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by Clàudia VALVERDE

Drug discovery is constrained not only by the immense chemical space but by the
difficulty of efficiently exploring it and the high cost of traditional screening meth-
ods. This thesis introduces and evaluates a deep learning (DL) strategy for the de
novo generation of small molecules designed to bind specific protein pockets, aim-
ing to accelerate the identification of novel drug candidates. Our approach lever-
ages pre-trained protein and pocket embeddings within a decoder-only Transformer
architecture that learns to translate complex biological information into SMILES
strings.

Given the early stage of conditional binder generation, this work emphasizes sys-
tematic experimentation and thorough performance evaluation. We explored vari-
ous protein and pocket representation strategies, including global protein (ESM2),
structural-aware protein (SaProt), pocket-specific (PickPocket), and integrated Drug-
Target Interaction (TensorDTI) embeddings.

Our comprehensive evaluation pipeline assessed molecule validity, novelty, in-
ternal and cross-model diversity, physicochemical properties, and predicted drug-
target interactions. Key findings include demonstrating that a high proportion of
viral proteins in the training data does not bias generation, and that different in-
put representations guide the model to explore distinct chemical spaces. While the
models effectively generate diverse molecules with favorable drug-like properties, a
notable limitation is their propensity to produce exact matches to the training set, in-
dicating overfitting. Furthermore, despite the model’s sensitivity to pocket informa-
tion, case studies of two specific kinase proteins revealed a challenge in consistently
generating truly pocket-specific molecules, likely because of data set characteristics
such as promiscuous motifs. This work provides valuable insights into the capabili-
ties and current limitations of pocket-aware generative models, laying a foundation
for future advancements in targeted molecule design.
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Chapter 1

Introduction

1.1 Biological Motivation

In the fields of medicine, biotechnology, and pharmacology, drug discovery is the
process to identify new candidate molecules capable of modulating biological sys-
tems to treat diseases. This typically begins with the selection of a biological target,
(a protein, enzyme or a receptor), implicated in a specific pathological condition
(Hughes et al., 2011). The next critical step involves identifying small molecules that
can bind to this target and influence its function, either by inhibiting or enhancing
its activity depending on the therapeutic objective (Thangudu et al., 2012).

One of the central challenges in this process is the immense scope and com-
plexity of what is known as the chemical space. Consider, for instance, a molecule
composed of just 10 atoms, each potentially one of 10 different elements, this alone
presents roughly 10 billion unique combinations. When we expand this to drug-like
molecules, which typically contain 20 or more atoms and involve intricate aspects
like stereochemistry, conformational flexibility, and diverse bond patterns, the count
of possible candidates escalates dramatically, reaching into the trillions and beyond
(Rasul et al., 2024; Chakraborty, Kayastha, and Ramakrishnan, 2019). This immense
landscape means that comprehensive experimental screening is simply unfeasible,
even with sophisticated high-throughput methods, researchers can only investigate
a tiny fraction of the potential chemical compounds.

Simultaneously, proteins are not static. They can adopt multiple conformations
and dynamic states, each potentially influencing binding affinity and specificity in
different ways (Miller and Phillips, 2021). This conformational flexibility adds an-
other layer of complexity to the already complex process of identifying effective
protein-drug interactions. A compound that binds effectively to one conformation
might not bind to another, making it challenging to predict binding based on a sin-
gle static protein structure. Furthermore, the binding process itself is a dynamic
event, involving induced fit and conformational changes in both the protein and the
ligand, adding another layer of complexity to accurately model and predict interac-
tions (Greives and Zhou, 2014).

Traditional drug discovery methods, which rely heavily on high-throughput screen-
ing and trial-and-error experimentation, are consequently both time-intensive and
costly. The hit rates from these screens are often very low, necessitating the synthe-
sis and testing of hundreds of thousands, or even millions, of compounds to find a
handful of initial ’hits’ that require extensive further optimization. In response to
these limitations, computational approaches, and in particular Artificial Intelligence
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(AI), have emerged as powerful tools to accelerate and refine early-stage drug dis-
covery (Kant, Roy, et al., 2025).

AI enables the rapid exploration of vast chemical spaces, focusing on the most
promising candidates. It can model protein-drug interactions, predict binding affini-
ties (Singh et al., 2023; Gil-Sorribes, Ciudad Serrano, and Molina, 2025), and even
generate novel molecules that may never have been synthesized before, all while
considering constraints such as drug-likeness, toxicity, and selectivity (Sadybekov
and Katritch, 2023). By leveraging AI to better understand and predict protein-drug
interactions, we can make the drug discovery process more targeted, efficient, and
innovative, ultimately accelerating the development of new therapies.

1.2 Methodology Motivation

Several powerful AI methodologies have emerged for generating novel chemical
compounds. Some generative models including Recurrent Neural Networks (RNNs)
(Bjerrum and Threlfall, 2017) can generate molecules character-by-character based
on SMILES, string representations of molecules, and Variational Autoencoders (VAEs)
(Liu et al., 2018) or Generative Adversarial Networks (GANs) (Lin, Lin, and Lane,
2020) learn latent representations of molecules and can sample new compounds
from this learned space. Another prominent approach utilizes Graph Neural Net-
works (GNNs) (Zhou et al., 2020), where molecules are represented as graphs, with
atoms as nodes and bonds as edges. GNNs can learn complex relationships within
molecular structures and generate new graphs corresponding to valid chemical com-
pounds. These methods have demonstrated impressive capabilities in exploring
chemical space and generating molecules with desired properties, such as drug-
likeness and synthetic accessibility (Mak, Wong, and Pichika, 2024).

While these generative tools are powerful, a critical limitation for drug discovery
is ensuring the functionality of the generated molecules, specifically their ability to
bind to a protein of interest. Generating chemically valid and novel molecules is
a necessary first step, but without targeted binding, these molecules are unlikely
to modulate a biological process or treat a disease. The ultimate goal in rational
drug design is to create molecules that not only exist but also exhibit a high affinity
and specificity for a pre-defined biological target (Chen et al., 2023). Therefore, the
challenge shifts from merely generating molecules to generating functional binders.

To bridge this gap, it is essential to integrate protein target information directly
into the molecule generation process (Creanza et al., 2025). This is where Protein
Language Models (PLMs) offer a transformative advantage (Lin et al., 2023; Su et
al., 2023). PLMs, are deep learning models, often based on transformer architectures
(similar to those used in natural language processing), that learn intricate patterns,
relationships, and evolutionary constraints within protein sequences. Through pre-
training on large protein databases, these models develop a sophisticated represen-
tation of protein structure and function.

Beyond full-sequence embeddings, more targeted representations, such as em-
beddings derived from protein binding pockets, can offer increased precision. These
might be obtained using models that integrate both the protein’s sequence and struc-
tural information (Zhang et al., 2023), allowing the generative model to focus on re-
gions critical for molecular interaction and improving the likelihood of generating
biologically active compounds that modulate the protein inhibition in a desired way.
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1.3 Objectives

This work aims to develop and rigorously evaluate a deep learning strategy for the
de novo generation of small molecules specifically designed to bind to target protein
pockets. Our primary objectives are:

1. To develop a decoder-only model capable of generating SMILES strings, condi-
tioned on comprehensive protein and pocket embedding information derived
from various pre-trained sources.

2. To systematically benchmark the influence of dataset composition, specifically
evaluating the potential bias introduced by a high proportion of viral protein
families, on the molecule generation process.

3. To comprehensively assess the efficacy of different protein and pocket input
representation types, including global protein embeddings (ESM2), structure-
aware protein embeddings (SaProt), pocket-specific embeddings (PickPocket),
and integrated Drug-Target Interaction (DTI) embeddings (TensorDTI).

4. To establish and apply a pipeline for the post-generation analysis of molecules,
evaluating their validity, novelty relative to the training set, physicochemical
properties, and predicted interaction with their corresponding target pockets.

5. To qualitatively assess the model’s ability to generate distinct molecules when
conditioned on different types of binding pockets (e.g., active vs. cryptic sites)
in retrospective case studies.

1.3.1 Contributions

This thesis makes several key contributions to the field of conditional molecule gen-
eration:

1. Development of a Conditional Generative Model: We successfully imple-
mented a Transformer decoder-only model capable of de novo SMILES gener-
ation, effectively conditioned by diverse pre-trained protein and pocket repre-
sentations.

2. Benchmark of Dataset Bias: We conducted a systematic benchmarking study
demonstrating that a disproportionate presence of viral protein families in the
training dataset does not introduce a significant bias in the model’s generative
performance, ensuring broad applicability.

3. Comparative Analysis of Input Representations: Our work provides a com-
prehensive comparison of different protein and pocket embedding modalities
(ESM2, SaProt, PickPocket, and TensorDTI), offering insights into their respec-
tive strengths and the impact of their fusion on the characteristics of generated
molecules. We show that different modalities lead to diverse generated chem-
ical spaces.

4. Robust Evaluation Pipeline: We established and applied a multi-faceted an-
alytical pipeline to thoroughly characterize generated molecules, including
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assessments of validity, novelty (against the training set), internal and cross-
model diversity, physicochemical properties (including SA score), and pre-
dicted drug-target interactions.

5. Assessment of Pocket-Specific Generation: We conducted detailed retrospec-
tive case studies on proteins with distinct active and cryptic binding sites (e.g.,
CDK2 and RET) to assess the model’s ability to generate molecules distinc-
tively for specific pocket conditioning and their predicted interaction with
these pockets.

1.3.2 Contents

This thesis is structured to provide a comprehensive exploration of conditional molecule
generation using deep learning.

The Introduction first establishes the biological motivation, highlighting the crit-
ical need for novel pocket-specific molecule binders to address challenges in drug
discovery. This is followed by the methodological motivation, which underscores
the availability of advanced AI tools for molecule generation but emphasizes the ne-
cessity for systematic benchmarking when leveraging diverse pre-trained models.

The Background section provides foundational knowledge, starting with an in-
troduction to proteins and small molecules for readers unfamiliar with these bio-
logical entities. It then delves into how these complex biological and chemical data
are processed within Deep Learning (DL) algorithms, detailing their numerical rep-
resentations. This section also reviews established molecule generation techniques
and relevant Drug-Target Interaction (DTI) prediction models, setting the stage for
the proposed methodology.

The Experimental Setup describes the practical implementation of our research.
It covers the characteristics of the dataset utilized, including key observations from
its initial analysis. Following this, the section elaborates on the preparation of in-
put representations, the architecture of the custom deep learning model developed
for this thesis, and the precise methodology employed for the molecule generation
process. Finally, it outlines the inference setup and the comprehensive evaluation
pipeline used to assess the quality and relevance of the generated compounds.

The Results section is dedicated to presenting and interpreting the findings de-
rived from the experiments, covering the benchmarks and analyses performed. This
leads to the Conclusions, which summarize the main outcomes of the thesis and
discuss their implications for future research in conditional drug design.

The GitHub repository of this thesis can be found in here.

https://github.com/ClaudiaValverde/TFM.git
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Chapter 2

Background

2.1 Proteins Fundamentals

Amino acids are often referred to as the building blocks of life, as they are the funda-
mental components of proteins. Proteins are formed through the linear polymeriza-
tion of amino acids in a specific sequence, which is determined by the genetic code
(Lopez and Mohiuddin, 2024). This precise sequence dictates how the protein folds
into a unique three-dimensional structure, which in turn determines the protein’s
physicochemical properties and biological function.

The folding process creates distinct structural features on the protein surface,
including binding pockets. These are specific cavities or grooves typically formed
by the arrangement of several amino acids. Crucially, these pockets often serve as
active or binding sites where other molecules, such as potential drug candidates, can
interact with the protein to modulate its function (Stevenson et al., 2023).

To study these molecular interactions and understand protein structure in detail,
researchers often rely on structural data. The Protein Data Bank (PDB) (Berman et
al., 2000) is a globally recognized repository providing high-resolution 3D models of
experimentally determined protein structures, including protein-ligand complexes.
It enables the identification and analysis of binding pockets, interaction patterns,
and conformational changes, all of which are critical for advancing drug discov-
ery and protein function analysis. Complementing experimental efforts, AlphaFold
(Jumper et al., 2021) provides a computational method that can regularly predict
protein structures with atomic accuracy. This is achieved through a novel machine
learning approach, incorporating physical and biological knowledge about protein
structure and leveraging multi-sequence alignments within its deep learning algo-
rithm. This AI-powered tool has significantly expanded the accessible structural
landscape, offering valuable insights into proteins for which experimental structures
are not yet available, thereby accelerating research into their function and potential
drug targets.

Beyond the static structural information found in the PDB, comprehensive se-
quence and functional data are equally essential for understanding protein behavior.
UniProt (“UniProt: the Universal protein knowledgebase in 2025” 2025) fufills the
role serving as a comprehensive, high-quality, and freely accessible central database
of protein sequences and functional annotations. It integrates data from numer-
ous sources, including large-scale genomic sequencing projects and scientific liter-
ature, offering detailed information on protein function, cellular localization, post-
translational modifications, and evolutionary relationships. UniProt is an indispens-
able resource for researchers seeking to understand the vast diversity of proteins and
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their roles in biological systems.

The sheer number of known proteins, cataloged in different databases, necessi-
tates systematic organization. To manage these, proteins are organized into protein
families, which are groups of proteins sharing a common evolutionary origin, re-
flected in their similar amino acid sequences, structures, or functions. This classifi-
cation helps researchers predict protein function, understand evolutionary relation-
ships, and identify conserved features like motifs or domains critical for function.
By grouping proteins, insights from one family member can be applied to others,
streamlining research and drug design efforts.

2.1.1 Protein Representation in Deep Learning

For DL algorithms to effectively process and learn from proteins, these complex bi-
ological macromolecules must be transformed into a numerical format, or represen-
tation. Traditional methods often rely on features derived from sequence properties
such as amino acid composition or physicochemical properties (Wu et al., 2022),
or from structural information, including contact maps or secondary structure el-
ements. While these representations have proven useful in various contexts, they
may not always capture the complete biological complexity and evolutionary infor-
mation intrinsic to protein sequences.

More recently, Protein Language Models (PLMs) have emerged as a significant
advancement in protein representations. These DL models, often based on trans-
former architectures (similar to those widely used in natural language processing),
are pre-trained on vast datasets of raw protein sequences, often comprising billions
of sequences from resources like UniProt. During this pre-training phase, PLMs
learn intricate patterns, relationships, and evolutionary constraints directly from the
sequences. This process allows them to develop a sophisticated internal model of
protein ‘grammar’, by predicting masked amino acids or learning contextual depen-
dencies. Consequently, they effectively internalize principles of protein structure,
function, and evolution. The output for a given protein sequence is a set of dense
numerical vectors, known as protein embeddings, which encapsulate rich seman-
tic and functional information. These embeddings are highly informative, capable
of reflecting evolutionary relationships, functional annotations, and even implicitly,
structural characteristics.

Among the most prominent and widely adopted PLMs are models like Prot-
Trans (Elnaggar et al., 2021), ProtGPT2 (Ferruz, Schmidt, and Höcker, 2022), and
ESM-2 (Evolutionary Scale Modeling, version 2) (Lin et al., 2022). It is a large-scale
transformer model trained on an extensive dataset of over 250 million protein se-
quences. A key atrribute of ESM2 is its capacity to generate high-quality protein em-
beddings that capture subtle evolutionary and structural signals. These embeddings
have demonstrated effectiveness in diverse applications, including predicting pro-
tein structure, identifying functional sites, classifying protein families, even guiding
de novo protein design, protein-protein interactions and protein-drug interactions.

While PLMs excel at capturing information from sequences, some approaches
have integrated structural information to further enrich protein representations. These
methods aim to combine the strengths of sequence-based language models with the
explicit spatial relationships found in protein structures. For instance, models like
SaProt (Su et al., 2023) incorporate structure-aware vocabularies using the Foldseek
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(Van Kempen et al., 2024) representation, effectively creating sequence and struc-
tural tokens that allow the model to learn from both modalities simultaneously. This
hybrid approach enables a more comprehensive understanding of protein character-
istics, moving beyond purely sequence-derived features (Su et al., 2023).

Beyond representing the entire protein, accurately representing specific func-
tional regions, such as protein binding pockets, is increasingly crucial, especially
for drug discovery. An example of such a model is PickPocket (Tarasi, Malo, and
Molina, 2025). PickPocket’s architecture strategically combines ESM-2 with Gear-
Net (Zhang et al., 2022). ESM-2 provides the sequence-derived evolutionary em-
beddings, which then serve as node features for GearNet. GearNet, in turn, models
the protein structure as a graph, capturing spatial relationships between residues.
By integrating the outputs of these two models, PickPocket generates a comprehen-
sive representation that considers both the sequence context and the structural in-
formation of the protein. These combined embeddings are subsequently used by
a two-layer Multi-Layer Perceptron (MLP) classifier to predict per-residue binding
probabilities, thereby identifying potential binding pockets.

2.2 Small Molecules

At their core, molecules are stable arrangements of two or more atoms held together
by chemical bonds. They represent the smallest identifiable unit of a substance that
still retains its chemical properties. Within this broad category, small molecules are
a specific class characterized by their relatively low molecular weight. Many phar-
maceutical drugs, for example, are small molecules because their size allows them
to easily interact with biological targets within cells to exert a therapeutic effect.
Small molecules often act as ligands, interacting with target proteins, nucleic acids,
or other biomolecules to modulate their activity. (Li and Kang, 2020).

In the field of drug discovery, a crucial challenge lies not only in identifying com-
pounds with desired biological activity but also in ensuring that these compounds
possess physicochemical properties conducive to oral bioavailability. Many promis-
ing drug candidates fail in clinical development due to poor absorption, distribution,
metabolism, and excretion (ADME) properties. To address this, Christopher Lipin-
ski and colleagues formulated the "Rule of Five" in 1997 (Lipinski et al., 1997, based
on observations from a large dataset of orally active drugs. This rule provides a set
of guidelines for predicting the oral absorption and permeability of a compound,
helping to filter out molecules that are unlikely to be successful drug candidates
early in the discovery process.

For a small molecule to be a successful drug, beyond its ability to bind to a target,
it must possess suitable ADMET properties. ADMET is an acronym representing key
pharmacokinetics and safety considerations: 1) Absorption, how the drug enters the
bloodstream; 2) Distribution, how it spreads through the body 3) Metabolism, how
the body chemically transforms it 4) Excretion, how it is eliminated and 5) Toxicity,
its potential for harmful effects. Optimizing these properties is crucial in drug dis-
covery, as poor ADMET characteristics are a primary reason drug candidates fail,
even if they show string activity in early experiments. Therefore, understanding a
drug’s ADMET profile early in development is vital for designing safe and effective
therapies (Yi et al., 2024).
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2.2.1 Small Molecules Representation in Deep Learning

For DL algorithms to process molecules effectively, these chemical structures must
be translated into a numerical or textual format. SMILES (Simplified Molecular In-
put Line Entry System) (Weininger, 1988) strings are a linear textual representation
of molecular structures, designed to encode atoms and bonds as sequences of charac-
ters. To make these representations suitable for DL architectures, SMILES sequences
must first be converted into a numerical format. This is typically achieved through
one-hot encoding, where each character in the SMILES alphabet is represented as a
binary vector indicating the presence (1) or absence (0) of that character at a given
position.

FIGURE 2.1: The SMILES representation and one-hot encoding for
benzene. For purposes of illustration, only the characters present in
benzene are shown in the one-hot encoding. In practice there is a

column for each character in the SMILES alphabet.

Formally, a one-hot vector is a binary vector of length equal to the size of the
SMILES alphabet. For example, given an alphabet size of N = 34, the character
“N” (assigned ID 0) is encoded as [1, 0, 0, . . . , 0], while “-” (assigned ID 1) becomes
[0, 1, 0, . . . , 0]. Each SMILES string of length L is thus represented as a matrix of shape
(L, N), where each row is the one-hot vector of a character at a specific position.

This discrete representation enables models such as RNNs and Transformers to
process molecular data analogously to natural language. These models can learn to
predict molecular properties like solubility, toxicity, or protein-binding affinity( David
et al., 2020; Mswahili and Jeong, 2024). Furthermore, generative variants of these ar-
chitectures are capable of producing novel SMILES strings that correspond to chem-
ically valid molecules, offering a powerful tool for molecular discovery and design.
The learned embeddings from such models capture underlying chemical relation-
ships, allowing for structural clustering and similarity-based compound retrieval.

2.2.2 Molecule Generation Models

As mentioned in Introduction (1), there are lots of AI algorithms to generate molecules.
While earlier methods utilized architectures such as RNNs for sequential SMILES
string generation, VAEs, GANs for latent space manipulation, and Graph Neural
Networks GNNs for direct graph generation, more recent advancements have intro-
duced increasingly sophisticated paradigms, particularly Transformer models and
Diffusion models (Mouchlis et al., 2021).

Transformer models have proven highly effective for molecule generation, es-
pecially when molecules are represented as sequential SMILES strings. Their core
innovation lies in the self-attention mechanism, which allows the model to weigh
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the importance of different parts of the input sequence when processing each ele-
ment. This capability is particularly advantageous for capturing long-range depen-
dencies within molecular structures, a limitation often encountered by RNNs. By
learning complex contextual relationships in the ’molecular language’ of SMILES,
Transformer models can generate chemically valid and diverse compounds, often
with improved control over specific properties (Luong and Singh, 2024).

More recently, Diffusion models (Alakhdar, Poczos, and Washburn, 2024) have
emerged as a powerful generative paradigm, demonstrating remarkable success in
various domains, including image synthesis, and are now being effectively applied
to molecular generation. The fundamental idea behind diffusion models involves
a two-step process: a ’forward diffusion’ process progressively adds noise to data
until it becomes pure noise, while a ’reverse diffusion’ process learns to gradually
denoise the data, reconstructing original samples from random input. For molecule
generation, this translates to learning to reverse the corruption of molecular struc-
tures (e.g., noisy molecular graphs or latent representations) to synthesize novel,
valid, and diverse molecules.

A significant advantage of both Transformer and Diffusion models is their inher-
ent capacity to readily incorporate additional sources of information. This allows
the generative process to be guided by external context, moving beyond mere de
novo generation to conditional generation. Specifically, these models can effectively
leverage protein representations, such as protein embeddings derived from PLMs.
By feeding these protein embeddings alongside the molecular data, the models learn
to generate molecules that are not just chemically plausible but are also tailored to
the specific characteristics of a target protein. This conditioning mechanism allows
the model to capture the nuanced relationship between a protein’s features and the
chemical properties required for effective binding.

2.3 Small Molecule - Protein Interactions

The ability of small molecules to modulate biological systems relies on their specific
interactions with protein targets. These protein-drug interactions are governed by a
combination of non-covalent forces and precise molecular recognition [cite]. Small
molecules can bind selectively to specific pockets of a protein through non-covalent
interactions like hydrogen bonds, van der Waals forces, and hydrophobic effects.
This binding event, known as a protein-ligand interaction, can subsequently modu-
late the protein’s function.

Usually, small molecule ligands bind to a specific pocket located within the pro-
tein three-dimensional structure. The strength of these interactions is quantitatively
assessed by their binding affinity, commonly expressed as a dissociation constant
(KD or Ki). This constant reflects the equilibrium between the bound and unbound
states of the drug-protein complex. A lower KD or Ki value indicates higher affinity,
generally signifying strong and specific binding of the ligand to its target.

Understanding these intricate molecular interactions is crucial for rational drug
design. To support this, comprehensive databases like ChEMBL (Zdrazil et al.,
2024) play a vital role. ChEMBL is a freely accessible, manually curated database
that focuses on bioactive molecules with drug-like properties. It integrates chemi-
cal structures, quantitative bioactivity data against various protein targets, cellular
and organism-level effects, as well as ADMET properties. Since its launch in 2009,
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ChEMBL has grown significantly in size and scope, now containing over 2.2 million
compounds and more than 18 million bioactivity records.

2.3.1 Deep Learning for Drug-Target Interaction (DTI) prediction

Tensor-DTI (Gil-Sorribes, Ciudad Serrano, and Molina, 2025) is a contrastive learn-
ing framework for drug–target interaction prediction that embeds proteins, bind-
ing pockets, and small molecules into a shared latent space using a dual-encoder
architecture. It supports two main configurations: one using only whole-protein
representations, and another incorporating explicit binding pocket embeddings de-
rived from structural data, forming a protein and pocket–drug interaction setup.
The pocket-based variant is trained on the PLINDER dataset, which provides high-
quality residue-level binding site annotations and is specifically curated to minimize
data leakage. The original Tensor-DTI framework includes multiple datasets cover-
ing diverse interaction scenarios; among them, two are especially relevant to this
work: SMPBind-I, a large-scale dataset of experimentally validated protein–ligand
interactions used for training protein-only models, and BindingDB (Gilson et al.,
2016, which served for additional protein-level evaluations. In both configurations,
Tensor-DTI is trained using a contrastive loss. This objective brings interacting pairs,
whether protein–drug or protein + pocket–drug, closer in latent space, while sepa-
rating non-interacting ones.

2.3.2 Deep Learning for Molecular Generation Conditioned on Protein
Targets

DTI prediciton tools can serve to predict already existing molecules with possible
targets or de novo generated ligands, as they can check if the generated molecule
will interact with a chosen protein target. To bridge this gap and generate truly
functional molecules, it is essential to integrate information about the protein target
directly into the molecule generation process. This is where PLMs offer a transfor-
mative advantage.

By leveraging these embeddings, generative DL models can be conditioned to
produce molecules tailored to a specific protein target. This approach can be con-
ceptualized as framing drug design as a machine translation problem between two
distinct ’languages’: the amino acid language of proteins (represented by PLM em-
beddings) and the SMILES language of small molecules. In this paradigm, the model
learns to "translate" the characteristics of a target protein into the chemical structure
of a potential binder, thereby directly generating molecules that are predicted to bind
to that protein. This enables the de novo creation of binders directly from the infor-
mation encoded within pre-trained protein language models (Creanza et al., 2025).
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Chapter 3

Experimental Setup

3.1 Data

3.1.1 Plinder

Our work leverages PLINDER (Protein Ligand INteractions Dataset and Evaluation
Resource) (Durairaj et al., 2024) database critical for training and evaluating compu-
tational methods in protein-ligand interaction prediction with pocket information.

PLINDER aggregates data from key sources including PDB for experimentally
determined complexes, AlphaFold2 for predicted structures where experimental apo
forms are lacking, and SCOP for domain-level annotations. Foldseek and MMseqs2
are used to process and score structural similarities It computes over 20 billion simi-
larity scores using 14 distinct metrics such as interaction fingerprints, binding pocket
similarity, ligand similarity, and various sequence and structural comparisons (e.g.,
RMSD, Tanimoto scores).

The database offers predefined train/validation/test splits to ensure minimal
data leakage and promote generalization to unseen proteins, ligands, and interac-
tions. These splits are tailored for machine learning applications and are fully cus-
tomizable depending on the task. Additionally, PLINDER includes a standardized
evaluation framework that supports CASP-CAPRI-compatible metrics like DockQ
and RMSD. It allows for performance benchmarking using both experimental (holo
and apo) and AlphaFold2-predicted structures, facilitating fair comparisons of state-
of-the-art computational models.

3.1.2 Data Preprocessing and Filtering

We implemented a filter for ligand size, retaining only those that did not exceed
a length of 100 characters, representing the number of atoms. The filtered entries
from PLINDER’s original ’train’ and ’val’ splits were then combined to form what
we refer to as our ’train split’ for subsequent analyses.

In this types of works important to analyze the distribution of protein types
within the dataset, as biases can significantly impact model performance. We plotted
the distribution of protein families present in our filtered PLINDER dataset. Across
the entire filtered dataset, we identified 2121 unique protein families. The train split
alone contained 1685 of these, while the test split had 733.

Upon closer inspection, we realized a significant imbalance within our filtered
PLINDER train split (Fig. 3.1), approximately 10% of the proteins corresponded
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to the Betacoronavirus family, and in fact, the top five most frequent families were
all viral. This highly disproportional representation raised concerns about potential
bias in molecule generation. To address this, our first experiment involved analyzing
whether training with these highly frequent families had an impact on the generated
molecules. Consequently, we created two distinct training sets:

• "With Virus" Training Set: This set includes all filtered interactions, compris-
ing 124,104 protein-pocket-drug interactions, thereby retaining the observed
viral family overrepresentation.

• "Without Top 5 Virus" Training Set: To mitigate the identified possible bias,
this set excludes interactions corresponding to the top five most frequent viral
families, resulting in 85,164 protein-pocket-drug interactions. This allows us to
directly assess the impact of these prevalent families. See distribution in Fig.
A.1.

FIGURE 3.1: Proportion of top 50 most frequent families in train split
with top 5 viral families.

For the test split (Fig. 3.2), we did not observe a similar disproportional distri-
bution of viral families. Thus, we decided to keep it as is. Since these interactions
correspond to proteins and ligands the model had not encountered during training,
this test set served as our out-of-domain test set, for evaluating true generalization.

We also analyzed the types of molecules present in the dataset, more specifically,
We analyzed the presence of PAINS (Pan-Assay Interference Compounds) across
protein families in the PLINDER dataset. These molecules can cause false positives
and compromise assay reliability. For each family, we counted the number of ligands
flagged as PAINS. While most families had few or none, others, such as bromod-
omains and kinase domains, showed a disproportionately high number of flagged
compounds (Fig. 3.3). This underlines the importance of accounting for PAINS dis-
tribution, as it may bias generative models toward producing unsuitable molecules.
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FIGURE 3.2: Proportion of top 50 most frequent families in test split
(out-domain)

FIGURE 3.3: Top 20 protein families with the most PAINS com-
pounds.

3.2 Input Representations

As previously introduced, effectively conditioning molecule generation on target
protein and pocket information is crucial for rational drug design. This thesis bench-
marks various pre-trained input representations for both proteins and pockets to
investigate which provides the most informative conditioning signal for our gener-
ative model.

We explored three main categories of embeddings: 1) protein-only representa-
tions, 2) pocket-specific representations, and 3) integrated protein-pocket represen-
tations from a drug-target interaction (DTI) framework. For all mentioned algo-
rithms, representations were extracted following their respective GitHub instruc-
tions.
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It is important to mention a practical consideration because we explored differ-
ent experiments with various types of input representations, each specific model ul-
timately ended up being trained with a slightly different final dataset. This can occur
due to factors like minor data leakage during representation creation or limitations
where some models are unable to create embeddings for all provided proteins or
pockets due to technical reasons. Any such model-specific dataset variations will be
detailed in their respective experimental sections.

3.2.1 Protein Embeddings

For protein representations, we used embeddings from two distinct protein lan-
guage models: ESM2 and SaProt. ESM2 embeddings, extracted from the pre-trained
model esm2_t36_650M_UR50D(), provide a comprehensive, global understanding of
the target protein’s identity and properties, derived from billions of protein sequences.
In contrast, SaProt embeddings, obtained from the pre-trained SaProt_650M_AF2
model, are designed with explicit structural awareness, allowing us to investigate
whether providing a generative model with inherently more structure-aware repre-
sentations improves molecule generation.

3.2.2 Pocket Embeddings

For pocket representations, we utilized PickPocket embeddings. These embeddings,
derived from an in-house model (Tarasi, Malo, and Molina, 2025), offer a localized
and detailed view of the target site. These embeddings provide the generative model
with crucial information about the immediate environment where a ligand is ex-
pected to bind. This allows the model to condition molecule generation on precise
pocket characteristics.

3.2.3 Tensor-DTI Embeddings

We also used Tensor-DTI, pretrained on the PLINDER dataset, to extract embed-
dings of proteins and pockets after contrastive training. These embeddings, learned
through a contrastive objective, are not only grounded in the original representations
from pretrained protein language models but also enriched with knowledge derived
from drug–target interaction patterns. By training to distinguish binding from non-
binding pairs, Tensor-DTI encourages the encoder to learn representations that em-
phasize features critical for molecular recognition and interaction. Conditioning the
generative model on these embeddings allows it to benefit from this biologically
informed signal, improving its ability to generate molecules that are not only struc-
turally valid but also more likely to bind the intended target.

To obtain these embeddings, we leveraged internal checkpoints from the Tensor-
DTI model trained on PLINDER. Specifically, the protein and pocket representations
were extracted by forwarding the respective PDB inputs through the encoder mod-
ules of the trained model.
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3.2.4 Experimental Setups for Input Combinations

To assess the impact of these various input representations, we investigated four
distinct experimental setups for training our generative model:

1. ESM2 Protein Only: This setup evaluates the generative model’s performance
when conditioned solely on the global protein context provided by ESM2 em-
beddings.

2. ESM2 Protein + PickPocket Pocket: This setup adds local information of the
binding site, enabling the generation of molecules to be more pocket specific.

3. SaProt Protein + PickPocket Pocket: This configuration investigates the syn-
ergy between structure-aware protein embeddings (SaProt) and explicit pocket
representations (PickPocket), aiming to provide both global structural context
and local binding site details.

4. Tensor-DTI Protein Embeddings + Tensor-DTI Pocket Embeddings: This
setup leverages the integrated, interaction-aware embeddings derived from
the Tensor-DTI framework for both protein and pocket inputs.

These experiments allow for a systematic comparison of how different levels and
types of pre-trained biological information influence the efficacy of the conditional
molecule generation process.

3.2.5 Creating SMILES Numerical Representations

The other side of the interaction corresponds to the ligand. To enable the models
to process molecular structures, SMILES strings were transformed into a numerical,
fixed-length representation.

Initially, raw SMILES strings were extracted from the dataset described previ-
ously. A custom tokenization procedure was applied to accommodate specific chem-
ical elements: “Cl” (Chlorine) was replaced with “D”, and “Br” (Bromine) was
replaced with “E”. This approach ensures that these two-character elements are
treated as single tokens within the defined alphabet. Additionally, each prepro-
cessed SMILES string was enclosed with special ’begining-of-sequence’ (BOS) and
’end-of-sequence’ (EOS) tokens (“è” and “§” respectively) to explicitly mark sequence
boundaries.

The length of the SMILES strings in the dataset ranged from 25 to 100 charac-
ters. To achieve a uniform input length suitable for the model, all SMILES strings
were padded to match the maximum sequence length observed (≈ 100 characters).
Padding was accomplished by appending a special character (“£”) to the end of
shorter SMILES strings until they reached the required length. This step is essential
for enabling batch processing in neural networks, which typically require inputs of
consistent dimensions.

The core of the numerical representation is a one-hot encoding scheme. A prede-
fined alphabet of unique SMILES characters was established. This alphabet, contain-
ing 34 unique characters, includes standard SMILES characters, the custom substitu-
tions (D, E), and the special tokens (“è”, “§” and “£”). Each character in the alphabet
was assigned a unique integer ID, and then a corresponding one-hot vector.
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Finally, each SMILES string was converted into a three-dimensional numerical
array. For a batch containing M SMILES strings, each of length L (where L ≈ 100),
and an alphabet size of N, the resulting representation is a NumPy array of shape
(M, L, N). Each character in a SMILES string is replaced by its corresponding N-
dimensional one-hot encoded vector, producing a dense numerical representation
suitable for input into the deep learning model.

3.3 Model Architecture

The core of our approach is a custom deep learning model, built upon the Trans-
former architecture principles, specifically adapted for molecule generation condi-
tioned on protein and pocket information, the overview architecure can be seen in
Fig. 3.3. The model is implemented using the PyTorch framework.

3.3.1 Input Representation

The model recieved three primary inputs: protein features, pocket features, and the
target SMILES sequence. When input embeddings were not already 256-dimensional,
they were projected to this size using a forzen linear layer to ensure consistency ac-
cross modalities.

• Protein Features: These were 256-dimensional embeddings representing the
entire protein sequence. These embeddings were extracted from pre-trained
PLMs, either 1) ESM-2, 2) SaProt both originally 1280-dimensional reduced to
256 or 3) the protein passed through TensorDTI encoder which already pro-
duced 256-dimensional embeddings.

• Pocket Features: These represent the binding pocket of the protein. Two sources
where used 1) PickPocket or 2) the pocket embeeding passed thorugh Tensor-
DTI, providing localized structural and chemical information about the bind-
ing site. PickPocket og dimensions are 4352 and is passed thourgh a frozen
linear layer to reduce it to 256 before starting training.

• SMILES Target Sequence: This is the SMILES string of the ligand to be gener-
ated, represented as a sequence of one-hot encoded characters, as described in
Section 3.2.5. During training, the model receives the SMILES up to the current
character and attempts to predict the next character.

All input features are batched, with dimensions [B, sequence_length, feat_dimension]
or [B, feat_dimension] depending on the input type, where B is the batch size. For
protein and pocket features, if they are single vectors per example, they are un-
squeezed to [B, 1, feat_dimension] for consistent processing.

3.3.2 Memory Fusion: Combining Protein and Pocket Information

The protein and pocket features are combined to form a contextual "memory" that
guides the SMILES generation process. This fusion occurs within the decoder-only
model and was done using concatenation procedure. The protein and pocket fea-
ture vectors were concatenated along their feature dimension. If protein features are
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[B, 1, input_size_prot] and pocket features are [B, 1, input_size_pocket], the resulting
tensor will have a shape of [B, 1, input_size_prot + input_size_pocket]. With both
reduced to 256 dimensions, this gave a combined vector of 512 dimensions. This
method allows the model to learn combined representations by placing the informa-
tion side-by-side.

The resulting tensor was normalized using LayerNorm before being used as con-
text in the Transformer decoder.

3.3.3 Transformer Decoder Structure

The model followed a Transformer Decoder architecture, well-suited for autoregres-
sive sequence generation tasks.

• Target Embedding: One-hot encoded SMILES inputs were projected to a shared
embedding space of size d_model using a linear layer. Positional encoding
were added to preserve sequence order, and dropout was applied for regular-
ization.

• Decoder Layers: The decoder consisted of four stacked layers, each containing
masked multi-head self-attention (to prevent access to future tokens), multi-
head cross-attention over the trg tensor and a feed-forward network for non-
linear transformation.

3.3.4 Output Layer

The decoder output, shaped [B, trg_len, d_model], was passed through a final layer
prokecting to the size of the smiles vocabulary. The resulting logits [B, trg_len, vocab_size]
represented unnormalized probabilities over possible characters. During training,
these were passed to a Cross-Entropy Loss function, which internally applies soft-
max.

3.3.5 Training Objective and Optimization

The model was trained to predict the next character in the SMILES sequence given
the previous characters and the protein-pocket context.

• Loss Function: Cross-Entropy Loss (nn.CrossEntropyLoss) was used, which
is standard for multi-class classification tasks like character prediction. It com-
pares the model’s predicted logits with the true next character (represented as
integer indices).

• Optimizer: The AdamW optimizer (optim.AdamW) was employed for weight
updates.

• Learning Rate Scheduler: A custom learning rate scheduler was implemented.
This scheduler uses a warmup phase for a specified number of epochs (5), dur-
ing which the learning rate linearly increases, followed by a cosine annealing
schedule where the learning rate gradually decreases. This strategy helps in
stabilizing training and achieving better convergence.
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The training loop iterates through batches of protein-pocket-SMILES data. For each
batch, the model performed a forward pass, the loss was computed, gradients were
backpropagated, and the optimizer updated the model’s weights. Training was dis-
tributed across multiple GPUs using PyTorch’s Distributed Data Parallel (DDP) to
accelerate the process.

FIGURE 3.4: Simplified Diagram of the Model Architecture and Infer-
ence. The protein shown is PDBID: 5ISX.

3.4 Molecule Generation Process

Once the model was trained, it was used to generate novel SMILES strings condi-
tioned on specific protein and pocket inputs. The generation process employed an
autoregressive, character-by-character sampling approach, in Fig. 3.3 a simplified
inference process can be seen.

3.4.1 Autoregressive Sampling

The model generated SMILES strings sequentially, one character at a time, until an
end-of-sequence token was predicted or a maximum length was reached. This pro-
cess was autoregressive, meaning each subsequent character prediction was condi-
tioned on the characters generated thus far, in addition to the initial protein and
pocket context.

3.4.2 Initialization and Iterative Generation

For each protein-pocket pair for which a molecule was to be generated, the process
began by initializing the target input sequence with the special BOS token (“è”).
The protein and pocket embeddings for the target pair were fed into the model as
conditioning information.

In each generation step (t):

1. The current partial SMILES sequence was processed by the model along with
its positional encodings. A causal mask was applied to ensure that the model
only attended to previously generated characters.
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2. The conditioned Transformer Decoder predicted a distribution of probabilities
(logits) for the next possible character.

3. Instead of simply taking the most probable character (greedy decoding), Top-K
sampling was applied. This method considered only the k most probable next
characters and sampled one from this reduced set, introducing a controlled de-
gree of randomness and diversity into the generated molecules. In our setup,
k was set to 5.

4. The sampled character was appended to the current partial SMILES sequence.

5. The process continued iteratively until the model predicted a special EOS to-
ken (“S”) or the generated SMILES reached a predefined maximum length, by
default 120 characters.

3.4.3 Post-Generation Processing and Validation

After a SMILES string was generated, a post-processing step converted the custom
tokens back to standard chemical notation: “D” was replaced with “Cl” (Chlorine)
and “E” was replaced with “Br” (Bromine). Each generated SMILES string was then
validated using the RDKit library to check for chemical validity. Only valid SMILES
strings were typically considered for subsequent analysis.

The entire generation process was repeated 1000 times for each protein-pocket
pair to produce multiple candidate molecules. Results, including the generated
SMILES and their validity status, were saved to a TSV file. Distributed Data Par-
allel (DDP) was used during generation to parallelize the sampling across multiple
GPUs, accelerating the process.

3.5 Model Inference

To assess our model’s generative capabilities, particularly its ability to create new
molecules for both familiar and entirely novel proteins, we designed three distinct
types of test sets for inference:

• In-Domain Test Set (with virus): This set reflects the distribution of proteins
found in our "with virus" training regimen.

• In-Domain Test Set (without top 5 virus): This set reflects the distribution of
proteins from our "without top 5 virus" training regimen.

• Out-of-Domain Test Set: This set utilizes the unaltered PLINDER test split,
providing a challenge with proteins unseen during any training.

For each of these test sets, we carefully selected a single protein for each of the
top 50 most frequent families within that specific test set’s distribution. This yielded
test sets consisting of 50 proteins each. During inference, our strategy was to gener-
ate 1000 molecules for each protein-pocket target, meaning we generated a total of
50,000 molecules for each test set (50 proteins * 1000 molecules/protein).
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3.6 Evaluation

3.6.1 Drug Similarity Metrics

Molecular similarity metrics provide quantitative measures of the resemblance be-
tween two molecules based on their structural, physicochemical, or biological prop-
erties. These metrics are crucial for several reasons: they enable the identification
of known compounds similar to a generated candidate, facilitate the exploration of
chemical space around promising hits, and help to ensure that generated molecules
are diverse yet retain desirable drug-like characteristics or scaffold.

Our analysis relies on Tanimoto similarity to quantify the relationships between
molecules, for more theoretical background about this metric refer to Appendix C.1.
When assessing novelty against the training set, we categorize generated molecules
based on their highest Tanimoto similarity score to any molecule in the training data:

• Tanimoto < 0.5: These molecules are considered unique and structurally dis-
tinct from the training set, representing genuinely novel candidates.

• 0.5 ≤ Tanimoto < 1.0: Molecules in this range are considered to have mod-
erate similarity to the training set. While not identical, they share significant
structural features with known compounds.

• Tanimoto = 1.0: These are exact matches to molecules present in the training
set.

For internal diversity and cross-dataset diversity, Tanimoto similarity is calcu-
lated for all-to-all pairs within or between generated sets. The same Tanimoto thresh-
olds (0.5 and 1.0) are applied to categorize the similarity of these pairs.

3.6.2 Interaction Evaluation of Generated Molecules

Following SMILES generation, we assessed the likelihood of interaction between
each molecule and its target using pretrained Tensor-DTI classifiers. As pocket in-
formation was available for all targets in our setup, the primary evaluation was
performed using the PLINDER-based Tensor-DTI model, which explicitly models
protein + pocket–drug interactions. In addition, we evaluated the same generated
molecules using Tensor-DTI models trained on SMPBind-I and BindingDB, which
operate solely at the whole-protein level and do not incorporate pocket information.
By comparing pocket-informed and protein-only models, we were able to assess
how much additional value the pocket context provides during molecule evalua-
tion.

3.7 Physicochemical Properties

For generated molecules to be considered "drug-like" and increase their likelihood
of progressing through the drug discovery pipeline, they must possess favorable
physicochemical and structural properties that influence pharmacokinetics (ADMET).
To rapidly evaluate these characteristics in-silico, we utilized cheminformatics toolk-
its such as RDKit Bento et al., 2020, which provides robust functionalities for com-
puting a broad array of molecular properties from SMILES strings. Our analysis



3.8. Pipeline 21

of the generated compounds included key properties such as Molecular Weight
(MolWt), Topological Polar Surface Area (TPSA), Hydrogen Bond Donors and Ac-
ceptors (NumHDonors, NumHAcceptors), Number of Rotatable Bonds (NumRotat-
ableBonds), Number of Aromatic Rings (NumAromaticRings), Heavy Atom Count
(HeavyAtomCount), and Synthetic Accessibility Score (SAScore). Additionally, we
assessed the Murcko Scaffold to gain insight into the fundamental core structures,
evaluating the diversity and novelty of the generated molecular frameworks. For
further theoretical information about these metrics refer to C.2.

3.8 Pipeline

Our pipeline involved three main stages: model training, molecule generation, and
analysis of the generated compounds. This procedure was applied consistently
across all experimental setups, including in-domain, out-domain, and specific case
studies.

3.8.1 Model Training and Checkpoint Selection

All models were trained for 30 epochs, following to the architecture and training
methodology detailed in Section 3.3. Following training, a specific checkpoint was
selected for each model to be used for molecule generation. This selection criterion
focused on identifying checkpoints where the training loss (Fig. 3.5) was below 0.2
but before it had flattened, typically observed between epoch 6 and 10, with a target
loss value around 0.17. This approach was inspired by similar practices in literature,
such as Creanza et al., 2025, which reported optimal performance at a training loss of
0.16. These selected checkpoints contained the optimized learned weights necessary
for the molecular generation algorithm, as described in Section 3.4.

FIGURE 3.5: Loss curves for the selected models we are analyzing

3.8.2 Molecule Generation

Leveraging the trained models, 1000 molecules were generated for each given pro-
tein and pocket embedding. This process resulted in a diverse set of candidate com-
pounds for each target.
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3.8.3 Analysis of Generated Molecules

The generated molecules underwent a multi-step analysis to assess their quality and
relevance. This process included:

• Uniqueness Assessment: To evaluate the novelty of the generated molecules,
a nearest-neighbors Tanimoto similarity comparison was performed against
the training set. Molecules with a Tanimoto similarity of less than 0.5 to any
molecule in the training set were considered unique and selected for further
analysis.

• Internal Diversity: A Tanimoto similarity "all-against-all" analysis was then
conducted among the unique molecules. This ensured that the generated com-
pounds were structurally diverse from one another, preventing redundancy
within the set of promising candidates.

• Physicochemical Property Assessment: Finally, the physicochemical proper-
ties (e.g., molecular weight, Synthetic Accessibility score, etc.) of the selected
molecules were assessed to ensure they adhered to desired drug-like criteria.

• Predicted Interaction with Target: For the unique and valid molecules, Tensor-
DTI inference was performed. This step identified which of the generated com-
pounds were predicted to interact with the target protein, indicating their po-
tential as functional binders.
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Results

Our research involved training generative models and generating molecules across
a wide array of input combinations and for both ’with virus’ and ’without top 5
virus’ training datasets. To present a focused and interpretable analysis, and given
that similar conclusions emerged from the broader set of experiments, this section
will delve into a selected subset of these models. This strategic selection allows us to
directly address our primary research questions concerning the influence of dataset
composition and input representation on model performance. The comprehensive
details of all trained model combinations are provided in Appendix .

Specifically, this analysis aims to benchmark two critical aspects:

1. The impact of dataset composition, particularly the proportion of viral protein
families, on the model’s performance in molecule generation.

2. The efficacy of different input representation types for guiding the molecule
generation process.

By focusing on these key comparisons, we seek to provide clear insights into the fac-
tors that most significantly contribute to the successful generation of novel molecu-
lar candidates.

Finally, beyond these benchmarking analyses, we also investigated the model’s
capacity to generate unique SMILES strings specifically conditioned on the char-
acteristics of individual binding pockets. To this end, we selected two retrospective
case studies involving proteins known to possess two different binding pockets. The
primary objectives of this analysis were twofold: first, to determine if the model
could produce structurally distinct molecules when provided with different pocket
contexts, and second, to evaluate whether these generated candidates demonstrated
a high predicted propensity for interaction with their intended target pockets.

4.1 Benchmarking Dataset

To benchmark the impact of a high proportion of viral protein families within the
training set on molecule generation, we conducted a comparative analysis using the
simplest model configuration: one trained solely on protein embeddings derived
from ESM2, without any pocket-specific information. For this comparison, the ESM2
model trained on the ’Without Top 5 Virus’ dataset was selected from epoch 10,
exhibiting a loss of 0.18. Similarly, the model trained on the ’With Virus’ dataset
was chosen from epoch 8, also with a loss of 0.18. See model configuration in Table
4.1. Molecules were then generated from the in-domain set of each corresponding
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dataset, and their novelty was assessed by performing a nearest-neighbor Tanimoto
similarity analysis against their respective training sets.

Model Final Dim. # Parameters Non-virus Virus

ESM2 256 6,332,928 82,875 121,363

TABLE 4.1: Configuration and dataset sizes for the model trained
with ESM2 protein only representation on ’Without Top 5 Virus’ and

’With Virus’ datasets.

Regarding the similarity results (Table 4.2), no substantial differences were ob-
served between the models trained on the ’With Virus’ and ’Without Top 5 Virus’
datasets. Both models consistently generated molecules exhibiting high similarity
to their respective training sets. This aspect will be investigated in greater detail
in subsequent sections. Furthermore, both generated sets demonstrated high inter-
nal diversity, as evidenced by the all-to-all Tanimoto similarity analysis within each
dataset.

Metric Non-Virus Dataset Virus Dataset

Novelty Assessment (vs. Training Set)
Total Valid Molecules Analyzed 37,114 38,265
Tanimoto < 0.5 (Count) 5.27% (1956) 4.78% (1830)
0.5 ≤ Tanimoto < 1.0 (Count) 4.60% (1711) 4.43% (1696)
Tanimoto = 1.0 (Count) 90.12% (33447) 90.79% (34739)

Internal Diversity (All-to-All within Generated Set)
Total Molecules for Diversity Analysisa 3667 3526
Tanimoto < 0.5 (% of total pairs) 96.51% 99.12%
0.5 ≤ Tanimoto < 1.0 (% of total pairs) 2.94% 0.81%
Tanimoto = 1.0 (% of total pairs) 0.56% 0.07%

TABLE 4.2: Comparison of Molecular Generation Performance for
ESM2 Protein-Only Model on ’With Vrius’ and ’Without Top 5 Virus’
Datasets. aThese numbers represent the subset of molecules (Tanimoto ̸= 1

vs. training set) that were carried forward for diversity analysis.

The cross-dataset analysis (Table 4.3) further supported these observations, re-
vealing a low similarity between molecules generated from the ’With Virus’ and
’Without Top 5 Virus’ datasets. This low cross-similarity indicates that the models
are capable of generating molecules that are structurally distinct and specific to the
types of protein targets it was trained on.

Metric Value

Total Pairs Compared 3667 × 3526
Tanimoto < 0.5 (% of total pairs) 98.54%
0.5 ≤ Tanimoto < 1.0 (% of total pairs) 1.40%
Tanimoto = 1.0 (% of total pairs) 0.05%

TABLE 4.3: Cross-Dataset Diversity: Tanimoto Similarity between
Generated Molecules from ’With Virus’ and ’Without Top 5 Virus’

(ESM2 Protein-Only Model).
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This absence of significant bias is further corroborated by the family-level analy-
sis of generated molecules, shown in Figures D.1 and D.2. These figures illustrate the
distribution of validly generated molecules across protein families for each dataset.
It can be observed that even though the ’With Virus’ dataset inherently contained a
higher proportion of viral families during training, the resulting proportion of valid
generated molecules for those families was not disproportionate. This indicates that
the model did not exhibit a bias towards highly represented families, maintaining
a consistent proportion of valid generations across various protein families. This
can alse been confirmed with the distribution of physicochemical properties, as all
properties follow the train set distribution as seen in Figure D.3.

Based on our comparative analysis, we can conclude that the over-representation
of viral families within the dataset does not introduce a significant bias in the gener-
ation of molecules. Consequently, to streamline the subsequent benchmarking anal-
ysis, we will proceed solely with the ’With Virus’ dataset, as its inclusion does not
appear to compromise the model’s generalizability or the diversity of generated out-
puts.

4.2 Benchmarking Types of Input Representations

The configurations of the models employed for benchmarking the various input rep-
resentations are detailed in Table 4.4. This table outlines their respective final embed-
ding dimensions, total number of trainable parameters, the size of the final dataset
used for training, and the epoch and validation loss of the specific checkpoint se-
lected for molecule generation, which the training curves can be seen in Figure 3.5
b.

Model Final Dim. # Parameters Dataset (Virus) Epoch Loss

ESM2 + PickPocket 512 16,851,968 120,556 7 0.17
SaProt + PickPocket 512 16,851,968 123,272 7 0.15
TensorDTIprot+
TensorDTIpocket 512 16,851,968 116,295 6 0.16

TABLE 4.4: Models configurations, final dataset sizes for the different
input representations, and the selected checkpoint details.

4.2.1 Benchmarking Pocket Representation

Our first evaluation assessed whether the inclusion of pocket information substan-
tially contributes to the model’s generative capacity. As presented in Table 4.5, a
cross-comparison was performed between molecules generated by the ESM2 protein-
only model and the ESM2 + PickPocket model. This all-to-all Tanimoto similarity
analysis revealed that the vast majority of generated molecules were distinct be-
tween the two models. This high degree of dissimilarity indicates that incorporating
pocket information provides novel contextual cues to the generative model, leading
to the production of diverse molecular sets when comparing models with and with-
out this additional input. When oberving the distribution of the physicochemical
properties (Fig. D.4) between each other and the training dataset we can observe
that they share similar distributions.
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Metric
ESM2 Protein-Only

vs.
ESM2 + PickPocket

Total Pairs Compared 3526 × 4504
Tanimoto < 0.5 (% of total pairs) 99.42%

0.5 ≤ Tanimoto < 1.0 (% of total pairs) 0.53%
Tanimoto = 1.0 (% of total pairs) 0.05%

TABLE 4.5: Cross-Model Diversity: Impact of Adding Pocket Infor-
mation (ESM2 Protein-Only vs. ESM2 + PickPocket).

4.2.2 Benchmarking Types of Protein Representations

Deciding that adding pocket information can contribute greatly in the diversity of
the generated molecules, for the benchmarking of types of input representations
we have combined all with pocket information. As presented in Table 4.6, a nearest-
neighbor Tanimoto similarity analysis against the corresponding training set revealed
a substantial overlap with known molecules. Specifically, for all evaluated input
representations, a high percentage of generated molecules (ranging from 88.70% to
91.07%) were exact matches (Tanimoto = 1.0) to compounds in the training set.

Subsequently, focusing on the subset of molecules that were not exact matches to
the training set (i.e., those with Tanimoto similarity less than 1.0), an all-to-all Tani-
moto similarity analysis was performed within each generated set to assess internal
diversity. Across all models, we observed a consistently high level of diversity, with
approximately 99% of the generated molecular pairs exhibiting Tanimoto similarity
less than 0.5.

Metric
ESM2 +

PickPocket
SaProt +

PickPocket
TensorDTI

Prot+Pocket

Novelty Assessment (vs. Training Set)
Total Valid Molecules Analyzed 39,846 39,789 39,533
T < 0.5 (Count) 6.47% 6.22% 4.79%
0.5 ≤ T < 1.0 (Count) 4.84% 4.28% 4.14%
T = 1.0 (Count) 88.70% 89.49% 91.07%

Internal Diversity (All-to-All within Generated Set)
Total Mols. for Diversity Analysisa 4504 4180 3532
T< 0.5 (% of total pairs) 99.47% 99.58% 99.32%
0.5 ≤ T < 1.0 (% of total pairs) 0.45% 0.36% 0.62%
T = 1.0 (% of total pairs) 0.08% 0.06% 0.05%

TABLE 4.6: Comparison of Molecular Generation Performance for
Different Input Representations (Virus Dataset). T is abbreviation for
Tanimoto.aThese numbers represent the subset of molecules (Tanimoto ̸= 1

vs. training set) that were carried forward for diversity analysis.

Following the internal diversity analysis, we further investigated the extent to
which molecules generated by different input representation models overlap, as
shown in Table 4.7. This cross-model diversity assessment revealed that the sets
of molecules generated by each distinct input modality (ESM2 + PickPocket, SaProt
+ PickPocket, and TensorDTI Prot+Pocket) are highly distinct from one another.
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Specifically, pairwise Tanimoto similarity comparisons between the generated
sets consistently showed an high percentage of molecules with Tanimoto similarity
less than 0.5, ranging from 99.48% to 99.59%. On the other hand, the proportion
of molecules exhibiting moderate similarity (0.5 ≤ Tanimoto < 1.0) or exact matches
(Tanimoto = 1.0) between different model outputs was exceedingly low, consistently
below 1%.

This significant dissimilarity across generated sets implies that the different input
representations guide the generative model to explore and produce molecules from
distinct regions of the chemical space. This finding is highly advantageous, as it
suggests that leveraging diverse protein and pocket embedding modalities allows
for the generation of a broader and more varied pool of potential drug candidates.

Metric

ESM2 +
PickPocket

vs.
SaProt +

PickPocket

ESM2 +
PickPocket

vs.
TensorDTI

Prot+Pocket

SaProt +
PickPocket

vs.
TensorDTI

Prot+Pocket

Total Pairs Compared 4504 × 4180 4504 × 3532 4180 × 3532
T < 0.5 (% of total pairs) 99.59% 99.48% 99.55%
0.5 ≤ T < 1.0 (% of total pairs) 0.36% 0.48% 0.42%
T = 1.0 (% of total pairs) 0.05% 0.04% 0.03%

TABLE 4.7: Cross-Model Diversity: Tanimoto Similarity Between
Generated Molecule Sets from Different Input Representation Mod-

els. T is abbreviation for Tanimoto.

After filtering for valid molecules that were not exact matches to the training set,
we subjected the selected candidates to Tensor-DTI inference to predict their inter-
action with the target proteins. Table 4.8 summarizes these results for different in-
put representation models. We evaluated predicted interactions using three distinct
Tensor-DTI models, each pre-trained on a different dataset: SMPBind, PLINDER,
and BindingDB.

ESM2-PickPocket SaProt-PickPocket TensorDTI

SMPBind 478 458 393
Plinder 405 342 314
BindingDB 953 794 681
All Three Positive 19 23 15
Any Positive 1529 1341 1152
Total Rows 4504 4180 3532
Plinder % of Total 8.99% 8.18% 8.89%
Any Positive % of Total 33.95% 32.08% 32.62%

TABLE 4.8: Comparison of DTI predictions across three different pro-
tein/pocket representations - in-domain test set

Across all input representation combinations (ESM2-PickPocket, SaProt-PickPocket,
and TensorDTI), the results showed a consistent pattern in the number of molecules
predicted to interact with the targets. The table presents the raw counts of molecules
predicted as positive by each individual Tensor-DTI model, as well as the count
for molecules predicted as positive by "All Three" models and "Any Positive" by at
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least one. The percentages indicate the proportion of positively predicted molecules
relative to the "Total Rows" (which represents the initial set of unique and valid
molecules passed to Tensor-DTI). Overall, all input representation models yielded
similar rates of predicted binders, suggesting robust performance regardless of the
specific protein/pocket embedding used. Despite producing similar numbers of
predicted binders, each model generates chemically distinct molecules, highlight-
ing their complementary exploration of chemical space.

Upon computing the distribution of physicochemical properties (Fig. D.5) for
the molecules generated by the three different input representation models, we ob-
served highly consistent profiles. This indicates that despite the structural distinct-
ness among molecules generated by different models (as previously noted in our
cross-model diversity analyses), they collectively exhibit desirable drug-like prop-
erties. These consistent distributions suggest that the generative process effectively
guides the creation of compounds within a chemically relevant and druggable space.
Notice also in Table 4.9 the SA score for all models is below 4 also indicating that the
generated drugs for all the models seem easy to synthesize.

Metric
ESM2 +

PickPocket
SaProt +

PickPocket
TensorDTI

Prot+Pocket

Validity Proportion 0.797 ± 0.016 0.796 ± 0.015 0.791 ± 0.036
Synthetic Accessibility Score 3.538 ± 1.037 3.458 ± 1.060 3.737 ± 0.985

TABLE 4.9: Validity (Mean ± SD) and Synthetic Accessibility Scores
(Mean ± SD) for Molecules Generated by Different Input Representa-

tion Models (In-Domain).

4.3 Out-Domain Generation

We used the out-of-domain test set to determine if our models showed a bias toward
the training dataset during molecule generation. Table E.2 reveals that the models
continued to frequently generate molecules that were exact matches to compounds
already present in the training set.

Crucially, when we compared the performance of molecules generated for out-
of-domain targets with those from in-domain targets, we observed no major dif-
ferences in their overall behavior. This includes their novelty and diversity pro-
files, suggesting a consistent generative capability. While the models consistently
produce molecules seen in the training set, this behavior is not disproportionately
worse for unseen targets, indicating they do not significantly overfit to the specific
proteins from the training data. This consistency is further reflected in their valida-
tion scores, Synthetic Accessibility (SA) scores (Table E.4), and predicted TensorDTI
performance (Table E.5), as well as the physicochemical distributions (Fig. E.1) all of
which showed similar trends between in-domain and out-of-domain sets.

4.4 Assessing binding pocket specificity

Beyond the quantitative benchmarking, we performed retrospective case studies to
qualitatively assess the model’s ability to generate structurally distinct molecules



4.4. Assessing binding pocket specificity 29

specifically conditioned on different binding pockets, and to evaluate their predicted
binding efficacy. For this analysis, we selected two well-characterized protein tar-
gets, CDK2 and RET, each with experimentally resolved structures featuring both
canonical active sites and distinct cryptic or allosteric pockets.

• CDK2: A key cell cycle regulator and a prominent cancer target. We included
the active site pocket from 3fwq and the cryptic pocket from 5cu3 (Fig. 4.1a).
The presence of both active and cryptic sites in CDK2 offers a robust test of the
model’s capacity to generate molecules for varying binding modes.

• RET: A receptor tyrosine kinase implicated in various cancers. This case study
featured the active site pocket from 2ivs and a cryptic site from 7ju5 (Fig.
4.1b). Similar to CDK2, RET allowed us to investigate the model’s ability to dif-
ferentiate between conventional orthosteric and less common allosteric/cryptic
binding site chemistries.

(A) Left. CDK2 with ATP binding site (red) and
closed cryptic site (orange). Right. Open cryptic

cavity merging with ATP binding site (red).

(B) Left. RET with cryptic binding site in apo state
(red). Right. Open cryptic cavity (red).

FIGURE 4.1: Structural arrangements from CDK2 and RET kinases in
holo and apo states for their correspondent cryptic pockets.

The objective for these retrospective cases was to determine if, when conditioned
on these distinct pocket types (active vs. cryptic), the model would generate chem-
ically diverse molecules that are appropriate for their respective binding sites. Fur-
thermore, we aimed to ascertain if the generated candidates showed a high predicted
likelihood of interacting with the specific pocket they were conditioned on. This
qualitative analysis provides insights into the model’s precision in targeted molecule
generation.

Metric
ESM2 +

PickPocket
SaProt +

PickPocket
TensorDTI

Prot+Pocket

Novelty Assessment (vs. Training Set)
Total Valid Molecules Analyzed 74 113 549
Tanimoto < 0.5 (Count) 90.54% (67) 24.78% (28) 15.66% (86)
0.5 ≤ Tanimoto < 1.0 (Count) 6.76% (5) 12.39% (14) 11.84% (65)
Tanimoto = 1.0 (Count) 2.70% (2) 62.83% (71) 72.50% (398)

TABLE 4.10: Novelty Assessment of Generated Molecules for CDK2
(vs. Training Set).

Our analysis of 1000 generated molecules for a specific pocket reveals that the
TensorDTI protein+Pocket model consistently generated more valid molecules ex-
ceeding the Tanimoto similarity thresholds for both target types. This is evident
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Metric
ESM2 +

PickPocket
SaProt +

PickPocket
TensorDTI

Prot+Pocket

Novelty Assessment (vs. Training Set)
Total Valid Molecules Analyzed 66 123 538
Tanimoto < 0.5 (Count) 87.88% (58) 30.89% (38) 15.24% (82)
0.5 ≤ Tanimoto < 1.0 (Count) 10.61% (7) 13.82% (17) 16.54% (89)
Tanimoto = 1.0 (Count) 1.52% (1) 55.28% (68) 68.22% (367)

TABLE 4.11: Novelty Assessment of Generated Molecules for RET
(vs. Training Set).

in Tables 4.10 and 4.11. Despite the differences in molecule generation, all mod-
els showed comparable performance when predicting the interaction of the de novo
molecules against their respective targets.

When we examined the interaction of our generated molecules with CDK2 bind-
ing sites, only a small fraction (out of 1000) were predicted to bind. Interestingly,
our models produced a similar number of interacting molecules for both the cryptic
and active binding pockets (see Table 4.13). However, the molecules generated for
the active site showed low Tanimoto similarity to those generated for the cryptic site
(Table 4.12), suggesting they are distinct.

To investigate the pocket specificity of our generated molecules further, we con-
ducted an additional Drug-Target Interaction prediction. This time, we swapped the
pocket labels (i.e molecules generated for the cryptic site were paired with the ac-
tive pocket, and vice versa). Our aim was to determine if the molecules were truly
specific to the pocket they were designed for.

The results, presented in Table 4.14, showed that the DTI model predicted roughly
the same number of interacting molecules across all three generation models, even
with the swapped labels. This indicates that while our models can generate molecules
that bind, they do not necessarily exhibit pocket-specific interactions. This lack
of specificity might stem from the model’s tendency to learn from highly bind-
ing motifs, despite efforts to avoid replicating exact training set molecules. Our
PAINS analysis of the training set (3.1.2) revealed a significant presence of highly
promiscuous drugs, which likely influenced the model to generate unique molecules
that bind strongly to pockets in a general sense, rather than providing the desired
pocket-specific binding. We leave the removal of PAINS-related interactions from
the dataset and the subsequent generation of molecules under these conditions for
future work.

Regarding the physicochemical property distributions, although we do not ob-
serve identical distributions to the training set, primarily due to differences in the
number of interactions, the values of the generated and accepted molecules remain
within ranges typically associated with drug-like compounds. See Figures F.2 and
F.1 for the active and cryptic sites of CDK2, and Figures F.4 and F.3 for both binding
sites of RET.

When performing the same types of analysis for RET target, we observe the same
behaviours concluding the same, see F for DTI and physicochemical property anal-
ysis.

These figures present grid visualizations of generated SMILES compounds, iden-
tified by the ESM2+PickPocket model with high predicted drug-target interaction
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Tanimoto Similarity ESM2 + SaProt + TensorDTI
PickPocket PickPocket Prot + Pocket

CDK2 (3FW vs 5CU3)
Tanimoto < 0.5 100.00% 92.00% 95.34%
0.5 ≤ Tanimoto < 1 0.00% 3.29% 4.53%
Tanimoto == 1 0.00% 4.71% 0.12%

RET (2IVS vs 7JU5)
Tanimoto < 0.5 100.00% 96.55% 93.53%
0.5 ≤ Tanimoto < 1 0.00% 1.46% 6.38%
Tanimoto == 1 0.00% 1.99% 0.08%

TABLE 4.12: Similarity of Molecules Between Cryptic and Active
Pockets.

scores for specific CDK2 and RET protein pockets (Figures F.5 and F.6).

(A) CDK2 Active Pockets

(B) CDK2 Cryptic Pockets

FIGURE 4.2: Top confident binding generated molecules for CDK2
protein, categorized by pocket type.
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Pocket Type Metric ESM2- SaProt- TensorDTI
PickPocket PickPocket

Cryptic Site
(5cu3)

SMPBind 0 0 1
Plinder 4 3 7
BindingDB 13 6 17
All Three Positive 0 0 0
Any Positive 15 7 18
Total Rows 34 17 67

Plinder % of Total 11.76% 17.65% 10.45%
Any Positive % of Total 44.12% 41.18% 26.87%

Active Site
(3fwq)

SMPBind 0 0 0
Plinder 2 3 5
BindingDB 11 3 23
All Three Positive 0 0 0
Any Positive 11 4 25
Total Rows 38 25 84

Plinder % of Total 5.26% 12.00% 5.95%
Any Positive % of Total 28.95% 16.00% 29.76%

TABLE 4.13: Interaction predictions for CDK2 with correct (cryp-
tic 5cu3 vs. active 3fwq) pocket assignment.

Pocket Type Metric ESM2- SaProt- TensorDTI
PickPocket PickPocket

Active Site
(5cu3)

SMPBind 0 0 0
Plinder 4 4 6
BindingDB 11 3 26
All Three Positive 0 0 0
Any Positive 12 5 26
Total Rows 38 25 84

Plinder % of Total 10.53% 16.00% 7.14%
Any Positive % of Total 31.58% 20.00% 30.95%

Cryptic Site
(3fwq)

SMPBind 0 0 0
Plinder 3 2 5
BindingDB 9 6 14
All Three Positive 0 0 0
Any Positive 11 6 15
Total Rows 34 17 67

Plinder % of Total 8.82% 11.76% 7.46%
Any Positive % of Total 32.35% 35.29% 22.39%

TABLE 4.14: Interaction predictions for CDK2 after swapping pocket
labels (active 5cu3 vs. cryptic 3fwq).
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Chapter 5

Conclusions and Future Work

This thesis successfully developed and evaluated a novel pocket-aware generative
model designed for de novo molecule generation from pre-trained protein and pocket
embeddings. Our findings provide crucial insights into the capabilities and limita-
tions of such models in targeted drug discovery.

Firstly, our analysis revealed that the presence of a disproportionate amount of
viral proteins in the training dataset does not introduce a significant bias in the
molecule generation process. This suggests the model’s ability to generalize across
different protein families, which is vital for broad applicability in drug design.

However, a notable limitation observed across all evaluated models is their propen-
sity to generate molecules identical to compounds within their training sets. This
high fidelity to known structures, evidenced by significant Tanimoto = 1.0 similar-
ities, indicates a potential issue of overfitting, thereby limiting the exploration of
truly novel chemical space. Addressing this will be critical in future work, poten-
tially through strategies like selecting earlier, less overfitted checkpoints, or imple-
menting advanced generative techniques focused on promoting greater molecular
diversity and novelty.

Despite this tendency towards known structures, within the subset of valid molecules
that are dissimilar to the training set, our models demonstrated the ability to gen-
erate diverse compounds, as confirmed by all-to-all Tanimoto similarity analyses.
Furthermore, these generated molecules consistently exhibited favorable physico-
chemical properties within acceptable ranges, suggesting their strong potential for
practical application.

Yet, a deeper examination highlighted a challenge: while our model is sensi-
tive to pocket information, it does not consistently produce truly pocket-specific
molecules, as demonstrated in the two kinase case studies. This limitation stems
primarily from the characteristics of the training dataset itself, specifically the high
number of promiscuous molecules, as indicated by PAINS analysis. The model,
learning from these promiscuous motifs, might inadvertently generate molecules
with broad binding potential rather than highly selective pocket-specific binders.

Once these challenges related to novelty and pocket specificity are overcome,
future work could naturally extend to more rigorous validation of the generated
molecules. This could involve computational methods such as molecular docking
to predict the precise binding pose and affinity of the generated SMILES with their
target proteins. Ultimately, the most definitive step could be experimental assays to
confirm the binding and functional modulation of these computationally designed
molecules in a laboratory setting, thereby completing the drug discovery cycle.
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Appendix A

Dataset

FIGURE A.1: Proportion of top 50 most frequent families in ’Without
Top 5 Virus’ set (In-domain)
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Appendix B

Models Configurations

Table B.1 provides a comprehensive overview of the configurations for all models
trained and used for molecule generation in this study. In addition to concatenation,
we also explored weighted addition as a method for combining protein and pocket
embeddings.

For weighted addition, both protein and pocket embeddings were resized to
match dimensions (256). They were then combined using a weighted sum, ex-
pressed as α × src_prot + β × src_pocket, where α and β are user-defined weights.
This approach allowed the model to modulate the relative influence of global pro-
tein context versus localized pocket information. However, no significant difference
in the performance of the generated molecules was observed when using weighted
addition compared to concatenation. Consequently, models trained with weighted
addition are not included in the main text or in further detailed analysis.

Model Alpha/ Final # Params Non- Virus Fusion Notes
Beta Dim. virus Type

PickPocket 0-1 256 6,332,928 84,806 123,272 - Pocket
ESM2 1-0 256 6,332,928 82,875 121,363 - Protein
SaProt 1-0 256 6,332,928 85,164 124,104 - Protein
ESM2 +
PickPocket

1-2 256 6,332,928 82,532 120,556 Weighted Add Fusion

SaProt +
PickPocket

1-2 256 6,332,928 84,806 123,272 Weighted Add Fusion

ESM2 +
PickPocket

- 512 16,851,968 82,532 120,556 Concat Fusion

SaProt +
PickPocket

- 512 16,851,968 84,806 123,272 Concat Fusion

TensorDTI 0-1 256 6,332,928 79,085 116,295 - Pocket
TensorDTI 1-0 256 6,332,928 78,073 117,860 - Protein
TensorDTIprot +
TensorDTIpocket

1-2 256 6,332,928 78,073 116,295 Weighted Add Fusion

TensorDTIprot +
TensorDTIpocket

- 512 16,851,968 78,073 116,295 Concat Fusion

TABLE B.1: Configurations and dataset sizes for models trained on
viral and non-viral DTI tasks.
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Appendix C

Post-generation Analysis of
Molecules

C.1 Drug Similarity Metrics

One of the most widely used and effective molecular similarity metrics is the Tan-
imoto similarity coefficient (Bajusz, Rácz, and Héberger, 2015), particularly when
applied to molecular fingerprints. Molecular fingerprints (Muegge and Mukherjee,
2016) are bit string representations of molecules, where each bit corresponds to the
presence or absence of a specific substructural feature or chemical property.

The Tanimoto coefficient (also known as the Jaccard index for binary data) quan-
tifies the similarity between two sets of features. When applied to binary molecular
fingerprints, it is calculated as the ratio of the number of common bits set in both
fingerprints to the total number of bits set in either fingerprint. Mathematically, for
two fingerprints A and B, the Tanimoto coefficient is given by:

Tanimoto(A, B) =
|A ∩ B|
|A ∪ B| =

Nc

NA + NB − Nc

Where:

• Nc is the number of bits set in both fingerprint A and fingerprint B (common
features).

• NA is the number of bits set in fingerprint A.

• NB is the number of bits set in fingerprint B.

A Tanimoto similarity value ranges from 0 to 1, where 0 indicates no common
features (completely dissimilar) and 1 indicates identical fingerprints (identical molecules
in terms of represented features). A higher Tanimoto score signifies greater struc-
tural and/or substructural similarity between the two molecules. In drug discovery,
a Tanimoto similarity of 0.7 or higher between two compounds based on common
fingerprints is often considered indicative of high structural similarity, frequently
implying similar biological activity.

The application of Tanimoto similarity extends to evaluating the novelty and
diversity of generated molecule sets. By comparing newly generated compounds
against known active molecules or existing chemical libraries, researchers can assess
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whether the generative model is merely reproducing known structures or explor-
ing genuinely novel chemical space while maintaining structural resemblance to de-
sired archetypes. This balance between novelty and retaining beneficial features is
paramount for effective de novo drug design.

C.2 Physicochemical Properties

Beyond simply generating novel molecular structures, it is crucial that these gener-
ated compounds possess characteristics that make them "drug-like." This concept of
drug-likeness refers to a set of physicochemical and structural properties commonly
observed in successful drugs. Adhering to these properties increases the likelihood
that a molecule will exhibit favorable pharmacokinetics, that is, how the body han-
dles a drug in terms of absorption, distribution, metabolism, excretion and toxicity
(ADMET), thereby improving its chances of progressing through the drug discovery
pipeline.

The computation of these key physicochemical properties from a molecule’s struc-
ture is essential for the rapid in-silico evaluation of generated compounds. This is
frequently accomplished using cheminformatics toolkits, such as RDKit Bento et al.,
2020. RDKit is an open-source cheminformatics software package widely used in
drug discovery and computational chemistry for manipulating chemical structures,
generating descriptors, and performing various cheminformatics tasks. It provides
robust functionalities to parse molecular representations like SMILES strings and
efficiently compute a broad array of molecular properties.

In order to analyse our generated molecules, we have assessed some selected
properties:

• Molecular Weight (MolWt): This indicates the overall size of a molecule. Most
oral drugs fall within a specific molecular weight range (e.g., generally less
than 500 Daltons, as per Lipinski’s Rule of Five), as excessively large molecules
often struggle with absorption.

• Topological Polar Surface Area (TPSA): TPSA measures the sum of surfaces
of all polar atoms (oxygen, nitrogen, and attached hydrogens). It’s a good
indicator of a molecule’s ability to permeate cell membranes and is correlated
with drug absorption and brain penetration.

• Hydrogen Bond Donors (NumHDonors) and Acceptors (NumHAcceptors):
These counts reflect a molecule’s capacity to form hydrogen bonds, which
are vital for interacting with biological targets and influencing solubility and
membrane permeability.

• Number of Rotatable Bonds (NumRotatableBonds): This indicates molecular
flexibility. While some flexibility is beneficial for target binding (e.g., induced
fit), excessive flexibility can lead to promiscuous binding and make a molecule
difficult to optimize.

• Number of Aromatic Rings (NumAromaticRings): Aromaticity is common in
drug molecules, influencing their stability, rigidity, and interaction with aro-
matic residues in proteins.
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• Heavy Atom Count (HeavyAtomCount): The number of all non-hydrogen
atoms in the molecule, providing another measure of molecular size and com-
plexity.

• Murcko Scaffold: Beyond individual properties, analyzing the Murcko scaf-
fold provides insight into the fundamental core structure of a molecule. This
scaffold is the common ring and linker framework of a molecule, stripping
away side chains. Generating molecules with desirable or novel scaffolds
is often a goal in drug design, as scaffolds largely dictate the overall shape
and binding potential. By examining the scaffold of generated molecules, re-
searchers can assess their structural diversity and novelty relative to known
drugs.

• Synthetic Accessibility Score (SAScore): A computational metric used to es-
timate how easy or difficult it is to synthesize a molecule. Lower scores gen-
erally indicate easier synthesizability, which is a critical factor for the practical
development of a drug candidate (Ertl and Schuffenhauer, 2009).
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Appendix D

Results on Different
Benchmarkings

FIGURE D.1: Validity Proportion of molecules generated from In-
domain ’With Virus’ set
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FIGURE D.2: Validity Proportion of molecules generated from In-
domain ’Without top 5 Virus’ set

FIGURE D.3: Physicochemical Properties distribution of molecules
generated from In-domain With Virus set and In-domain Without Top

5 Virus set compared to original train+val PLINDER split.
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FIGURE D.4: Physicochemical Properties distribution of molecules
generated from In-domain With Virus set from models ESM2 protein
only and ESM2 + PickPocket compared to original train+val PLIN-

DER split.
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FIGURE D.5: Physicochemical Properties distribution of molecules
generated from In-domain With Virus set from models ESM2 + Pick-
Pocket, SaProt+PickPocket and TensorDTI Prot+Pocket compared to

original train+val PLINDER split.
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Appendix E

Out-of-Domain Dataset

Metric ESM2 Protein-Only vs. ESM2 + PickPocket

Tanimoto Similarity Between Generated Molecule Sets
Total Pairs Compared 3545 × 4187
Tanimoto < 0.5 (% of total pairs) 99.35%
0.5 ≤ Tanimoto < 1.0 (% of total pairs) 0.61%
Tanimoto = 1.0 (% of total pairs) 0.04%

TABLE E.1: Cross-Model Diversity (Out-of-Domain): Impact of
Adding Pocket Information (ESM2 Protein-Only vs. ESM2 + Pick-

Pocket).

Metric
ESM2 +

PickPocket
SaProt +

PickPocket
TensorDTI

Prot+Pocket

Novelty Assessment (vs. Training Set)
Total Valid Molecules Analyzed 39,276 39,564 38,897
Tanimoto < 0.5 (Count) 5.73% (2249) 6.52% (2581) 5.59% (2174)
0.5 ≤ Tanimoto < 1.0 (Count) 4.93% (1938) 4.67% (1846) 4.48% (1741)
Tanimoto = 1.0 (Count) 89.34% (35089) 88.81% (35137) 89.93% (34982)

Internal Diversity (All-to-All within Generated Set)
Total Molecules for Diversity Analysisa 4187 4427 3915
Tanimoto < 0.5 (% of total pairs) 99.31% 99.58% 99.41%
0.5 ≤ Tanimoto < 1.0 (% of total pairs) 0.64% 0.35% 0.55%
Tanimoto = 1.0 (% of total pairs) 0.05% 0.08% 0.04%

TABLE E.2: Comparison of Molecular Generation Performance for
Different Input Representations (Out-of-Domain Dataset).aThese num-
bers represent the subset of molecules (Tanimoto < 1.0 vs. training set) that

were carried forward for diversity analysis.
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Metric

ESM2 +
PickPocket

vs.
SaProt +

PickPocket

ESM2 +
PickPocket

vs.
TensorDTI

Prot+Pocket

SaProt +
PickPocket

vs.
TensorDTI

Prot+Pocket

Tanimoto Similarity Between Generated Molecule Sets
Total Pairs Compared 4187 × 4427 4187 × 3915 4427 × 3915
Tanimoto < 0.5 (% of total pairs) 99.53% 99.43% 99.60%
0.5 ≤ Tanimoto < 1.0 (% of total pairs) 0.43% 0.54% 0.38%
Tanimoto = 1.0 (% of total pairs) 0.04% 0.03% 0.03%

TABLE E.3: Cross-Model Diversity (Out-of-Domain): Tanimoto Simi-
larity Between Generated Molecule Sets from Different Input Repre-

sentation Models.

Metric
ESM2 +

PickPocket
SaProt +

PickPocket
TensorDTI

Prot+Pocket

Validity Proportion 0.786 ± 0.017 0.791 ± 0.017 0.778 ± 0.035
Synthetic Accessibility Score 3.733 ± 1.012 3.439 ± 1.058 3.786 ± 0.999

TABLE E.4: Validity (Mean ± SD) and Synthetic Accessibility Scores
(Mean ± SD) for Molecules Generated by Different Input Representa-

tion Models (Out-of-Domain).

FIGURE E.1: Physicochemical Properties distribution of molecules
generated from Out-domain With Virus set from models ESM2 +
PickPocket, SaProt+PickPocket and TensorDTI Prot+Pocket com-

pared to original train+val PLINDER split.
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ESM2-PickPocket SaProt-PickPocket TensorDTI

SMPBind 314 284 365
Plinder 543 459 482
BindingDB 728 730 735
All Three Positive 9 14 6
Any Positive 1403 1293 1381
Total Rows 4187 4427 3915
Plinder % of Total 12.97% 10.37% 12.31%
Any Positive % of Total 33.51% 29.21% 35.27%

TABLE E.5: Comparison of DTI predictions across three different pro-
tein/pocket representations - Out-of-Domain test set
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Retrospective Extra Figures

In this section we can find the Tables and Figures regarding the same analysis done
with the retrospective case of CDK2 but with RET target. The Physicochemical prop-
erty distributions are also found here.

FIGURE F.1: Physicochemical properties distribution of generated
and accepted molecules targeting the **cryptic site** of CDK2. Al-
though absolute distributions differ from the training set due to fewer

interactions, values remain within drug-like ranges.
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FIGURE F.2: Physicochemical properties distribution of generated
and accepted molecules targeting the **active site** of CDK2. Dis-

tributions align with druggable molecule profiles.
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FIGURE F.3: Physicochemical properties distribution of generated
molecules for the **cryptic site** of RET. Despite fewer counts, gener-

ated molecules fall within expected drug-like ranges.
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FIGURE F.4: Physicochemical properties distribution of generated
molecules for the **active site** of RET. Similarity to training distri-

bution reflects alignment with known drug-like space.
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Pocket Type Metric ESM2- SaProt- TensorDTI
PickPocket PickPocket

Cryptic Site
(2IVS)

SMPBind 0 0 0
Plinder 0 2 6
BindingDB 26 22 58
All Three Positive 0 0 0
Any Positive 26 22 59
Total Rows 33 26 79

Plinder % of Total 0.00% 7.69% 7.59%
Any Positive % of Total 78.79% 84.62% 74.68%

Active Site
(7JU5)

SMPBind 0 0 0
Plinder 0 1 2
BindingDB 23 19 58
All Three Positive 0 0 0
Any Positive 23 19 58
Total Rows 32 29 92

Plinder % of Total 0.00% 3.45% 2.17%
Any Positive % of Total 71.88% 65.52% 63.04%

TABLE F.1: Interaction predictions for RET with correct (cryptic 2IVS
vs. active 7JU5) pocket assignment.

Pocket Type Metric ESM2- SaProt- TensorDTI
PickPocket PickPocket

Active Site
(2IVS)

SMPBind 0 0 0
Plinder 0 1 2
BindingDB 25 22 53
All Three Positive 0 0 0
Any Positive 25 22 53
Total Rows 32 29 92

Plinder % of Total 0.00% 3.45% 2.17%
Any Positive % of Total 78.13% 75.86% 57.61%

Cryptic Site
(7JU5)

SMPBind 0 0 0
Plinder 0 3 7
BindingDB 26 19 64
All Three Positive 0 0 0
Any Positive 26 19 65
Total Rows 33 26 79

Plinder % of Total 0.00% 11.54% 8.86%
Any Positive % of Total 78.79% 73.08% 82.28%

TABLE F.2: Interaction predictions for RET after swapping pocket la-
bels (active 2IVS vs. cryptic 7JU5).
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(A) CDK2 Active Pockets

(B) CDK2 Cryptic Pockets

FIGURE F.5: Top confident binding generated molecules for CDK2
protein, categorized by pocket type.

(A) RET Active Pockets

(B) RET Cryptic Pockets

FIGURE F.6: Top confident binding generated molecules for RET pro-
tein, categorized by pocket type.
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