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Summary
Background Short telomere length (TL), a hallmark of biological ageing, has been associated with an increased risk of 
Alzheimer’s disease (AD), but its pathophysiological role remains unclear. This study explored the relationship 
between blood leukocyte TL (LTL), cerebrospinal fluid (CSF) AD biomarkers changes, and brain structure across 
early stages of the AD continuum.

Methods We included 346 cognitively unimpaired participants (aged 49–71) from the ALFA cohort, enriched for AD 
risk (53.2% APOE-ε4 carriers; 34% amyloid-positive). LTL was measured at baseline (visit 0) using quantitative PCR. 
Associations were assessed between baseline LTL and CSF biomarkers at visit 1 (mean follow-up from 
baseline = 3.98 years, SD = 1.02), and with changes in CSF biomarkers between visits 1 and 2 (mean 
interval = 3.45 years, SD = 0.58). Cortical thickness in ageing- and AD-vulnerable brain regions was evaluated by 
magnetic resonance imaging (MRI) at visit 1. Analyses were stratified by APOE-ε4 status and amyloid-tau (AT) 
profiles. Mediation models tested whether CSF biomarkers mediated LTL-cortical thickness associations.

Findings Shorter LTL was associated with higher astrocytic reactivity at visit 1 and with increased synaptic 
dysfunction over time. Among APOE-ε4 carriers and AT-positive individuals, shorter LTL was associated with higher 
p-tau181 and neurodegeneration markers. Shorter LTL was associated with greater cortical thickness in ageing- and 
AD-vulnerable regions, partially mediated by astrocytic reactivity biomarkers.

Interpretation These findings suggest that shorter telomeres are associated with early AD-related biological changes, 
potentially via mechanisms involving astrocytic reactivity and brain structural alterations. LTL may serve as an early 
marker of vulnerability to neurodegenerative processes in at-risk populations.

Funding AARG-19–618265; PI19/00119; LCF/PR/GN17/10300004; TriBEKa-17–519007; # SLT002/16/00201.
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Introduction
Advancements in fluid and neuroimaging biomarkers 
have demonstrated that AD pathology begins decades 
before symptom onset. 1,2 AD is now conceptualised as a 
biological and clinical continuum, beginning with a pro-
longed asymptomatic stage. Core cerebrospinal fluid 
(CSF) biomarkers of AD, including amyloid-β42 (Aβ42), 
the Aβ42/40 ratio, phosphorylated tau (p-tau), and total tau 
(t-tau), enable early disease detection, reflecting amyloid 
deposition, tau pathology, and neurodegeneration. These 
biomarkers form the basis of the AT (Amyloid/Tau) 
classification framework, which allows staging of in-
dividuals along the Alzheimer’s continuum and enhances 
biological precision in preclinical and prodromal phases. 3–5 

Beyond Aβ and tau, additional mechanisms such as 
neuroinflammation, glial reactivity, neuronal injury, 
and synaptic dysfunction emerge early in the disease 
course and are closely linked to its progression. 6–8 

Incorporating biomarkers of these processes provides 
a more comprehensive characterisation of AD

pathophysiology and may facilitate development of 
early therapeutic interventions. 9 Importantly, many of 
these pathological alterations are also detected during 
normal brain ageing. 10,11 This overlap has led to growing 
recognition that ageing and AD may share common 
and interacting biological mechanisms, collectively 
shaping disease progression. 12

In this context, biological ageing is increasingly 
recognised as a more accurate indicator of physiological 
and functional status than chronological age. 13 Telo-
mere length (TL) is a well-known hallmark of cellular 
ageing, reflecting the replicative history and the cu-
mulative exposure to cellular stress. 14 Telomeres, 
composed of repetitive DNA sequences and associated 
proteins, protect chromosome ends and shorten pro-
gressively with cell division, a process accelerated by 
factors such as oxidative stress or environmental expo-
sures. 15 This attrition leads to genomic instability and 
cellular senescence, contributing to ageing at cellular, 
tissue and organismal levels. 16,17
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Leukocyte telomere length (LTL) serves as a surro-
gate for TL in other tissues, 18 and has been associated 
with increased mortality and higher risk of age-related 
diseases, including all-cause dementia and AD. 19–22 

Shorter LTL has also been associated with poorer 
cognitive performance and smaller brain volumes and 
cortical thickness 23–25 Mendelian Randomisation (MR) 
studies support a causal relationship between geneti-
cally predicted shorter LTL and increased risk of 
cognitive impairment, AD, and structural brain 
changes. 23,25,26 These findings suggest longer telomeres 
may contribute to greater brain reserve since early 
development, influencing cognitive resilience later in 
life. 27 However, some observational studies have re-
ported paradoxical associations, such as longer LTL 
predicting greater cognitive decline in individuals with 
established AD pathology. 28 In a previous MR study 
involving cognitively unimpaired (CU) individuals at 
increased risk of AD, we encountered unexpected as-
sociations between genetically predicted LTL and core 
AD CSF biomarkers, which differed according to ge-
netic predisposition to AD. 29 These findings suggest 
that the influence of LTL on AD pathophysiology may 
be both stage-specific and modulated by genetic 
background.

Given these complexities, there is a critical need to 
integrate longitudinal and multimodal biomarkers, 
beyond Aβ and tau, alongside neuroimaging

endophenotypes, to better elucidate the role of LTL in 
brain ageing and AD risk. As the global number of 
individuals living with AD is projected to triple to 152 
million by 2050, primarily due to population ageing, 30,31 

investigating these associations in preclinical stages 
could may help uncover biological mechanisms 
through which ageing contributes to AD pathology and 
identify resilience mechanisms that support cognitive 
health. 12,32

In this study, we examined associations between 
LTL, measured at baseline, and CSF biomarkers 
assessed 3.98 and 7.43 years later, in CU middle-aged 
individuals at increased risk for AD. The CSF panel 
included biomarkers covering core pathogenic 
processes in AD: Aβ pathology (Aβ42/40 ratio), tau 
pathology (phosphorylated tau at threonine 181 
[p-tau181]), neurodegeneration (t-tau and neurofila-
ment light chain [NfL]), synaptic dysfunction (neuro-
granin and alpha-synuclein [α-synuclein]), astrocytic 
reactivity (glial fibrillary acidic protein [GFAP], chiti-
nase-3-like protein 1 [YKL-40], and s100 calcium-
binding protein B [s100B]), microglial reactivity (solu-
ble TREM2 [sTREM2]), and inflammation (interleukin-
6 [IL-6]). We also investigated LTL associations with 
cortical thickness in AD-sensitive brain regions and 
tested for effect modification by APOE-ε4 status and 
amyloid-tau (AT) profiles, aiming to clarify the biolog-
ical mechanisms linking shorter LTL to AD

Research in context

Evidence before this study
We reviewed the literature using PubMed and other scholarly 
databases. Ageing is the main risk factor for Alzheimer’s 
disease (AD), but chronological age alone does not fully 
explain the biological processes contributing to AD. 
Telomeres, protective chromosome-end structures, shorten 
with each cell division. While telomere length (TL) is 
primarily age-dependent, genetic, lifestyle, and 
environmental factors can accelerate its attrition. Shorter 
leukocyte TL (LTL) has been associated with increased 
dementia risk and brain structural changes, but its role in AD 
pathology remains unclear. Longitudinal studies integrating 
multimodal biomarkers in cognitively unimpaired (CU) 
individuals at risk for AD are limited.

Added value of this study
This study examines how LTL relates to brain health and AD 
progression in CU individuals at increased risk. Half carried 
the APOE-ε4 risk allele, and 34% showed CSF amyloid-β (Aβ) 
positivity. We investigated associations between LTL and 
change in CSF AD-related biomarkers over 3.5 years, 
including Aβ, tau, neurodegeneration, synaptic dysfunction, 
glial reactivity, and inflammation. Inclusion of interaction 
terms and stratified analyses by APOE-ε4 status and core AD

biomarker profiles further help elucidate specific relationships 
between LTL and AD pathophysiology beyond “normal” 
brain ageing mechanisms. A unique aspect of our study is the 
use of structural equation modelling to test the mediating 
role of CSF biomarkers in the association between LTL and 
brain structure.

Implications of all the available evidence
In CU individuals at higher risk of AD, shorter LTL was 
associated with elevated AD-related CSF biomarkers, 
including phosphorylated tau (p-tau181), 
neurodegeneration, synaptic dysfunction, and glial reactivity. 
These associations were more pronounced or exclusively 
encountered in at-risk individuals, i.e., APOE-ε4 carriers and 
individuals with positive AD core biomarker profiles. 
Astrocytic reactivity partially mediated the relationship 
between shorter LTL and structural brain integrity. These 
findings suggest that LTL shortening may exacerbate early 
AD pathological changes, before the onset of cognitive 
symptoms, by modulating neuroinflammation and brain 
homoeostasis, especially in individuals at increased risk of 
AD. This emphasises the potential of targeting TL, its 
determinants, and related pathways as part of strategies to 
prevent or delay the onset of AD symptoms.
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vulnerability. Finally, mediation models were applied to 
assess whether CSF biomarkers mediated the associa-
tion between LTL and brain structure.

Methods
Study population
The present study was performed in a subset of in-
dividuals from the Alzheimer’s and Families (ALFA) 
study, who were invited to participate in a longitudinal 
study based on their specific AD risk profile (ALFA+ 
study). 33,34 Inclusion criteria considered participants’ 
AD parental history, APOE-ε4 status, verbal episodic 
memory score and Cardiovascular Risk Factors, Aging, 
and Incidence of Dementia (CAIDE) score. A compre-
hensive characterisation was performed in ALFA par-
ticipants, including demographic characteristics, 
anthropometric measurements, a lumbar puncture for 
the measurement of CSF biomarkers and imaging (i.e., 
MRI and positron emission tomography (PET)) 
biomarker acquisition. ALFA + inclusion criteria were: 
(1) individuals who had previously participated in the 
ALFA study; (2) age between 45 and 65 years at the 
moment of inclusion in ALFA; and (3) long-term 
commitment to the study: inclusion and follow-up 
visits and agreement to undergo all tests and study 
procedures (MRI, PET and lumbar puncture). 
ALFA + exclusion criteria were: (1) cognitive impair-
ment (Clinical Dementia Rating (CDR) > 0, Mini-
Mental State Examination (MMSE) < 27 or semantic 
fluency < 12); (2) any systemic illness or unstable 
medical condition that could lead to difficulty 
complying with the protocol; (3) any contraindication to 
any test or procedure; and (4) a family history of 
monogenic AD. 35 Sex was self-reported by study par-
ticipants using a binary classification (i.e., female or 
male). Of the ALFA+ participants included in this 
study, 99.5% self-identified as white, based on re-
sponses to a combined race/ethnicity category collected 
at baseline. 36

Leukocyte telomere length measurements
A total of 1660 participants were selected for LTL de-
terminations based on the availability of biological 
samples (already stored at the biobank) and cognitive 
assessment (available at in-house databases). 37 Samples 
were sent to the Harvard Cancer Center Genotyping & 
Genetics for Population Sciences Facility for LTL 
determination using a high throughput version of the 
quantitative real-time polymerase chain reaction 
(qPCR)-based telomere assay. 38

Genomic DNA was extracted from peripheral blood 
leukocytes using the QIAmp 96-spin blood protocol 
(Qiagen, Chatsworth, CA, USA). Pico-Green quantifi-
cation of genomic DNA was performed using a Mo-
lecular Devices 96 well spectrophotometer (Sunnyvale, 
CA, USA). The quantitative real time polymerase chain

reaction telomere assay was run on the Applied Bio-
systems 7900HT Sequence Detection System (Foster 
City, CA, USA). LTL was measured in a single batch for 
all samples. Laboratory personnel were blinded to par-
ticipants’ characteristics, and all assays were processed 
in triplicate by the same technician and under identical 
conditions. The average relative LTL (i.e., Exp ddCt) was 
calculated as the exponentiated ratio of telomere repeat 
copy number to a single gene (36B4) copy number 
corrected for a reference sample. This reference sample 
consists of pooled buffy coat genomic DNA at a con-
centration of 5 ng/μl. It is run on all 384-well reaction 
plates to normalise ‘Relative T/S ratio’ for plate-to-plate 
variation. Quality control samples were interspersed 
throughout the plates to assess inter-plate and intra-
plate variability of Ct values.

Sample triplicates coefficient of variation (CV) 
ranged between 0.01% and 1.97%. The intra-set CVs 
ranged between 0.93% and 1.15%. A combined inter-
and intra-assay CV calculated from quality control 
samples was 8.36%, which passes the internal standard 
quality controls. Forty-five samples failed the assay 
(triplicate CV > 2%), of which 21 were expected to fail 
due to low concentration of DNA after the DNA quan-
tification. A total of 48 samples did not fail but pre-
sented higher cycle threshold (Ct) values than they 
should be (Ct > 26 for telomere and Ct > 29 for 36B4) 
and were excluded from the analyses (N = 48). Addi-
tionally, APOE-ε2ε4 individuals (N = 30) were removed 
from the analyses. Outliers were detected and removed 
based on the Grubbs test (N = 5), leaving reliable data 
for a total of 1532 after quality control and 1520 after 
merging with genetic data.

Fluid biomarkers assessment
CSF biomarkers Aβ42, Aβ40, neurofilament light (NfL), 
soluble triggering receptor expressed on myeloid cells 2 
(sTREM2), chitinase-3-like protein 1 (YKL40), glial 
fibrillary acidic protein (GFAP), S100B, neurogranin, 
α-synuclein, and interleukin 6 (IL-6), were measured 
using NeuroToolKit, a panel of exploratory robust pro-
totype assays (Roche Diagnostics International Ltd, 
Rotkreuz, Switzerland) on either the Cobas® e 411 or 
the Cobas e 601 analyser (Roche Diagnostics Interna-
tional Ltd). CSF phosphorylated tau181 (p-tau181) and 
total tau (t-tau) were quantified using the electro-
chemiluminescence Elecsys® Phospho-Tau (181P) 
CSF and Total-Tau CSF immunoassays (Roche Di-
agnostics International Ltd), respectively, on the fully 
automated Cobas e 601 analyser (all Roche Diagnostics 
International Ltd., Rotkreuz, Switzerland), as previously 
described in Milà-Alomà and colleagues. 35 All fluid 
biomarkers were measured at the Clinical Neuro-
chemistry Laboratory, Sahlgrenska University Hospital, 
Mölndal, Sweden. Amyloid groups were defined with 
the CSF Aβ42/40 ratio (Aβ+: <0.071). Participants were 
tau positive (T+) if CSF p-tau181 > 24 pg/mL or tau
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negative (T−) if CSF p-tau181 ≤ 24 pg/mL. Fluid bio-
markers were measured at two time points: at baseline 
(V1) and at follow-up visits (V2). CSF biomarker values 
were log-transformed to base 10. Mean (SD) follow-up 
time was 3.45 (0.58) years.

Ageing and AD cortical thickness signatures
The acquisition of neuroimaging data was performed 
for a subset of the participants through MRI. MRI scans 
were obtained with a 3-T scanner (Ingenia CX, Philips, 
Amsterdam, Netherlands). The MRI protocol was 
identical for all participants and included a high-
resolution 3D T1-weighted turbo field echo (TFE) 
sequence (voxel size 0.75 × 0.75 × 0.75 mm, TR/TE: 
9.90/4.6 ms, flip angle = 8 ◦ ). Structural T1-weighted 
images were segmented using FreeSurfer version 
6.0. 39 The average of the cortical thickness between 
hemispheres of specific brain regions was used to 
calculate the AD and ageing brain signatures. AD brain 
signature was calculated as the average cortical thick-
ness of AD-vulnerable brain regions: entorhinal, infe-
rior temporal, middle temporal, and fusiform. 40 Ageing 
brain signature was calculated as the average cortical 
thickness of ageing-vulnerable brain regions: calcarine, 
caudal insula, cuneus, caudal fusiform, dorsomedial 
frontal, lateral occipital, precentral, and inferior fron-
tal. 41 We used AD and ageing brain signatures as the 
main outcomes to assess the association between LTL 
and brain structure. Higher values in these signatures 
represent a thicker cortex in the areas included in the 
signature.

Statistics
The final study sample was drawn from the ALFA 
parent cohort (baseline visit, 2013–2014), composed of 
cognitively unimpaired middle-aged individuals. A total 
of 1520 participants had valid LTL measurements at the 
baseline (V0) visit. For the present analyses, LTL data 
were merged with CSF biomarker and MRI data avail-
able from the ALFA+ longitudinal study (2016–2022). 
Biomarkers exhibiting right-skewed distributions were 
log10-transformed prior to analysis to approximate 
normality and improve model fit. As these variables 
were used as outcomes in linear regression models, the 
transformation was applied to better satisfy key statis-
tical assumptions, particularly the normality of 
residuals.

Extreme LTL values were identified and excluded 
based on a threshold of 1.5 times the interquartile range 
(N = 27; Figure S1). In contrast, no extreme values were 
removed from log10-transformed CSF biomarkers, as 
they were considered potentially reflective of clinically 
meaningful biological variation (Figure S2 in 
Supporting Information).

After these quality control procedures, three nested 
datasets were established (Fig. 1): (1) CSF V1 dataset: 
346 individuals with LTL at baseline and cerebrospinal

fluid (CSF) biomarker measurements collected during 
the first ALFA+ visit (2016–2019). (2) MRI V1 dataset: 
325 individuals with LTL, CSF, and structural MRI data 
from the same ALFA+ visit (2016–2019). (3) CSF lon-
gitudinal dataset: 237 individuals with LTL and CSF 
data available at both ALFA+ visits (V1: 2016–2019, V2: 
2019–2022), enabling assessment of biomarker change 
over time.

To assess the external validity of LTL measurements, 
we examined their associations with age, sex, and body 
mass index (BMI) in both the full baseline sample 
(N = 1520) and the nested ALFA+ subsample. A sig-
nificant inverse association between LTL and age was 
observed only in the full cohort, while females exhibited 
higher LTL than males in both samples. No significant 
associations were found with BMI. These results are 
detailed in Table S1 and Figure S3 in Supporting 
Information. The absence of association with age in 
the ALFA+ subsample likely reflects reduced statistical 
power and narrower age variability (see Figure S4). 

The associations between LTL, CSF biomarkers at 
visit 1, and cortical thickness were assessed in the 
whole sample by using multiple linear regression 
models. All models were adjusted by age, sex, APOE-ϵ4 
status, as well as firmware MRI version for neuro-
imaging outcomes. Further, linear models exploring 
the association between LTL and the 3-year rate of 
change in CSF biomarker were performed. These 
models were additionally adjusted by baseline CSF 
biomarker at visit 1 and the time differences between 
lumbar punctures. All regression β coefficients were 
standardised. Two-sided t-tests were used to assess the 
significance of regression coefficients. Interactions and 
stratified models by APOE-ϵ4 and AT status were run to 
test differential effects by genetic AD risk and 
pathology.

A multiple-comparison correction was applied 
following the Benjamini-Hochberg procedure at 5% to 
control for the false discovery rate (FDR). FDR was 
applied separately for models assessing the association 
with CSF biomarkers at visit 1 and CSF biomarkers 
change, and by pre-defined CSF biomarkers pathways: 
amyloid pathology (i.e., Aβ42/40), neurofibrillary tan-
gles pathology (p-tau181), neurodegeneration (i.e., NfL), 
synaptic dysfunction (α-synuclein, neurogranin), astro-
cytic response (GFAP, S100B, YKL40), microglial reac-
tivity (sTREM2) and inflammation (IL6). A FDR-
adjusted P value < 0.05 was considered statistically 
significant; unadjusted P value < 0.05 was considered 
nominally significant and unadjusted P value = 0.05 
was considered borderline significant.

Causal mediation analyses were conducted using a 
linear structural equation modelling approach with 
quasi-Bayesian confidence intervals, estimated through 
1000 simulations using the “mediation” package in R. 
This approach was used to investigate the potential 
mediating role of CSF biomarkers in the association
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between LTL and neuroimaging outcomes. 42,43 In this 
model, LTL was designated as the independent variable, 
CSF biomarkers reflecting astrocytic reactivity were 
considered the mediator, and cortical thickness was the 
dependent variable. To establish temporal precedence, 
LTL was measured in 2013/2014, whereas CSF bio-
markers and cortical thickness were measured in 2016/ 
2019. All analyses were conducted using R software 
(version 4.3.3). 44

Ethics
The ALFA+ study (ALFA-FPM-0311) was approved by 
the Independent Ethics Committee of Parc de Salut 
Mar Barcelona and has been registered as a clinical trial 
(identifier: NCT02485730). All study participants pro-
vided written informed consent for study participation. 
The informed consent included authorisation to store 
biological samples for subsequent analyses related to 
the ALFA+ study, as well as for other research on AD 
and related disorders.

Role of funders
The funding sources were not involved in the study 
design, the analysis and interpretation of the data, the 
writing of this manuscript, or in the decision to submit 
this manuscript for publication. Roche Diagnostics 
provided NTK reagents in-kind to perform biomarkers 
measurements. A few Roche Diagnostics employees,

listed as co-authors, made direct contributions to this 
research (see the Contributors section). In brief, CQR, 
GK helped in acquiring the biomarker data. The cor-
responding author had full access to all the data in the 
study and had final responsibility for the decision to 
submit for publication.

Results
Characteristics of the study participants
Overall, no significant differences in LTL, sex, or BMI 
were observed across AT stages (Table 1). However, in-
dividuals in the A+T+ group were older and had lower 
levels of education compared to those in the A−T− or 
A+T− groups. A higher proportion of APOE-ε4 carriers 
was identified in the A+T− group compared to A−T− or 
A+T+, while no significant differences in APOE-ε4 status 
were observed between the A−T− and A+T+ groups. 

CSF concentrations of NfL and t-tau progressively 
increased across AT stages at V1 (i.e., from A−T− to 
A+T− to A+T+). At V2, no significant differences in CSF 
NfL concentrations were found between A−T− and 
A+T−. CSF concentrations of neurogranin, α-synuclein, 
GFAP, S100B, YKL-40, and sTREM2 were significantly 
higher in A+T+ compared to A−T−, with similar ele-
vations (excluding S100B) noted in A+T+ compared to 
A+T−. In contrast, no significant differences in these 
biomarker concentrations were observed between A−T−

Fig. 1: Flowchart of participant selection and dataset construction. From 1520 cognitively unimpaired individuals with baseline LTL data 
(ALFA parent, visit 0, 2013–2014), three nested datasets were derived after quality control: (1) CSF V1 (N = 346), with CSF biomarkers at visit
1 (2016–2019) and LTL data at visit 0; (2) MRI V1 (N = 325), with CSF and MRI data at visit 1, and LTL data at visit 0; and (3) CSF longitudinal 
(N = 237), with CSF data at both visit 1 and visit 2 (2019–2022) and LTL data at visit 0. 1 Detailed quality control of LTL measurements can be 
found in Rodríguez-Fernández et al., 2024. 2 LTL outliers were removed once merged with CSF data.
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and A+T− at either visit. CSF IL-6 concentrations did 
not differ across AT stages at V1 or V2. Moreover, at V1, 
individuals in the A+T+ group exhibited thinner brain 
cortex compared to the A+T− group for both ageing-
and AD-vulnerable brain regions, with a trend toward 
thinner cortices also observed in A+T− individuals 
compared to A-T-.

When stratified by APOE-ε4 status, a higher pro-
portion of A+T− and A+T+ individuals was observed 
among ε4 carriers, whereas non-ε4 carriers showed 
higher CSF sTREM2 concentrations at both V1 and V2. 
Higher cortical thickness was observed among APOE-ε4 
carriers in AD vulnerable regions (Table S2 in 
Supporting Information).

Characteristics N Overall A−T− N = 215 A+T− N = 92 A+T+ N = 26 A−T+ N = 13 P value a

LTL at V0 346 1.03 (0.92, 1.15) 1.03 (0.92, 1.17) A 1.02 (0.90, 1.15) 
A

1.04 (0.99, 1.12) A 1.02 (0.92, 1.06) A 0.812
Age at V0 (y) 346 57.2 (53.5, 61.2) 56.3 (52.6, 60.9) A 57.8 (55.8, 60.8) A 57.2 (53.5, 61.6) B 61.3 (57.4, 63.3) AB 0.005
Age at V1 (ye) 346 61.4 (57.9, 64.6) 60.2 (57.0, 64.0) A 61.9 (58.2, 65.2) A 64.1 (62.5, 66.6) B 62.6 (60.4, 63.2) A 0.004
Sex 346 0.539
Females 215 (62%) 136 (63%) A 52 (57%) A 18 (69%) A 9 (69%) A

Males 131 (38%) 79 (37%) 40 (43%) 8 (31%) 4 (31%)
Education (y) 346 12 (11, 17) 12 (11, 17) A 14 (11, 17) A 11 (8, 17) B 17 (12, 17) AB 0.082
BMI (kg/m 2 ) 346 26.4 (24.3, 29.3) 26.4 (24.5, 30.1) A 26.2 (23.9, 28.8) A 26.3 (24.3, 28.6) A 26.2 (22.9, 28.0) A 0.654
APOE-ε4 carriers 346 184 (53%) 88 (41%) A 76 (83%) B 15 (58%) A 5 (38%) A <0.001
CSF biomarkers at V1, (pg/mL)
Aβ42 346 1212 (847, 1678) 1397 (1085, 1819) A 801 (669, 992) B 842 (720, 1189) B 2575 (2113, 2803) C <0.001
Aβ40 346 16,735 (13,760, 20,620) 16,530 (13,380, 20,060) A 15,220 (13,490, 17,370) B 22,505 (19,080, 25,030) C 26,010 (25,980, 27,920) D <0.001
Aβ42/40 ratio 346 0.080 (0.061, 0.089) 0.085 (0.081, 0.093) A 0.054 (0.044, 0.064) B 0.042 (0.031, 0.051) C 0.098 (0.091, 0.104) D <0.001
p-tau181 346 14 (11, 20) 13 (10, 17) A 15 (12, 18) B 29 (27, 33) C 25 (24, 29) D <0.001
NfL 346 78 (61, 95) 74 (59, 88) A 80 (63, 95) B 111 (93, 138) C 95 (85, 100) C <0.001
t-tau 346 181 (148, 237) 169 (139, 209) A 183 (153, 218) B 323 (302, 364) C 303 (287, 325) C <0.001
Neurogranin 346 717 (570, 975) 680 (540, 895) A 686 (571, 868) A 1314 (1,178, 1443) B 1356 (1283, 1419) B <0.001
α-synuclein 346 182 (142, 240) 173 (138, 230) A 170 (146, 207) A 295 (244, 352) B 311 (298, 356) B <0.001
GFAP 346 7315 (5840, 9140) 6940 (5700, 8700) A 7685 (5800, 8720) A 10,755 (9050, 11,910) B 7510 (6310, 9900) A <0.001
S100B 346 985 (854, 1160) 966 (852, 1120) A 1030 (832, 1210) AB 1130 (892, 1260) BC 1120 (869, 1210) AC 0.009
YKL-40 346 137,450 (107,900,

174,000)
133,300 (105,400, 

159,300) A
137,400 (100,950, 

166,750) A
200,850 (174,800, 

234,100) B
201,800 

(150,000, 217,600) B
<0.001

sTREM2 346 7575 (6390, 9280) 7550 (6380, 8950) A 7185 (5960, 8740) A 9875 (8700, 11,480) B 10,250 (9930, 13,480) B <0.001
IL-6 346 3.56 (2.84, 4.43) 3.57 (2.91, 4.41) A 3.54 (2.85, 4.44) A 3.40 (2.77, 4.63) A 2.98 (2.42, 4.65) A 0.933

CSF biomarkers at V2, (pg/mL)
Aβ42 237 1260 (862, 1795) 1424 (1,104, 1893) A 755 (676, 989) B 828 (661, 1128) B 2249 (1,855, 3382) C <0.001
Aβ40 237 17,070 (14,560, 21,470) 16,740 (13,690, 20,860) A 16,250 (14,360, 19,350) A 22,410 (18,830, 25,780) B 25,675 (23,565, 28,975) B <0.001
Aβ42/40 ratio 237 0.078 (0.057, 0.093) 0.088 (0.077, 0.098) A 0.048 (0.040, 0.060) B 0.038 (0.032, 0.049) C 0.098 (0.073, 0.121) A <0.001
p-tau181 237 17 (13, 22) 15 (12, 19) A 17 (15, 21) B 32 (29, 39) C 26 (22, 29) D <0.001
NfL 237 98 (78, 122) 93 (73, 117) A 101 (78, 123) AB 138 (119, 180) C 104 (97, 126) BC <0.001
t-tau 237 196 (155, 255) 175 (145, 225) A 201 (169, 260) B 336 (292, 443) C 300 (260, 337) D <0.001
Neurogranin 237 835 (621, 1158) 730 (566, 1018) A 837 (724, 1092) B 1443 (1347, 1623) C 1412 (1199, 1521) C <0.001
α-synuclein 237 205 (147, 275) 181 (131, 243) A 212 (158, 251) A 322 (275, 403) B 312 (281, 360) B <0.001
GFAP 237 10,200 (8160, 12,630) 9790 (7840, 12,040) A 10,320 (8250, 12,550) A 15,080 (14,070, 16,870) B 11,320 (8805, 12,855) A <0.001
S100B 237 994 (849, 1150) 964 (834, 1090) A 1010 (867, 1150) AB 1160 (898, 1320) B 1155 (1,000, 1195) B 0.004
YKL-40 237 158,800 (123,000,

201,400)
149,300 (117,800, 

186,100) A
163,100 (135,300, 

195,900) A
229,000 (198,200, 

272,500) B
218,300 

(167,750, 283,500) B
<0.001

sTREM2 237 9290 (7510, 11,120) 8900 (7480, 10,530) A 9280 (7390, 10,420) A 10,830 (9,200, 14,000) B 12,945 (11,950, 16,090) B <0.001
IL-6 237 4.21 (3.48, 5.28) 4.26 (3.58, 5.29) AB 4.40 (3.56, 5.25) A 4.03 (3.38, 5.07) AB 3.76 (3.12, 3.89) B 0.221

Cortical thickness
Ageing signature 325 2.28 (2.23, 2.34) 2.28 (2.23, 2.35) AB 2.28 (2.25, 2.34) A 2.26 (2.18, 2.31) B – 0.099
AD signature 325 2.53 (2.47, 2.58) 2.53 (2.46, 2.58) AB 2.54 (2.48, 2.60) A 2.47 (2.42, 2.57) B – 0.026

Amyloid groups were defined with the CSF Aβ42/40 ratio (Aβ+: <0.071). Participants were tau positive (T+) if CSF p-tau181 > 24 pg/mL or tau negative (T−) if CSF p-tau181 ≤ 24 pg/mL. Mean (SD) 
follow-up time between visits 0 and 1 was 3.98 (1.02) years and between visits 1 and 2 was 3.45 (0.58) years. Abbreviations: A+, Aβ positive; A−T−, Aβ negative & tau negative; A+T−, Aβ positive & tau 
negative; A+T+, Aβ positive & tau positive; APOE-ε4: Apolipoprotein E ε4; BMI, Body Mass Index; CSF, cerebrospinal fluid; LTL, Leukocyte telomere length; N, sample size; V1, ALFA+ visit 1; V2, ALFA+ 
visit 2; y, years. Note: Continuous variables are summarised as median (Q1, Q3); categorical variables as n (%). a Comparisons across AT status groups were performed using the Kruskal–Wallis test for 
continuous variables and Fisher’s exact test or Pearson’s chi-squared test for categorical variables. Superscript capital letters indicate results from pairwise comparisons: groups sharing at least one letter 
are not significantly different (p > 0.05), whereas groups without a common letter differ significantly (p < 0.05). Pairwise comparisons between groups were conducted using Wilcoxon rank-sum tests or 
Fisher’s exact tests, as appropriate.

Table 1: Descriptives of study sample stratified by AT status.
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Association between LTL and AD-related CSF 
biomarkers
In the whole sample shorter LTL was associated with 
higher baseline GFAP (β = −0.11, P = 0.042) (Fig. 2a). 
This association remained statistically significant after 
adjusting for CSF Aβ42/40 (β = −0.11, P = 0.044). How-
ever, the association was no longer statistically significant 
after controlling for CSF p-tau181 (β = −0.08, P = 0.103), 
or Aβ40 levels which account for differences in CSF 
production and clearance rates (β = −0.08, P = 0.084). 45 
Similarly, shorter LTL was associated with higher base-
line levels of S100B (β = −0.13, P = 0.013) (Fig. 2b). This 
association persisted after adjusting for CSF Aβ42/40 
ratio (β = −0.13, P = 0.014), p-tau181 (β = −0.12, 
P = 0.027), and Aβ40 levels (β = −0.12, P = 0.024). 

Longitudinally, shorter LTL was associated with 
increased CSF α-synuclein levels over time (β = −0.12, 
P = 0.046) (Fig. 3). This association remained statisti-
cally significant after adjusting for CSF Aβ42/40 ratio 
(β = −0.14, P = 0.046), but was no longer significant 
after controlling for p-tau181 (β = −0.10, P = 0.054), and 
Aβ40 baseline levels (β = −0.09, P = 0.101).

No other statistically significant associations were 
found in the whole sample (Table S3).

Modification by APOE-ε4 status on CSF biomarkers
LTL showed statistically significant interactions with 
APOE-ε4 status on the association with CSF YKL-40 at 
baseline (βint = −0.2, Pint = 0.047) and the change in 
CSF sTREM2 over time (βint = 0.27, Pint = 0.036) 
(Figures S5 and S6 in Supporting Information). Spe-
cifically, shorter LTL was associated with higher base-
line CSF YKL-40 (β = −0.19, P = 0.006) and decreasing 
CSF sTREM2 over time (β = 0.17, P = 0.049) only 
among ε4 carriers. No other statistically significant in-
teractions between LTL and APOE-ε4 status were 
encountered (Table S4 in Supporting Information).

Nonetheless, when stratifying by APOE-ε4 status 
(Fig. 4), shorter LTL was associated with higher p-tau181 
(β = −0.15, P = 0.033), NfL (β = −0.15, P = 0.026), t-tau 
(β = −0.17, P = 0.021), neurogranin (β = −0.15, P = 0.034), 
GFAP (β = −0.15, P = 0.040) and YKL-40 at baseline in 
carriers of the ε4 allele (Table S5, Figure S7). These as-
sociations were independent of Aβ status (Table S6 in 
Supporting Information). While trends were observed 
for CSF NfL, t-tau and GFAP, only the association with 
YKL-40 remained statistically significant after adjusting 
for T status (Table S7). In addition, shorter LTL was 
associated with longitudinal increases of α-synuclein 
(β = −0.20, P = 0.018) and decreases of sTREM2 over 
time (β = 0.17, P = 0.046) among APOE-ε4 carriers 
(Table S5 in Supporting Information). The association 
with longitudinal α-synuclein remained significant after 
adjustment for both Aβ and T status at baseline, while 
trends were observed for the longitudinal change in 
sTREM2 (Tables S6 and S7).

Modification by AT status on CSF biomarkers
LTL showed significant interactions with AT status in 
its association with baseline CSF Aβ42/40 (A−T+ vs. 
A−T−: βint = 3.89, Pint = 0.002; A+T− vs. A−T−: 
βint = 0.57, P = 0.09) (Table S8; Figure S8 in Supporting 
Information). When stratifying by AT status (Fig. 4), 
trends were observed between LTL and CSF Aβ42/40 in 
both A−T+ individuals (β = 0.74, P = 0.080) and A+T− 
individuals (β = 0.18; P = 0.091). Regarding p-tau pa-
thology, no significant interactions or associations were 
found in any AT groups. However, a trend was 
observed among A+T+ individuals with a suggestive 
negative association between LTL and CSF p-tau181 
(β = −0.42; P = 0.085). Even though no other in-
teractions between LTL and AT status were 
observed, statistically significant associations were 
encountered between LTL and CSF biomarkers

Fig. 2: Significant associations between LTL and CSF biomarkers at visit 1 in the global sample. Scatter plot representing the linear 
association between LTL and log-transformed (a) CSF GFAP and (b) CSF S100B at visit 1 in the global sample (N = 346). Standardised 
regression coefficients (β) and P values (unadjusted; FDR-corrected values are provided in Supplementary Table S5) were calculated using a 
linear model adjusted for age, sex, and APOE-ε4 status.
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when stratifying by AT status (Tables S5, S8 in 
Supporting Information).

In A-T- individuals, shorter LTL was longitudinally 
associated with increased CSF α-synuclein (β = −0.17, 
P = 0.042) and IL-6 over time (β = −0.18, P = 0.029) 
(Figure S9 in Supporting Information). In the A+T− 
group, shorter LTL was associated with higher baseline 
CSF NfL (β = −0.21, P = 0.021), S100B (β = −0.22, 
P = 0.042) and YKL-40 (β = −0.22, P = 0.020), whereas 
no significant associations were found for the change in 
CSF concentrations over time (Figure S10). Among 
A+T+ individuals, shorter LTL was also associated with 
higher CSF t-tau (β = −0.58, P = 0.016), α-synuclein 
(β = −0.48, P = 0.039), sTREM2 (β = −0.49, P = 0.046) at 
baseline. In addition, shorter LTL was longitudinally 
associated with decreased CSF S100B levels over time 
among A+T+ individuals (β = 0.72, P = 0.049) 
(Figure S11). No significant associations were observed 
in the A−T+ group.

Imaging biomarkers and leukocyte telomere length
Shorter LTL was associated with a thicker brain cortex 
in regions vulnerable to AD-related neurodegeneration 
(β = −0.11, P = 0.046) (Fig. 5a). This association was 
independent of CSF Aβ42/40 (β = −0.11, P = 0.046), 
p-tau181 (β = −0.12, P = 0.035), and NfL (β = −0.13, 
P = 0.021). Shorter LTL was associated with thicker 
cortex in ageing-vulnerable brain regions (β = −0.13, 
P = 0.019) (Fig. 5b). This association was independent

of CSF Aβ42/40 (β = −0.13, P = 0.019), p-tau181 
(β = −0.13, P = 0.019), and NfL (β = −0.13, P = 0.017) 
(Table S9).

Previous studies have reported positive associations 
between CSF biomarkers of glial reactivity and 
inflammation with higher grey matter volumes and 
thicker cortical thickness. 46–48 Therefore, we investigated 
whether shorter LTL’s association with increasing CSF 
glial and inflammatory biomarkers could mediate its 
association with cortical thickness. Specifically, we 
explored the putative mediating role of glial (i.e., GFAP, 
S100B, YKL-40 and sTREM2) and inflammatory bio-
markers (i.e., IL-6) in the association between LTL and 
cortical thickness.

The association between shorter LTL and higher 
cortical thickness in AD-vulnerable regions was 
partially mediated by GFAP (i.e., 23.8% of the effect 
mediated) (P = 0.038). Specifically, shorter LTL was 
indirectly associated with thinner cortex in AD signa-
ture through its effect on GFAP (Indirect pathway: 
β = 0.03, P = 0.010). However, the direct negative as-
sociation between LTL and AD signature was still sig-
nificant after accounting for the GFAP pathway (Direct 
pathway: β = −0.14, P = 0.012) (Fig. 5c).

In addition, a significant indirect association be-
tween shorter LTL and thinner AD signature through 
YKL-40 was observed (Indirect pathway: β = 0.019, 
P = 0.040). The direct negative association persisted 
after accounting for the YKL-40 pathway (Direct

Fig. 3: Significant longitudinal association between LTL and change in CSF biomarkers over time. Scatter plot representing the linear 
association between LTL and the change in log-transformed CSF α-synuclein over a mean follow-up period of 3.45 (SD = 0.58) years 
(N = 237). Standardised regression coefficients (β) and P values (unadjusted; FDR-corrected values are provided in Supplementary Table S5) 
were calculated using a linear model adjusted for age, sex, APOE-ε4 status, time difference between lumbar punctures, and CSF α-synuclein at 
visit 1.
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pathway: β = −0.13, P = 0.018). A borderline mediating 
role of YKL-40 in the association between LTL and AD 
signature was observed (Mediation proportion: 16.94%; 
P = 0.064) (Fig. 5d).

No evidence for other mediation was detected for 
CSF S100B, sTREM2 or IL-6 in the association between 
LTL and AD signature. Regarding the ageing signature, 
a borderline significant mediating effect was observed 
for YKL-40 (Mediation proportion 16.19%, P = 0.088). 
LTL was indirectly and positively associated with the 
ageing signature through YKL-40 (Indirect pathway: 
β = 0.02, P = 0.036). Nonetheless, shorter LTL remained

associated with higher cortical thickness in ageing-
vulnerable regions after accounting for YKL-40 indi-
rect pathway (Direct pathway: β = −0.13, P = 0.018). No 
evidence for other mediating roles were detected for 
CSF GFAP, S100B, sTREM2 or IL-6 in the association 
between LTL and ageing signature (Figure S12 in 
Supporting Information).

Discussion
In this study, we examined the association between 
baseline LTL, AD-related CSF biomarkers (measured

Fig. 4: Forest plot illustrating the associations between LTL and CSF biomarkers at visit 1 and their longitudinal changes. Results are 
presented for the full sample and stratified by APOE-ε4 and AT status. Each point represents the standardised coefficient for one as-
sociation model, horizontal lines represent the 95% confidence intervals and colours represent the biomarker family for multiple comparison 
correction. Standardised regression coefficients (β) and P values were calculated using linear models for CSF biomarkers at visit 1 adjusted for 
age, sex, and APOE-ε4 status, while longitudinal models were further adjusted for time between lumbar punctures and CSF biomarker levels 
at visit 1.
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after 4 years and their longitudinal changes over 3 
years), and cortical thickness in CU individuals at 
increased risk of AD. We found that shorter LTL was 
associated with biomarkers of tau pathology, neuro-
degeneration, synaptic dysfunction, and glial reac-
tivity. These associations varied depending on APOE-
ε4 carriership and AT biomarker status. Notably, 
shorter LTL was also associated with greater 
cortical thickness in brain regions vulnerable to 
ageing and AD-related neurodegeneration, with 
astrocytic reactivity biomarkers partially mediating 
the relationship.

Prior studies exploring the associations between LTL 
and AD-related CSF biomarkers focused on cognitively 
impaired patients with MCI or AD. 28,49 Our study ex-
tends these findings by incorporating genetic risk and 
disease stage during preclinical AD. Specifically, we 
observed that shorter LTL was associated with higher 
levels of p-tau181, t-tau, and NfL in APOE-ε4 carriers. 
Associations with NfL and t-tau were also detected in 
A+T− and A+T+ individuals, respectively. Although we 
did not observe significant associations between LTL

and p-tau181 across AT-defined subgroups, we 
observed a trend toward increasingly negative effect 
estimates with disease progression, which may reflect 
stage-specific differences and limited power due to 
small sample sizes.

Shorter LTL was also associated with biomarkers of 
synaptic dysfunction. Among APOE-ε4 carriers, shorter 
LTL was associated with higher CSF neurogranin, a 
postsynaptic protein involved in memory formation 50 

and previously associated with synaptic degeneration 
in patients with AD. 51–53 Additionally, shorter LTL was 
associated with higher CSF α-synuclein in A+T+ in-
dividuals and, longitudinally, with an increase in 
α-synuclein over time in the overall sample and among 
APOE-ε4 carriers. As we measured total CSF α-synu-
clein, this likely reflects the effect of shorter LTL on 
synaptic loss and neuronal injury. 35 This aligns with in 
vitro models in which telomere-shortened hiPSC-
derived neurons show ageing-related phenotypes such 
as reduced neurite density and length. 54 Genes regu-
lating telomere maintenance also impact gene expres-
sion and synaptic homoeostasis in the brain, 55 which

Fig. 5: Associations between LTL and cortical thickness in AD- and ageing-vulnerable regions. Scatter plot representing the linear as-
sociation between LTL and (a) AD cortical thickness signature and (b) ageing cortical thickness signature. (c) Schema representing linear 
structural modelling results evaluating the mediator role of (c) CSF GFAP and (d) CSF YKL-40 on the association between LTL and AD cortical 
thickness signatures (N = 325). Models were corrected for age, sex, APOE-ε4 status, and firmware MRI version. All coefficients were 
standardised. AD signature represents average cortical thickness in entorhinal, inferior temporal, middle temporal, and fusiform. Ageing 
signature represents average cortical thickness in calcarine, caudal insula, cuneus, caudal fusiform, dorsomedial frontal, lateral occipital, 
precentral, and inferior frontal.
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may underlie the observed associations. Given that LTL 
is highly heritable and established early in life, these 
findings may reflect developmental mechanisms with 
implications for brain ageing. 56

LTL associations with biomarkers of tau pathology, 
neurodegeneration, and synaptic dysfunction were in-
dependent of amyloid status, suggesting a pathway 
through which telomere attrition may contribute to 
increased vulnerability to neurodegeneration and syn-
aptic dysfunction via amyloid-independent pathways. 
These effects may be amplified under pathological 
conditions or in individuals with increased genetic risk, 
highlighting the importance of examining early-stage 
interactions between biological ageing mechanisms 
and AD pathology.

We also found that shorter LTL was associated with 
astrocytic reactivity, as reflected by higher CSF GFAP 
and S100B in the overall sample. These associations 
were independent of amyloid pathology but differed by 
APOE-ε4 carriership: the association between LTL and 
GFAP was primarily driven by APOE-ε4 carriers, 
whereas the association with S100B was observed only 
in APOE-ε4 non-carriers and in A+T− individuals. 
Although interaction models did not reveal significant 
modification by APOE or AT status, a significant 
interaction was observed for YKL-40. Specifically, 
shorter LTL was associated with higher YKL-40 exclu-
sively among APOE-ε4 carriers.

These findings are consistent with previous evidence 
showing that increased glial activation and reactivity 
occurs early in the disease continuum. 35,57 CSF GFAP 
levels are elevated in patients with AD and have been 
associated with cognitive decline. 58,59 S100B, a protein 
primarily expressed by astrocytes and released under 
cell stress, 60 is found to be elevated in CSF across 
various neurodegenerative diseases, including AD, and 
correlates with brain atrophy and cognitive impair-
ment. 61 Similarly, YKL-40 is an astrocyte-derived 
biomarker upregulated in response to pathology 62 

which is highly expressed in astrocytes surrounding 
Aβ deposits and shows increased CSF concentrations 
since prodromal AD. 63

Beyond astrocytic reactivity, our results suggest that 
shorter LTL is linked to dynamic changes in microglial 
activation and neuroinflammation. While CSF sTREM2 
typically increases during early stages of AD following 
amyloid accumulation, 64 microglial dysfunction has also 
been documented in normal ageing and among APOE-
ε4 carriers. 65,66 In our study, shorter LTL was associated 
with higher baseline sTREM2 in A+T+ individuals and 
with longitudinal decreases in sTREM2 among APOE-
ε4 carriers. Furthermore, shorter LTL was associated 
with longitudinal increases in IL-6 in A-T-individuals. 
In our sample, higher baseline CSF sTREM2 has been 
previously associated with better memory and executive 
outcomes, independent of AD pathology. 67 The con-
trasting baseline and longitudinal associations between

LTL and CSF sTREM2 suggest a complex and dynamic 
interplay between LTL, microglial activation, and neu-
roinflammation across the disease continuum, varying 
by APOE-ε4 status.

Collectively, these findings suggest that telomere 
length and homoeostasis may be associated with glial 
activity and neuroinflammation in an ApoE and 
pathology-associated manner, particularly in early AD 
stages. Interestingly, shorter telomeres in human iPSC-
derived astrocytes from old donors were related to 
increased production of inflammatory cytokines, GFAP 
expression and elevated DNA damage when compared 
to younger donors. 54 In addition, distinct inflammatory 
and glial signatures have been found in relation to 
APOE genotype and cognitive performance stages in 
patients with AD, 68 suggesting that LTL could play a 
role in pathways associated with resilience to disease 
progression.

Interestingly, shorter LTL was associated with 
greater cortical thickness in AD-vulnerable regions. 
This finding contrasts with previous studies reporting 
positive associations between LTL and cortical thick-
ness. 25,27,69 However, transient increases in cortical 
thickness have been described in CU individuals at risk 
for AD and are thought to reflect early glial activation 
and amyloid accumulation. 48,70–74 In our sample, the 
association between LTL and cortical thickness was 
independent of CSF Aβ42/40, p-tau181, and NfL, and 
was partially mediated by astrocytic biomarkers, 
including GFAP and YKL-40. The persistence of a direct 
effect even after accounting for these mediators sug-
gests additional pathways linking peripheral telomere 
biology and brain structure.

The divergence between our observational findings 
and prior MR analyses in the ALFA cohort 29 may reflect 
differences in underlying biological processes captured 
by each approach. MR estimates the lifelong effects of 
genetically determined LTL and may reflect telomerase-
related or developmental pathways contributing to 
brain reserve. 75 In contrast, our observational findings 
likely capture the impact of acquired telomere short-
ening on biological ageing. Notably, the MR study did 
not include astrocytic or inflammatory biomarkers, 
which were significantly associated with LTL in our 
analyses. Future MR studies incorporating broader 
biomarker panels, including glial and immune 
markers, and using bidirectional or multivariable de-
signs will be essential to clarify these relationships. 

The mechanisms by which telomere shortening 
impacts brain structure remain unclear, 27 but may 
involve cellular ageing, oxidative stress, and immune 
dysregulation. 76 LTL is inversely and strongly correlated 
with a blood proteomic age clock driven by immune 
and inflammatory cytokines, which predicts mortality, 
cognitive decline, and neurodegeneration. 77 LTL is also 
considered a marker of peripheral immune ageing, and 
is associated with increased risk of infection and
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systemic inflammation. 14,78 Growing evidence suggests 
that peripheral immune activation may trigger micro-
glial responses, neuroinflammation and astrocyte 
reactivity via the neuroimmune axis. 79 Based on our 
findings, we propose that peripheral immune ageing, as 
reflected by telomere shortening, may contribute to 
altered glial reactivity and cortical remodelling, poten-
tially influencing vulnerability to neurodegeneration. 80,81 

The dynamic and context-dependent effects of LTL on 
glial activation may underlie its non-linear associations 
with cognition and AD risk across disease stages.

Our study is not without limitations. The ALFA+ 
cohort includes middle-aged, CU individuals at 
increased risk of AD, which may limit generalisability 
to more advanced disease stages or to individuals with 
comorbidities. The causal mediation model is based on 
cross-sectional data for CSF and imaging biomarkers, 
which may limit causal inference; however, it aligns 
with biological models suggesting that astrocytic 
changes precede neurodegeneration. The average 
follow-up duration of 3.5 years may have restricted our 
ability to capture long-term biomarker dynamics. 
Additionally, the sample size limited our power to 
detect associations surviving correction for multiple 
comparisons. Future research should examine LTL as-
sociations with a broader range of neuroimaging phe-
notypes, including plasma biomarkers related to 
cellular senescence and peripheral immune ageing, and 
extend to larger, population-based samples with longer 
follow-up.

A key strength of this study is the use of a relatively 
young CU sample, which minimises the effects of 
survival and diagnostic bias and allows for the investi-
gation of early mechanisms of disease vulnerability. By 
focussing on preclinical population, we are better 
positioned to capture the earliest biological changes 
linking biological ageing to central nervous system 
pathology.

In conclusion, our findings suggest that telomere 
shortening is associated with AD-relevant biomarker 
changes, particularly those related to synaptic dysfunc-
tion and glial reactivity. Astrocytic biomarkers partially 
mediated the relationship between LTL and cortical 
thickness, supporting a pathway that links peripheral 
biological ageing to brain structural integrity. Further 
research is warranted to elucidate the role of telomere 
dynamics in brain ageing and to explore their potential 
in identifying determinants of resilience or targets for 
dementia prevention.
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