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Abstract: The Quantum Zeno Effect slows the evolution of a quantum system through frequent
measurements, preventing state transitions. In the limit of infinitely fast measurements, the evolu-
tion effectively freezes. Quantum Zeno Dynamics (QZD) extends this by confining the system to a
subspace of its Hilbert space. This work examines QZD through position and momentum measure-
ments modeled as Von Neumann projections. Frequent measurements confine the system within
the projection subspace, leading to remarkable effects near its boundaries. Position measurements
on a free particle induce momentum reversals, whereas momentum measurements on a particle in a
symmetric potential give rise to the novel phenomenon of equipotential translocation.
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I. INTRODUCTION

Zeno of Elea, a 5th-century Greek philosopher, was
a key figure in the Eleatic School, led by Parmenides,
which argued that reality is unchanging and motion is an
illusion [I]. His paradoxes, such as the famous ”arrow”
and ”Achilles and the tortoise,” contend that motion
cannot exist because, at any given moment, an object in
motion is at rest in a specific position. These paradoxes,
later resolved through calculus and the concept of
limits, influenced modern mathematics and physics by
introducing ideas of infinite series and continuity. The
quantum Zeno effect, named after him, mirrors his
paradoxes by describing how frequent observation can
freeze the evolution of a quantum system.

Frequent measurements slow the evolution of a quan-
tum system, hindering transitions to states different
from the initial one. This phenomenon, known as the
quantum Zeno effect (QZE), arises from general features
of the Schrédinger equation, leading to quadratic be-
havior of the survival probability at short times. Von
Neumann [2] first identified the connection between
short-time evolution and the Zeno effect, though his
work on quantum thermodynamics went unnoticed for
35 years. Attention grew with Beskow and Nilsson’s
[3] suggestion that frequent position measurements
in a bubble chamber could prevent particle decay,
supported by Khalfin [4] and mathematically formalized
by Friedman [5]. The QZE concept was ultimately so-
lidified by Misra and Sudarshan [6], who connected it to
Zeno’s paradox and blended rigorous mathematics with
philosophical reflections. Theoretical until 1988, Cook
[7] proposed testing it with oscillating systems, leading
to Itano et al.’s [§] landmark experiment. Subsequent
studies verified the effect in various systems, including
photon polarization, nuclear spins, ions, optical pump-
ing, NMR, and Bose-Einstein condensates. In these
implementations, the quantum system is confined to its
initial state through one-dimensional projections.

Building on the quantum Zeno effect, quantum Zeno
dynamics (QZD) [9] extends the concept by showing
that frequent measurements can allow a system to evolve
within a subspace defined by the measurement process.
Unlike QZE, which freezes a system in its initial state,
QZD enables evolution within a multidimensional ”Zeno
subspace” [10]. Grounded in Misra and Sudarshan’s the-
orem [6], this phenomenon broadens the understanding
of measurement and quantum evolution. Recently, QZD
was observed in a rubidium condensate [I1], revealing a
superselection rule between two- and three-dimensional
subspaces.

In this work, we investigate QZD in the infinite-
dimensional Hilbert spaces of position and momentum,
with measurements modeled as Von Neumann projec-
tions. We first analyze the effects of frequent position
measurements on a free particle, observing that, in the
limit of many measurements, QZD manifests as unitary
evolution confined to the Hilbert subspace defined by the
Zeno subspace, subject to rigid Dirichlet boundary con-
ditions [I2]. Next, motivated by the previous results,
we investigate the effect of frequent momentum measure-
ments on a particle interacting with a potential barrier
exceeding its total energy. This setup causes momentum
reversal classically, as the particle energy is insufficient to
overcome the barrier. Similar to position measurements,
the state of the particle in momentum space is confined
within the Zeno subspace, resulting in intriguing dynam-
ics analogous to those observed in position space. We
explore both tunneling and non-tunneling scenarios.

We begin by establishing the foundational framework
for the systems under consideration in Section II. Next,
in section III, we investigate the effects of many position
measurements on a free particle. Subsequently, section
IV contrasts these findings with the phenomena observed
when many momentum measurements are performed on
a particle in a potential. Finally, section V concludes the
work with a summary of the resulting dynamics.
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II. THEORETICAL FRAMEWORK

We consider a particle of mass m initially in the quan-
tum state [¢)g). The particle is localized around the po-
sition zog and its motion is constrained to one spatial
dimension. It has an initial positive mean momentum
po, corresponding to a kinetic energy E. = pZ/2m. The
initial state of the particle is always such that it travels
from left to right, in the positive z-direction. The wave
function of the incoming particle has been chosen to be
a Gaussian wave packet, which in momentum space is
characterized by the central momentum py and the width
Apg. Following Ref.[I3], both space and time have been
transformed into dimensionless units. This transforma-
tion relies on characteristic lengths of the system. Both
x and t are normalized using the width of the incoming
wave packet, Axg, and the time required for the parti-
cle to traverse this packet width Aty. According to the
Heisenberg uncertainty principle, the wave packet width
has been expressed as Axg = h/Apg, and the time re-
quired for the particle to traverse its own wave function
is given by Aty = mAxzg/py = hm/Apopo assuming a
speed given by po/m. For future mathematical simplicity
a factor of 2 has been applied to the temporal normal-
ization factor. The final transformation is given by & =
x/(h/Apg) for space and 7 = t/(2hm/Apopo) for time.
The free-particle speed in these units is d¢/dr = 2. The
wave-packet representation in the normalized positions
space is (&) = (2/m) /" exp [~ (€ — &)?] exp(irof), with
ko = po/Ape. The time evolution of the wave packet is
determined by solving the time-dependent Schrédinger
equation (TDSE) using a Crank-Nicolson algorithm (see
Appendix 1).

A. The Time-Dependent Schrédinger Equation

In general, our Hamiltonian comprises two contribu-
tions: one as kinetic energy from the translational and
spreading motion of the wave packet, and another from
the interaction with a potential in which the particle is
immersed. The specific potentials used will be discussed
later. Let V(§) denote one such potential, with V; as
its maximum value. Employing dimensionless units, the
TDSE is given by:

O 1 6%y
ZE = _?08762 + /601}011(5)1/} . (1)

Parameter kg characterizes the definition of the momen-
tum and governs the spreading speed of the wave packet.
As kg increases, the conventional momentum-space rep-
resentation of the wave packet narrows, resulting in a
decrease in the spreading speed. We operate in a regime
in which k¢ > 1, where the wave packet translation domi-
nates over its spreading (see Appendix 2.1). The quantity
vov (&) rescaled V(£) in units of the initial kinetic energy.
The parameter vg = Vy/E. relates the kinetic energy of
the particle to the maximum of the potential, while v(§)
is a normalized potential that retains the shape of V()
but is scaled so that its maximum value is 1.
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B. Potential Barriers and Wells

The study will initially be conducted with a free
particle. Later, to induce changes in the momentum
of the particle, a potential barrier will be introduced
into the theoretical setup. A potential barrier, cen-
tered at € = 0, with a height of 1 can be modeled as
v(€) = 1/[1 4 1£/&|]. Parameter &, represents half the
width of the barrier while « is a smoothness parameter.
In the limit o — oo, the potential approaches a square
barrier. In this limiting case, the potential is zero
everywhere except within the region [—&p,&p], where it
equals 1. This potential can be scaled by vg, defining
classically allowed and forbidden regions. According to
classical mechanics, if a right-moving particle is placed
at & < 0 such that £ < —& (i.e., to the left of the
barrier), and if the initial total energy of the particle
is purely kinetic, two behaviors are possible. If vy < 1
(i.e., E. > Vp), the particle is expected to cross the
barrier. In contrast, if vg > 1 (i.e., Vo > E.), the
particle will return at the turning point, where energy
conservation is violated. In quantum mechanics, the
regime vy > 1 does not strictly block the particle from
crossing the barrier due to quantum tunneling (QT).
The wave function undergoes rapid decay within the
potential barrier. However, if the wave function extends
beyond this decay, there exists a nonzero probability of
finding the particle on the opposite side of the barrier.
The tunneling probability increases with the spreading
speed, and strongly decreases with the height and width
of the barrier. Thus, under certain conditions involving
these three magnitudes, a quantum particle may still be
able to cross the barrier (see Appendix 2.2).

A potential well is introduced later in the discussion.
It is modeled as v(§) = 1 — 1/ [1 + |£/&|“], centered at
& = 0 with height 1. Here, &, represents half the width of
the well and « is a smoothness parameter. In the limit
a — 00, the potential approaches a square well. Simi-
larly to the barrier case, when vy < 1, a classical particle
initially placed inside the well and moving to the right is
expected to escape. When vy > 1, the classical particle
will turn around as soon as energy conservation is vio-
lated, remaining confined inside the well. In a quantum
regime, although a fraction of the wave function may ex-
tend over the well, no quantum tunneling occurs, as the
interior of the well is the only allowed region.

C. Zeno Dynamics via Von Neumann Projections

We adopt an operational approach to measurements
as selective von Neumann projections, where the mea-
surement of an observable A retains only the case within
the Zeno subspace defined by the projection, eliminating
all wave function components outside the Zeno subspace.
This type of measurement is assumed to be performed in-
stantaneously and no re-normalization occurs after each
measurement. We perform measurements of normalized
position ¢ = z/(h/Apy) and momentum k = p/Apg.
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The measurements are computationally represented as
the product of a box function, defined by the projection
limits, and the wave function in the relevant observable
space, either 1(£) in position space or its Fourier trans-
form v (k) in momentum space. Since we are interested
in investigating frequent measurements, the state of the
particle after N measurements is given by:

|'¢1N> _ He—iHAT o He_iHATHG_iHAT|w(0)> , (2)

where H represents the Hamiltonian and II =
[ |a)(a|da is the projector onto the Zeno sub-

QAmin

space defined by the measurement of A, which is either
€ or &. The initial state |(0)) is always selected such
that it is entirely contained within the Zeno subspace.
In this framework, measurements are performed every
A7. At each step between measurements, the temporal
evolution of the wave function is computed using the
Crank-Nicolson algorithm to solve the Schrédinger

equation .

The survival probability after N measurements (i.e.,
the probability of the final state being found within the
Zeno subspace) is the probability that all measurements
lead to an outcome where the intermediate state is found
within the Zeno subspace. This probability is given by
the product Pﬁ, = PiP,Ps..., where P; is the proba-
bility of a positive outcome after the i-th measurement.
The survival probability Pj\g, is expected to approach 1
as N — oo, in accordance with Misra and Sudarshan’s
conjecture [6]. Consequently, in this limit, the state of
the particle is expected to always be found within the
Zeno subspace. Since our measurements are defined as
Von Neumann projections, the removal of wave function
components outside the Zeno subspace leads to a reduc-
tion in the norm. As a result, the survival probability af-
ter N measurements is given by the square of the norm,
Py = ||(¥n]wn)]|?. In the limit of a large number of
measurements, we expect the norm to be preserved, with
no further loss of probability.

IIT. ZENO DYNAMICS VIA FREQUENT
POSITION MEASUREMENTS

QZD via position measurements are studied. A
Gaussian wave packet, representing a right-moving
free particle centered around &p, is employed, with no
potential applied. We perform N position measure-
ments defining the Zeno subspace [{min,Emax] On the
state of the particle every AT = Tax/N, with Thax
denoting the final evolution time. The state after
N measurements is given by equation 7 with the
Hamiltonian H = (—1/kg)9?/0¢? and the projector
Im = fE;:X [€)(¢]dé. The right boundary of the Zeno
subspace, &max, is chosen such that, in the absence of
measurements, the wave packet would extend beyond
&max, ensuring a mnonzero probability of finding the
particle for & > &ax.
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In the absence of measurements, the temporal evolu-
tion results in a wave packet centered around &y + 27yax,
with increased uncertainty due to its inherent spreading
(see Appendix 2.1). This natural progression is illus-
trated in FIG. [I] (Left), which compares the initial and
final profiles of the wave packet. When measurements
are introduced, the fraction of the wave packet surpass-
ing the Zeno subspace boundaries is eliminated at each
step. As the number of measurements increases, a sur-
vival tendency emerges, with fewer components surpass-
ing the Zeno subspace boundary and the removed frac-
tion decreasing. In the limit of many measurements, no
components are eliminated, and an interference pattern
arises during the interaction, resembling the effect of a
virtual wall imposed by the measurements, as shown in
FIG. [1] (Right).
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FIG. 1: Free Gaussian wave packet characterized by
ko = 4 and & = —4 at Tmax = 4 in the absence of mea-
surements (Left) and under N = 5 - 10 measurements
(Right) defined by &nax = 5. The initial wave packet is
shown as a dashed curve. Survival probability is 0.986.

The interaction between the wave packet and the
virtual wall formed through measurements results in
an effective wave packet reflection and a corresponding
momentum reversal. After that, the wave packet freely
evolves within the Zeno subspace until it reaches the
opposite boundary, where another reflection occurs. The
overall dynamics are depicted in FIG. illustrating
the free evolution of the wave packet within the Zeno
subspace, where it remains confined. Upon encountering
a boundary, it is reflected by the virtual wall, reversing
its expected momentum and continues its evolution in
the opposite direction.

This behavior has been repeatedly put forward in the
mathematical and physical literature. Zeno dynamics
yields ordinary constraints [I2]. It is known that if a sys-
tem has Hamiltonian H and the frequent measurements
are checking that the system is within a particular spatial
region, then the Zeno dynamics that result are governed
by the same Hamiltonian, but with Dirichlet boundary
conditions on the boundary of the position subspace de-
fined with the projection. This means that in the limit of
N — o0, the evolution is governed by the Hamiltonian:

07 lf g € [fmina gmax}
oo, otherwise

Hy = H + vz(€) vﬂ®={
3)
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FIG. 2: Temporal evolution of the representation of a
free Gaussian wave packet under the regime of frequent
position measurements between &y, = -5 and &nax = 5
in position space (Left) and momentum space (Right).
The input wave packet is characterized by xg = 20. We
perform 5 - 10* measurements.

WP

IV. ZENO DYNAMICS VIA FREQUENT
MOMENTUM MEASUREMENTS

It has been seen how the interaction between the state
and an effective potential vz built through measurements
induces a momentum reversal, ensuring the state remains
confined. This conjugate effect in momentum space due
to position measurements motivates the study of the po-
sition space consequences of performing momentum mea-
surements. A potential is added to induce a momentum
change in the Gaussian wave packet, as the momentum-
space representation of a free wave packet remains static
over time. Momentum measurements are performed such
that the final state is described by equation (2). The
Hamiltonian is H = (—1/kg) 9?/0&% + kouov(€), with
vg > 1 and v(§) representing a normalized potential
barrier previously introduced in the text. The opera-
tor II = f::“x |k){k|dk represents the projector onto the

momentum Zeno subspace [Kmin, Kmax)-
A. Zeno-Enhanced Quantum Tunneling

The result of this operation using a tunneling parti-
cle scenario was exposed by Porras et al. in Ref.[I3] as
an attempt to contrast position and momentum mea-
surements, following prior research on QT blocking in
a double well by measuring well occupation [I4]. The
Zeno subspace they used is the positive subset of the x-
space. In this scenario, the tunneling probability equals
the survival probability, as in a translation-dominated
regime, the fraction of the wave packet with positive
momentum directly corresponds to the transmitted frac-
tion. In the limit of many measurements, the momen-
tum direction becomes constrained to remain positive,
effectively blocking the fraction of the wave packet that
would naturally be reflected by the barrier. This mech-
anism results in a QT enhancement, which ensures that
the entire wave packet tunnels through the barrier. In
Ref.[I3], it is shown that the number of measurements
required to achieve a tunneling probability close to 1 in-
creases as the spreading speed decreases. We contrast
the Zeno-enhanced QT in setups with favorable condi-
tions for tunneling and setups where tunneling does not
occur, as shown in FIG.
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FIG. 3: Tunneling enhancement via QZD for a tunneling
particle (Left) and a non-tunneling particle (Right). The
dashed curve shows the input wave packet, the green line
represents the time-evolved state at Tiax without mea-
surements, and the black line shows the state at 7. with
measurements. In (Left), QT probability increases from
0.201 to 0.964 with 400 measurements; setup: <o = 4.5,
vg = 1.25, & = 0.5, Tmax = 4. In (Right), QT probability
rises from 0.000 to 0.976 with 5000 measurements; setup:
ko =30, vg = 1.4, & = 0.75, Typax = 3.

In the absence of measurements, the wave packet rep-
resenting a tunneling particle (FIG. |3| (Left)) exhibits
both reflected and transmitted components. In contrast,
for the non-tunneling case (FIG. |3 (Right)), character-
ized by an increased barrier width and height and a wave
packet with a significantly slower spreading speed, the
entire wave packet is reflected, resembling classical be-
havior. When measurements are introduced, both tun-
neling and non-tunneling wave packets are observed to
fully tunnel through the barrier, with the non-tunneling
case requiring a higher number of measurements.

B. Zeno-Assisted Translocation

The observation that a non-tunneling particle can un-
dergo tunneling via QZD when sufficient measurements
are performed raises the possibility that what has been
described as QT enhancement via QZD for a tunneling
particle might, in fact, be better understood as QZD be-
havior facilitated by QT, rather than the reverse. This
interpretation views the enhancement as a reduction in
the number of measurements required to reach the QZD
many-measurements limit.

We study QZD in non-tunneling setups to isolate its in-
trinsic effects. By observing the full temporal evolution
of a system in this regime, we identify that the inter-
action with the barrier causes the wave packet to fully
transfer between two positions near the barrier bound-
aries, representing the particle translocation. As shown
in FIG. 4| (Left), significant probability density accumu-
lates at these boundary regions during the interaction,
while no probability density is detected within the bar-
rier itself. Although tunneling is prohibited in this regime
by energy conservation, this principle is upheld, as the
particle is never detected within the classically forbid-
den region where the potential energy exceeds the total
energy of the particle. If a potential well replaces the
barrier and the initial position of the particle is set in-
side the well, a similar phenomenon is observed, with the
wave packet transferring between the sides of the well.
This behavior is illustrated in FIG. [4 (Top Right).
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FIG. 4: QZD-assisted translocation in position space
(Top) and momentum space (Bottom). A potential bar-
rier is used in (Left), and a potential well in (Right).
Both potentials have a full width of 2§, = 15 and height
vgp = 2. In (Bottom Left) and (Bottom Right), momen-
tum reversal blocking via QZD with 5 - 10* momentum
measurements at Kmin = 0 is shown for the barrier and
well, respectively. The survival probability is 0.994 in
both cases. The input wave packet is characterized by
ko = 20, fO,barrier = —12, and §0,well = 3.
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In momentum space, the use of a barrier or well
is equivalent. In the absence of measurements, the
behavior follows that shown in FIG. [2| (Right). The
wave packet is completely reflected at one side of the
potential, resulting in a reversal of momentum. In
FIG. 4] (Bottom Left and Right) we display the cases
where many measurements are performed. It is seen
how the momentum reversal is suppressed during the
interaction with the potential via an effective virtual
wall constructed through measurements. This wall is
established in momentum space at the boundary of the
Zeno subspace Kpyin between kg and —kg. The mo-
mentum distribution during translocation shows a peak
at Kmin and an interference pattern between ki, and Kg.

At the translocation instants both potential and
kinetic energy are conserved individually. The transfer
points are defined by the lower boundary momentum
of the Zeno subspace Kumin, which sets a threshold in
kinetic energy. Due to total energy conservation, this
threshold determines a potential energy value, vpax,
representing the maximum potential energy achievable
by the particle. This value defines the two classical turn-
ing points around which the wave packet is transferred.
Although this intriguing effect warrants further study, it
closely resembles QZD via position measurements where
reflections at the boundaries of the Zeno subspace induce
a momentum reversal between momentum values of
equal kinetic energy. In contrast, the momentum-space
representation of the state confinement via QZD results
in the wave packet being transferred between positions
of equal potential energy.

V. CONCLUSIONS

Quantum Zeno dynamics, achieved through frequent
Von Neumann projection measurements, results in the
confinement of the state within the Zeno subspace as the
number of measurements increases. In the many mea-
surements limit, the boundaries of the Zeno subspace
act as rigid walls. Frequent position measurements on
a free Gaussian wave packet cause evolution within the
position Zeno subspace, with Dirichlet boundary con-
ditions at the boundaries. Frequent momentum mea-
surements induce translocation between equipotential
points in a symmetric potential. Tunneling systems re-
quire fewer momentum measurements to reach the many-
measurements limit compared to non-tunneling systems.
The nature, validity regime, and potential applications of
Zeno-assisted translocation will be investigated in future
studies.
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Resum: L’efecte Zeno quantic (QZE, per les seves sigles en anglés) retarda ’evolucié d’un
sistema quantic mitjancant mesures freqiients, evitant les transicions d’estat. En el limit de mesures
infinitament rapides, ’evolucié queda efectivament congelada. La dinamica Zeno quantica (QZD)
amplia aquest concepte, confinant el sistema a un subespai del seu espai de Hilbert. Aquest treball
examina la QZD mitjangant mesures de posicié i moment modelades com projeccions de Von
Neumann. Les mesures confinen el sistema dins del subespai de projeccié, donant lloc a efectes
intrigants prop de les seves fronteres. Les mesures de posicié sobre una particula lliure indueixen
reversions de moment, mentre que les mesures de moment sobre una particula en el si d’un potencial
simetric introdueixen un nou fenomen de translocacié equipotencial, obrint noves vies d’investigacié.
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vadores i infraestructures en arees com la computacié quantica i la informacié quantica.
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APPENDIX 1: TDSE NUMERICAL SOLUTION VIA CRANK-NICOLSON ALGORITHM

The temporal evolution of the wavefunction is obtained by numerically solving the time-dependent Schrédinger
equation (TDSE) using the Crank-Nicolson method. This method, being unitary, ensures the preservation of the
norm of the wave function throughout its evolution. To derive the numerical representation of our TDSE, we utilize

the following discretizations: N 1/J G+l 1/)]
or AT
8271/) . 1 <¢3:-11 — 2¢J+1 + ¢J+1 N n+1 — 2¢ + ¢n 1) (4)
0¢? 2 (Ag)? (Ag)? ’
v = LH; wn.

The upper and lower indices have been defined as temporal and spatial indices, respectively, such that ™ = 9 (¢, 73,),
P = (&, 7, + AT) and ¥ = ¥ (&, 7), Y11 = ¥ (§ £ A&, 7). By substituting discretizations into equation
and following the necessary algebraic steps, we obtain the following implicit matrix equation:

A/t = By, (5)
with trigonal matrices A and B defined as:
1+ a+ pv(§) —a/2 0 0
—a/2 1+ a+ pu§) —a/2 0 )
A= 0 —a/2 1+ a+ Bu(§) —a/2 ol = AT
0 0 —a/2  l4a+puE) - Ko (AE)?
1—a—pou(§) o2 0 0
a2 1—a—pu(§) af2 0 .
B= 0 /2 1—a—pBv(§) /2 = iATK
0 0 /2 1—a—Bu(€) - 2

To ensure both numerical precision and stability, we have selected small values for the spatial and temporal steps,
A¢ and AT, respectively, satisfying to the condition C' < 0.4 with C' = (1/ko)AT/AE? + kovoAT. In FIG. [5] it is shown
that decreasing the temporal step A7 (and thus C) for a fixed spatial step A¢ improves numerical precision. FIG.
(Left) compares wave packet dispersion evolution in time, while FIG. [5| (Right) shows the total energy normalized to
the survival probability for various A7 values, highlighting agreement with the expected constant energy.

""" Analytical Solution 29 031
— Ar =001 '
0.81
— A7 =0.005 S 99,02
— A7 =0.001 S
%” 0.7 5
22014
= B ,
0.6 E —— A7 =0.001
= 922001 —— A7 =0.0005
05 —— A7 =0.0003
"J - - ‘ 21.99 : ‘ ‘
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T T

FIG. 5: Temporal evolution of a Gaussian wave packet dispersion (Left) and of the total energy of the system for
different values of the temporal step A7. Energy conservation is studied in a setup containing a narrow barrier where
the evolution becomes challenging to compute.
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APPENDIX 2: GAUSSIAN WAVE PACKET DYNAMICS

Assume the preliminary foundations exposed in Section II representing a 1D right-moving particle of mass m initially
located around z with a momentum py with uncertainty Apy. Let & = x (h/Apo) and 7 = t/ (2hm/Apopgy) be the
normalized position and time coordinate, respectively. The wave function representation in the normalized position
space takes the form of the Gaussian wave packet ¥(¢) = (2/7)"/* exp [—(€ — &)?] exp(irof), with & = o/ (h/Apo)
and ko = po/Apo.

APPENDIX 2.1: Free Gaussian Wave Packet Dynamics

The free evolution of a Gaussian wave packet is characterized by two distinct types of displacement: trans-
lation, corresponding to the propagation of the wave packet, and spreading, arising from the superposition of
waves with different momenta and velocities. Translation can be analyzed by tracking the time evolution of the
central position of the wave packet, while spreading is studied through the time evolution of the square root of the
positional variance of the wave function. The time evolution of a Gaussian wave packet can be determined analytically.

For a Gaussian packet representing a particle of mass m, the center is expected to undergo uniform rectilinear
motion in conventional position space with a velocity po/m. Considering the rescaling employed in this study, the
time evolution of the center of the Gaussian packet, initially centered at £y, is given analytically by:

(€ (1) =& +2r (6)

On the other hand, the wave packet spreading over time is inherently tied to the choice of variables, as the normalized
momentum kg = po/Apg corresponds directly to the width of the Gaussian wave packet in non-normalized momentum
space. The spreading of the Gaussian wave packet is given by:

A«r):As(m\/H(m) where AE(0) = v/ W(O)IE21(0)) — (w(0)elv(0)) )

with (1(0)]€|(0)) simply being &. It is straightforward to demonstrate that (1(0)|€2[1(0)) = 1/4 + &2, leading to
AE(0) =1/2.

In FIG. [f] the evolution of the central position of the wave packet and its dispersion over time, as obtained from a
simulation using our Crank-Nicolson algorithm, are plotted and compared with the expected analytical results given
by equations @ and 7 respectively. The agreement between the numerical and analytical results is clearly observed.

""" Analytical Solution 091 Analytical Solution

— Numerical Simulation

ot
L

—— Numerical Simulation

[ee!
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FIG. 6: Temporal evolution of the central position (Left) and dispersion (Right) of a Gaussian wave packet. The central
position is calculated as the expected value of the normalized position operator, while the dispersion is calculated as
the standard deviation of the normalized position operator. The exact result is represented by a black dashed line,
and the results from a numerical simulation are represented by a red solid line. The wave packet is characterized by
Ry = 25.
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Both displacement modes contribute to the total kinetic energy of the system. The relative dominance of these
contributions defines distinct dynamical regimes, which can be analyzed as a function of the parameter xg. For kg < 1
(po < App), the dominant contribution to the kinetic energy arises from spreading, causing the wave packet to spread
faster than it translates. Conversely, for ko > 1 (pp > Apg), translation dominates, resulting in slower spreading.
In the case kg = 1 (po = Apy), translation and spreading contribute equally to the total energy. In FIG. [7] (Left),
as kg increases, the wave packet becomes less spread out after time 7. For the minimum kg, spreading dominates
over translation, causing rapid deformation of the wave packet. For the maximum kg, the behavior approximates
the classical limit, where spreading is negligible and translation dominates. In FIG. [7| (Right), this is illustrated by
the energy contributions from spreading, where (Ti;ans) = 0. The spreading-dominated and translation-dominated
regimes are identified based on whether the energy contribution from spreading is higher or lower than that from
translation, i.e., k9. Notably, when kg = 1, both contributions are equivalent.
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- h[)ZO.TS g4
0.8 5 —— k=15 8
™ ':‘: Ko =4 cT
—0.61 I 2 6
— P L f
w i 0 =20 |5
=044 x @ 4
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Jﬁk 0
‘\‘ 0_
—10 0 10 0o 1 2 3 4 5 6 7 8 9 10

FIG. 7: (Left) Comparison between the input wave packet (dashed line) and the wave packet at time 7 = 1.5 (solid
red line) for different values of normalized initial momentum rg. (Right) Evolution of the energy contribution from
the spreading of a free wave packet as a function of the normalized central momentum rg.

APPENDIX 2.2: Gaussian Wave Packet Tunneling Dynamics

Quantum tunneling is the phenomenon where particles traverse regions with potential energy exceeding their total
energy, enabled by intrinsic uncertainties in position and momentum. The wavefunction extends into classically
forbidden regions, where the probability density decays exponentially. The transmittance of the system depends on
the height and width of the barrier. In FIG. [§ the transmittance through a potential barrier, i.e., the tunneling
probability, is represented as a function of the width and height of the barrier. In both cases, significantly fast decays
are observed.

0.3 1

—_

Tunneling Probability
Tunneling Probability

0.0 0.00 1
2 1 6 8 10 0.2 0.4 0.6 0.8 10
vy &
FIG. 8: Decays associated with the entry of a Gaussian wave packet with kg = 5 into a potential barrier as a function
of the half-width &, (Left) and the relative height of the barrier vy (Right). The evolution is carried out up to 7 = 6.2.
In the study of the width dependence, the relative barrier height is fixed at vy = 4 and the width is fixed at & = 1 in
the study of the relative height. In both cases, the smoothness is set to o = 100
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Given that the wave function under consideration is represented in the normalized position space as a Gaussian
wave packet, it is intuitive to recognize that the spreading of the wave packet significantly influences the tunneling
probability. We simulate a setup involving a particle approaching a potential barrier described by vov(€), where
vg = Vo/E, with Vj representing the maximum potential energy of the barrier and E denoting the total energy of the
particle. The function v(&) is characterized by a full width at half maximum of 2¢,. Our regime of interest satisfies
vg > 1, ensuring that the particle is classically forbidden from crossing the barrier to maintain energy conservation.
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FIG. 9: Quantum tunneling dependence on k. The barrier width and height are held constant. For increasing values
of kg, the tunneling probabilities are 0.194, 0.093, 0.035, and 0.000, respectively. The wave packet evolves until 7 = 5,
using a barrier width of & = 0.25 and a barrier height of vy = 1.25.

In FIG. @ it becomes visible how fast-spreading wave packets (low k) exhibit better tunneling probability than
those that spread slower. This probability decreases with kg, and when k¢ is high enough, the tunneling fraction of
the wave packet becomes negligible, with the wave packet being almost completely reflected by the barrier, resembling
a classical limit.
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