach that takles this issue, combining a CSRR sensor with well stablised ML algorithms
that enhances its quantification performance. For ilustration purposes, a low-cost, benchtop CSRR-based system is
proposed to predict ethanol concentration in water solutions. Ethanol samples from 10% to 96% concentration were
prepared in commercial vials, generating 450 randomized measurements. Principal Component Analysis (PCA) was
employed for data exploration, while a Partial Least Squares regression model (PLS), tuned with Leave-One-Group-Out
Cross-Validation, was trained for ethanol concentration prediction. No feature extraction technique or noise reduction
strategy was applied. Although this straightforward workflow is well known in the chemical sensing field, it has not been
applied to data acquired with CSRR sensors.
The trained model achieved a Root Mean Square Error in Prediction (RMSEP) of 3.7%. Compared with 23.4% RMSEP
when using univariate calibration at optimized frequencies, it presentes a prediction performance reduced by a factor of
6. No evidence of underfitting or overfitting was observed during test of the trained model. The low RMSEP achieved
by the presented setup demonstrates the potential of CSRR-based sensors when combined with ML techniques for
concentration prediction working in realistic, uncontrolled conditions. This pushes forward the applicability of CSRR
sensors in the chemical analysis field, which might lead to benchtop, lowcost and relaible analysis devices for many
laboratories.

Index Terms— CSRR Sensors, Machine Learning, Concentration Prediction, Chemical Analysis, RF sensors, Resonators.

I. INTRODUCTION

COMPLEMENTARY Split Ring Resonators (CSRR) were
introduced as metasurfaces and metamaterials [1], [2],

and originally designed for microwave stopband filters, trans-
mission lines, and antennas [3]–[8]. Their sharp filtering
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behavior and sensitivity to surface surroundings [4], [9],
[10] soon positioned them as sensors [11], particularly for
measuring complex permittivity of materials [12]–[17].

In recent years, CSRR sensors have gained prominence in
chemical analysis, particularly for quantifying solute concen-
trations in solvents [18]–[20]. Notable applications include
glucose detection in aqueous solutions [19], [21], alongside
microfluidic device integration [22]–[25]. However, despite
promising laboratory results, only a few these studies have
demonstrated predicting capabilities of the studied substance
concentration levels in the Sample under Test (SUT) when
the study is performed under real laboratory conditions. This
pushes away the usability of CSRR sensors in real laboratory
environments, or when the samples are in commercial vials.

Accordingly, the objective of this contribution is threefold:
First, to enhance the performance of CSRRs in predicting
the concentration of substances in aqueous solutions. Sec-
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ond, to develop a system that operates directly with stan-
dard vials—eliminating the need for dedicated microfluidic
circuits—under uncontrolled environmental conditions (tem-
perature and humidity), and using low-cost, commercially
available bench top equipment. Third, to demonstrate that
a simple and well-established workflow—namely, Principal
Component Analysis (PCA) for data visualization and Partial
Least Squares (PLS) regression for quantification—can be
effectively applied to CSRR sensor data without requiring
feature extraction or noise reduction techniques, while still
achieving outstanding performance.

In a bench top, low-cost CSRR based system, the sources
of uncertainty can be summarized as follows: (i) the CSRR
sensor, which is sensitive to the position of the Sample
Under Test (SUT), (ii) the SUT itself, which is sensitive to
temperature and humidity variations, (iii) the Vector Network
Analyzer (VNA), which, in the case of a low-cost device,
introduces a considerable amount of uncertainty, and (iv) the
measurement routine, which is sensitive to SUT preparation
and the handling of vials. Furthermore, the presence of this
uncertainty is not visible in small well selected datasets [26],
[27]. Therefore, these factors can lead to significant variability
in measurements, making it challenging to obtain reliable
results using conventional regression techniques based on
univariate calibration at optimized frequencies [11], [28], [29].

Machine Learning (ML) algorithms might solve this situ-
ation. They have been increasingly applied to CSRR sensors
in the last five years [29]–[32], primarily to fit models linking
Scattering Parameter (S-Parameter) features to concentration
of solute, classifying different samples [21]. Recently, Mul-
tivariate Analysis (MVA) has been briefly introduced to this
purpose [27]. Despite these advances, the full potential of ML
algorithms to predict concentration of solutes in samples and
to mitigate noise and variability in CSRR-based measurements
under realistic conditions has not yet been fully explored. Fur-
thermore, the literature lacks studies involving large datasets
and appropriate sampling techniques, which are essential to
build robust and generalizable models for prediction.

As a benchmark experiment for sensitivity characterization,
the presence of ethanol in water solutions using CSRR sensors
has been widely studied in the literature [32]–[35]. Ethanol
is a common solvent in laboratories, and its quantification is
relevant in various fields, including food safety, environmental
monitoring, and clinical diagnostics [36]–[38]. Therefore, the
prediction of ethanol concentration will be evaluated with the
proposed CSRR bench top system as benchmark test of its
performance.

Within this framework, this work proposes a portable, low-
cost bench top CSRR-based system prone to uncertainties
from the sensor, the Vector Network Analyzer (VNA), and
measurement routine. Partial Least Squares regression (PLS),
is employed to enhance system performance. This approach
demonstrates that ML algorithms can enable CSRR-based
sensors to be deployed as concentration prediction tools in
chemical analysis outside strictly controlled environments,
increasing the versatility and usability of the CSRR sensor
concept.

Consequently, the text is organized as follows: Section II de-

Fig. 1. Proposed bench top CSRR system. (a) The commercial vial
(Chromacol 20-HSV) containing the SUT is placed on the CSRR using
a 3D-printed PLA support. The CSRR is connected to the low-cost VNA
(NanoVNA F-V2) via two SMA cables. The NanoVNA operates either
through its built-in graphical interface or via serial commands from a
Python application running on a standard laptop. (b) Photograph of the
real setup with a vial on top of the CSRR.

scribes the measurement system, including the CSRR sensor,
VNA, sampling methodology, and ML workflow. Section III
presents data visualization, traditional CSRR performance
modeling, PCA exploration, and PLS training results. Sec-
tion IV compares the system’s performance with conventional
curve fitting methods. Finally, Section V summarizes the
findings and the potential of CSRR-based systems in chemical
analysis.

II. CSRR BENCHTOP SYSTEM

A. System Block Diagram

A complete setup has been developed for the purposes
of this work. Figure 1(a) presents the block diagram of the
CSRR-based system. Describing the measurement system is
essential because, as discussed in Section I, most studies
optimize measurement setups to maximize sensor performance
under controlled conditions.

In this contribution, the CSRR system is designed as a
bench top tool for chemical analysis. The Sample Under
Test (SUT) is placed in a commercial vial (Chromacol 20-
HSV, Thermo Fisher Scientific, Inc. Waltham, MA, USA) and
positioned on the sensor using a 3D-printed PLA holder. This
holder ensures the vial is consistently centered over the CSRR
resonant structure, minimizing positional variability during
measurements.

Bench top equipment must be compact, portable, and afford-
able to fit in standard laboratory environments. The system
measures the S21 parameter, which some studies achieve
through custom electronics [19], [26], while others rely on
expensive commercial VNAs [22]–[24]. Here, a low-cost com-
mercial VNA (NanoVNA F-V2, Sysjoint Co., Ltd., Hangzhou,
China) was selected due to its affordability, performance in the
1–3 GHz band, and compatibility with external computers via
serial commands.

The VNA is controlled by a custom GUI developed in
Python, running on a commercial laptop. The GUI facilitates
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Fig. 2. Modified CSRR. (a) Structure of the measured CSRR with asym-
metrical honeycomb placement on a 22×66 mm PCB. The longitudinal
honeycombs are positioned at CL = 6.3 mm and C′

L = 6.4 mm
from the PCB center, while the transverse honeycombs are placed at
CT = 3.7mm and C′

T = 3.8mm. (b) Simulated electric (E⃗V/m) and
magnetic field (H⃗A/m) distributions on the honeycomb structure surface.
(c) CSRR mounted with SMA connectors. (d) S21 comparison between
simulations and measurements with the CSRR unloaded (Keysight
E5071C-240).

data acquisition, organizes data into structured databases, and
enables continuous measurement. It also includes a prediction
module to integrate trained ML models for real-time concen-
tration predictions from S-parameter measurements.

B. CSRR Sensor

One of the simplest and more affordable CSRR sensors was
introduced by Omer et al. [26].

Figure 2(a) shows the structure of the CSRR used in this
contribution, manufactured by Eurocircuits NV (Mechelen,
Belgium). The design is based on the honeycomb CSRR, with
modifications to change its spectral response. Specifically, the
vertical and horizontal symmetry were modified by 100 µm
with respect to the original design, introducing an additional
resonance around 3.5 GHz close to the main resonance at
3.2 GHz. This asymmetry intentionally increases the system’s
sensitivity to positional variations of the SUT. Therefore, it
enhances the sensitivity of the sensor to SUT electromagnetic
anisotropies, which enriches the variability observed by using
commercial vials. The coupling transmission line and the
dimensions of each honeycomb are as defined in [26].

C. Sampling Methodology

The primary goal in any sampling methodology is to
block potential unwanted influences on the measurements. To
achieve this goal a heavily randomize strategy was followed
in this contribution. This randomization mitigates undesired
effects on the dataset, such as batch effects, repetition corre-
lation, and instrumental error propagation [39].

In this study, samples were organized according to ethanol
concentration in solution. The concentrations ranged from
almost diluted (10% ethanol) to ethanol (96% purity),using
10% steps (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
and 96%). Badge solutions were prepared with the specified
concentrations and poured into 10 commercial vials, randomly
selected from a pool of 100 vials (vials are 22.5 × 75 mm

with 2 mm wall). In the vials, 1.2 mL of each badge solu-
tion were poured by micropipeting. Uncertainties in ethanol
concentration at each vial ranged from ±0.45% for the most
diluted preparation to ±3.6% for the samples prepared with
80% badge solution.

The 90 vials were labeled for randomization and identi-
fication, then stored together in a fridge at 5 ◦C for one
day. The following day, the vials were removed from the
fridge and left at 23 ◦C (room temperature) for an hour. Five
Measurement Rounds (MR) were performed, with the order
of vials randomized in each round. Each MR consisted of
ten repetitions for each concentration, using different vials for
each repetition, resulting in a total of 500 measurements (50
measurements for each concentration). Before each round, the
unloaded response of the CSRR sensor (S21) was measured
and used for baseline correction. Each measurement consisted
of 201 data points recording 20 ˙log (|S21|) from 1.6 GHz to
3 GHz using the NanoVNA F-V2. A large and comprehensive
database with 500 repetitions of 10 samples of 9 different
concentrations of ethanol (10% to 96%) resulted from this
sampling methodology. The entire procedure is depicted in
Figure 3. In this figure, the vial labelling and the randomization
of the order on which the vials were measured is shown. The
unloaded response of the CSRR measured before each MR
also appears in the figure marked as baseline.

D. Machine Learning Workflow
As shown in figure 4, the workflow for training and test the

machine learning (ML) models consists in three main steps:
data preprocessing, data exploration, and model training/test.
Initially, data is prepared and preprocessed to ensure consis-
tency, quality and complexity control. Next, Principal Compo-
nent Analysis (PCA) is applied to extract meaningful insights
from the dataset and improve the visualization of the data.
Finally, Partial Least Squares regression (PLS) is employed
for model training and prediction. No feature extraction or
noise reduction techniques were applied, as the aim of this

Fig. 3. Sampling Method. (a) 10 vials are assigned to each concen-
tration randomly from the vial batch. The vials are poured with the
corresponding ethanol concentration and labelled for identification. (b)
Each Measurement Round (MR) consists of measures with the system
described in Figure 1 the 20 ˙log (|S21|) of the CSRR with a vial on
top. The order of vials is randomized in each MR, and the unloaded
response of the CSRR (baseline) is measured before each MR for
baseline correction. In total 5 MR were carried out (450 measurements)
with one baseline for each MR.
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Fig. 4. Block diagram of the developed workflow for training the bench-top CSRR system. In the Data Preparation step, the database is cleaned by
extracting the actual data (features) from the metadata, resulting in a 450×201 feature matrix and a 5×201 baseline matrix. In the Pre-Processing
step, the feature matrix baseline is corrected using the baseline matrix, applied to each round separately. These two steps are common to both
PCA and PLS training algorithms. In the Training step, the feature matrix is split into the training dataset (300 × 201 matrix) and the test dataset
(150 × 201 matrix). In this step the train dataset is autoscaled and the mean and the standard deviation (µ and σ) are stored for autoscaling the
test dataset afterward. The train dataset consisted in the repetitions of 6 concentrations (10%, 20%, 30%, 50%, 70%, and 96%) and the test
dataset consisted in the repetitions of 3 concentrations (40%, 60%, and 80%). The training dataset is then introduced into a leave-one-block-out
cross-validation (LOGO-CV) scheme, which produces an optimized PLS model. In the External Test step, the performance of the optimized model
is evaluated by obtaining predictions from the test dataset.

work is not to implement the most advanced approaches in
the machine learning field

1) Principal Component Analysis: Principal Component
Analysis (PCA) was performed on the database generated as
described in section II-C. The dataset was prepared and pre-
processed as shown in Figure 4, and PCA was carried out
using the Statistics and Machine Learning Toolbox (v12.5) in
MATLAB (R2023a).

As shown in Figure 4, the dataset is cleaned by extracting
metadata (labels, date of acquisition, etc.) and adjusting the
number of features for each repetition, if necessary. The
data matrix (450 × 201) is then pre-processed in three steps.
First, A non-linear transformation of the measured S21 to
dB is performed over the 201 point of each measurement
(20 ˙log (|S21|)). Then the baseline of each measurement round
is corrected using the measurement of the unloaded CSRR
by simply subtraction. Second, each feature is auto-scaled by
calculating the mean, µC , and standard deviation, σC , for each
concentration in each MR.

The explained variance (EV) of the dataset was calculated
for each PC, and the cumulative EV was plotted (see fig-
ure 7 (c)). The distribution of the repetitions in the reduced
vector space was also plotted for the first two PCs (see
Figure 7 (b)).

2) Partial Least Squares regression: As it shown in Fig-
ure 5, the complexity of the dataset is high and the number
of repetitions per concentration of is lower than the features
of each repetition. This makes the sample/dimensionality ratio
unfavorable for regular regression models. In these situations,
Partial Least Squares (PLS) presents the most appropriate ap-

proach in order to avoid overfitting and deal with collinearity.
The PLS algorithm compresses the data before regression by
projecting the data into a lower-dimensional space. This helps
to mitigate overfitting and improve model generalization [40].
Although PLS is a well-known technique in the chemical
sensing field and the proposed workflow does not incorporate
the latest advances in machine learning, its simplicity and
effectiveness in this context make it the ideal candidate to
demonstrate how ML algorithms can enhance the applicability
of CSRR-based systems.

Before starting the PLS training, the dataset was pre-
processed in the same way as for the PCA analysis (see Fig-
ure 4). The pre-processed data was then split into two subsets.
Data from six concentrations was used for training and internal
validation (training dataset, repetitions of 6 concentrations,
10%, 20%, 30%, 50%, 70%, and 96%), while the remaining
data was set aside for external test (test dataset, repetitions of
3 concentrations, 40%, 60%, and 80%). Therefore, the training
dataset consisted of a 300 × 201 feature matrix, and the test
dataset of a 150 × 201 matrix. The training dataset was then
autoscaled and the mean and standard deviation (µ and σ in
Figure 4) were stored for later autoscaling of the test dataset.

A Leave-One-Group-Out cross-validation (LOGO-CV)
scheme was used for model training [33]. This approach uses
data from five concentrations for training and reserves data
from one of the concentrations for internal validation. For each
iteration, a set of predictions for each concentration is obtained
and stored. At the end, for each level of complexity (number
of Latent Variables, or LVs), the Root Mean Square Error
in Cross Validation (RMSECV) is calculated. The optimal
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Fig. 5. 20 ˙log (|S21|) of each measurement in the generated dataset.
Ethanol concentrations in clean water range from 10% to 96%. Ten
random commercial vials were selected for each concentration from a
pool of 100. Five rounds of measurements were performed, where in
each round, the 20 ˙log (|S21|) of the CSRR was recorded by placing a
randomly selected vial on top of the sensor and continuing through the
set of 90 vials. Before each round, the 20 ˙log (|S21|) of the unloaded
CSRR was measured for baseline correction of the data.

number of LVs is selected based on the minimum RMSECV
value. The PLS model is then trained using the entire training
dataset with the selected number of LVs. Once the PLS model
is trained, external validation is performed by introducing
the test dataset in the model and making predictions for the
concentrations. In this case, predictions for 40%, 60%, and
80% concentrations were estimated using the resulting model.

III. CSRR SYSTEM PERFORMANCE

In this section, we present the results from the measure-
ments, characterization of the frequency shift, and machine
learning analysis of the CSRR system. The performance of
the system is evaluated in terms of its ability to quantify the
concentration of ethanol in water. We begin by discussing the
traditional characterization of the system, followed by the PCA
analysis of the dataset, and conclude with the evaluation of the
PLS model’s performance.

A. Acquired Database
Figure 5 shows the 20 ˙log (|S21|) of each measurement in

the dataset used for ML model training and testing. Several
features are evident upon visual inspection. First, a wide
dispersion of the curves is observed for each concentration.
Notably, the dispersion of the deepest resonance seems to
decrease as the ethanol concentration increases.

Features around 2.1 GHz and 2.5 GHz show better dis-
crimination between samples. Additionally, for 20% ethanol,
two repetitions exhibit an outlier behavior, with 20 ˙log (|S21|)
values deviating from the trend observed in the rest of the
dataset.

Furthermore, outliers were identified for certain concentra-
tions (10%, 20%, and 40%) in rounds 1, 2, 3, and 5. The
repetitions corresponding to 40% ethanol showed one outlier

Fig. 6. Traditional characterization of the CSRR system when mea-
suring concentrations of ethanol diluted in clean water and poured in
commercial vials. a) Averaged 20 ˙log (|S21|) response of the generated
database. b) Rational model fitting for the frequency of the minimum
observed in the averaged 20 ˙log (|S21|) when concentrations of the
training test are considered (10, 20, 30, 50, 70, and 96 %)

in each round, likely due to a vial characteristic that differed
significantly from the rest of the pool. However, the outliers for
10% and 20% ethanol appeared in different rounds, suggesting
inconsistent handling of the vials during measurements.

B. Frequency Shift Characterization

Following studies presented in the literature, Figure 6(a)
shows the averaged 20 ˙log (|S21|) for each concentration. This
plot illustrates how the shape of the S21 parameter evolves with
concentration, indicating a non-linear response of the system
to ethanol. In order to compare fair comparisson, dataset spllit
presented in II-C (data from concentrations 10%, 20%, 30%,
50%, 70%, and 96%) was applied to the dataset. By evaluating
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the frequency shift of the most prominent resonance in the
training dataset [32], a rational fit of the deepest resonance
yields the following expression:

C%(ν) =
p1 · ν + p2

ν + q
(1)

where the frequency, ν, is in GHz, p1 = 111.8 %/GHz2,
p2 = −259.2 %/GHz, and q = −2.3 GHz. The R2 of
the fit is 0.96 and the RMSECV is 8.72 %. The fitting
was performed using the Curve Fitting Toolbox (v3.9) from
MATLAB (R2023a). This model is shown in Figure 6 (b).

A set of predictions were obtained using the rational model
of Equation 1. As test dataset, the data of the 3 concentrations
not used for fitting (40%, 60%, and 80%) were selected
in order to fairly compare this methodology with the ML
workflow proposed in section II-D. For predictions, the fre-
quency in GHz of the minimum observed in each 20 ˙log (|S21|)
for each repetition was introduced into the rational model.
The predicted concentration was compared with the actual
concentration of the sample. The RMSEP calculated in this
way was about 23.4%.

C. Principal Component Analysis
As shown in Figure 7 (a), 95% of the Explained Variance

(EV) of the dataset is contained within the first three Principal
Components (PCs). Most of this variance is concentrated in the
first PC (73%), while the remaining components account for
less than 15% of the EV. While the first PC might be associated
with the ethanol concentration in the solution, the second and
third PCs are likely related to the variability introduced by the
commercial vials and the measurement process.

Figures 7 (b), shows the distribution of the repetitions in
the reduced vector space of the extracted for the two most
relevant PCs. The complexity of the dataset is evident in the
distribution of the repetitions in the reduced vector space. Each
repetition is represented by a different marker, with the color
indicating the ethanol concentration.

D. Partial Least Squares Predictive Model
Once the workflow presented in Figure 4 is completed, sev-

eral intermediate results provide insights into the performance
of the obtained model. Figure 8 (a) shows the evolution of the
Root Mean Square Error in Cross-Validation (RMSECV) with
respect to the number of components used in the PLS during
the LOGO-CV scheme iterations. At the end, the optimal
model was obtained with 7 LVs.

Additionally, the most important features in the training
dataset were identified using the Variable Importance in Pro-
jection (VIP) scores for each feature [41]. The calculated
scores provide information on the average importance of each
feature in the projection of the repetitions onto the reduced
vector space handled by the PLS.

This information can be used to reduce the feature matrix
and focus on the most relevant parts of the 20 ˙log (|S21|)
response. There are several ways to define thresholds for
feature importance [15]; a common approach is to select
those with a mean VIP score greater than 1. However, since

the objective of this study is not to assess the impact of
feature selection on model performance, no such selection was
performed. This aspect is reserved for future work.

1) Performance in Cross Validation: As mentioned in sec-
tion III-D, after the LOGO-CV, the PLS model with complex-
ity of 7 LVs provided the best performance. A model with
this level of complexity produced predictions for the 20%,
30%, 50%, 70%, and 96%. The RMSE in cross-validation
(RMSECV) was around 2.63%, with an R2 of 0.98. The
model introduced a linear bias of −0.9% on the predicted
concentration, and the calculated Limits of Agreement (LoA),
using the Bland-Altman method [42] for the 95% Confidence
Interval (CI), resulted in a ∼ ±6% maximum deviation from
linear prediction.

Figure 8 (b) shows the VIP scores for the training dataset

Fig. 7. Principal Component Analysis (PCA) of the dataset generated
as described in section II-C. a) Cumulative Explained Variance (CEV)
of the dataset (in %) with respect to the considered PCs and Explained
Variance distribution over the set of PCs considered. b) Distribution of
each repetition in the reduced vectorial space when representing the
second Principal Component (PC2) with respect to the first PC (PC1).
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Fig. 8. Statistics of the Partial Least Squares Regressor (PLS) trained
with the generated dataset: a) Evolution of the Mean Squared Error
(MSE) with the number of Latent Variables (LVs) during the Leave-One-
Block-Out Cross-Validation (LOGO-CV). b) Mean Variable Importance
in Projection (VIP) scores for each feature from 1.6GHz to 3GHz, with
scores greater than 1 highlighted in pink ( ).

after optimizing the PLS to 7 LVs. In this figure, pink areas
( ) highlight scores greater than 1. It can be observed that the
most important parts of the 20 ˙log (|S21|) correspond to data
around 2.1 GHz, 2.45 GHz, and 2.5 GHz. These frequency
ranges align with the most significant differences between
concentrations observed in Figure 5.

2) Performance in Test: After internal validation of the
model, a external validation was performed. The purpose of
this external validation was to evaluate the performance of
the PLS model when facing repetitions of samples which
the model had never seen before. For this purpose, the total
database was divided into training dataset and test dataset as
explained in section II-D. The test dataset contained repetitions
of 40%, 60% and 80% samples.

Figure 9 shows the predictions obtained for the test dataset.
These predictions produced a RMSE in Prediction (RMSEP)
about 3.7 %, close to the RMSECV, with a R2 coefficient of

Fig. 9. Performance of the PLS at test. The plot includes Predicted ver-
sus Actual ethanol concentration in %, the ideal perfect concentration,
the bias introduced by the model and the upper and lower LoAs at 95%
CI.

0.98. The LoAs were calculated in the same way presented
in previous section, resulting in a maximum deviation of ∼
±7% with a 95% of Confident Interval. The PLS models also
showed a −1.5% bias when predicting the concentrations of
the test dataset.

IV. CSRR SYSTEM EVALUATION AND DISCUSSION

In this study, we demonstrate the impact of applying a
well established set of ML algorithms in measuring liquid
concentrations with a CSRR-based bench-top system. When
properly applied, even the most simply combination of data
visualization (through PCA) and multivariate linear regression
(through PLS modelling), not only reveal the properties of the
generated datasets but also enhance the prediction performance
of low-cost bench-top systems for predicting concentrations of
substances under test (SUTs) when measurement conditions
are very close to a real application.

For a bench-top system like the presented in section II the
measurement procedure and the commercial vials used regu-
larly in laboratories, introducing a considerable the amount of
the observable variability across repetitions. In the literature,
this variability is managed, either enhancing the hardware
of the system, which might be impossible in many of the
cases due to the increase in hardware cost, or designing ad-
hoc solutions that reduce variability, as it happens with the
vials. Table I shows a comparison of the presented system
with other CSRR-based systems used for ethanol concentration
determination. The table highlights that most of the systems
do not report any error in the test, which is likely due to the
fact that they are not tested with a large dataset, or they are not
tested at all. With one recent exception where a convolutional
neural network was trained with a large dataset, the rest of the
systems are based on the frequency shift of the S21 parameter.

In that sense, the presented system is the first one to report
a large dataset of measurements and to apply a multivariate
analysis to the data. Also, the novelty of the presented system
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TABLE I
COMPARISON WITH DIFFERENT CSRR-BASED SYSTEM USED FOR

ETHANOL CONCENTRATION DETERMINATION.

Ref Sample Model Reported
Container Parameters Error

in Test

[20] Plexiglas Sheets ∆f0 No
∆|S21|

[23] ABS 3D printed ∆f0 No
∆|S21|

[24] Microfluidic Convolutional Yes
Channels Neural Network

[28] PDMS microfluidic ∆f0 No
Channels ∆|S21|

[6] PDMS microfluidic No Reported No
Channels

[43] Capillary Tube ∆f0 No
∆|S21|

is based on the fact that it does not require any ad-hoc solution
to reduce variability, such as microfluidic [24].

Furthermore, the inefficiency of using one-dimensional anal-
ysis, such as frequency shift, has been demonstrated in this
study when a more realistic situation than the presented in
the literature is considered. Section III-B highlights how a
large and robust dataset (acquired as explained in section III-
A) reveals significant variability and large standard deviations
across repetitions, making it clear that simple curve fitting
is unlikely to accurately predict the concentration of the
SUT. In particular, with the dataset generated in section III-
A, the combination of the presented system, measurement
uncertainties, and commercial vials resulted in a curve-fitting
model based on the frequency shift of the S21 parameter with
ethanol concentration, yielding an RMSE of 23.4%. This low
performance shows that multivariate analysis is essential to
improve both accuracy and robustness.

In particular, the proposed ML workflow, with a preliminary
exploration of the dataset and a full training of a PLS model
have demonstrated their boosting capabilities reducing 6 times
the error when a singular prediction is performed. The price to
pay is the complexity of the approach at its beginning, which is
compensated by the robustness of the model and the reduction
of the error in the prediction.

For the benchmark problem of ethanol concentration diluted
in clean water, the PCA shows the variability of the dataset
concentrated around 4 Principal Components (PCs), as it is
shown in Figure 7. The first PC is clearly related to the ethanol
concentration in the solution. This is confirmed in Figure 7 (b).
The figure also informs about the spread in the second PC.
This spread can be attributed to variability introduced by the
commercial vials and the measurement process itself.

This variability suggests the complex evolution of the
20 ˙log (|S21|) of the system with the concentration of ethanol
in solutions under the measurement conditions proposed here.
This complexity is not captured by the traditional curve fitting
model, as it is shown in section III-B and discussed above.

In accordance with this, the golden standard in multivariate
analysis, the PLS model, was trained with the dataset gener-
ated in this study. The training evolution of the PLS model
showed that 7 LVs minimized the RMSECV (see figure 8 (a))

which is not far away from the 4 PCs obtained in the PCA of
section II-D.1. Moreover, the VIP scores analysis confirmed
the multivariate nature of the problem (see figure 8 (b))
showing that different features of the spectrum have relevance
during the training process.

In fact, the trained PLS model using the workflow presented
in section II-D, shows a better performance than the univariate
model. In particular, a reduction by a factor of ∼ 6 in the
RMSE at test (RMSEP = 3.74 %). Also, the LoAs are stable
over the range of concentrations considered in the test dataset
and similar at training and test. This behavior in training and
test shows the robustness of the PLS model compared with
the quantification models presented in the literature.

V. CONCLUSIONS

As a result of the presented study, it has been demonstrated
that the performance of low-cost, bench top devices, ready to
be used for predicting concentrations in solutions for labora-
tory settings, can be significantly enhanced by applying a very
simple Machine Learning Workflow. Due to the popularity of
commercial vials for sample handling and storage this largely
improves the usability of the device for quantitative purposes.
This demonstration was carried out using a representative
example of the benchmark problem of quantifying ethanol
concentration diluted in clean water. The results show that
an affordable sampling campaign, coupled with the use of
ML algorithms (specifically PCA and PLS) can improve the
performance of traditional curve fitting by a factor of 6.
Additionally, no feature extraction methods were applied in
order to maintain a simple and straightforward workflow. As
discussed in Section III-D.1, the impact of feature extraction
may be explored in future studies to further improve model
performance.

PCA analysis was used to explore the dataset and visualize
the complexity of the problem. This approach enables linking
the dataset’s complexity to the physical properties and design
of the CSRR sensor, as illustrated in Figure 8 (b). The VIP
scores obtained during the training of the PLS model identify
the most relevant features in the 20 ˙log (|S21|) spectra, which
correspond to the sensor’s physical characteristics and design.

To maintain simplicity in the workflow, PLS regression was
selected as the quantification algorithm. It is well-suited for
scenarios with a low sample-to-feature ratio and is widely used
in the chemical sensing field. Although other ML algorithms,
such as Lasso or Random Forest, may achieve better perfor-
mance in capturing dataset non-linearity [44]. PLS regression
offers superior stability, interpretability, and robustness against
overfitting [45], [46].

The presented results overcome the limitations associated
with univariate analysis of the S21 parameter in CSRR-based
systems in predicting problems, particularly when applied
to real-world scenarios such as chemistry laboratories. They
also open up the opportunity to utilize CSRR-based systems
as bench top devices in chemical analysis and biomedical
applications, advancing their development as valuable tools
for analysis, monitoring, screening, and diagnosis.

At the same time, the study of the VIP scores during
the training of the PLS model, identifies the most relevant
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features in the 20 ˙log (|S21|) spectra. This information can be
linked with the physical properties of the CSRR sensor and its
design which could lead to improvements in the sensor design.
Therefore, the link of between microwave sensor design and
ML algorithms can also open new ways to improve the
performance of CSRR-based sensors in the future.

It is important to note that there is still room for improve-
ment in the portability and robustness analysis of the CSRR-
based system presented in this work. Future studies could
focus on evaluating the system’s performance under varying
environmental conditions, such as temperature and humidity
changes, to ensure its reliability in real-world applications.
These investigations are facilitated by the low-cost and porta-
bility of the proposed system. Its compact size and afford-
ability make it suitable for deployment in diverse settings,
including field applications and resource-limited environments.

In this work, the focus has been on predicting ethanol
concentration in clean water, a benchmark problem in the
field. However, the proposed workflow and system can be
readily adapted to other substances and mixtures, making it
a versatile tool for various applications in chemical analysis
and biomedical fields. Future investigations might also address
questions related to the vial–sensor interface and the influence
of vial anisotropy on system sensitivity.
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