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Drug discovery starts with the identification of a “hit” compound that, following a long and expensive
optimization process, evolves into a drug candidate. Bigger screening collections increase the odds of
findingmore and better hits. For this reason, large pharmaceutical companies have invested heavily in
high-throughput screening (HTS) collections that can contain several million compounds. However,
this figure pales in comparison with the emergent on-demand chemical collections, which have
recently reached the trillion scale. These chemical collections are potentially transformative for drug
discovery, as they could deliver many diverse and high-quality hits, even reaching lead-like starting
points. But first, it will be necessary to develop computational tools capable of efficiently navigating
suchmassive virtual collections. To address this challenge, we have conceived an innovative strategy
that explores the chemical universe from the bottom up, performing a systematic search on the
fragment space (exploration phase), to thenmine themost promising areas of on-demand collections
(exploitation phase). Using a hierarchy of increasingly sophisticated computational methods to
remove false positives, we maximize the success probability and minimize the overall computational
cost. A basic implementation of the concept has enabled us to validate the strategy prospectively,
allowing the identification of new BRD4 (BD1) binders with potencies comparable to stablished drug
candidates.

Ultra-large compound combinatorial spaces are becoming an essential
component of the drug-discovery pipeline. While up to the mid-2010s the
average size of chemical libraries typically used in drug-discovery efforts
oscillated between105 and 106 compounds, the development of billion-sized
on-demand compound collections has significantly expanded the chemical
matter available for drug-discovery efforts. As long as they maintain a

healthy chemical diversity1, these ultra-large collections can increase the
probability of identifying drug-like high-affinity ligands. However, the
computational effort of enumerating, preparing, navigating, and evaluating
these expansive chemical spaces quickly becomes prohibitive. Within the
last decade, there have beenmajor advances in the scale and success of high-
throughput virtual screening (VS) campaigns2–5, but brute-forcing the
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docking calculations of the whole, enumerated, ultra-large collections is not
scalable nor sustainable with their current growth rate6. Therefore, it is
imperative to develop new approaches that enable the efficient exploration
of chemical space, whose cost does not escalate with the predicted growth of
commercial on-demand chemical spaces.

Recent developments in hardware and machine learning (ML) algo-
rithms have enabled the application of active learning (AL) based approa-
ches to speed up VS campaigns using ultra-large compound collections.
Most of the reported approaches use ML-accelerated docking7–10 that has
proven useful to identify hit compounds, but it remains heavily reliant on
the accuracy of the underlying docking scoring function and requires the
enumeration of large regions of the chemical space into slices of size akin to
the traditional VS screening libraries. A potential alternative is offered by
generative models11,12, but nowadays these models still frequently propose
small molecule compounds that are not synthetically feasible, with unreli-
able binding poses with incorrect topologies (e.g., wrong bond lengths and
angles, torsional strains)13, nor improve the overall accuracy of docking
methods14.

An appealing alternative to the exhaustive screening of ultra-large
chemical collections would be to focus the efforts in exploring and evalu-
ating only the regions of the chemical space more likely to contain com-
pounds able to bind to a given protein of interest15. Synthons-based
approaches16–20 exploit the ultra-large combinatorial collections’ archi-
tecture to limit the compound’s enumeration by independently docking
synthetic building blocks (or synthons) and subsequently growing them in a
synthon-stepmanner, which is constrained by the reaction pool encoded in
the collection. In this work we combine the strengths of exhaustive
exploration and synthon-based strategies, leveraging natural properties of
chemical space (exponential growth with number of atoms and recursive
use of the same components) to propose a bottom-up approach that can be
applied to any chemical collection regardless of their composition (Fig. 1).
The exploration phase of the approach focuses on the “bottom” of the
chemical space: fragment-sized compounds suitable for medicinal chem-
istry (ca. 109 compounds containing up to 14 heavy atoms)21. This region
constitutes a complete but relatively small fraction of the overall chemical
space and, therefore, we can exhaustively explore it with the current tech-
nological capabilities and identify low molecular-weight compounds with
high ligand efficiencies22. The fragment hits are then analyzed to define the
essential core for target binding (specific scaffolds or more abstract sub-
structures), which we can use to query chemical spaces, enumerating
comprehensive focused libraries at “upper” layers of the chemical space that
are systematically explored to define a short list of candidates (exploitation
phase). Importantly, we analyze the compounds through a hierarchy of
increasingly sophisticated computationalmethods, frommolecular docking
tomolecular dynamics (MD) basedmethods. By trading speed for accuracy
at each step,we can apply incrementallymore accuratemethods to a smaller
number of compounds. We demonstrate that this innovative approach,
which canbe fully automatized, vastly reduces the fractionof chemical space
to be evaluated while delivering a very high hit rate.

To provide proof-of-concept, we have applied this bottom-up
approach to identify compounds targeting the first repeat of the Bromo-
domain and Extra-Terminal domain 4, BRD4 (BD1), whose role in cell
proliferation, apoptosis, and transcription has made it a very appealing
target23. Additionally, the wealth of information available for BRD4 (BD1)
allowed us to demonstrate the applicability and potential of our approach in
different situations that are common starting points in new drug discovery
programs. The first validation scenario corresponds to a direct lead dis-
covery process in which there would not be prior information about che-
mical matter binding to our target of interest. Thus, we would need to apply
the complete protocol, from a druggability assessment of the binding site, to
prioritizing scaffold hits from an exhaustive fragment screening, and then
the expansion of the chosen scaffolds using the ultra-large chemical spaces.
The second scenario recreates a situation where the binding mode of frag-
ments or drug-like compounds to the target of interest is known, butwe seek
increased potency or chemical novelty to advance to the lead stage. This

would only require the scaffold expansion section of the bottom-up
approach. We have evaluated this second scenario using (a) starting points
from crystallized fragments available in the Protein Data Bank (PDBids:
4LZS, 6ZED, 6ZF9), where the optimization vectors are unknown, and (b)
from chemical scaffolds extracted from advanced drugs ((+)−JQ124, IBET-
15125 and ABB-V07526), to validate the approach obtaining a diverse set of
me-too or me-better compounds, simulating also a common hit-to-lead
situation.

We demonstrate the power of this computational approach by iden-
tifying and experimentally validating hits in the different scenarios, with a
success rate close to 20% in each case, achieving great diversity in the
chemical space identified.

Results
A hierarchal computational approach to explore vast
chemical spaces
Our bottom-up approach for the exploration of ultra-large chemical spaces
is basically divided in two stages (Fig. 2a): (i) an exhaustive explorationof the
low molecular weight chemical space to identify fragment-sized com-
pounds, (ii) the growth of those fragment-sized compounds into drug-sized
compounds with higher affinity and drug-like properties. For these stages,
different computationalmethods are applied following a hierarchy basedon
the tradeoff between accuracy and throughput, only progressing the
highest-scored compounds by each method to the next layer. By following
this hierarchical approach, we reduce the number of candidatemolecules to
be considered, and thus the overall resources allocated to sampling less-
promising areas of the chemical space, which allows us to use computa-
tionallymoredemandingmethodswithout significantly affecting the overall
throughput. Specifically, the approach relies on docking to obtain a pre-
diction of the bindingmode for each compound, followed by clustering and
a diversity analysis of the top-ranked compounds. Subsequently, the
Molecular Mechanics—Generalized Born Surface Area method (MM/
GBSA)27 is used to rank the molecules by solvation energy, and the 1000
molecules with the lower predicted desolvation penalty are further assessed
by dynamic undocking (DUck)28. A consensus of theMM/GBSAandDUck
results is then used to prioritize the compounds to be biophysically vali-
dated. The experimental validation for the approach was pursued ortho-
gonally in a three-step manner: first, the compounds were assessed with a
double single-dose screening by Differential Scanning Fluorimetry (DSF)
and Surface Plasmon Resonance (SPR). Second, we also sought to screen
and experimentally confirm the predicted binding mode of the selected
ligands by X-ray crystallography. Lastly, quantitative binding affinities are
obtained by dose-response testing in a competitive Time-Resolved Förster
Energy Transfer (TR-FRET) based assay.

Discovery of novel BRD4 (BD1) compounds
The implementation of the approach in the aforementioned stagesmakes it
highly versatile, as it can be initiated at any point of the workflow, either
fromthebottom,with an exhaustive virtual fragment screening as in thefirst
scenario, or directly in the scaffold growing step, like in the second scenario.
The first scenario (hereafter denoted as the virtual fragment hits), which
recreates a scenario where there would not be prior knowledge of com-
pounds interacting with our target, requires identifying the interaction
hotspots in the binding site usingMDMix29 (Fig. S1).MDMix simulationsof
BRD4 (BD1) resulted in the identification of a polar interaction with theNδ
atom of Asn140 and a hydrophobic hotspot in the vicinity of a cluster of
water molecules at the bottom of the BRD4 (BD1) binding site. We used
these hotspots as pharmacophoric restraints while docking the fragment
collection (ca. 4M unique fragments obtained from Enamine REAL30

database and ZINC2031). This resulted in 3.5 108 conformers that complied
with both pharmacophoric restraints and obtained favorable docking
scores. These fragments were then grouped using the Chemical Checker
signaturizers (CCS)32 into 2000 clusters, andweusedMM/GBSA tofilter out
those clusters whose representative compound was estimated to bind with
ΔGbind >−30.0 kcal/mol. This procedure yielded homogenous clusters, and
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an analysis of their representative compounds revealed that it also max-
imized the recovered chemical diversity of the fragment library
(Fig. S8.b–d). We used DUck to screen the remaining 973 fragments. This
MD-based methodmeasures the work needed to reach a quasi-bound state
(WQB) where a key protein-ligand interaction (in this case the hydrogen
bond with Asn140) is broken. Setting a WQB threshold of 7.0 kcal/mol, we
obtained five fragments 7, 8, 9, 10, and 11 (virtual fragment hits, Fig. 2b)
containing unique scaffolds. We used these five fragments as the starting
point for the scaffold growing stageof thepipeline,whereweaimedtoobtain
potent drug-sized compounds. To this end, we used SpaceMACS33 to search
for drug-sized compounds containing the corresponding scaffolds in the
REAL Space ultra-large database. We set a maximum of 20 million com-
pounds per scaffold, which was deemed a reasonable balance between
exploration, exploitation, throughput, and hardware requirements. These
scaffold-focused libraries were then filtered, excluding non-drug-like
molecules (solubility, rotatable bonds and Ro5 considered), and prepared
according toVS standardprocedures, generating the appropriate tautomers,
protomers and alternate ring conformations, which yielded libraries con-
taining 16M, 27M, 16M, 300.000 and 2.8M compounds per scaffold
respectively (See Methods Section and Table S2 for details). Subsequently,
we docked the compounds, restraining the position of atoms belonging to
the scaffolds (thus preserving their position from theparent fragment) using
the tethereddocking implementation in rDock34.The tethereddocking stage
filtered between 81% and 99% of the compounds of each library, leaving
2.7M, 3.8M, 220.000, 2.400, and 530.000 compounds derived from the five
scaffolds, respectively. We grouped the docked compounds using the CCS
into 1000 clusters per scaffold, eachcontainingbetween1 and600molecules
(with amedian cluster size of 250molecules, Fig. S8.a).WeusedMM/GBSA
andDUck to obtain afinal ranking of the cluster representative compounds,
excluding the compounds with predicted desolvation penalties higher than
20 kcal/mol and all the compounds that obtained a WQB lower than their
parent fragment. The threshold values applied at each filtering stage were
selected based on the throughput available for the following step, and are
susceptible to be changed depending on the available

computational resources. The top ten compounds from each scaffold,
ranked according to a consensus score from the MM/GBSA’s ΔGbind and
DUck’s WQB, were ordered to be synthesized by Enamine and were vali-
dated biophysically.

In the second scenario, we leveraged a handful of crystallographic
structures to directly start the scaffold growing stage from an already cor-
roborated bindingpose.Dependingon the discovery stage of the crystallized
compounds we classified (i) the fragment-sized molecules that had not
undergone further fragment growing strategy as the crystallized fragment
hits case, (ii) and the optimized BRD4 (BD1) compounds as theBRD4drugs
case. We selected the crystallized fragments in the 4LZS (Kd = 6.8 µM)35,
6ZED (IC50 = 72 µM)36 and 6ZF9 (IC50 = 26 µM)36 PDB entries for the first
case, and the advanced BRD4 (BD1) drugs ABBV-075 (Ki = 11 nM)26,
IBET-151 (IC50 = 0.79 µM)25 and (+)−JQ1 (IC50 = 77 nM)24 for the second
case. The first step was to derive the essential scaffolds of the crystallized
fragment and drugs, maintaining their core pharmacophoric features. To
grow these starting points into drug-like compounds from the ultra-large
collections, we applied the sameworkflow as in the previous scenario. In the
BRD4 drugs case, we employed a more permissive SMARTS37 encoding of
the scaffolds in order to recover substructurematches for themore complex
compounds (Table S1). The resulting scaffold-focused libraries were then
filteredby drug-likeness, obtaining between 10Mand16Mcompounds per
scaffold (Table S2), which approximately doubled in size after considering
different ring conformations, protonation, and tautomerization states. After
the tethered docking process, we obtained binding poses for 5% to 20% of
the compounds, depending on the scaffolds, due to the reduced number of
rotational and translational degrees of freedom imposed by the tethered
docking approach, which led to many compounds predicted to produce
steric clashes with the protein. Furthermore, based on the score value of the
parent compounds (SCORE.INTER ca. -10), we filtered out those com-
pounds that did not improve that threshold. Then, after clustering these
libraries usingCCS,we usedMM/GBSA andDUck to obtain a final ranking
of the compounds, excluding those with high desolvation penalties and a
low WQB as done for the first scenario (Table S2). Using the consensus
scoring, the top ten ranked compounds for each scaffold-focused library
were ordered to be synthesized by Enamine and validated experimentally as
in the first scenario. The outcome of applying our bottom-up approach to
these two hypothetical scenarios is summarized in Table 1.

Biophysical validation of theBRD4 (BD1) compounds discovered
To experimentally validate the developed bottom-up approach, we char-
acterized the binding of the identified compounds using biophysical assays.
In total, we selected 102 compounds to be synthesized, of which 85 (83%)
were successfully synthesized and delivered by Enamine (Fig. S9). First, we
conducted a double orthogonal single-dose screening at 10 µM by DSF and
SPR, using (+)-JQ1 as positive control (Fig. 3). On the one hand, in theDSF
screening, we determined the melting temperature of the apo BRD4 (BD1)
to be 46,36 ± 0,26 °C (n = 3), and hence established a deviation in the
melting temperature of 0.53 °C (twice the standard deviation) as a threshold
to consider a compound as a positive binder in the screening. We screened
all the synthesized compounds at 10 µM concentration by triplicate (n = 3).
Using this criterion, a total of 52 compoundswere considered asDSFhits, 14
compounds obtained from the virtual fragment scaffolds (44% hit rate), 17
compounds from the experimental fragment scaffolds (71% hit rate), and 21
from the BRD4 drug scaffolds (72% hit rate) (Fig. 3a, and Supplementary
Data 1). In parallel, compoundswere considered as SPR hits alsowhen their
average signal was further than two standard deviations apart from the
average signal of theblank samples (1%DMSO).Doing this,we ensured that
the signal in the SPRwas exclusively due to the compound binding and not
due to the DMSO used to solubilize the compounds, as it has been reported
to bindBETdomains38.We screenedby SPR all the compounds synthesized
at 10 µM by duplicate (n = 2). Using this requirement, we respectively
considered 20 (63%), 10 (42%), and 9 (31%) compounds as SPR hits from
each validation case, respectively, (Fig. 3b and Supplementary Data 1).
Combining data from both single-dose screenings (Fig. 3c), 25 compounds
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Fig. 1 | Schematic representation of a bottom-up approach for the exploration of
vast chemical spaces. The low molecular weight space (bottom) has fewer possible
molecules and can be explored systematically. Promising hits in this space signal
privileged areas of chemical space that are exploited by enumerating scaffold-
focused libraries (colored lines) from vast on-demand collections. Virtual screening
of these focused collections leads to the identification of potent drug-like
compounds.
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resulted positive in both DSF and SPR techniques and were selected for
further experimental validation.

To further quantitatively characterize the DSF/SPR hits compounds
obtained in the single-dose screenings, we selected HTRF TR-FRET. Spe-
cifically, we employed a competitive HTRF TR-FRET experiment to mea-
sure the compound’s capacity to displace an acetylated peptide from the
binding site of BRD4 (BD1). For each molecule, a 16-point concentration
curve was titrated against the peptide-BRD (BD1) complex and incubated
for 1.5 h. A compound was considered a positive binder if we could fit its
titration curve to a sigmoidal curve to determine its IC50. We determined
IC50 values (Fig. 4a) ranging from low nM (compounds 67, 87, and 94) to

one- or two-digit μM (compounds 24, 43, 92). In the end, 19 BRD4 (BD1)
binders (Supplementary Data 1) from the 25 DSF/SPR hits showed a dose-
response behavior in the TR-FRET experiments. Of the 19 validated bin-
ders, 7 were identified from the virtual fragment hits, 6 were derived from
BRD4 drugs, and 6 were derived from the crystallized fragments case. To
obtain additional validation of our bottom-up approach, we also screened
the 85 compounds purchased via X-ray crystallography. These could pro-
vide additional positive compounds and an additional layer of validation of
the binding modes proposed at the docking stage. We were able to obtain
compounds 50, 92, and 94 bound to of BRD4 (BD1) (Fig. 4c). None of these
compounds were considered DSF/SPR positive hits. Nonetheless, the
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Fig. 2 | Schematic representation of theworkflowpresented for the exploration of
the ultra-large compound collections. Given a no-previous knowledge scenario
(Scenario 1; blue), virtual fragment hits are identified using a fragment-based virtual
screening approach driven byMDMix-found pharmacophores. If initial binders are
known (Scenario 2; green and red), the main core scaffolds are derived. The initial

fragments and scaffolds are highlighted for each scenario (left). Selected scaffolds are
grown by creating scaffold-focused libraries, which, after prepared and docked, are
clustered to be evaluated using a combination of DUck and MM/GBSA. Selected
compounds are then synthesized and tested experimentally. The values correspond
to the number of molecules evaluated at each stage, per scenario.

Table 1 | Summary of the resulting molecules at each step of the computational pipeline

Scenario 1 Scenario 2

Scaffold source Virtual fragment hits Crystallized fragment hits BRD4 drugs

Number of cpds. resulting from substructure search 6.84 × 107 4.10 × 107 4.10 × 107

Number of drug-like 3D conformers 6.36 × 107 108 8.3 × 107

Successfully docked structures 7.25 × 106 2.58 × 106 4.9 × 106

Number of clusters (1000 clusters per scaffold) 5000 3000 3000

Cpds. fulfilling MM/GBSA and DUck consensus threshold(1 compound evaluated per cluster) 93 98 52

Synthesized cpds. (from the top 10 scored) 32 (out of 42) 24 (out of 30) 29 (out of 30)
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corresponding IC50 values were obtained by TR-FRET (Fig. 4b). X-ray
diffraction pattern analysis revealed that compounds 92 (IC50 = 621.8 nM)
and 94 (IC50 = 27.9 nM) bound with the expected binding mode based on
the docking calculations. Compound 50, which is a weak binder
(IC50 = 1129 nM) derived from drug 1 (ABBV-075) with known binding
mode, surprisingly showed engagementwithBRD4 in anupside-downpose
with respect to the parent compound but retained the pharmacophoric
features observed for the remaining compounds.

The bottom-up approach developed provides chemical diversity
At this point, we wanted to assess whether the bottom-up approach was
simply identifying closely related derivatives of compounds known to bind
to BRD4 (BD1) or if, as we aimed, it could be a useful tool to explore new
regions of the chemical space. To this end, we compared the chemical
diversity of the 19 validated binders with that of a random sample of the
Chemical Checkers universe32 and all the BRD4 (BD1) binders described in
ChEMBL39 (Fig. 5). The 19 binders were sparsely distributed among the
chemical diversity represented in theChemicalCheckers anddid not cluster
near the known BRD4 (BD1) binders. Furthermore, the distribution of
cosine distances between pairs of compounds resembled more the one
calculated for the randomly selected compounds than that of known BRD4
(BD1) binders, which indicates that the identified compounds are chemi-
cally diverse and occupy distinct regions of chemical space.

In summary, we demonstrated that our bottom-up approach was
able to identify novel compounds in two common use cases in the
pharmaceutical industry, identifying and validating by biophysical assays
19 novel lead-potency compounds binding to BRD4 (BD1). These com-
pounds are potent (IC50s up to the lownMrange byHTRFTR-FRET) and
chemically diverse, representing good starting points for lead optimiza-
tion campaigns.

Discussion
Ultra-large on-demand combinatorial chemical spaces have become
extremely popular and have the potential to substantially impact the field of
drug discovery, providing more and better compounds to start lead opti-
mization campaigns. However, their transformative potential relies on our
ability to develop effective and efficient new ways to explore the chemical
space. In this work, we have developed a computational approach based on:
(a) exhaustive exploration of the low molecular-weight chemical space and
subsequent generation of scaffold-focused libraries, and (b) the application
of a hierarchy of computational methods to maximize the quality of the
predictions. This approach shares similarities with the synthon-based
strategies16–18, which exploit the graph architecture of the ultra-large che-
mical spaces to confine the enumeration around certain structural regions,
greatly reducing the computational cost.However, byusingSMARTS-based
substructural queries, we avoid constraining the search to specific building
blocks, therefore sidestepping the main limitation of synthon-based
approaches. The encoding of substructures in SMARTS and the sub-
sequent search with SpaceMACS allows us to control the scaffolds’ growth
vectors, tailoring the outputs to the topological features of our protein of
interest. Moreover, the substructures encoded in this manner can cover
multiple building blocks, in contrast with the synthon definition, and thus
enable a more efficient exploration of the chemical space neighboring each
scaffold.These searches canbe applied to all existingon-demandcollections,
regardless of their synthon composition or substructure complexity, which
is crucial to explore those chemical spaces with an undisclosed synthon
composition, whose providers consider it part of their intellectual property.

The proposed bottom-up approach relies on the identification of a
minimal molecular core capable of binding to the target of interest in a
defined bindingmode. As we have demonstrated, this core can have several
origins (in silico fragments hits discovered in this work, crystallized

Fig. 3 | Results of the initial screening byDSF and SPR. a Results of the single dose
screening at 10 µM by DSF showing the number of compounds grouped by the
degrees of thermal shift of BRD4 (BD1). b Results of the single dose screening at

10 µM by SPR showing the number of compounds grouped by the significance
obtained compared to the average of the blanks. c Venn diagrams combining the
results obtained by DSF and SPR grouped by the different initial scenarios.
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fragments, or known drug-like ligands), but knowledge of its bindingmode
is essential, as it will be preserved throughout the process. The working
hypothesis of a stable binding mode is commonly used in the evaluation of
congeneric compound series40–42. In addition, the resolved crystal structures
of described fragments and compounds bound to BRD4 (BD1) confirmed
this hypothesis (Fig. 4c) and validated the tethered approach employed.
Tethering the binding mode during docking reduces the conformational
space, enabling further computational speedup. In that regard, we empha-
size the importance of using a battery ofmethods of increased accuracy and
precision to overcome the limitations of docking calculations. Here we used
MM/GBSA andDUck as they have shown good results complementing the
rDock scoring function36, but due to the modularity of the approach, it can
be easily extended to include other filtering methodologies. As an example,
alchemical free energy transformations couldbe added to thepipeline, either
as Free-Energy Perturbation (FEP) networks for the evaluation of the
scaffold-focused libraries or Absolute Binding Free-Energy (ABFE) for the
binding of the initial fragments.

In stark contrast to exhaustive exploration, a bottom-up approach is
posed to be highly sustainable in time. Specifically, all the work described in
this manuscript entailed the VS of a total of ca. 155M compounds, which
represented a mere 0.7% of Enamine REAL collection at the time. This
exercise had a computational cost of ~3 × 104 CPU hours, using HPC
facilities. By comparison, using an average of 10 s per molecule in docking,
evaluating an equivalent number of compounds through brute-force
dockingwould take the order of 3 × 108CPUhours, without considering the
time required for library enumeration. As such, by constraining the space to
evaluate promising scaffolds, we have achieved a theoretical ten-thousand-
fold reduction in the computational cost, even when evaluating the ligands
through more sophisticated techniques than docking.

We prospectively validated the pipeline with the identification of novel
BRD4 (BD1) binders fromEnamineREAL Space (ca. 20 billion compounds
at the time of this work). To fully assess the potential of the strategy, we
explored two common scenarios when seeking new binders for any protein
of interest, obtaining a combined total of 19 validated binders (22%hit rate),

a

b

c

Cpd 92 inhibition Cpd 94 inhibition Cpd 50 inhibition
Cpd 3
Cpd 92

Cpd 3
Cpd 94

Cpd 3
Cpd 50

Fig. 4 | Results of HTRF TR-FRET and X-ray experiments. a Summary of the IC50

values obtained by HTRF TR-FRET for the DSF/SPR hits and X-ray screening hits.
Error bars correspond to the 95% confidence interval (n = 2) bExamples of the dose-
response curves assessed by HTRF TR-FRET, comparing the (+)−JQ1 control
(compound 3, black) and three example compounds (blue and orange). Each dot

represents the average of two independent replicas, and the error bars correspond to
their standard deviation. c X-ray structures of compounds 92 (Supplementary
Data 2; PDB 9HT2), 94(Supplementary Data 3; PDB 9HT1), 50 (Supplementary
Data 4; PDB 9HT0), bound to BRD4 (BD1). In the picture are illustrated the pre-
dicted binding pose (pink) and the resolved crystallographic structure (green).

https://doi.org/10.1038/s42004-025-01610-2 Article

Communications Chemistry |           (2025) 8:225 6

www.nature.com/commschem


with potencies in the low micromolar to nanomolar range, comparable to
fully developed BRD4 (BD1) drug candidates. The obtained hit rate and the
potency of the identified hits showeda similar performance to other existing
methods to explore ultra-large chemical spaces43. Interestingly, we obtained
higher success rates from the simpler starting points: the in silico and
crystallized fragment hits. We hypothesize that the complexity of the scaf-
folds found in optimized drugs (e.g., benzodiazepine scaffold of (+)−JQ1),
which are little exampled in on-demand chemical collections, could account
for the lower number of leads recovered for these scaffolds.

Moreover, all the validated binders showed a great chemical diversity
and novelty compared to previously reported BRD4 binders, which have
been thoroughly studied and targeted. Indeed, those identified hits which
appear closer to the already known BRD4 binders (51, 71, 73) don’t
necessarily come from the second scenario. This highlights the potential of
exploiting these on-demand collections to open new intellectual property
venues even in highly exploited targets, or to accessmore favorable scaffolds
for lead optimization phases.

Whilemassive collections are set to rapidly increase their size, based on
the little overlap between vendors, future growth will mostly stem from an
expansion of the covered chemical space rather than increasing the density
of currently explored regions, whichwill make large increases in chemotype

depthhighly unlikely6. It is predicted that the depth around chemotypeswill
increase by 2-fold or 3-fold for every 10-fold increase in overall collection
size.At that rate, approachesbasedon the identificationof privileged regions
of the chemical space and exhaustive exploration of scaffold-focused
libraries, like the one presented here, will remain effective in the years
to come.

Materials and methods
Receptor and compound library preparation
The PDB structure of BRD4 (BD1) in complex with 3-methyl-4phenyl-1,2-
ozazol-5-amine (PDB code 4LR6) was prepared with the Molecular
Operating Environment v2020-244 using standard amino acid residues
protonation states at pH 7.0. The co-crystallized small molecule was
removed, and seven structural water molecules in the binding site were
retained for the docking stage and subsequent calculations.

The low-molecular-weight library was built using two different com-
pound collections, Enamine REAL database and ZINC20 (up to 350MW).
Both collections were filtered using RDKit45, selecting compounds with 14
or fewer heavy atoms and compounds containing at least one ring. After
removing duplicates between both databases, the low-weight chemical
collection contained ca. 4 million unique SMILES. Subsequently, protona-
tion and tautomerization states were generated using Jchem v.20.21.0
(ChemAxon46) and Corina (v. 4.4.0)47 was used to generate up to four
stereoisomers and up to five ring conformations, adding the required
missing H atoms in the process. The final low-weight library contained ca.
12 million molecular structures to be docked.

To generate the scaffold-focused libraries, an early developmental
version of SpaceMACS (v0.9.5)33 was used to perform a substructure search
on the Enamine REAL Space (v04-2021). SMART patterns were generated
for each scaffold identified during the exploration of the low-weight col-
lection (Table S1). SpaceMACS queries generated up to 20 million com-
pounds with the desired substructure and with 25 to 35 heavy atoms. The
top 10 million drug-like molecules were then selected, following Lipinski
rules and having <8 rotatable bonds, to generate the scaffold-focused
libraries. Possible PAINS compounds were also discarded using the
appropriatefilters inMOEv2020.09, and after the generationofprotonation
and tautomerization states (Jchem v.20.21.0) and the appropriate stereo-
isomers and ring conformations, the combined number of molecular
structures for the initial docking stage was ca. 35 million.

Identification of the BRD4 (BD1) interaction hotspots by MDMix
The prepared BRD4 (BD1) receptor structure was employed for the mixed
organic/aqueous solvent molecular dynamics simulations (MDMix). The
protein was solvated with ethanol-water 1:4 and pyridine 1:20 truncated
octahedral boxes. Then it was simulated for three replicates of 50 ns per
solvation following the previously described standard protocol in
pyMDMix29. The main interaction hotspots were identified from top
occupancies (0.002 percentile) of the solvents, decomposed by
interaction type.

Virtual screening of the low molecular weight compounds
Initial binding modes for the low molecular weight compounds were then
obtainedbymeans of dockingusing rDock34. The cavitywas defined as a 6 Å
radius sphere centered at the position of the center of masses of the co-
crystallized molecule 3-methyl-4phenyl-1,2-ozazol-5-amine, using the
reference ligandprotocol as implemented in the rDock software.Docking of
the low molecular weight collection was performed, including two man-
datory pharmacophoric restraints: namely, one H-bond acceptor was
required at a distance of 2.9 ± 0.5 Å radius from the Nδ of Asn140, and one
hydrophobic moiety was required at a distance of 3 ± 1 Å radius of the
crystallographic water network48. The high-throughput VS (HTVS) setting
was used during this stage, with up to 15 iterations of the genetic algorithm.
A minimum threshold value of -12 points of interaction score (SCOR-
E.INTER) was used to filter out compounds during the HTVS, yielding ca.
360000 high-scoring fragments. These fragments were characterized using

Fig. 5 | Analysis of the chemical diversity of the most potent compounds com-
pared to the described BRD4 (BD1) binders. a Illustration of the chemical
diversity. Representation of the randommolecules fromChemical Checker chemical
space (gray), known BRD4 (BD1) binders from ChEMBL (blue), and validated
binder compounds discovered (red). b Histogram exhibiting the intragroup dis-
tance’s distribution (cosine distance) for compounds obtained from the bottom-up
approach (orange), a set of randomly selected compounds from the Chemical
Checker chemical space (green), and the known BRD4 binders (blue).
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the A1-A5 Chemical Checker signaturizers32,49, which include information
related to 2D and 3D topological fingerprints, scaffolds, structural keys, and
broad physicochemical properties. The obtained signatures were then
clustered using theK-means algorithmwith afixednumberof 2000 clusters,
and the compound closest to the centroid of each cluster was further eval-
uated by single-point MM/GBSA calculations using Schrödinger’s Prime
MM/GBSA tool50, retaining only those compounds with predictions of
ΔGbind lower than or equal than−30 kcal/mol forDUck simulations. In the
last stage of the screening, DUck was used to rank ca. 970 fragments based
on theW required to break the H-bond interaction between Nδ of Asn140
of BRD4 (BD1) and anH-bond acceptor in the ligand. The protein “chunk”
was prepared manually selecting residues within 6 Å of Asn140 and
included residues 81–89, 91–94, 97, 101, 104, 105, 131, 135–137, 139,140,
144–146, and 149 (numbering according to structure with PDBid 4LR6), as
well as seven structural water molecules. For each molecule, DUck simu-
lations were performed up to five times at 298 K and five times at 303 K,
filtering out the compound earlier if WQB was found below a threshold of
7 kcal/mol in any of the individual trajectories.

Virtual screening of the scaffold-focused libraries
Before starting the virtual screening, ligands within each scaffold-focused
library were aligned using their maximum common substructure (MCS) to
the parent fragment, and atoms corresponding to the MCS were tethered,
with a minimum translation and rotation threshold (<0.01Å). The HTVS
protocol of rDock was then used to obtain binding modes for each of the
members of each library, using a protocol very similar to the one used in the
screening of the lowmolecularweight collection, with the exception that the
genetic algorithm of rDockwas run for amaximum of 25 iterations, given a
minimum score of −12 kJ/mol. Within each library, high-scoring com-
pounds were again clustered using the A1-A5 Chemical Checker signa-
turizers and the K-means algorithm with a fixed number of 1000 clusters,
and the compound closest to the centroid of each cluster was further eval-
uated byMM/GBSA. DUck was used to rank the top 500 compounds from
each scaffold, using the same protocol and criteria used for the low mole-
cular weight screening. A consensus ranking between DUck and MM/
GBSA was used to select the 10 compounds from each scaffold-focused
library to be tested experimentally.

Protein expression and purification
A pET28 plasmid containing residues 44–168 of BRD4 (BD1), a 6xHis tag,
a TEV protease cleavage site, and a kanamycin resistance gene was cloned
in Rosetta D3 E. Coli competent cells. Transformed cells were cultured
overnight in 10mL of LB media supplied with kanamycin (50 μg/mL),
then scaled to 1 L of LB medium supplied with kanamycin (50 μg/mL) and
grown at 37 °C. Once the optical density (OD600) achieved 2.5, protein
expression was induced with 0.4 mM isopropyl-β-thiogalactopyranoside
(IPTG) overnight at 18 °C. Cells were harvested by centrifugation
(8000 rpm, 4 °C, 30min) and the pellet obtained was resuspended in
15mL of Buffer A (50mM Hepes, 150mM NaCl, 30mM Imidazole,
2mM β-mercaptoethanol (pH 8.0) supplemented with Pierce protease
inhibitor cocktail (ThermoFisher Scientific)) and lysed by sonication
(1min 40 s: 10 cycles × 10 s ON, 30 s OFF,A = 35%, T = 19 °C) followed by
two consecutive centrifugations (8000 rpm, 4 °C, 30min) to clarify the
lysate. Supernatant was collected and filtered by 0.8 µm syringe filters, and
BRD4 (BD1) was purified from it using an ÄKTA Start system (GE
Healthcare, Uppsala, Sweden) by two consecutive immobilized metal ion
affinity chromatography (IMAC) purifications. Specifically, the super-
natant was applied to a 5mL HisTrap HP column (Cytiva), washed with
buffer A (50mM Hepes, 150mM NaCl, 30mM Imidazole, 2mM
β-mercaptoethanol (pH 8.0)), and the bound protein was eluted with a
linear gradient of buffer B (50mM Hepes, 150mM NaCl, 250mM Imi-
dazole, 2mM β-mercaptoethanol (pH 8.0)). The eluted protein-containing
fractions were pooled and concentrated. For protein to be used in SPR and
TR-FRET experiments (vide infra), the purification procedure was ter-
minated at this stage. For experiments that required prior His6 tag

cleavage, Tev protease (Merck) was added to the protein fraction, and the
mixture was dialyzed with buffer A (50mMHepes, 150mMNaCl, 30mM
Imidazole, 2mM β-mercaptoethanol (pH 8.0)) using a 7 kDa dialysis
cassette (ThermoFisher Scientific). After cleavage, a second IMAC pur-
ification was performed as described, and the flow-through with the
protein was collected. Finally, the mass and purity of the protein were
verified by an SDS-Electrophoresis and mass spectrometry.

Differential scanning fluorimetry
Thermal shift experiments were performed using a Light Cycler 480 II
(Roche Applied Science) at the Genomics Service (CCiTUB). Com-
pound screening was carried out in a 96-well plate containing a mixture
of BRD4 (BD1) (2 µM), the fluorescence probe (SYPRO Orange - 1X),
and ligand solution for a final volume of 25 µL. The DMSO con-
centration was kept at a maximum of 1% v/v in the final mixture. The
experiment buffer used was 50 mM HEPES (pH 7.5), 150 mM NaCl.
Compounds were screened at three different concentrations (50 µM,
10 µM, 1 µM) by triplicate (n = 3). In each experiment, (+)−JQ1 was
tested at 10 µM (1% v/v DMSO) as a positive control. Negative controls
were also added in the experiment (without ligand), consisting in pro-
tein and dye mixture and buffer and dye mixture. Excitation and
emission filters for the SYPRO-Orange dye were set to 465 nm and
580 nm. To perform the experiments, the temperature was raised from
20 °C to 85 °C in 0.6 °C per minute steps. Data analysis was performed
using the Light Cycler 480 software (Roche Applied Science). Only
thermal shifts (ΔTm) of a magnitude at least twice the standard
deviation (SD) of the average of Tm triplicates (n = 3) of the protein
control were considered to indicate ligand binding.

Surface plasmon resonance
All molecules were further assessed by Surface Plasmon Resonance
(SPR) using a Biacore T200 SPR biosensor instrument (GE Healthcare,
Uppsala, Sweden) at 25°C. His6-BRD4 (BD1) protein was immobilized
on a NIHC1500M sensor chip (Xantec) via the non-covalent interaction
between the nickel-treated chip surface and the His6 tag of the protein,
followed by a standard covalent immobilization via amine coupling to
avoid protein leaking during the different cycles. First, the preactivated
and preconditioned NIHC1500M chip was treated with NTA loading
buffer (5 mM NiCl2, 10 mM HEPES, 150 mM NaCl, 50 μM EDTA,
0.005% Tween-20) using one injection of 24 sec at 5 μL/min. Subse-
quently, the carboxymethyl dextran matrix was activated injecting a
solution containing 0.1 M N-hydroxysuccinimide and 0.4 M 1-ethyl-3-
(3- (dimethylamino)propyl) carbodiimide hydrochloride at a flow rate
of 15 μL/min for 7 min. Once activated, the protein was immobilized,
particularly oriented through the 6xHis tag using the affinity of the
6xHis to the coated Nickel on the chip surface. Protein immobilization
was achieved after several injections of 4 μg/mL 6xHis-BRD4 (BD1) in
10 mMHEPES, 150 mMNaCl, 50 μMEDTA, 0.05% Tween-20 (pH 7.4)
at a flow rate of 5 μL/min to achieve ~1600 RUs. The non-reacted but
activated groups of the dextran matrix were deactivated by injection of
1M ethanolamine hydrochloride for 7 min at a flow rate of 15 μL/min.
The corresponding matrix activation and protein immobilization were
performed using as a running buffer (RB) the following solution: 10 mM
HEPES, 150 mM NaCl, 50 μM EDTA, 0.05% Tween-20 (pH 7.4).

Compounds were screened in randomized triplicate at 10 μM to dis-
criminate between the positive and the negative binders. Compounds were
prepared in a 100% DMSO stock solution at 100mM and diluted with
1.01 × RB to achieve a final 1% (v/v) DMSO concentration. The flow rate
used for the screening was 60 μL/min, and the ligand association and dis-
sociation times were set at 60 s and 120 s, respectively. The flow rate and the
association and dissociation times were maintained, and the compound
titrations were analyzed by random duplicates (n = 2). The Biacore T200
Evaluation software was used for data analysis, correcting for nonspecific
binding to the chip surface and for the baseline drift using the signals for a
reference surface (where the immobilization procedure was carried out
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without proteins) to the signals obtained on the 6xHis-BRD4 (BD1) surface.
Background noise was corrected by subtracting signals from blank injec-
tions from the compound signals. Sensorgrams as a function of con-
centration were used to obtain the steady state values, and the binding
affinity was calculated by fitting the data to a single-site interaction model,
fixing the R max according to the amount of protein immobilized on the
chip surface.

Time-resolved förster energy transfer (TR-FRET)
The HTRF TR-FRET competitive binding assay was used to measure the
disruption of the interaction between BRD4 (BD1) and an acetylated
[Lys(Ac)5/8/12/16]-Histone H4 (1-21)-GGK(Biotin). TR-FRET experi-
ments were performed using a CLARIOstar (BMG Labtech) plate reader
using the homogeneous time-resolved fluorescence module (excitation,
337 nmwith 200 flashes; emission, 620 and 665 nm). Compound screening
was carried out in 384-well, white, round-bottom, small-volume plates
(CORNING) in a final volume of 20 µL of 50mMHEPES (pH 7.4), 50mM
NaCl, 400mMKF, 0.5 mMCHAPS, and 0.05%BSA. TheHis-taggedBRD4
(BD1) (100 nM) was first mixed with the biotin-labeled histone peptide
(Eurogentec) (200 nM) and incubated for 10min. Then, the labeled anti-
His6-XL665 antibody (CisBio) (10 nM) was added to the mixture and
incubated for 15min, before the Eu3+ cryptate-conjugated streptavidin
(2 nM) (CisBio) was added and incubated for 15min. All incubations were
performed at room temperature. Compoundswere titrated (from0.1 nM to
10 µM) by duplicate (n = 2), and the response at each point was averaged to
determine the IC50 for each compound. Titration of (+)−JQ1was used as a
positive control for each experiment. The 665 nm/620 nm ratio was con-
verted to % Normalized HTRF ratio (top signal equals 100% and bottom
signal equals 0%) for each compound, and the IC50 was determined using
Hill’s equation with a standard Hill slope using GraphPad Prism software.

X-ray crystallography
BRD4 (14mg/ml) crystallized readily inmultiple positions of theMorpheus
screen. Subsequently, BRD4 was saturated with ligands, allowing up to a
20% v/v DMSO for co-crystallization experiments. Crystals were grown
using the sitting-drop technique at 19 °C. Grown crystals were retrieved
with a nylon and soaked in the crystallization buffer saturatedwith ligand at
20 v/v% (DMSO) for 1 h to be finally flash-frozen in liquid nitrogen for
X-ray data collection.

Data collection and structure refinement
Data sets were collected at the P13 EMBL beam line of the Petra III syn-
chrotron. Data reduction and scaling were performed directly using
AutoproC51. The structure was solved by molecular replacement using
Phaser52 from the Phenix suite53,54. Subsequently, model building and
structure refinement used iterative rounds with Coot55 combined with
refinement in Phenix. Refine.Afinal round of refinementwas donewith the
PDB-redo56,57. Summary of the statistics for data collection and model
building is provided in Table S4.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The protein structures used for the structural mapping are available in the
Worldwide Protein Data Bank (WWPDB.org), under the following PDB
identifiers: PDB:9HT2 (Ligand 92), PDB:9HT1 (Ligand 94), PDB:9HT0
(Ligand 50). All other data are available within the main text or the
ExtendedData. Rawdata is available in Supplementary Information. Source
data are provided in the Supplementary_Data file attached to this paper.

Code availability
No new code was generated for this study. The analyses were based on
existing published algorithms.
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