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SUMMARY

Immunotherapy has shown limited success in recurrent ovarian cancer (OC), with prognostic insights largely

derived from treatment-naive tumors. We analyzed 697 tumor samples (566 primary and 131 recurrent) from

595 OC patients across five independent cohorts, capturing tumor-infiltrating lymphocytes (TILs) heteroge-

neity and identifying four immune phenotypes linked to prognosis and TIL:myeloid networks driving malig-

nant progression. We found that in preclinical mouse models, mirroring inflamed human OCs, the recurrent

Brca1mut tumors maintained activated TILs:dendritic cells (DCs) niches but evaded immune control through

upregulation of COX/PGE2 signaling. Conversely, recurrent Brca1wt tumors displayed loss of TILs:DCs

niches and accumulated immunosuppressive tumor microenvironment (TME) networks featuring Trem2/

ApoEhigh tumor associated macrophages (TAMs) and Nduf4l2high/Galectin3high malignant states. Recurrent

tumors recapitulate the immunogenic landscapes of original cancers. Our findings reveal BRCA-dependent

TIL:myeloid crosstalk as key to persistent immunogenicity in recurrent OC and propose new targets to

enhance chemotherapy efficacy.

1568 Cancer Cell 43, 1568–1586, August 11, 2025 © 2025 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Ovarian cancer (OC) is the leading cause of death from gyneco-

logical malignancies.1 Despite optimal front-line treatment (cyto-

reductive surgery and platinum-based chemotherapy, CTX),

most women with advanced-stage disease will ultimately

relapse. Life expectancy for platinum-resistant patients does

not exceed one year, and new treatment options are urgently

needed to increase response rate and survival.2

About half of the patients with OC contain tumor-infiltrating

lymphocytes (TILs) within tumor islets, and the presence of

intra-epithelial (ie)TILs in primary tumors correlates with overall

survival (OS).3–5 Moreover, tumors which harbor homologous

recombination deficiency (HRD) have a higher neo-antigen

load, more TILs, and up-regulation of programmed cell death

protein-1 and its ligand (PD1/PD-L1) immune axis.6,7 Despite be-

ing considered as a potential therapeutic option for OC, immune-

checkpoint inhibitors (ICIs) have fallen short of expectations with

no agent approved so far.8,9 Additionally, potential biomarkers

like PD-L1 expression, tumor mutational burden and TILs have

yet to be proven predictive for patient selection.10 Although the

presence and state of TILs in OC have been extensively explored

in previous studies,11–14 recent research has shed light on the

involvement of additional immune cell types in sculpting the tu-

mor microenvironment (TME) of OC.15–18 However, a compre-

hensive understanding of the temporal evolution of immune

cell infiltration and its spatial organization in the recurrent dis-

ease setting is still lacking.13

Disease progression after standard-of-care therapy can lead

to immune-exclusion and therapeutic failure.12,19–22 Considering

the poor outcomes of ICIs/CTX combination in the most recent

trials,23–25 it is debatable whether CTX and ICIs can effectively

collaborate to promote tumor control in OC, despite quasi-uni-

versal consensus about OC immunogenicity.

In this study, we employed digital pathology to capture the het-

erogeneity of CD8+ T cell infiltration among the largest multi-

institutional collection of OC primary-recurrent samples so far, ac-

counting for 697 tumor samples from 595 patients. We observed

significant immune and molecular heterogeneity in tumor immune

phenotypes and their dynamics during disease recurrence. To

mechanistically disentangle the evolution of the TME at tumor

progression, we translated the clinical standard-of-care treatment

of OC in preclinical syngeneic mouse Brca1 isogenic OC models

and comparatively characterized the evolution of their malignant

and TME states. Our study underlines mechanisms dictating the

course of immunogenic evolution of BRCA1mut and homologous

recombination proficient (HRP) tumors and provides new thera-

peutic vulnerabilities and biomarkers to improve selection and

clinical outcomes for OC patients.

RESULTS

Intra-tumoral heterogeneity of TILs infiltration in OC

reveals four CD8+ immune phenotypes associated with

differential prognosis

We analyzed a total of 697 OC samples from five independent

clinical cohorts with matching treatment-naive and recurrent tu-

mors (Figure 1A, STAR Methods). Given the absence of stan-

dardized methods for CD8+ T cell quantification by multiplex

immunofluorescence (mIF), we built an algorithm able to capture

the heterogeneity of CD8+ T cell densities and their spatial distri-

bution in whole-tissue slides. We converted the established

mean of five ieCD8+ T cells per high-power field captured by

standardized IHC3,4 to a mean of 21 ieCD8+ T cells/mm2 quanti-

fied by mIF on whole FFPE slides (Figure 1B). We tested the

strength of this new CD8+ T cell density cut-off to discriminate

OS in primary tumors from two of our clinical cohorts (IMCOL,

Table S1A and UPENN; Table S1B). Patients with tumors infil-

trated by a mean of >21 ieCD8+ T cells/mm2 had significantly

longer OS than those with <21 ieCD8+ T cells/mm2 (Figure 1C)

even after adjusting for optimal residual disease (R = 0) at first

surgery (Figure S1A). While our new mIF-based cut-off separates

long-term survivors, it still represents a mean density of CD8+

TILs and therefore ignores the observed heterogeneity across

surgical specimens (Figure S1B). Thus, we segmented tissues

in equal sub-regions (or regions of interest, ROIs) to cover the

entire FFPE slide. We annotated tumor and stroma regions within

each ROI based on pan-cytokeratin (CK+) expression and

applied our new CD8+ T cell density cut-off (21 CD8+ cells/mm2)

to each ROI (Figure S1C and STAR Methods). We identified

four different immune phenotypes in treatment-naive OC: purely

inflamed, mixed-inflamed, excluded, and desert tumors accord-

ing to the percentage of ROIs exhibiting >21 CD8+ cells/mm2 in

the intra-tumoral or stromal compartment (Figures 1D and S1C).

We interrogated the prevalence of these four immune pheno-

types in the primary tissues of our two training cohorts

(Figure 1E) and observed differences which could be explained

by characteristics such as stage, optimal debulking rates and

platinum-free interval (Figure S1D; Tables S1A and S1B). Impor-

tantly, our immune phenotype classifier significantly correlated

with clinical outcome, as patients with purely and mixed-in-

flamed phenotypes had a statistically significant longer OS

compared to those with excluded and desert tumors

(Figure 1F). Then we applied our immune classifier to a third, in-

dependent OC collection (HiTide-UPENN, Figure 1G; Table

S2A). Consistently, long-term survivors were those with purely

and mixed inflamed tumors (Figure 1H). As a further validation,

we applied our CD8 immune classifier on a large OC tissues mi-

croarray (TMA) cohort from the Nurses Health Study (NHS) and

NHSII26,27 including 418 patients (Figures 1I and 1J and STAR

Methods). By integrating data from mIF protein panels staining

for CD8, we captured four immune phenotypes similarly to

what we showed in our whole-slide OC tissue collection

(Figure S1C). Furthermore, we assessed the association of these

4 immune classes with survival in the NHS cohort by taking into

statistical consideration covariates, such as tumor subtype,

stage, age, and year of diagnosis. We showed that patients

with mixed inflamed, excluded, and desert tumors had increased

hazard ratios for death compared to purely inflamed ones

(Figure 1K).

Collectively our data suggest that long-term OC survivors are

those with purely and mixed inflamed tumors. As expected, im-

mune inflammation was partly associated with HRD status.

BRCA/HRD OC was significantly enriched in inflamed tumors

while excluded and desert immune phenotypes were more

abundant in HRP OCs (Figures S1E and S1F and STAR

Methods). Beyond the immune inflammatory state, genomic al-

terations, such as those which cause HRD, and chromosomal
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Figure 1. Multiplexed immunofluorescence imaging reveals four different CD8+-based OC immune phenotypes which correlate with clinical

outcome

(A) Schematic representation of the OC primary-recurrent samples collection coming from five different clinical cohorts.

(B) Schematic of FFPE tissues imaging analysis from IHC to mIF.

(C) Kaplan-Meier curve of overall survival (OS) in the IMCOL and UPENN cohort (treatment-naı̈ve samples only) according to the mIF cut-off of 21CD8+/mm2.

(D) Representative mIF images of the four immune phenotypes, scale bars, 100 μm.

(E) Pie charts representing the percentage of the four immune categories in the treatment-naı̈ve samples of our training cohorts (UPENN and IMCOL).

(F) Kaplan-Meier curve of OS in the IMCOL and UPENN cohorts according to immune phenotypes.

(G) Pie chart representing the percentage of the four immune-categories in the treatment-naive tumors from the validation cohort HiTide-UPENN.

(H) Kaplan-Meier curve of OS in the HiTide-UPENN cohort according to immune phenotypes.

(I) Schematic representation of our CD8+-based immune phenotype algorithm according to the fractions of inflamed ROIs in tumor (x axis) and stroma (y axis) in

the NHS I/II study cohort (N = 418).

(J) Reconstructed images of original tumor microarrays (TMAs) of the NHS I/II cohort according to the immune phenotype.

(K) Cox multivariate model of OS in the NHS I/II dataset according to immune category.

Statistical analysis: Log rank test (C,F,H), p values < 0.05 considered significant. Also see Figure S1.
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Figure 2. OC immune phenotypes are characterized by distinct TILs and TME states

(A) Schematic representation of the HiTide-UPENN treatment-naive OC cohort (N = 51 FFPE tissues for mIF imaging and N = 71 snap frozen material for

bulk RNA).

(B) Example of mIF panel with deconvoluted images for each marker: arrows indicate the TILs subset of interest as labeled in the upper part.

(C) Proportions of T cell subset of interest out of total CD8+ T cell profiled by mIF according to immune phenotypes. Total CD8+ T cell density (cells/mm2)

according to immune phenotypes reported in the upper line.

(D) Proportions of CD8+PD1+ T cell subset out of total CD8+ T cell profiled by mIF according to immune phenotypes.

(E) Left: schematic representation of the NHS I/II cohort stained by mIF for a T cell exhaustion panel (N = 270) and a T cell resident panel (N = 237). Right: heatmap

showing the median cell density (log10 scale) of the different T cell subsets clustered according to immune phenotype.

(F and G) Fractions of CD3+PD1+ and CD3+CD8+CD69+CD103+ T cell subsets identified by mIF according to immune category.

(legend continued on next page)
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instability can also positively affect prognosis.13 To address the

association between inflammation, HRD, and outcome in our da-

taset, we employed copy number and single nucleotide variant

(SNV) calls from exome sequencing of primary tumors from 18

patients with OC and further assigned them mutational signature

and HRD positivity28 or by quantifying the levels of mutational

signature 3 (SBS3), telomeric allelic imbalance (telomeric AI),

large scale transitions (LSTs), loss of heterozygosity (LOH), and

ID8/ID9 signatures29 (Figure S1G). HRD positive OCs (13/18

cases) were significantly associated with chromosomal insta-

bility (number of breakpoints/chromosome) (Figure S1H). Also,

HRD positivity correlated with better OS (Figure S1I). Impor-

tantly, inflamed HRD-positive tumors, as called by our immune

classifier, corresponded to long-term survivors and had better

outcomes than HRD positive but non-inflamed tumors (excluded

and desert) or HRD negative patients (Figure S1J). Our data sug-

gest that long-term survivors are those who carry chromosomal

instability due to loss of HR proficiency as well as high and ho-

mogeneous CD8 inflammation in tumor epithelium. Thus, inte-

grating genomic alterations30 and digital immune classification

could represent a combined biomarker to improve patient strat-

ification for therapy.31,32

OC immune phenotypes are characterized by distinct

TILs and myeloid cell states

The significant clinical association of CD8+ immune phenotypes

with survival prompted us to investigate deeper their TILs and

TME states and potentially explain how CD8+ T cells number

and distribution in OC tissues are regulated. To do so, we

focused on the HiTide-UPENN cohort (treatment-naive samples,

Table S2A) for which both FFPE and snap frozen material was

available (Figure 2A). Through mIF staining (Figure 2B and

STAR Methods), we observed a significant enrichment in

PD1+CD8+ T cells in purely inflamed tumors, while no differences

for CD103+CD8+or GzB+CD8+ T cell proportions were observed

across the four immune phenotypes (Figures 2C and 2D). To

interrogate more deeply TIL activation and exhaustion states,

we analyzed more than 200 treatment-naive OC cases from

the NHS I/II cohort for which T cell exhaustion and resident

mIF panels were available (Figure 2E and STAR Methods). A

striking gradient was observed in the densities of activated, ex-

hausted, and tissue resident CD8+, suggestive of enrichment in

antigen specific TILs,11 between excluded and inflamed OC tis-

sues while those were largely absent in desert OC tumors. More-

over, purely inflamed tumors exhibited the highest densities and

proportions of CD3+PD1+ or CD3+CD8+CD69+CD103+ T cells

and other subsets in both the intra-tumoral and stromal compart-

ment (Figures 2E–2G).

To gain more insight on the molecular T cell networks charac-

terizing each immune phenotype, we interrogated bulk RNA

sequencing (RNA-seq) data of independent tissue sites from

the same patients as aforementioned (STAR Methods). Unsuper-

vised clustering based on Hallmarks Reactome signatures

(Figure S2A) revealed that most inflamed tissues segregated

together and exhibited higher levels of inflammatory signatures

including interferon alpha and gamma response signaling.

Indeed, unsupervised clustering based on a collection of pub-

lished gene signatures capturing more in depth T and myeloid

cell activation16,33–36 (STAR Methods and Table S2B) revealed

higher segregation of inflamed tissues and separated them

from those assigned as excluded/desert based on correspond-

ing mIF regions (Figure S2B). In a few cases (for example S36),

where multiple adjacent tissues were interrogated, we observed

a discrepancy in their clustering which is attributed to intrinsic in-

tratumoral heterogeneity (ITH) often observed in OC12,21,37

(Figures S2A and S2B). Comparative bulk RNA-seq analysis re-

vealed that inflamed tissues exhibited an increase in numerous

T cell activation and exhaustion signatures33–35 (Figure 2H).

Interestingly, inflamed tumors also exhibited higher levels of

myeloid cell-related antigen presentation signatures, DC matu-

ration,38 and M1-macrophages39 (Figure 2E), complement and

cytokine signaling40 denoting that TILs:myeloid cell crosstalk,

crucial for T cell engraftment and T cell costimulation.16 Finally,

we observed higher expression of signatures related to cancer

progression and resistance to therapy in excluded and desert

samples, including epithelial-mesenchymal transition (EMT),

matrix remodeling, WNT-beta-catenin signaling, and angiogen-

esis-related signatures (Figure S2C).41,42 These associations

could explain the observed exclusion of CD8+ T cell from tumor

islets and the worse prognosis linked to these immune

phenotypes.

In conclusion, we show that OC immune phenotypes exhibit

not only different density and spatial CD8+ T cells distribution

but also phenotypically divergent TILs and myeloid cell states

which could contribute to the observed differential clinical

outcomes.

TILs:myeloid crosstalk varies vastly across OC CD8+

immune phenotypes

A mounting body of evidence indicates that the state of termi-

nally exhausted CD8+ TILs may vary depending on their cellular

interactions with myeloid cells.16,43,44 To understand if the

enrichment of antigen experienced/exhausted CD8+ TILs in in-

flamed samples is indeed sustained by the presence of intratu-

moral myeloid cells, we analyzed treatment-naı̈ve specimens

from our two training, whole-slide FFPE, cohorts (Figure 3A;

Tables S1A and S1B) by mIF (Figure 3B). We found higher

CD11c+ density in purely inflamed samples compared to mixed

or excluded cases in the tumor compartment but no differences

with desert cases (Figure 3C), suggesting that differential sub-

sets of CD11c+ myeloid cells must reside in inflamed and desert

cases which cannot be captured merely by one marker. When

analyzing the total infiltration of CD68+ tumor associated macro-

phages (TAMs) in the UPENN cohort, we indeed observed that

these were quasi-universally present except for five purely in-

flamed samples where they were completely absent

(Figure 3D). To characterize the states of the myeloid compart-

ment in our OC immune phenotypes, we analyzed 246 OC

(H) Selected significant differential pathways from bulk RNA sequencing analysis in the HiTide-UPENN cohort among the four immune categories (full list in

Table S2).

Data shown as mean ± SD in (C, D, F, G, and H). Statistical analysis: unpaired, two-tailed Wilcoxon-rank test (C, D, F, and G), corrected by Bonferroni correction

(H). p values < 0.05 considered significant. Also see Figure S2.
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Figure 3. TILs: myeloid crosstalk varies vastly across OC CD8+ immune phenotypes in treatment-naive tumors

(A) Schematic representation of the tissue site of origin for samples harvested at primary surgery (treatment-naı̈ve tumors for the UPENN and IMCOL cohorts

merged).

(B) Example of the mIF panel with deconvoluted images for each marker: the immune population of interest is indicated by arrows and color-coded as labeled in

the upper part.

(C and D) Cell density (cells/mm2, log10 scale) profiled by mIF for CD11c+ and CD68+ according to immune phenotypes in the UPENN cohort.

(E) Left: schematic representation of the NHS I/II cohort (treatment naive samples) stained by mIF (N = 246). Right: fraction of the CD68+CD86+pSTAT1+ subset

identified by mIF according to immune category.

(F) Heatmaps showing the normalized frequency of mutual cell interaction at a 20 μm neighboring radii in the UPENN cohort. Immune cell population interaction of

interest in lines and immune categories as columns. Color-code scale bar showing the normalized frequency by row.

(G) Digital tissue reconstruction showing Kernel density estimation of the frequency of triple mutual interaction CD8+:CD68+:CD11c+ according to immune

phenotypes.

(H–K) Frequency of mutual interaction between the indicated cell types according to immune phenotypes.

Data shown as mean ± SD in (C–E and H–K). Statistical analysis: unpaired, two-tailed Wilcoxon-rank test (C–E and H–K). p values < 0.05 considered significant.

Also see Figure S3.
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primary cases from the NHS I/II cohort with a TAM mIF panel

(Figure 3E and STAR Methods). As previously suggested by

our bulk RNA-seq analysis (Figure 2E), inflamed tumors harbored

the highest proportions of activated TAMs or myeloid cells with

protein overexpression of CD86 and pSTAT1 (Figure 3E) demon-

strating that this subgroup harbors also key macrophage sub-

types linked to anti-tumor immune responses.

To gain more insight into differential TME architectures, we

interrogated cellular crosstalk between CD8+ TILs and myeloid

populations. Our work and others have recently shown the exis-

tence of intratumoral niches where critical T cell-DC interactions

occur.16,45,46 We derived a mutual cell-to-cell interaction neigh-

borhood which calculates the normalized frequency of cell-to-

cell interactions among two44 or more cell types (Figures 3E,

3G, and S3A and STAR Methods). We showed that purely in-

flamed samples exhibited significantly higher CD8+:CD11c+ in-

teractions in both the tumor and stromal compartment

compared to all other immune phenotypes (Figures 3F–3H).

Instead, mixed-inflamed and excluded tumors harbored higher

CD8+:CD68+interactions (Figure 3I). Although cell frequencies

and their mutual interaction are interdependent by design, we

found that CD8+:CD11c+ cells interaction separated purely in-

flamed samples from other immune phenotypes significantly

better than their respective minimal cell frequency (Figure 3C).

Of note, we also observed that excluded and desert tumors ex-

hibited increased CD11c+:CD68+ (or homotypic myeloid) inter-

actions (Figure 3J) and wondered if those myeloid niches could

also harbor CD8+ TILs. We thus computed the occurrence of

triplet niches in situ (STAR Methods). Mixed-inflamed and

excluded samples had higher levels of triplets populated by

CD8+:CD11c+:CD68+ in the tumor and even more in the stroma

(Figure 3K). This led us to hypothesize that some TAM states

could interfere with productive CD8+:CD11c+ interactions thus

impairing T cell co-stimulation. When extending our analyses

to include T cells with PD1 or myeloid cells with PD-L1 expres-

sion, we confirmed an enrichment of CD8+PD1+ cells interacting

with CD11c+ cells expressing or not PD-L1 in purely inflamed,

suggesting the relevance of PD1/PDL1 axis in this OC subgroup

(Figure S3B). Importantly, patients with primary tumors enriched

in myeloid niches marked by PD-L1 expression had a signifi-

cantly worse progression-free survival (PFS) compared to those

with low CD11c+:CD68+PD-L1+ niches (Figures S3D and S3E).

These results highlight the differential CD8+: myeloid crosstalk

established among OC immune phenotypes. The subset of

purely inflamed OC is selectively enriched for CD8+:CD11c+

niches recently shown to be essential for response to

ICIs16,46,47 and adoptive T cell therapy.44 They also suggest

that the type of myeloid cells infiltrating tumors could be further

regulating T cell distribution in the TME.48

HRD status and TILs:myeloid crosstalk define OC

immune phenotype evolution and architecture at

recurrence

We then sought to decipher the evolution of immune phenotypes

upon standard-of-care CTX and recurrence taking advantage of

our patient-matched tumor tissues harvested at secondary cyto-

reductive surgery (Figure 4A; Tables S1A and S1B). We applied

our immune classification in recurrent OCs tissues and observed

that the trajectory and evolution of immune phenotypes was

highly dynamic (Figure 4B). Nevertheless, purely inflamed OC re-

tained their homogenous CD8+ inflammation whereas most

desert carcinomas remained desert upon recurrence, suggest-

ing that re-emerging tumors could reconstitute their CD8+ spatial

distribution and, by extension, their TME.

Interestingly, when tracking the evolution of immune pheno-

types according to HRD status, we showed that whereas HRP

tumors largely spread across different immune phenotypes

and toward an excluded or desert phenotype, most recurrent

BRCA/HRD retained or even evolved toward an inflamed state

(Figures 4C–4E). Importantly the evolution toward an inflamed

phenotype at recurrence was associated with a benefit in OS

(Figure 4F).

When interrogating TILs:myeloid cell neighborhoods we saw

that recurrent purely inflamed tumors retained the highest fre-

quency of CD8+:CD11c+ interactions (Figures 4G and 4H).

Mixed-inflamed cases were enriched in both CD8+:CD11c+

and CD8+:CD68+ interactions (Figure 4I). Finally, recurrent

excluded tumors were mostly enriched by CD8+:CD68+

(Figure 4I) and triplet (CD8+:CD11c+:CD68+) niches similarly to

primary OC (Figure S3F).

Notably, when assessing niches evolution according to HRD

status in our cohorts, we observed that while HRD cases signif-

icantly increment CD8+:CD11c+ niches at recurrence in both the

tumor and stroma compartment, being higher than HRP cases

(Figure 4J). On the contrary, HRP recurrent OCs showed higher

CD8+:CD68+ niches (Figure 4K) and homotypic interactions

(Figure S3G).

We then investigated the role of myeloid-T cell niches for

response to ICIs in recurrent platinum-resistant OC samples

collected before treatment initiation from patients enrolled in

the EORTC-1508-GCG phase II clinical trial49 (Figure 4L and

STAR Methods). By computing mutual TILs:myeloid cell interac-

tions as aforementioned, we showed that responders to combi-

natorial ICI therapy exhibited higher CD8+:CD11c+ and CD8+

PD-1+:CD11c+ niches compared to non-responders but no

differences in CD8+:CD68+ niches, thus validating the relevance

of T cell: DC networks for response to ICIs in the context of heavi-

ly pre-treated OC disease.

Despite the limitation of having patient-matched but not site-

matched samples, our analyses revealed that immune cell dy-

namics are affected by disease progression, but the key TME

players and interactions are rather stable at recurrence in OC im-

mune phenotypes. Purely inflamed tumors maintain CD8+:DC

crosstalk, while mixed inflamed and excluded OC exhibit higher

TILs:TAMs and homotypic myeloid interactions, thus suggesting

a faster evolution toward an immune-resistant phenotype with

rare tumor-reactive resident TILs able to abrogate malignant

progression.11,50 Our data also suggest that HRD mutational sta-

tus could potentially determine tumor immune phenotype evolu-

tion and thus warrants the further investigation given in the

following text.

Temporal heterogeneity of T:myeloid cell inflammation

in recurrent mouse OC models

To further disentangle the molecular mechanisms underlying TIL

infiltration and TME orchestration, we set out to build orthotopic

mouse OC models with defined HRD status which resemble pri-

mary and recurrent human OCs as well as their respective TMEs.
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Figure 4. Myeloid crosstalk at recurrence define the evolution of OC TME architecture together with HRD status

(A) Schematic representation of the tissue site of origin for samples harvested at recurrence (UPENN and IMCOL recurrent tumors, cohorts merged).

(B–D) The evolution of immune phenotypes for patient-matched samples (UPENN and IMCOL cohorts merged) in the BRCA/HRD and HRP subgroups separately.

(E) The percentage of the immune phenotypes at recurrence in the BRCA/HRD and HRP subgroups.

(F) Kaplan-Meier curves of OS according to immune phenotype evolution at recurrence.

(G) Heatmaps showing the normalized frequency of mutual interaction between cell types at a 20 μm neighboring radii at recurrence for UPENN cohort. Immune

cell population interaction of interest in lines and immune categories as columns. Color-code scale bar showing the normalized frequency by each row.

(H and I) Frequency of mutual interaction between the indicated cell types according to immune phenotypes at recurrence.

(J and K) Frequency of mutual interaction between the indicated cell types according to HRD status at primary and recurrence (L) Left: schematic representation

of the EORTC-1508-GCG cohort analyzed by mIF; right: frequency of mutual interaction between the indicated cell types in responders (Rs) and non-responders

(NRs) according to RECIST v.1.1 criteria.

Data shown as mean ± SD in (H–L). Statistical analysis: Log rank test (F), unpaired, two-tailed Wilcoxon-rank test (C–E and H–K). p values < 0.05 considered

significant.
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(legend on next page)
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We employed the syngeneic ID8 cell lines knocked out for Trp53

and Brca1 genes51,52 (STAR Methods) and further engineered to

overexpress luciferase.36 Mice were orthotopically implanted

with Trp53− /− Brca1− /− (hereby referred as Brca1mut) or

Trp53− /− Brca1+/+ (or Brca1wt) ID8 tumor cells and treated

weekly with dual CTX (carboplatin/paclitaxel) for 6 cycles,

mimicking first line clinical standard-of-care. Bioluminescence

abdominal quantification revealed partial or even complete tu-

mor regression upon CTX in mice, before they all eventually

recurred with Brca1mut having a slower relapse kinetic than

Brca1wt (Figures 5A and S4A).

To immune-classify and study TILs:DCs crosstalk in our pri-

mary and recurrent mouse models, we performed a triple IHC

staining for CD8+, CD11c+, and panCK+ cells in mouse tumor tis-

sues. Brca1mut displayed higher levels of CD8+ and CD11c+ den-

sities at baseline and maintained them at recurrence while strik-

ingly Brca1wt lost both CD8+ TILs and CD11c+ (Figure S4B). Only

Brca1mut remained homogenously inflamed at recurrence with

concomitant higher CD8+:CD11c+ niches while recurrent

Brca1wt tumors evolved mainly into desert phenotypes with a

global depletion of CD8+:CD11c+ niches (Figures 5B and 5C).

This observation was validated in our human dataset showing

that indeed, only human HRD cases maintained CD8+ and

CD11c+ infiltration and niches upon recurrence to first-line CTX

(Figures 4J and S4C).

The aforementioned findings indicated that Brca1mut tumors

recapitulate the HRD purely inflamed cases observed in the hu-

man dataset characterized by homogenous CD8+ TIL infiltration

and high number of TILs:APC interactions. On the contrary,

Brca1wt (mainly desert at recurrence) may reflect CTX-resistant

tumors where an immune-suppressive TME with loss of TILs

and DCs develops upon progression.53

Thus, we further dissected and compared the evolution of the

TME in our primary-recurrent OC models by scRNA-seq. We

analyzed 39,752 cells distributed into 17 major clusters (STAR

Methods) and identified six major cell classes (Figures S4D

and S4E) and 14 subclasses (Figure S4F). We validated by

scRNA-seq that purely inflamed mouse OC tissues exhibited

higher proportions of T cells and myeloid DC cells compared

to mixed-inflamed and desert samples while mixed and desert

samples were enriched in myeloid macrophages and malignant

subsets (Figures S4G and S4H). While we could observe a global

loss of T cells in Brca1wt and their maintenance in Brca1mut tu-

mors (Figure S4B), more changes appeared in their composition

at recurrence. The CD8 and CD4 naive-like, effector memory,

and exhausted TIL subsets remained unaltered (Figure S5A),

while the CD4-resting state increased in recurrent Brca1mut tu-

mors (Figure S5B). In addition, Brca1mut recurrent tumors main-

tained a higher type-I interferon CD8 TIL state which was lost in

Brca1wt and increased the frequency of Hsphigh CD8 TIL state

(Figure S5C). The NK or NK-like cells represented a small

compartment among all T cells and were annotated in three sub-

sets, namely NK cells and CD8 or CD4 NK-like T cells

(Figure S5A). When comparing their proportions at primary or

recurrent stages, we observed that Brca1mut tumors retained

NK cell levels at recurrence. While the majority of recurrent

Brca1wt tumors lost NK cells, there was a vast variability in NK

cell levels at recurrence (Figure S5D).

To further understand how the stromal compartment evolves

during ovarian cancer recurrence, we compared changes of

endothelial and fibroblast populations at baseline and recur-

rence. In both tumor models, we observed a striking increase

of endothelial cells after CTX, suggesting that cancer progres-

sion drives angiogenesis (Figures S5E and S5F). In addition,

recurrent Brca1mut reshaped their CAF composition by signifi-

cantly reducing the clusterinhigh (Cluhigh)-CAFs state which

modulate the adjacent TME via transforming growth factor β
(TGFβ) signaling54 and by increasing the inflammatory Gsnhigh-

CAFs cluster (Figure S5G), reported to overexpress multiple

pathways involving Ptgis (prostaglandin I2 synthase) and com-

plement activation through C3 and CFD55 (Table S3B).

ApoE/Trem2 signaling drive immunosuppressive TAM

networks in recurrent Brca1wt tumors and its blockade

in vivo delays OC recurrence

Having described a clear interplay between myeloid cells and

TILs in our human dataset, we investigated the evolution of

myeloid cell subtypes in our mouse models (Figure 5D). Compar-

ative analysis showed a drastic decrease of DCs affecting all

subsets (cDC1, cDC2,and CCR7+DC) in recurrent Brca1wt tu-

mors (Figures 5E and 5F). This was counterbalanced by a global

increase in macrophages and specifically by Trem2/ApoE TAM

state56,57 (Figure 5G), characterized among others by stress-

induced senescence and TNFR1-driven nuclear factor kappa B

(NF-kB) signaling and involved in high-density lipoprotein (HDL)

metabolism58,59 (Figure S5H; Table S4E). A clear dichotomy

was observed between our two models at recurrence where It-

gax-TAMs overexpressing Cxcl9, Cxcl16, and Il1b were

Figure 5. Brca1wt tumors lose TILs:APC interactions and upregulate immunosuppressive TAMs at recurrence which can be target in vivo to

delay OC recurrence

(A) Tumor growth kinetics of ID8Luc Trp53− /− Brca1wt and Brca1mut during treatment in the control (vehicle or primary) or chemotherapy group (CTX, recurrence)

(n = 6–7 mice per group).

(B) Percentages of immune phenotypes in the Brca1wt and Brca1mut tumors at primary and recurrence.

(C) CD8+:CD11c+ niches assessed by IHC between Brca1mut and Brca1wt tumors at baseline and recurrence.

(D) t-SNE map of the in-vivo single-cell transcriptomic data displaying the identified myeloid clusters.

(E–G) Proportion of the indicated myeloid classes and subclasses between Brca1mut and Brca1wt tumors at baseline and at recurrence.

(H) Circos plot of interactome analysis by MultiNicheNet displaying finer subclasses interaction within the top 5 cell type interactions between Brca1mut and

Brca1wt recurrent tumors.

(I and J) Tumor growth kinetics of ID8Luc Trp53− /− Brca1wt during treatment with chemotherapy (CTX) and CTX + anti-CSFR1 (left) or CTX + anti-TREM2 Ab (right)

(n = 6–7 mice per group).

(K and L) ex vivo FACS data comparing the percentage of CD45+ cells and the reduction ratio of DC and macrophages in previous experiment (I and J).

Statistical analysis: two-way ANOVA (A, I, and J), unpaired, two-tailed Wilcoxon-rank test (E–G and K and L). p values < 0.05 considered significant. Also see

Figures S4–S7.
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Figure 6. Tumor-intrinsic mechanism of resistance to CTX of Brca1mut tumors include the PGE2-axis upregulation

(A) t-SNE map of the in-vivo single-cell transcriptomic data displaying the identified malignant clusters.

(B) Proportion of the indicated malignant subclasses between Brca1mut and Brca1wt tumors at baseline and at recurrence.

(legend continued on next page)
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completely lost at recurrence in Brca1wt tumors while they were

maintained, together with all the DC subsets, in Brca1mut can-

cers (Figures 5F and 5G). In line with these results, we also

showed, in a subset of patients from the IMCOL-UPENN co-

horts, that human HRD tumors exhibited higher level of

CXCL9+ CD68+ TAMs compared to HRP ones, and that

CXCL9+ TAM infiltration correlated with CD8+ TIL levels

(Figure S5I).

The aforementioned findings prompted us to predict the

signaling networks and infer the cellular crosstalk established

in the TMEs of these temporally divergent tumor immune pheno-

types. By applying MultiNicheNet,60 we revealed highly diver-

gent regulatory networks at recurrence between our models

(Figure S6A). While Brca1mut displayed a myeloid:T cell network

sustaining antigen presentation and chemokine activation, a

plethora of inhibitory macrophages-malignant and homotypic

myeloid cell signaling and interactions dominated Brca1wt tu-

mors with downregulation of antigen presentation. To increase

resolution in the interactome, we next focused on the top five

cell-type ligand-receptor interactions of each recurrent tumor

model. Again, we found that DCs:B cells:CD4 T cells interactions

were maintained in Brca1mut upon recurrence and lost in Brca1wt

(Figure S6B; Tables S4A and S4B). These were sustained by the

highly important Cxcl9/Cxcl10-Cxcr3 axis for OC40 and provide

TILs co-stimulation through CD28.16,40 On the contrary, Brca1wt

tumors were dominated by homotypic myeloid-cell crosstalk

including macrophages:DCs predicted to interact predominantly

through Trem2/Apoehigh TAMs and mediated by Tgfb1, Fn1,

App, and Thbs1 ligands associated with EMT, invasiveness,

and metastatic spread61,62 (Figure 5H).

Our systematic analyses highlighted the abundant enrichment

of immunosuppressive TAMs in HRP tumors and their marked

post-CTX treatment increase, which may be a key contributor

to their recurrence. This was consistent with our observations

in HRP patients’ specimens (Figure S5H) and prompted us to

test the hypothesis that directly targeting the macrophage

compartment in combination with CTX would delay recurrence

in HRP tumors. We utilized our Brca1wt model described previ-

ously and treated mice with standard-of-care dual CTX in com-

bination with antibodies targeting the macrophage colony stim-

ulating factor 1 receptor (CSF-1R) or specifically the TREM2

receptor (Figures 5I and 5J and STAR Methods). Surprisingly,

we showed that CSF-1R blockade resulted in a faster recurrence

of Brca1wt ovarian cancer in vivo (Figure 5I). Ex vivo flow cytom-

etry (FACS) analysis of recurrent Brca1wt tumors revealed a

drastic reduction of MHC-II+ DCs, total macrophages and M2-

like TAMs in the combination group compared to CTX alone,

both in the tumor and in the ascitic fluid (Figure S7A), pointing

out to a non-selective myeloid depletion in the TME. Instead,

TREM2 neutralization in the same model, showed a significant

delay in the recurrence of Brca1wt ovarian cancers after CTX

(Figure 5J). Ex vivo FACS analysis of Brca1wt recurrent tumors re-

vealed a significant increase in the tumor-infiltrating CD45+ leu-

kocytes for the TREM2-treated group and a significant decrease

for the CSF-1R treated one (Figure 5K) which correlated inversely

with tumor volumes (Figure S7B). Interestingly, in vivo TREM2

blockade spared DCs (Figures 5L and S7C) and promoted a

slight decrease in the myeloid compartment, with a significant

reduction in M2-like macrophages (Figure S7C). These results

were in line with the expression levels of Csfr-1 and Trem2 in

the myeloid compartment of our in vivo models. Csfr-1 was

broadly detected in all myeloid states including neutrophils and

the DC2 cluster. However, Trem2 was found overexpressed in

Trem2+ TAMs and detected also in monocytes and other

TAMs states but not in DCs or neutrophils (Figure S7D).

Our findings demonstrated that Brca1mut retain their tumor im-

mune phenotype due to immunogenic malignant and immune

stimulatory myeloid cell subsets. On the contrary, Brca1wt

(mainly desert at recurrence) establish a TIL-excluding TME

due to the loss of activated DCs. In addition, phenocopying tu-

mor progression of immune excluded OC; they reveal upregula-

tion of inhibitory Trem2/Apoehigh TAMs subsets, potentially re-

cruited by immune evasive Nduf4l2/Galectin3high malignant

states. Specific TME myeloid targeting with anti-TREM2 neutral-

izing Ab enhanced the effects of first-line CTX in Brca1wt mouse

models.

Malignant cell state evolution during OC recurrence

We then focused on the malignant compartment of our models

where we identified five different malignant subsets (Figure 6A)

and observed divergent evolution at recurrence. Brca1mut pri-

mary tumors were dominated by malignant cell states such as

Epcamhigh, CD74high, and Ptgdshigh clusters (Figure 6B;

Table S3A) with overexpression of fibroblast grow factor recep-

tor (FGFR) signaling pathways but also antigen processing/pre-

sentation genes (MHC class II [H2-Eb1, H2-Ab1, and H2-Aa],

Cd74, and Cd86). Ptgdshigh cluster was also characterized by

prostanoid and eicosanoid-associated metabolic signatures

and increased specifically after CTX and tumor progression

(Figure 6B). Recurrent Brca1mut also maintained a highly prolifer-

ating Mki67high tumor cell state (Figure 6B) with overexpression

of genes such as Hmgb2 and senescence-associated secretory

phenotype (SASP).63 However, recurrent Brca1wt significantly

lost the CD74high, Mki67high and Ptgdshigh malignant cell states

and were largely repopulated by the immunosuppressive

Nduf4l2high compartment overexpressing Lgals164 (Figure 6B;

(C) Heatmap displaying gene non-negative matrix factorization (NMF) and the nine metaprograms (MPs) identified in the malignant compartment.

(D) Pathway enrichment analysis for each MP using both the Hallmarks and the Reactome pathway collections.

(E) Heatmap showing signature scores (Z score) for each MPs in each malignant subpopulation.

(F) Tumor growth kinetics of ID8Luc Trp53− /− Brca1wt during treatment with chemotherapy (CTX) and CTX + anti-IFNAR1 Ab (n = 6–7 mice per group).

(G) FACS data analysis from in-vivo experiment in (F).

(H) PGE2 expressed by Brca1wt and Brca1mut cell lines assessed by ELISA at the indicated time point and according to the labeled conditions.

(I) Tumor growth kinetics of ID8Luc Trp53− /− Brca1mut during treatment with chemotherapy (CTX) and CTX + celecoxib (n = 6–7 mice per group).

(J) Survival curve from in-vivo experiment in panel I according to the different maintenance treatment groups.

Statistical analysis: unpaired, two-tailed Wilcoxon-rank test (B and G), two-way ANOVA (A and I), Log rank test (J); p values < 0.05 considered significant. Also see

Figure S8.

ll
OPEN ACCESSArticle

Cancer Cell 43, 1568–1586, August 11, 2025 1579



Table S3A). To further interpret the malignant subsets, we car-

ried out meta-programs (MPs) identification65 detecting nine

different MPs (Figure 6C and STAR Methods). Then, we conduct-

ed pathway enrichment analysis for each MP using both the hall-

marks and the reactome pathway collections (Figure 6D) and

computed the signature scores of these MPs in our malignant

subtypes (Figure 6E). For instance, we could observe that

MP2-5-8 are associated with cell cycle, MP7 is associated

with interferon signaling and antigen presentation, and MP3

with glucose metabolism (Figures 6D and 6E). Interestingly, the

CD74high and Ptgdshigh malignant cell states highly present in

Brca1mut models (and lost in recurrent Brca1wt tumors) showed

enrichment for the MP7 described previously as well as for

MP4 characterized by PD1 and glutathione conjugation signaling

(Figures 6D and 6E).

Our data on the malignant compartment evolution may explain

why Brca1mut tumors remain immunogenic at recurrence and

therefore maintain their TILs:DCs niches but can still evade im-

mune destruction through FGFR66 and COX-driven prostanoid

signaling.67 In contrast, Brca1wt tumors are highly reshaped dur-

ing tumor progression. They emerge into new immune evading

and suppressive malignant states with Nduf4l2 characterized

by a highly glycolytic MP and Galectin3 overexpression.64,68,69

These results may explain the observed loss of T cells and stim-

ulatory APCs which indeed leads to faster progression in Brca1wt

tumors as observed in end-stage human OC.13

Finally, to further dissect the tumor-intrinsic mechanism by

which Brca1mut tumors retain immunogenicity at recurrence,

we performed copy-number alteration inferences in our

scRNA-seq data of malignant cells by inferCNV analysis70,71

(STAR Methods). Our data pointed to differences in inferred

CNVs between the Brca1mut and Brca1wt primary tumors, such

as copy-number losses and gains in chromosomes 2 and 3

(Figure S8A). Importantly, we showed that while overall CNVs

are replicated in both models at recurrence (Figure S8A) in line

with recent observations,13,72 recurrent Brca1mut tumors

showed a significant increase in inferCNVs (Figure S8B) in asso-

ciation with a reestablishment of their immune landscape.

Furthermore, we could observe that the Epcamhigh cluster, pre-

dominant in recurrent Brca1mut tumors had the most variable

CNVs patterns (Figure S8C).

These results highlight highly divergent evolutions in the malig-

nant landscape of HRD and HRP recurrent tumors and could

further explain the divergency observed in the temporal tumor

immune phenotype evolution of human OC. In summary, recur-

rent Brca1mut tumors retain an immunogenic malignant compart-

ment in association with higher genomic instability while Brca1wt

tumors evolve into immune evasive malignant states, thus vali-

dating that combinations of HRD alterations and differential im-

mune responses contribute to long-term survival in OC

(Figure S1J).

Tumor-intrinsic vulnerabilities and mechanisms of OC

recurrence

Our transcriptional profiling of malignant cell states suggest that

primary tumors retain a metaprogram (MP7) associated with

interferon signaling and depending on the HRD status these

immunogenic cell states may be reconstructed or lost post

CTX and recurrence.

Therefore, we questioned if the interferon signaling axis consti-

tutes a prerequisite for response to dual CTX. To this end, we

treated mice bearing Brca1wt OC tumors with the usual CTX

dual regimen alone or in combination with an antibody blocking

the IFN alpha receptor subunit 1 (IFNAR1) (Figure 6F and STAR

Methods). Negating type-I IFN TME signaling from treatment

onset markedly reduced the therapeutic benefit conferred by

CTX and caused an acceleration of OC recurrence (Figure 6F).

Furthermore, IFNAR1 blockade marked a decrease in tumor infil-

trating NK, T cell (CD3+) and activated exhausted CD8+ T cell

(Figure 6G) while no significant changes were observed in the

myeloid compartment (Figure S8D). To further confirm these find-

ings, we blocked IFNAR1 in the Brca1mut model and consistently

showed an abrogation of tumor control exerted by CTX control

(Figure S8E). Hence, type-I IFN signaling represents a crucial

driver for the anti-cancerous effects of CTX.73

Our data on the malignant compartment evolution also ex-

plained why Brca1mut tumors remain immunogenic and inflamed

at recurrence but can still evade immune destruction through tu-

mor-intrinsic COX-driven prostanoid signaling67 (Figure S8F)

recently associated with disruption of TILs functionality and fer-

roptosis.74 First, we studied the production of PGE2 by cancer

cells as a product of COX-driven prostanoid signaling. Interest-

ingly, we saw that baseline PGE2 production was significantly

upregulated by dual CTX in both Brca1wt and Brca1mut cell lines

(Figures 6H and S8G). Importantly, PARP inhibition with olaparib

significantly upregulated PGE2 secretion on in Brca1mut but not

Brca1wt cancer cells (Figure 6H). This upregulation was effi-

ciently abrogated in vitro by celecoxib, a selective COX1/2 inhib-

itor (Figures 6H and S8G).

These data suggest that HRD ovarian cancer cells secrete

lipids as a survival response to chemotherapy or PARP inhibition

thereby revealing tumor-intrinsic vulnerabilities. To unleash the

full immunogenicity potential of HRD TMEs, we next sought to

block COX-driven prostanoid production in conjunction with

dual CTX (Figure 6I and STAR Methods). We observed a statisti-

cally significant increase in the depth of tumor control in mice

treated with CTX and celecoxib compared to CTX alone, which

was then reflected in a prolonged disease control (Figure 6I).

Mice who received CTX and celecoxib combination were then

randomized (day 56) to different maintenance therapies (ola-

parib, olaparib + celecoxib, and olaparib + celecoxib + anti-

PD-L1). Strikingly, mice receiving maintenance therapy with

double combination (olaparib + celecoxib) showed a statistically

significant increase in their median survival rates in comparison

with mice receiving olaparib alone. This therapeutic benefit

was doubled upon treatment with triple maintenance therapy

(olaparib, anti-PD-L1, and celecoxib) (160 days after combinato-

rial treatment versus 97 days following standard CTX) (Figure 6J).

In summary, we demonstrated that intact type-I IFN signaling

and by extent T cell/NK responses represent crucial drivers of

anti-cancerous effects exerted by CTX during ovarian cancer

treatment.

We also conclude that progression of ovarian cancers is also

driven by tumor-intrinsic PGE2 and fatty acid signaling, identi-

fying a key vulnerability for the recurrence of human HRD OCs.

Specific targeting of COX-driven PGE2 production during

chemotherapy and PARP maintenance therapy significantly pro-

longed relapse and survival in preclinical mouse models thus
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paving the way for further exploration of differential maintenance

strategies for patients with HRD OCs.

DISCUSSION

ICIs have revolutionized the immuno-oncology field but have

failed to demonstrate efficacy in OC despite the ample evidence

of adaptive immunity being activated at baseline. The discrep-

ancy could rely on the poor understanding of the mechanisms

that regulate the temporal evolution of the malignant and myeloid

cell networks with disease progression. Immune networks vary

significantly between primary and metastatic OC sites, influ-

enced by both tumor genetics and anatomical location.37 For

example, HRD tumors of primary ovarian and fallopian tube sites

harbor immune cell niches with high TIL and activated myeloid

states, while distant metastatic sites show reduced immune acti-

vation.37 Recent breakthroughs employing advanced systems’

technologies (spatial proteomics and single-cell transcriptom-

ics), start to shed light on how chemotherapy can further remodel

the TME.75,76

Here, we applied digital pathology mIF analysis and built a

tumor immune phenotype predicting algorithm which systemat-

ically classified 697 OC specimens from 5 independent multi-

institutional cohorts providing the largest OC CD8+-based in-tis-

sue immune-profiling so far. Importantly, we demonstrated that

patients with purely inflamed OC showed better OS and carried

the highest levels of CD8+PD1+ and antigen-experienced/ex-

hausted TILs. In addition, these tissues were characterized by

increased interferon gamma and alpha activation and accompa-

nied by activated myeloid signatures reflected in immune-stimu-

latory macrophages. Spatial neighborhood analysis further re-

vealed that this small OC subset harbored intratumoral TILs:

DCs niches important for response to ICIs in OC but also to

adoptive T cell therapy in melanoma.44 Altogether our results

suggest that the small subgroup of purely inflamed OC identified

by our algorithm could represent the ideal candidates for immu-

notherapy trials.

Conversely, mixed-inflamed, excluded, and desert tumors

were enriched in TILs:TAMs or myeloid homotypic myeloid inter-

actions which were associated with worse outcomes implying

that TAMs could interfere with stimulatory and proficient T cell:

DC interactions or exert a ‘‘trapping effect’’ of either pair popula-

tion. Upon CTX pressure and recurrence, about half of OC pre-

served or restored their tumor immune phenotype and TILs:

DCs crosstalk and those were more frequently enriched in

HRD patients. Notably, tumors which amplified their TILs content

at recurrence had an improved survival.

Systematically classifying the tumor immune phenotype and

predicting the factors that stabilize or enrich T cells or those

which exclude them from the TME at recurrence holds value

for the appropriate choice of therapeutic agents upon first line

treatment. Our data suggest that long-term survivors are those

who carry over chromosomal instability due to loss of HRP and

maintain high and homogeneous CD8 inflammation in recur-

rence disease. Thus, integrating genomic alterations and digital

immune classification could indeed represent a combined

biomarker to improve patient stratification for therapy.31,32

Phenocopying inflamed human OC, Brca1mut tumors main-

tained activated TILs:DCs niches at recurrence and further

increased the infiltration of immunostimulatory TAMs. This was

enabled by immunogenic tumor cell states with increased anti-

gen presentation and inflammatory CAFs. However, they could

still evade T cell-mediated destruction likely due to the upregula-

tion of PGE2-producing signaling pathways known to restrict the

expansion of antigen-experienced TILs and downstream

destruction of IL-2 signaling and metabolic fitness impair-

ment.74,77,78 Our in vivo data further demonstrated that specific

targeting of COX-driven PGE2 production during chemotherapy

and PARP maintenance therapy significantly prolonged survival

in preclinical mouse models. Our data strongly encourage further

exploration of the COX1/2 axis blockade in maintenance strate-

gies for patients with BRCA1mut OCs to ultimately unleash the

functionality of the TILs:DCs niches and prolong disease control

during CTX and PARPi.

In contrast, Brca1wt tumors displayed concomitant loss of TILs

and DCs upon CTX, alike human recurrent HRP OC. Instead,

they were highly infiltrated by TAMs reprogrammed to overex-

press the Trem2/ApoE axis involved in lipid metabolism. These

was likely driven by emerging suppressive and highly metabolic

malignant states with Nduf4l2 and Galectin3 overexpression64,68

and characterized by signatures of the EMT-PI3K-AKT pathway,

NCAM1 and LG1-ADAM interactions79 associated with resis-

tance to ICIs.80 Consistently, our data showed that therapeuti-

cally targeting of TREM2 overexpressing TAMs may improve

anti-tumor immune responses and delay recurrence after first-

line CTX in HRP OC.

Our findings provide important mechanistic insights about the

complex spatial and temporal evolution of the OC TME and pro-

vide new targets for differential treatment approaches according

to BRCA/HRP status. Furthermore, they underscore that to pro-

long the first platinum-free interval a concerted targeted modu-

lation of both the malignant and immune OC compartment is

required.
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Mouse monoclonal anti-panCK (clone AE1/AE3) Dako Omnis Cat#M3515

Rat IgG2b anti mouse CD45 BV785 (clone 30F11) Biolegend Cat#103149

Mouse IgG2a anti mouse CD161 BV711 (clone PK136) Biolegend Cat#108745

Rat IgG2a anti mouse CD14 BUV737 (clone Sa14-2) BD (optibuild) Cat#756779

Rat IgG2a anti mouse F4/80 PE (clone BM8) Biolegend Cat#123110

Rat IgG2b anti mouse CD11b (clone M170) Thermo Fisher Scientific Cat#25-0112-82

Rat IgG2b anti mouse CD3 Pacific Blue (clone 17A2) Biolegend Cat#100214

Rat IgG2a anti mouse CD8 BV650 (clone 53-6.7) Biolegend Cat#100742

Rat IgG2a anti mouse PD1 BV510 (clone 29F.1A12) Biolegend Cat#135241

Rat IgG2a anti mouse CD39 PECy7 (clone Duha59) Biolegend Cat#143806

Human monoclonal anti-CD45 (clone HI30) Biolegend Cat#304012

Anti-PDL1 (clone 10F.9G2, mouse IgG2b) BioXcell Cat#BE0101

Anti-IFNAR (clone MAR1-5A3, mouse IgG1) Assay Genie Cat#IVMB0202

Anti-CSFR (clone AFS98, mouse IgG2a) Assay Genie Cat#IVMB0001

Anti-TREM2 (clone 178, mouse IgG2a) Assay Genie Cat# IVMB0399

Rabbit anti pan-CK Novus Biologicals Cat#NB600-579

Rat anti-CD8a (clone 4SM15) Thermo Fisher Cat#14-0808-82

Rabbit anti-CD11c (clone D1V9Y) Cell Signaling Cat# 97585S

Anti-human CD3 (clone SP7) ThermoFisher Cat#MA5-14524

Anti-human CD8 (clone C8/144B) DAKO Cat#M7103

Anti-human CD103(clone SP301) Abcam Cat#ab227697

Anti-human CD69 (clone EPR21814) Abcam Cat# ab233396

Anti-human pan-CK (clone M3515) DAKO Cat# M3515

Anti-human CD68 (clone D4B9C) CST Cat#76437

Anti-human pSTAT-1 (clone 9167s) CST Cat#9167

Zombie UV Fixable Viability Kit Biolegend Cat# 423107

Foxp3/Transcription Factor kit Thermo Fisher scientific Cat#00-5523-00

Biological samples

Human ovarian cancer

(IMCOL primary-recurrent cohort)

Imperial College of London, UK This paper, Table S1A

Human ovarian cancer

(UPENN primary-recurrent cohort)

University of Pennsylvania, USA This paper, Table S1B

Human ovarian cancer

(UPENN-HiTide primary cohort)

University of Pennsylvania, USA This paper, Table S2A

Human ovarian cancer tissue

microarray tissues (NHS I/II cohorts,

treatment-naive tissues)

Channing Division of Network

Medicine, Department of Medicine,

Brigham and Women’s Hospital

and Harvard Medical School,

Boston, MA, USA

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human ovarian cancer FFPE tissues

(EORTC-1508 study, recurrent cohort)

The EORTC-1508 study EudraCT 2015-004601-17 /

NCT02659384

Chemicals, peptides, and recombinant proteins

Deparaffinization solution Qiagen Cat#19093

FcR blocking reagent Human Miltenyi Biotec Cat#130-059901

RNasin Plus RNase Inhibitor Promega Cat#N2618

Bovine Serum Albumin Sigma-Aldrich Cat#A2153

DAPI Invitrogen Cat#D1306

DTT Sigma-Aldrich Cat#43816

Luciferin Biosynth Cat#L-8220

Carboplatin Accord Cat#7504554

Paclitaxel Labatec Cat#4670594

Olaparib APExBIO Cat#A4154

Celecoxib oral Sandoz N/A

Poly(ethylene glycol) 300 Sigma-Aldrich Cat#202371

Critical commercial assays

QiAmp DNA FFPE tissue kit Qiagen Cat#56404

Qubit dsDNA HS assay kit Invitrogen Cat#Q32851

Archer VariantPlex® kit for

Illumina – HS BRCA custom panel

Archer Cat#DB0170

Archer® MBC Adapters A1-A8 for Illumina® Archer Cat#SA0040

RNeasy Kit mini Qiagen Cat#74104

Qubit RNA SS assay kit Invitrogen Cat#Q10210

HS NGS Fragment analyzer kit Agilent Cat#DNF-474-0500

Chromium Next GEM Single 3’ Kit v3.1,16 rxns 10X Genomics Cat#1000268

Chromium Next GEM Chip G Single Cell Kit, 48 rxns 10X Genomics Cat#1000120

3′ Feature Barcode Kit, 16 rxns PN-1000262 10X Genomics Cat#1000262

3′ CellPlex Kit Set A, 48 rxns 10X Genomics Cat#1000261

Dual Index Kit TT Set A, 96 rxns 10X Genomics Cat#1000215

Dual Index Kit NN Set A, 96 rxns 10X Genomics Cat#1000243

Deposited data

Human targeted DNA panel This paper Zenodo https://doi.org/10.5281/

zenodo.15720518

Human bulk RNA genes signatures This paper EGA EGAD50000001556

Mouse single-cell RNA sequencing data This paper GEO GSE264660

Experimental models: Cell lines

ID8 Trp53− /− and ID8 Trp53− /− Brca1− /− Prof. Iain A. McNeish lab (Walton et al., 201651;

Walton et al., 201752)

Experimental models: Organisms/strains

C57BL/6NHsd Inotiv 044

Software and algorithms

Immunophenotype classification algorithm This paper GitiHub.com/dangajlab/Ovarian-TME

GraphPad Prism v.10 GraphPad Software, Inc RRID: SCR-002798

Inform v. 2.5.1 Akoya Bioscience

Phenochart v. 1.0.12 Akoya Bioscience

FlowJO Treestar RRID:SCR_008520

Next-Generation Clustered Heat Map Viewer https://www.ngchm.net/

Downloads/ngChmApp.html

Integrative Genomics Viewer https://igv.org
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics approval

This study received central approval by the University Hospital of Lausanne UNIL-CHUV (‘‘Tumor heterogeneity in epithelial ovarian

cancer [PB_2022-00024]) and Ludwig Cancer Research Lausanne Branch institutional review board. The study protocol for the NHS/

NHSII cohorts was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School

of Public Health, and those of participating registries as required. All procedures were performed according to the Declaration of Hel-

sinki guidelines. All cohorts (except for NHS/NHSII) were transferred to Lausanne under Standard Material Transfer Agreements for

De-identified Human Tissues and Specimens Between Non-profit Organizations.

Human samples

IMCOL primary-recurrent cohort

Forty-six patient-matched formalin-fixed paraffin-embedded (FFPE) ovarian cancer (OC) tumor samples from 23 patients were

collected at the Imperial College of London at primary surgery and first recurrence (Table S1 for patients’ clinical details). The cohort

was pre-selected to be a fully platinum-sensitive cohort as reflected by the long first platinum-free interval calculated from the last day

of dosage of the platinum-based chemotherapy to disease relapse (Figure S1D). The project was performed under the Hammersmith

and Queen Charlotte’s and Chelsea Research and CHUV Ethics Committee approvals (PB_2022-00024) and human samples for this

research project were collated by the Imperial College Healthcare Tissue Bank (ICHTB). ICHTB is approved by Wales REC3 to release

human material for research (22/WA/2836) and samples were issued under full patient consent. ICHTB is supported by the National

Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial Col-

lege London. Samples were used for multiplexed immunofluorescence (mIF) analysis and somatic targeted DNA sequencing as

described below.

UPENN primary-recurrent cohort

A total of 124 FFPE OC tumor samples (n=74 primary and n=50 recurrent samples respectively, from 46 patients) were collected at

primary surgery and first recurrence under a protocol approved by the University of Pennsylvania Institutional Review Board and pro-

vided by the Tumor Tissue and Biospecimen Bank (TTAB), Department of Pathology, at the University of Pennsylvania, Philadelphia,

USA. Detailed clinical data and samples information are reported in Table S1. Sample were used for mIF analysis and somatic tar-

geted DNA sequencing.

HiTide-UPENN primary cohort

Fifty-one FFPE samples and n=71 snap-frozen samples were collected from 51 patients at the Ovarian Cancer Center, Department of

Obstetrics & Gynecology, University of Pennsylvania, Philadelphia, USA. Informed consent was obtained from all subjects included in

this study under an approved protocol from the Institutional Review Board (UPCC 17909, IRB 702679) under the care of Dr. DJ Powell

and Dr. J Tanyi. Samples were collected from unselected consecutive patients (‘‘all comers’’) undergoing surgery for primary stage III

or IV high-grade serous ovarian cancer, as well as from the fallopian tube or primary peritoneal origin. Detailed clinical data are re-

ported in Table S2. Samples were used for mIF analysis, bulk RNAsequencing and somatic DNA sequencing by the BROCA panel

(performed by Dr E. Swisher).

NHS I/II cohort

Information including the procedures to obtain and access data from the Nurses’ Health Studies (NHS and NHSII) is described at

https://www.nurseshealthstudy.org/researchers (contact email: nhsaccess@channing.harvard.edu) and https://sites.sph.harvard.

edu/hpfs/for-collaborators/. Because of participant confidentiality and privacy concerns, data cannot be shared publicly and re-

quests to access NHS/NHSII data must be submitted in writing. According to standard controlled access procedures, applications

to use NHS/NHSII resources will be reviewed by our External Collaborations Committee to verify that the proposed use maintains the

protection of the privacy of participants and the confidentiality of the data. Investigators wishing to use NHS/NHSII data are asked to

submit a brief description of the proposed project (go to https://www.nurseshealthstudy.org/researchers (contact email:

nhsaccess@channing.harvard.edu) and https://sites.sph.harvard.edu/hpfs/for-collaborators/ for details. Participating central

cancer registries include the following: Alabama, Alaska, Arizona, Arkansas, California, Delaware, Colorado, Connecticut, Florida,

Georgia, Hawaii, Idaho, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Mississippi, Montana, Ne-

braska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon,

Pennsylvania, Puerto Rico, Rhode Island, Seattle SEER Registry, South Carolina, Tennessee, Texas, Utah, Virginia, West Virginia,

Wyoming.

Cell lines

ID8 Trp53-/-Brca1wt and Trp53-/-Brca1mut mouse OC cell lines, obtained from the laboratory of Prof. Iain A. McNeish (Institute of Can-

cer Sciences, University of Glasgow, Scotland)51,52 were transduced to express luciferase36 and cultured in DMEM supplemented

with 4% FBS, 100 μg/mL penicillin, 100 μg/mL streptomycin, and ITS 35 (5μg/mL insulin, 5μg/mL transferrin, and 5ng/mL sodium

selenite). Cell lines were negative for Mycoplasma contamination.
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Animal model

C57BL/6NHsd female mice were obtained from Inotiv and were maintained in pathogen-free conditions. Age-matched mice 7 weeks

were used for all experiments. Animal experimentation procedures were performed according to the protocols approved by the Vet-

erinary Authorities of the Canton Vaud (VD3480d, VD3480x1, VD3480x1b, VD3480x1c), according to Swiss law.

METHOD DETAILS

FFPE slides preparation and mIF staining

Slides were prepared at the Immune Landscape Laboratory (ILL) at the Center for Experimental Therapeutics (CTE) of the Depart-

ment of Oncology at CHUV (Lausanne, Switzerland) from the FFPE blocks provided. The first slide was used for H&E staining and

review by a dedicated Pathologist (JD) to define the quality of tumor and stromal areas and exclude adjacent healthy tissue. A second

slide of 3.5 um was used for mIF. Slides to be stained were thawed and heated at 60◦C for 1 hour. mIF panels were run using the

multiplex Ventana Discovery ULTRA Staining module autostainer (Roche). Slides were placed on the staining module for the depar-

affinization step, consisting of 3 cycles of 8 minutes at 69◦C (Discovery Wash, Ventana Roche), followed by epitope retrieval for 64 mi-

nutes at 95◦C or 98◦C (according to the panel protocol performed) in high pH buffer Cell Conditioning 1 (CC1, Ventana Roche) and

endogenous peroxidase quenching (Discovery Inhibitor, Ventana Roche). The automated immunofluorescence (IF) staining proced-

ure consists of multiple consecutive rounds (6 for a 7-plex) of staining. Each round includes non-specific sites blocking (Ventana,

Discovery Inhibitor and Discovery Goat Ig Block), incubation with unlabeled primary antibody, followed by incubation with horse-

radish peroxidase (HRP)-conjugated secondary antibodies (Discovery OmniMap anti-Rabbit (Rb) and anti-Mouse (Ms), Ventana),

and OpalTM (Akoya) reactive fluorophore (Opal 480, 520, 570, 620, 690, 780) detection that covalently labels the primary epitope.

Then an antibody (both primary and secondary) heat denaturation step was performed prior to the next round of antibody staining.

Finally, Spectral DAPI (Akoya) was used for nuclear staining. The complete list of the validated antibodies is reported in the key

resources table related to STAR Methods). mIF images were acquired on the Vectra® Polaris automated quantitative pathology im-

aging system (Akoya Biosciences). This multispectral imaging system uses the MOTiF technology, allowing the unmixing of spectrally

overlapping fluorophores and tissue autofluorescence of whole slide scans. For the optimal IF signal unmixing (individual spectral

peaks) and the subsequent multiplex analysis, a spectral library containing the individual emitting spectral peaks of all fluorophores

was created. For this, single antibody-coupled with fluorophore staining under the optimized conditions without DAPI, and a DAPI

single staining, were performed. In addition, auto-fluorescence controls were performed by staining tumor tissue slides omitting

both the fluorophore and DAPI.

mIF data analysis

Cell-densities and immune-classification algorithm

Using the Phenochart™ whole-slide viewer, regions of interest (ROIs, 931um x 698 um, range 5-110 ROIs per section) representative

of the entire FFPE tissue sample were acquired. InForm 2.5.1 (Akoya Biosciences) software was used for training and phenotyping

analysis. The images were first segmented into specific tissue categories of tumor, stroma and no tissue, based on pancytokeratin

(panCK+) and DAPI staining using the Inform Tissue Finder™ algorithm. Individual cells were then segmented using the counter-

stained-based adaptive cell segmentation algorithm. Quantification of the immune cells was then performed using the Inform active

learning phenotyping algorithm by assigning the different cell phenotypes across several images chosen for the project. IF-stained

cohorts were then batch processed and data were exported via an in-house developed R-script algorithm (Post-InForm) to retrieve

single-cell x,y coordinates and staining positivity. To calculate cell densities, we counted the number of a specific cell phenotype in
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both tumor and stromal compartment across the whole FFPE tissue section. Counts of each specific cell type (tissue-specific) were

then divided by the area of the tissue (mm2) to obtain a density (number of cells/mm2).

We then developed a two-step algorithm to define a CD8+ T cells-based immune classifier considering not the average cell density

across the whole tissue but the heterogeneous CD8+ T cells distribution within tumor/stroma compartments of each ROI. First, we

computed the fraction of inflamed subregions (ROIs with >21 CD8+cells/mm2) in tumor and named the sample purely inflamed if the

percentage of inflamed ROIs was >70% and as mixed inflamed when this percentage was between 50% and 70%. Second, in case

less than 50% of ROIs were inflamed in the tumor, we considered the sample as excluded if >10% of ROIs showed >21 CD8+ cells/

mm2 in the stroma and as desert if this percentage was <10%.

To adapt our code to the NHS I/II study cohort from which only tumor micro-arrays (TMAs, average size 0.6 mm in diameter) were

available, we first selected only the TMAs where CD8+ staining was present. We assigned to each TMA a unique identifier (ID) cor-

responding to the patient from whom the core was obtained. The distribution of cores per patient ID varies from 1 to 15 cores, with a

median of 6 cores per patient. For each core including CD8 marker, we then calculated the density of total CD8+ cells in both the

tumor and stromal compartments. To ensure consistency with the previous approach, only patients with a minimum of three different

TMAs including CD8 were considered, while samples with less than three cores were excluded from further analyses. Therefore, a

total of N=418 unique patients (and respective TMAs) were included in the immune classification prediction using a similar approach

to that applied in the previous cohorts (IMCOL, UPENN and HiTide-UPENN), treating each core as a separate ROI.

Neighborhood mutual cell interaction analysis

Starting from previous published works16,36 we computed a new ‘‘mutual interactions’’ methodology which takes into consideration

‘‘bi-directional’’ cells interaction from two different cell types. Normalization by the proportions of both cell types of interest on a sur-

face (i.e. tumor or stroma regions) was applied to avoid cell abundance bias. In our specific case, the total area, can be split into tu-

moral regions (defined by the presence of the panCK+ protein marker) and stromal regions (defined by the absence of panCK+) where

we can measure the neighboring of a point (i.e. cell) (defined as starting point) of type ‘‘A’’ (i.e. cell type A) of coordinates (xa, ya), with

type ‘‘B’’ points (i.e. cells from cell type B; defined as ending points) in the surrounding area within a predefined distance (i.e. 20um).

The distance between point ‘‘A’’ (i.e. cell type A) and a point ‘‘B’’ (i.e. cell type B), with coordinates (x, y), is then defined as the

Euclidean distance D:

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xa − xb)
2
− (ya − yb)

2

√

A point ‘‘A’’, and a point ‘‘B’’ are then considered neighbors, if the distance ‘‘D’’, between ‘‘A’’ and ‘‘B’’ is less than a given threshold

(ε). Such definition can be visualized as a circular surrounding of the point A with a radius equal to the threshold (ε, that is 20um in

our case).

Given two sets of points in a two-dimensional space we could implement a measure that estimate their vicinity. This measure is

called mutual interaction.44

Given the set of points (i.e. cells) A={A1, …., AN}, and the set of points (i.e. cells) B={B1, …, BK}, for each point of the set ‘‘A’’ we

measure if there is, at least, an element of the set ‘‘B’’ at a distance D< ε. For a given point, if the condition is true, such a point has at
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least one neighbor of type ‘‘B’’. We then sum all the points of the set A that have at least one neighbor of type ‘‘B’’. We repeat such

procedure, but now starting from the points of the set ‘‘B’’ looking for neighbors in the set ‘‘A’’.

The mutual interaction is them computed as:

(number of A with a neighbor B) + (number of B with a neighbor A) / (Number of A + Number of B).

Mathematical representation of mutual interaction in sets A and B

In our methodology, we introduced a mathematical expression to quantify the mutual interaction between sets A and B. This expres-

sion captures the condition that an element in one set has at least one neighbor in the other set. We denoted this condition using the

underscore symbol (_).

Let: N(A_B) be the number of elements in set A that have at least one neighbor in set B,

N(B_A) be the number of elements in set B that have at least one neighbor in set A,

N(A) be the total number of elements in set A,

N(B) be the total number of elements in set B.

The mutual interaction measure is expressed as:

M =
N(A B)+N(B A)

N(A)+N(B)

Tissue partitioning for mutual interaction computation

In the context of tissue partitioning, the mutual interaction value is computed separately for cells in the tumour and stroma regions.

This process involves considering points in the stroma (or tumour) from set "A" and computing the neighboring metric with all points in

set "B" (not restricted to stroma only). Similarly, the measure is repeated for points in the stroma (or tumor) from set "B," computing

the neighboring metric using all points in set "A." To ensure comparability, the computed values are normalized by the sum of points

in sets "A" and "B" in stroma (or tumor). This normalization accounts for the varying cell densities in different tissue compartments,

providing a more accurate assessment of mutual interactions. This approach allows for a nuanced understanding of cellular dy-

namics within specific tissue environments, considering the unique interactions occurring in both tumor and stroma regions.

Cellular triplets spatial interactions

Building upon the established function for pairwise interactions, our methodology extends seamlessly to analyze cellular triplets.

Consider three sets of points: "A," "B," and "C," each representing distinct cell types.

For triplets, the mutual interaction is computed as follows:

M =
N(A B C)+N(B A C)+N(C A B)

N(A)+N(B)+N(C)

Survival curves

Survival curves for overall survival (OS) in our clinical cohorts were constructed using the Kaplan–Meier estimator and statistical sig-

nificance was determined using the log-rank test. For the NHS I/II study cohort a multivariate Cox proportional hazards regression

model was used.

Targeted DNA analysis

UPENN and IMCOL primary-recurrent cohorts: DNA extraction and libraries preparation

Three sections of 8um-thick were freshly cut from each FFPE blocks. Tissues were deparaffinized with 500ul Deparaffinization so-

lution (Qiagen) and total DNA was extracted with QiAmp DNA FFPE tissue kit (Qiagen). Final DNA was eluted in 25ul of ATE buffer.

DNA concentration was measured with Qubit DNA fluorometer method (inVitrogen). A minimum of 80 ng of sample input (100ng

preferred) was used to construct the targeted libraries with Archer VariantPlex somatic protocol for Illumina, following manufacturer’s

instructions. Reagents were supplied by ArcherDX, including our custom panel of 49 gene-specific primers that target regions of in-

terest and Archer MBC adapters to tag each unique molecule with a barcode. Final libraries were quantified by Qubit DNA method

and quality was checked on Fragment Analyzer (HS-NGS fragment kit, Agilent).

Sequencing and analysis

Libraries were pooled at equimolar concentrations and loaded into the Miseq or Novaseq Illumina system for sequencing, following

ArcherDX recommendations. Fastq files generated were analyzed using Archer analysis software. The reads are aligned with BWA-

MEM and PCR duplicates are removed. Single nucleotide variants and indels are identified using HaplotypeCaller for both tumor and

three unmatched normal tissue samples. The mutations in tumor samples are cleaned by removing mutations that are also present in

normal samples. Total read depth and variant allele frequency filters are applied to remove potential artifacts. Ambiguous mutations

are cross checked using Archer mutation calling pipeline and only kept if they were reported in both pipelines. Mutations are
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annotated with ClinVar to determine pathogenic variants. For identifying DSB repair pathway mutations only the truncating muta-

tions, pathogenic mutations or damaging mutations according to both SIFT and PolyPhen are considered.

HiTide-UPENN primary cohort

Mutations in the TP53, BRCA1, BRCA2 and RAD51C genes and methylation of BRCA1 were identified as previously described81–83

through BROCA targeted panel.

Bulk RNA sequencing library preparation and processing

Total RNA was extracted from snap frozen tissues. Tumor tissues were disrupted on ice in RLT buffer supplemented with ∼40mM

dithiothreitol (DTT, Sigma Aldrich), using a pestle (70 mm, 1.5/2.0 mL, Schuett-Biotec). Lysates were further homogenized using a

syringe and needle. After centrifugation at full speed for 3 min in a benchtop centrifuge (Eppendorf) at 4◦C, supernatant was used

for RNA extraction according to manufacturer’s protocol, including on column DNase digestion, using the RNeasy Mini Kit (Qiagen).

RNA quality was assessed with a Fragment Analyzer (Agilent) and Nanodrop One spectrophotometer (Thermo Scientific). Quantifi-

cation was performed with the Qubit RNA broad-range (BR) assay kit (Invitrogen). RNA sequencing libraries were prepared using the

Illumina TruSeq Stranded RNA reagents according to the protocol supplied by the manufacturer and sequenced using HiSeq 4000/

Novaseq. Illumina paired-end sequencing reads were aligned to the human reference GRCh37/hg19 genome using STAR aligner

(version v2.7.3a; https://github.com/alexdobin/STAR) and the 2-pass method as briefly follows: the reads were aligned in a first round

using the –runMode alignReads parameter, then a sample-specific splice-junction index was created using the –runMode genome-

Generate parameter. Finally, the reads were aligned using this newly created index as a reference. To transform raw counts into TPM

values, raw counts were summarized at the gene level using htseq-count (version 0.9.1). Read counts where then normalized into

reads per million (TPM). The comprehensive gene annotation version 32 was downloaded from the GENCODE website (https://

www.gencodegenes.org/human/release_32lift37.html) and chromosome position, transcript structure and transcript and protein se-

quences were selected to annotate genes.

Gene expression analyses

Genes with zero expression and with low gene count variance were filtered out from the analysis and transcript per million, TPM,

values were used for the downstream analysis. Additionally, genes sharing the same enzymatic function were collapsed using the

geometric mean. Analysis was performed in R language for statistical computing. Gene set variation analysis enrichment scores

were calculated using GSVA R package and subsequently clustered using Euclidean distance and ward.D2 method in with the pheat-

map R package. The p-values in the boxplots were calculated using Wilcoxon test and were adjusted with the Bonferroni correction.

Gene signatures

The detailed description of the gene sets is provided in Table S2. More than half of the signatures were derived from the MSigDB

database Hallmark collection (full) and C2 collection (selected signatures). About 10% of the signatures were compiled from the

important signatures previously identified in our Lab (complete references are indicated in the table).

Mouse treatment

We injected 5 × 10̂6 ID8 derivative ovarian cancer cells expressing luciferase (ID8Luc) i.p. in C57BL/6NHsd female mice. To mimic

OC standard of care we treated mice with i.p. Carboplatin (20mg/kg) – Taxol (3mg/kg) once weekly for 6 weeks, reach tumor control

(luciferase signal, +/-SEM) and then wait for tumor recurrence. Mouse health and welfare were monitored regularly. For both control

groups and experiments evaluating survival post-therapy, we used body and health performance score sheets (taking into consid-

eration ascites accumulation) and mice were sacrificed once reaching the equivalent of humane endpoints. Anti-CSF1R (400ug/

mouse/injection bi-weekly), anti-IFNAR-1 (200ug/mouse/injection bi-weekly), anti-TREM2 (200ug/mouse/injection bi-weekly) and

anti-PDL1 (200ug/mouse/injection bi-weekly) were all administered i.p. and detailed duration of the experiment treatment is reported

in Figure 5 and respective figure legend. Celecoxib in granule (Sandoz, 200mg, from pharmacy) was weighed using a fine balance and

made up in a 60:40 ratio of DMSO (1 part, Sigma)/PEG 300(5 parts, Sigma):dH2O at a concentration of 3 mg/ml. 200 μl (30 mg/kg)

was given by oral gavage every 2 days. Olaparib (40ug/g mouse) was given by oral gavage every day for the duration of the

experiment.

Whole body Bioluminescence imaging

Tumor growth was monitored by Bioluminescent imaging (BLI). BLI was performed using the Xenogen IVIS® Lumina II imaging sys-

tem and the photons emitted by the Luciferase-expressing cells within the animal body were quantified using Living Image software.

Briefly, mice bearing ID8Luc cancer cells were injected i.p. with D-luciferin (150mg/kg stock, 100 μL of D-luciferin per 10 g of mouse

body weight) resuspended in PBS and imaged under isoflurane anesthesia after 10 min. A 49 pseudocolor image representing light

intensity (blue, least intense; red, most intense) was generated using Living Image. BLI findings were confirmed at necropsy.

Tumour processing and flow cytometry

At the time of sacrifice, i.p. tumors were dissected. Tumors were digested in 200 μg/ml Liberase TL and 5 units/ml DNase I in DMEM

for 30min at 37◦C, with rotation. For ex vivo staining, 1-2x106 cells were stained with Zombie UV Fixable Viability Kit (1:500, in PBS) for

15min on ice. Fc receptors were blocked for 10 min at 4◦C with 5 μg/ml Mouse BD FC Block. Cells were fluorescently labeled with
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antibodies, dilution 1:50, for 30 min at 4◦C with PBS and 2% FBS, washed, fixed in fixation buffer (2% formaldehyde in PBS) and

resuspended in PBS or intracellularly stained according to the manufacturer’s protocol (eBiosciences). For intracellular staining,

eBioscience Foxp3/Transcription Factor kit was used (Thermo Fisher Scientific). Cells were permeabilized and fixed 1 h in fix/

perm buffer (Thermo Fisher) and intracellular staining was performed for 45 min at room temperature in perm buffer. After staining,

cells were acquired on a five-laser Fortessa (BD Biosciences) with FACS DIVA software v.9.0 (BD Biosciences) and analyzed with

FlowJo (TreeStar).

Single-cell RNA sequencing

Cells were counted on the ADAM automated cell counter and viability was estimated with the AccuStain solution kit (NanoEntek).

Cells were surface-stained with CD45-BV785 + CD8-BU650 for 20min at 4◦C and resuspend in 1ml of PBS+0.04% BSA (Sigma-

Aldrich) after washing.

Cell multiplexing

After staining, samples were labeled and multiplexed by group, allowing to be pooled in a single GEM for encapsulation. Cell labeling

was performed according to the Cell multiplexing oligo labeling protocol from 10x Genomics (CG00391). 500’000 cells per sample (if

possible, otherwise minimum 200’000 cells) were labeled with a cell multiplexing oligo for 5min at room temperature. After two

washes with PBS+ 1% BSA, cells were resuspended in PBS + 0.04% BSA + 0.1% RNasin and multiplexed by equimolar pools.

Before sorting, 10min of viability staining with Reddot1 (Biotium) and 3min of DAPI staining were performed.

FACS sorting

50’000 total live cells were sorted for each pool on a MoFlo Astrios (Beckman Coulter) and collected in 0.2mL PCR tubes containing

10ul in PBS + 0.04% BSA + 0.1% RNasin. After sorting, cells were manually counted with hemacytometer, and viability was assessed

using Trypan blue exclusion.

Encapsulation and library construction

Single-cell RNA libraries were generated using the Chromium Next GEM Single Cell 3’ Library and Gel beads kit v3.1 according to the

manufacturer’s instructions. For each sample, 15’000 to 30’000 cells were loaded into the Chromium machine, encapsulated and

barcoded following the manual (CG000388), aiming a recovery of 10’000 to 20’000 cells according to manufacturer conditions. After

encapsulation and reverse transcription, 11 PCR cycles were used to amplify cDNA. All libraries construction steps were performed

according to the manufacturer’s protocol. For each sample, 3GEX library was generated. If sample was part of a pool, a Cell Multi-

plexing Library (CML) was also constructed. Complementary DNA and library quality were examined on a Fragment Analyzer (Agilent)

and quantification was performed with the Qubit HS dsDNA assay kit (InVitrogen).

Sequencing

Barcoded 3’GEX libraries and CML were pooled and sequenced on an on Illumina HiSeq 4000 or NovaSeq6000 system, following

10X Genomics recommendations. GEX libraries were sequenced to a median depth of 20,000 unique reads per cell and Cell Multi-

plexing Oligos (CMO) libraries were sequenced to a median depth of 5’000 unique reads per cell.

Alignment, annotation and downstream analysis

Alignment, barcode and UMI counting were performed using mm10-2020-A reference genome and cellranger-6.1.1 multi from 10x

Genomics. Multiple gene expression libraries were combined via cellranger aggr and filtered feature-barcode matrix containing gene

expression data was further analyzed with the Seurat R package. The total number of cells detected was 50949, with number of cells

successfully assigned to an individual mouse CMO library ranging between 15% and 85%. To rescue the cells that were not assigned

to any CMO library (i.e. to any individual sample), the alignment procedure from above was repeated in cellranger without providing

the CMO library information. Next, all the cells whose barcodes were not mapped to any of the CMO libraries, were pooled together

for each corresponding mouse group as a pseudo-mouse and added to the resulting matrix for downstream analysis. For annotation

purposes, several iterations were performed. In the first iteration, cells were clustered at a high resolution leading to a big number of

cell clusters with shared properties. The clusters were obtained using the standardized Seurat procedure: data counts were log

normalized using the NormalizeData function, then variable features were found using vst method and 600 fetures. Next, a linear

transformation using the ScaleData function was applied, and linear dimensional reductions were calculated using RunPCA (for

the principal component analysis) and RunTSNE (for the t-Distributed Stochastic Neighbor Embedding) functions with first ten prin-

cipal components used as input features and perplexity of 30. Finally, shared nearest neighbors, SNN, was calculated using Find-

Neighbors (with 10 PCs and k=30) followed by FindClusters functions (with resolution = 20). Based on the known exclusive markers,

the cells were automatically classified as immune (Cd3g, Cd3d, Cd3e, Cd2, Cd8a, Cd8b1, Foxp3, Il2ra, Trbc1, Cd19, Ms4a1, Cd79a,

Cd79b, Ncr1, Klrb1c, Klrd1, Klrk1, Aif1, Ms4a7, Cd14, Fcgr4, Itgam, Itgax, Mrc1, Cd163, Fcer1a, Clec10a, Mzb1, Derl3), non-immune

(Epcam, Msln, Egfr, Fap, Pdpn, Dcn, Thy1) or endothelial cells (Pecam1, Fas) if at least 80% of the cluster’s cells expressed the

markers. The cells within these 3 initial categories were further automatically classified as T cells (Cd3g, Cd3d, Cd3e, Cd2, Cd8a,

Cd8b1, Foxp3, Il2ra, Trbc1), B cells (Cd19, Ms4a1, Cd79a, Cd79b), NK cells (Ncr1, Klrb1c, Klrd1, Klrk1), Myeloid cells (Aif1,

Ms4a7, Cd14, Fcgr4, Itgam, Itgax, Mrc1, Cd163, Fcer1a, Clec10a, Mzb1, Derl3, Cd48), endothelial cells (Pecam1, Fas), malignant
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(Epcam, Msln, Egfr, Brca1, Brca2, Trp53), fibroblasts (Fap, Pdpn, Dcn, Thy1, Ankrd1, Mcam, Cd70, Pdgfra, Pdgfrb, Itga5, Mme) if at

least 50% of the cells expressed the markers. At the end of the initial classification, the expression of the above markers along with

the additional list of markers was visualized using the doHeatmap function in each of the assigned classes to verify the validity of

classifier. After the first iteration, a filtering step was applied individually on each of the identified lineage depending on the total dis-

tribution of that lineage population: number of genes from 250 to 3000-6000; number of reads 500 to 15000-40000; below 15% mito-

chondrial content and within 1-7.5 to 40% ribosomal content. This reduced the total number of cells by 15%. At the second iteration,

for the filtered cells from each individual library, variable genes from the log-normalized counts were found using vst method and then

the libraries were integrated using the anchoring technique described in ‘‘Stuart and Butler et al.’’.84 As during the first iteration, in-

tegrated data was scaled and then passed to PCA, t-SNE, and SNN analyses for identifying clusters (with resolution = 0.3). Next, gene

expression centroids (average gene expression profiles per cell type) method was applied using matrices from Zilionis et al.38 for

main and sub-populations to predict the cell type of each given cell. Following the centroids methods prediction, the cell annotation

was refined per each individual cluster using its initial assignment, its predicted state, and expression of a particular known markers

(like Cd8 for Cd8+ T cells and Foxp3 for Tregs). This refinement completed the second iteration of the cell annotations. At the last

iteration, based on the annotations obtained from second iteration, cells were divided and re-clustered in five main groups or line-

ages: T cells, B cells, Myeloid, Malignant and doublets. For each of the main lineages of cells, the CMO associated genes were filtered

out from the analysis and the normalization to clustering (resolution = 0.3) steps were performed as described above. Then, differ-

entially expressed genes (using the FindAllMarkers function) were identified for each cluster and signature scores were calculated for

each cell using the AUCell R package and ‘‘in-house’’ signatures defined in Table S2, Additionally, centroids method was applied to

predict the states from Barras et al.3 for each cell. Once all the above metrics were calculated, the cells per each cluster were manu-

ally refined considering all the newly obtained metrics and the initial annotation. When necessary, clusters were re-assigned to the

different main lineage to reflect the observed DE genes in these cluster and signatures expressed in corresponding cells. Also, due to

the gene expression dropout issue, for the cells that clearly expressed T cell markers, but were double negative for Cd8 and Cd4

expression, the assignment to Cd8 versus Cd4 group was based on predicted value from the centroid algorithm and based on

which group of cells they clustered with. In addition, when markers from multiple lineages were expressed on the same cells (e.g.

Cd8+Cd79a+ cells), these cells were categorized as doublets and omitted from the downstream analysis. Finally, the copy number

inference algorithm from infercnv R package was applied to all malignant cells to validate their malignant state. A total of 900 cells

(300 cells each) randomly selected from T, B and myeloid compartments were used as a normal reference to infer the copy number

changes of the tumor cells. The low number of the resulting inferred copy number variations in the normal cells and high number of

those in tumor cells validated the correctness of malignant cell assignment. To visualize the inferred CNV in cells per chromosomal

location, the Next-Generation Clustered Heat Map Viewer (NG-CHM, STAR Methods) was used. To assess the CNVs in the malignant

cells quantitatively, the segmentation of the inferred data was applied and then the number of breakpoints per chromosome was

calculated for each cell. To segment the data, the inferred values for genes in each chromosome were ordered based on their chro-

mosomal location and were assigned to the same segment if the difference between the two values did not exceed 0.1%. The

segmented representation of the CNVs was visualized using the Integrative Genomics Viewer (IGV, STAR Methods). The images

for all other downstream analyses were produced either by the built-in functions from Seurat package or by ggplot2 package.

Gene metaprogram analysis of malignant cells

Mouse single-cell RNA sequencing data were used to identify gene metaprograms in malignant cells. The malignant cells were iso-

lated and processed using the geneNMF R package (GeneNMF v0.6.0) on a Seurat object transformed with SCTransform. The non-

negative matrix factorization (NMF) was performed with ndim=6 on the SCT assay, following the guidelines of a previously described

approach (bioRxiv 2024, https://doi.org/10.1101/2024.05.31.596823). To identify optimal metaprograms, the multiNMF function was

executed with a range of factors (k) from 4 to 10. Subsequently, the getMetaPrograms function was applied with nprograms=10 and

min.confidence=0.3 which resulted in the identification of 9 robust metaprograms (MPs). These MPs were visualized using the plot-

MetaPrograms function. Gene set enrichment analysis (GSEA) was performed on the metaprograms using the runGSEA function,

incorporating Reactome and Hallmark pathway collections. The five most significantly enriched pathways per metaprogram were

selected and visualized using the pheatmap R package. Metaprogram scores were then calculated for individual cells using the Add-

ModuleScore_UCell function from the UCell R package. To examine enrichment patterns, the average metaprogram scores were

computed for each malignant cell subset and visualized using the pheatmap R package.

MultiNicheNet analysis

MultiNicheNet (MNN) (version 1.0.3) was utilized to explore the differences in ligand-receptor interactions. Throughout our analysis,

we used the default parameters to look at the top 250 targets with minimum log-fold change of 0.5 and a fraction cut-off of 0.05. For

the ligand-receptor analysis in the mouse dataset, we initially encompassed the major cell types involved (Table S4): B cells, CD8 and

CD4 T cells, DC cells, macrophages, malignant cells and stromal cells from N=12 recurrent samples (6 Brca1mut and 6 Brca1wt) for a

total of 23’449 cells (12’595 in the Brca1mut and 10’854 in the Brca1wt). Subsequently, we conducted a more focused investigation on

the above samples targeting the most promising interactions from malignant cells, macrophages, and DCs cells, considering finer

annotation (N=11’978 total cells, 5’379 in the Brca1mut and 6’599 in the Brca1wt respectively). Due to a higher abundance of samples

per category, we maintained recommended parameters such as "adjusted p.value = TRUE" "empirical_pval = FALSE". We used the

get_top_n_lr_pairs function to generate two key outputs: the top 50 scaled products of ligand and receptor expression within each
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experimental group, enabling us to estimate their ligand activity and a regulatory network highlighting the top 150 ligand-target gene

interactions. For visualization, we specifically selected the 50 best-predicted interactions (Figure 5H).

Multiplex chromogenic immunohistochemistry

The triple chromogenic immunohistochemistry assay was performed using the Ventana Discovery ULTRA automate (Roche Diag-

nostics, Rotkreuz, Switzerland). All steps were performed automatically with Ventana solutions except if specified otherwise. Dew-

axed and rehydrated paraffin sections were pretreated with heat using the CC1 solution for 40 minutes at 95◦C. Primary antibodies

were applied and revealed sequentially either with a rat Immpress HRP (Ready to use, Vector laboratories Laboratories) or a rabbit

UltraMap HRP followed by incubation with a chromogen (ChromoMap DAB, Discovery purple and Discovery Teal). A heat denatur-

ation step was performed after every revelation. The primary antibodies sequence was: rat anti-CD11c, rat anti-CD8 and rabbit anti-

PanCytokeratin. Sections were counterstained with Harris hematoxyline (J.T. Baker) and permanently mounted with Pertex (Sakura).

For immunohistochemical quantification of CD8+ cells and CD11c+ cells, 10 × 10 tiled bright-field pictures of FFPE sections were

taken at 100μm magnification to cover almost whole slide surface. Cell counts were obtained using ImageJ software.

ELISA

PGE2 level in supernatant from ID8 Trp53-/-Brca1wt and Trp53-/-Brca1mut mouse OC cell lines was determined using PGE2 ELISA Kit

(Cayman chemical, 514010) according to the manufacturer’s instructions. PGE2 levels were measured by ELISA at 24, 48 and 72

hours. PGE2 concentrations were normalized to total number of live cells at each time point.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were performed using R (version 3.3.0) and GraphPad Prism softwares. All statistical details of experiments can be

found in the figure legends, figures and results, including the statistical tests used, exact value of n, what n represents (e.g., number of

technical and biological replicates, number of animals, etc.), definition of mean or median, and dispersion and precision measures

(SD, SEM, confidence intervals).
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