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Abstract 

Objectives

SARS-CoV-2 RNAemia at diagnosis is associated with mortality. The aims were to 

identify factors associated with the development of RNAemia.

Methods

Multicenter COVID-19 cohort study was conducted between January 2020 and May 

2023. Demographics, chronic underlying diseases, symptoms and signs, analytical 

and radiological variables, cytokines, and neutralizing antibodies were evaluated on 

admission. RNAemia was the primary endpoint.

Results

We included 1011 patients, 392 (38.8%) immunocompromised and 619 (61.2%) 

immunocompetent. RNAemia occurred in 49.7% and 18.7% (p < 0.001), respectively, 

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0330495&domain=pdf&date_stamp=2025-08-21
https://doi.org/10.1371/journal.pone.0330495
https://doi.org/10.1371/journal.pone.0330495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4343-0118
https://orcid.org/0000-0001-7080-6542
https://orcid.org/0000-0001-7766-7266
https://orcid.org/0000-0002-8166-5308
https://orcid.org/0000-0003-2707-1979
mailto:pachon@us.es


PLOS One | https://doi.org/10.1371/journal.pone.0330495  August 21, 2025 2 / 14

being independently associated with 30-day all-cause mortality. In immunocompro-

mised patients, factors independently associated with RNAemia were Alpha and 

Omicron VOC periods (OR: 1.95 [1.01–3.79]), pneumonia (OR: 1.96 [1.10–3.50]), 

LDH > 300 UI/L (OR: 1.64 [1.02–2.63]) and neutralizing antibodies absence (OR: 

2.51 [1.57–4.00]). In immunocompetent patients, the factors associated with 

RNAemia were Delta and Omicron VOC periods (OR: 2.27 [1.46–3.52]), lympho-

cyte count < 1000/µL (OR: 1.81 [1.16–2.80]) and LDH levels > 300 IU/L (OR: 3.99 

[2.51–6.36]).

Conclusions

Immunodeficiency almost tripled SARS-CoV-2 RNAemia. Omicron VOC period, LDH 

as inflammatory biomarker, and a lower immune response in all patients, neutralizing 

antibodies absence in immunocompromised and lymphopenia in immunocompetent, 

and pneumonia in immunocompromised patients were associated with RNAemia.

Introduction

As of early June 2025, COVID-19 has caused hundreds of millions of infections and 
millions of deaths worldwide [1]. This pandemic has triggered an unprecedented 
global response from all health systems to advance epidemiological, virological, 
pathophysiological, clinical, and prognostic knowledge of severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2) infection. Additionally, the availability of 
resources has allowed the development of new vaccines and antivirals in record 
time [2]. Currently, a high percentage of the world’s population is vaccinated against 
SARS-CoV-2 (67%) with a complete primary series, although there is high variability 
depending on the country [1]. In Spain, at the time this study was conducted, 79% 
of the population had been vaccinated using a complete primary series. COVID-19 
shows great clinical variability mainly depending on the patient’s baseline condition, 
ranging from mild cases to critical illness with multiorgan failure and high mortality. 
Thus, much effort has been put into identifying quick and easy biomarkers of severity 
at the COVID-19 diagnosis, especially in patients requiring hospital-admission, to 
implement measures to improve patient management.

SARS-CoV-2 RNAemia, defined as the presence of viral RNA in the bloodstream, 
has emerged as an independent predictor of severe outcomes in COVID-19 patients 
[3], and support its role as a valid biomarker. Several reports with large cohorts have 
found a robust association between SARS-CoV-2 RNAemia and adverse clinical 
outcomes, including mortality [4–9]. Some of these studies, besides addressing the 
association of RNAemia with mortality, have also found an association among the 
presence of RNAemia and plasma viral load with underlying conditions, such as older 
age and comorbidities, CURB-65 score, or laboratory data such as baseline PaO

2
/

FiO
2
, LDH, lymphopenia, C-reactive protein, D-dimer, ferritin, and cytokine (IL-6, 

IL-10, and IL-15) levels [4–6]. A study has showed an association of RNAemia at 
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COVID-19 diagnosis with unfavorable outcome, defined as death and/or intensive care admission, in solid organ trans-
plant recipients, besides with mortality in immunocompetent patients [9].

Other studies have shown an association between severe COVID-19 and immunological factors such as a lack of 
production of neutralizing antibodies [10–12] and low levels of IgG [13]. Some studies concluded that hospitalized patients 
have higher titers of neutralizing antibodies (NAb) than non-hospitalized patients [10,11], but the assayed samples were 
drawn at heterogeneous times after hospital admission; this may explain the discordant results with other studies evaluat-
ing the association of lack of NAb response with fatal outcomes, in which NAb and IgG levels remained in the recovered 
patients, irrespective of disease severity [12]. Additionally, an inverse association between RNAemia and a specific IgG 
antibody response has been shown in a cohort of patients with COVID-19 with diverse inclusion criteria, suggesting con-
trol of SARS-CoV-2 dissemination by the humoral immune response [13].

As vaccination rates have increased worldwide, the dynamics of SARS-CoV-2 transmission have undergone a pro-
found shift [14]. The wide-scale deployment of vaccines, mainly mRNA-based formulations and vector vaccines, has 
demonstrated remarkable efficacy in preventing severe COVID-19 [2,14]; it has also raised questions about the mecha-
nisms for the presence of SARS-CoV-2 RNAemia and its persistence, seen even in vaccinated patients, and its clinical 
impact. Unravelling the complexities of this association is essential, given the potential implications for the clinical man-
agement of these patients.

Previous studies have provided information on the association of RNAemia with the COVID-19 clinical outcome, mostly 
in immunocompetent patients, and contradictory information on the specific immune response and its association with 
RNAemia and COVID-19 severity. As other important issue, from the pandemic onset in 2020, SARS-CoV-2 has evolved 
to different variants of concern (VOC), showing genetic conservation and diversity, and with changes in virulence and 
pathogenicity [15]. In this context, the present study aimed to gain valuable insights into the association of host and viro-
logical factors, specific immune response and previous vaccination with the development of SARS-CoV-2 RNAemia at the 
onset of SARS-CoV-2 disease, both in immunocompromised and immunocompetent patients. The data obtained could 
generate the necessary knowledge to implement interventions aimed at preventing SARS-CoV-2 RNAemia and improving 
patient prognosis, especially in more vulnerable populations.

Materials and methods

Research design and participants

We conducted a prospective, multicenter, and non-interventional study, carried out in six Spanish hospitals, including 
both immunocompromised, from March 2020 to May 2023, and immunocompetent, from January 2020 to May 2022, 
patients. Inclusion criteria were: adult age (≥ 18 years), acute COVID-19 confirmed by a positive SARS-CoV-2 reverse 
transcription-PCR (RT-PCR) test from nasopharyngeal (NP) swabs, availability of blood samples to determine the pres-
ence of SARS-CoV-2 RNAemia in the first 24 h after diagnosis, and signed informed consent. Exclusion criteria included: 
asymptomatic patients, a life expectancy of less than one month, assessed by the physician judgment following the 
McCabe-Jackson criteria [16], and patients who declined to sign the informed consent form. This study was approved by 
the Ethics Committees of Virgen Rocío and Virgen del Macarena University Hospital (C.I. 0771-N-20 and 1683-N-21) and 
adhered to the Helsinki Declaration.

Clinical data and sample acquisition

Immediately after enrolment, blood samples to determine the presence of SARS-CoV-2 RNAemia, cytokines, and specific 
immune response were obtained. Demographics, specific clinical signs and symptoms, and complementary data from 
standard microbiological, biochemical, and hematological studies were recorded for each patient using a protocol case 
report form. Disease duration was defined as the number of days from symptom onset to death or hospital discharge. 
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Patients were attended following the decisions of the clinician teams in charge, based on local policies and standard 
clinical management practices, and were followed up until 30 days after COVID-19 diagnosis or until discharge or death, 
whichever occurred first. Disease severity at the time of COVID-19 diagnosis and the end of the episode was evaluated 
using the World Health Organization (WHO) Clinical Progression Scale [17].

SARS-CoV-2 detection in NP swabs and blood

For SARS-CoV-2 RNA extraction from plasma samples (collected in EDTA tubes) and NP swabs, a MagNA Pure Compact 
Nucleic Acid Isolation Kit I (Roche Diagnostics GmbH, Mannheim, Germany) was used according to the manufacturer’s 
instructions. The RT-PCR assays employed the 2019-nCoV ValuPanel Reagents (LGC Genomics GmbH, Berlin, Ger-
many) in addition to the GoTaq® Probe 1-Step RT-qPCR System (Promega Biotech Ibérica S.L, Madrid, Spain) and were 
run in a LightCycler 96 Instrument (Roche Diagnostics GmbH, Mannheim, Germany) following the manufacturer’s proto-
cols, with a Ct detection limit of 42. The kit includes internal controls targeting two SARS-CoV-2 nucleocapsid genes and 
human RNase. SARS-CoV-2 RNAemia quantification was not performed because of it´s not different in immunocompro-
mised vs. immunocompetent patients and its lack of association with unfavorable clinical outcome and/or mortality [9].

Plasma levels of IFN-α and IFN-γ

Plasma samples were collected and stored at −80 °C before analysis. IFN-α (USCN Life Science & Technology Company, 
Missouri, TX, USA) and IFN-γ (RayBiotech, Norcross, GA, USA) levels were quantified using ELISA kits following the 
manufacturer’s instructions as described previously [18]. A Multiskan™ GO Microplate Spectrophotometre (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) was used to quantify optical density. Relative levels of IFN-α and IFN-γ were analysed 
using a log/log fit curve with GraphPad Prism 6. These assays, with limits of detection of 3 pg/mL for IFN-α and 2 pg/mL 
for IFN-γ, were performed in duplicate for each sample. The values used as a reference for healthy, uninfected adults are 
described in our previous article [9].

Quantification of neutralizing antibodies

Neutralizing antibodies were evaluated using the viral microneutralization assay. Serum samples were collected from 
blood tubes with separator gel after centrifugation for 10 minutes at 3000 rpm and 4 °C. In a 96-well polystyrene micro-
plate (Corning, New York, USA), serial dilutions of serum samples were prepared and 1.3 x 104 TCID50/mL SARS-CoV-2 
(Wuhan-Hu-1) spike pseudotyped lentivirus with a Green Fluorescent Protein reporter of infection (ATCC, Manassas, 
USA) was added. The mixture was added to microplates containing HEK293T cells expressing human ACE2 and 
TMPRSS2 (GeneCopoeia, Rockville, MD, USA) that were previously seeded. After incubation at 37 °C for 72 hours, 
microneutralization by serum was confirmed and quantified. The detection limit for the neutralizing antibodies titer was a 
1/3 dilution.

Statistical analysis

The primary endpoint was SARS-CoV-2 RNAemia at the time of COVID-19 diagnosis in both immunocompromised and 
immunocompetent patients. The associations between SARS-CoV-2 RNAemia and clinical conditions, initial symptoms, 
and immune and inflammatory variables were also evaluated. Descriptive statistics were presented as frequencies (%) or 
medians with interquartile ranges (IQRs). Continuous variables such as age, Charlson comorbidity index, oxygen satu-
ration (SpO

2
), CURB-65, WHO clinical progression scale, lymphocytes, platelets, creatinine, C-reactive protein, D-dimer, 

and LDH were dichotomized based on their association with mortality [19]. The study was categorized into three periods 
depending on the predominant SARS-CoV-2 variant of concern (VOC) in Spain [20]: i) Alpha from January 2020 to June 
27th, 2021; ii) Delta from June 28th to December 19th, 2021; and iii) Omicron from December 20th, 2021 to May 2023. 
Univariate analysis was conducted to assess the association between the variables and SARS-CoV-2 RNAemia at the 
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time of COVID-19 diagnosis. Statistical tests for between-group comparisons included χ2 or Fisher’s tests, Student’s 
t-test, Mann-Whitney U test, and Kruskal-Wallis test. Interactions, confusion, and collinearity were thoroughly explored.

The impact of clinical and laboratory variables on 30-day all-cause mortality was first assessed using Cox regression 
analysis to confirm that SARS-CoV-2 RNAemia was independently associated with mortality in the whole cohort and 
the immunocompromised and immunocompetent sub-cohorts. Subsequently, the variables associated with the primary 
endpoint, SARS-CoV-2 RNAemia at COVID-19 diagnosis, and those considered clinically relevant were incorporated into 
a multiple logistic regression analysis. The variables in the models were selected manually using a backward stepwise 
process. Sensitivity analyses were performed, including changes in covariates and specific categorizations. The models of 
variables identified as associated with SARS-CoV-2 RNAemia in the multiple logistic regression analysis were evaluated 
using the area under the receiver-operating characteristic curve (AUC-ROC), its standard error (under the non-parametric 
assumption), and the asymptotic significance (being the null hypothesis a true area of 0.5). An AUC-ROC ≥ 0.70 was con-
sidered as evidence of good discrimination ability [21]. Missing data values (Supplementary S1 Table) were not imputed 
in our analysis given to their low number in the variables included in the multivariate analyses. Statistical analyses were 
performed using SPSS (version 26.0; IBM Corp., Armonk, New York, USA).

Results

A whole cohort of 1011 patients with acute COVID-19 were included, consisting of 392 (38.8%) immunocompromised and 
619 (61.2%) immunocompetent patient’s sub-cohorts (Table 1). In the Omicron period were included 377 (37.3%) patients, 
78.1% of them immunocompromised, vs. in the Alpha and Delta periods in which were included 438 (43.3%) and 196 
(19.4%) patients, 88.6% and 81.6% of them immunocompetent.

Regarding the characteristics of COVID-19 at diagnosis in the whole cohort, 96.6% patients were hospital-admitted, 
82.0% had pneumonia, 7.9% a WHO clinical progression scale score of 6–9, 30.8% SARS-CoV-2 RNAemia, and the 
30-day all-cause mortality was 7.8%. Comparing both sub-cohorts, immunocompromised had been vaccinated against 
SARS-CoV-2 more frequently than immunocompetent patients (86.2% and 35.5%, p < 0.001). SARS-CoV-2 RNAemia was 
more frequent in immunocompromised than in immunocompetent (49.7% and 18.7%, p < 0.001) sub-cohorts, as well as 
immunocompromised patients had higher 30-day all-cause mortality (12.0% and 5.2%, p < 0.001).

Variables associated with 30-day all-cause mortality in the whole cohort and immunocompromised and 
immunocompetent sub-cohorts

The variables associated with 30-day all-cause mortality in the univariate analysis, in the whole cohort and immunocom-
promised and immunocompetent sub-cohorts, are detailed in Supplementary S2 Tables, S3, and S4. In dead patients, 
SARS-CoV-2 RNAemia was more frequent in the whole cohort (65.8% vs. 27.8%; p < 0.001) and the immunocompromised 
(80.9% vs. 45.5%; p = 0.004) and immunocompetent (43.8% vs. 17.4%, respectively; p = 0.051) sub-cohorts. Regarding 
the SARS-CoV-2 VOC, mortality was lower in immunocompromised patients included in the Omicron period (7.8%) than 
in Alpha (28%) and Delta (25.0%) periods (p < 0.001), without differences in the immunocompetent patients.

Subsequently, different Cox multiple regression models were generated to identify independent factors associated with 
30-day all-cause mortality for the whole cohort and both sub-cohorts (Table 2). For the whole cohort, male sex (hazard 
ratio [HR]: 0.48 [95% CI 0.30–0.75]), Charlson comorbidity index ≥ 3 (HR: 5.43 [2.19–13.46]), dyspnea (HR: 1.81 [1.13–
2.92]), CRP > 100 mg/L (HR: 1.70 [1.08–2.67]) and RNAemia (HR: 2.19 [1.37–3.51]) were selected in the final model. In 
the immunocompromised sub-cohort, independent variables associated with mortality were male sex (HR: 0.37 [0.20–
0.68]), age > 70 years (HR: 2.98 [1.65–5.38]), Alpha and Delta VOVC periods (HR: 3.10 [1.74–5.53]), dyspnea (HR: 1.97 
[1.06–3.64]) and RNAemia (HR: 3.30 [1.57–6.93]). Finally, in the immunocompetent sub-cohort selected variables were 
Charlson comorbidity index ≥ 3 (HR: 22.42 [3.06–164.39]) and RNAemia (HR: 2.35 (1.16–4.75), p = 0.018). The administra-
tion of remdesivir, tocilizumab, and dexamethasone were not included in the multivariate Cox regression analysis because 
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Table 1.  Demographics, chronic underlying diseases, clinical characteristics and outcomes of COVID-19 in the entire cohort and in immuno-
compromised vs. immunocompetent patients.

Variables, N (%) Whole cohort N = 1011 Immunocompromised N = 392 Immunocompetent N = 619 P

Demographics and chronic underlying conditions

Male sex 629 (62.2) 234 (59.7) 395 (63.8) 0.188

Age (median, IQR) 64 (54-74) 65 (55-73) 64 (53-77) 0.549

Age > 70 years 354 (35.0) 134 (34.2) 220 (35.5) 0.659

Smoking (>10 packets/year) 101 (10.4) 61 (15.6) 40 (6.9) <0.001

Diabetes mellitus 276 (27.3) 111 (28.3) 165 (26.7) 0.564

Chronic kidney disease 163 (16.2) 112 (28.6) 51 (8.3) <0.001

Charlson Comorbidity Index ≥3 673 (66.6) 331 (84.4) 342 (55.3) <0.001

Chronic prednisone therapy (>10 mg/day) 154 (18.2) 114 (31.1) 40 (8.3) <0.001

Variant of Concern (VOC) periods

Alpha 438 (43.3) 50 (11.4)1 388 (88.6)1 <0.001

Delta 196 (19.4) 36 (18.4)1 160 (81.6)1

Omicron 377 (37.3) 306 (78.1)1 71 (11.5)1

COVID-19 vaccination in all patients and by VOC periods

All vaccinated patients 558 (55.2) 338 (86.2) 220 (35.5) <0.001

Alpha 15 (2.7) 6 (40.0)2 9 (60.0)2 <0.001

Delta 181 (32.5) 34 (18.8)2 147 (81.2)2

Omicron 362 (64.9) 298 (82.3)2 64 (17.7)2

Symptoms and signs at diagnosis

Fever 262 (26.5) 89 (29.4) 173 (25.3) 0.181

Cough 675 (66.9) 264 (67.5) 411 (66.5) 0.739

Dyspnea 484 (48.0) 163 (52.4) 321 (46.0) 0.059

SpO
2
 < 95% 377 (37.4) 130 (33.3) 247 (40.0) 0.032

Pneumonia 819 (82.0) 280 (71.4) 539 (88.8) <0.001

CURB-65 ≥ 2 153 (23.8) 64 (30.8) 89 (20.4) 0.004

WHO clinical progression scale 6–93 77 (7.6) 37 (9.4) 40 (6.5) 0.082

Laboratory findings at diagnosis

Neutrophil count >7500/μL 195 (20.0) 69 (18.5) 126 (21.0) 0.350

Neutrophil count (median, IQR) (x1000) 4.54 (3.2-6.77) 4.23 (2.60-6.55) 4.74 (3.48-6.88) <0.001

Lymphocyte count<1000/µL 546 (54.9) 260 (68.8) 286 (46.4) <0.001

Lymphocyte count (median, IQR) (x1000) 0.93 (0.62-1.40) 0.71 (0.45-1.16) 1.04 (0.75-1.48) <0.001

Platelets <130 000/μL 182 (18.3) 109 (28.8) 73 (11.8) <0.001

Platelets (median, IQR)) (x1000) 189.0 (142.0-258.0) 166.5 (124.0-235.2) 206.0 (155.0-271.5) <0.001

Creatinine >1.3 mg/dL 280 (28.2) 179 (47.4) 101 (16.4) <0.001

Creatinine, mg/dL (median [IQR]) 0.95 (0.74-1.41) 1.27 (0.87-1.93) 0.88
(0.70-1.11)

<0.001

C-reactive protein > 100 mg/L 344 (35.0) 140 (37.4) 204 (33.4) 0.203

C-reactive protein mg/L (median [IQR]) 66.2 (27.1-132.0) 75.5 (32.7-135.1) 63.4 (25.4-129.2) 0.018

D-dimer >600 ng/mL 463 (55.2) 199 (67.5) 264 (48.5) <0.001

D-dimer (median, IQR) 670 (380-1244) 860 (520-1650) 570 (330-1077.5) <0.001

LDH > 300 IU/L 446 (47.0) 169 (48.7) 277 (46.0) 0.424

LDH IU/L (median [IQR]) 291 (232-368) 295 (227-377) 288.5 (236-365) 0.739

RNAemia 311 (30.8) 195 (49.7) 116 (18.7) <0.001

IgM positive 338 (54.1) 80 (36.9) 258 (63.2) <0.001

(Continued)
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of they were prescribed, at the criteria of the attending physicians, more frequently in case with severe disease at diagno-
sis (Supplementary S5 Table) in the whole cohort and both sub-cohorts.

Variables associated with SARS-CoV-2 RNAemia in the whole cohort and in immunocompromised and 
immunocompetent sub-cohorts

Variables associated with SARS-CoV-2 RNAemia in the whole cohort and immunocompromised and immunocompetent 
sub-cohorts are detailed in Table 3 and Supplementary S6 Tables and S8. In the whole cohort (Table 3), patients with 
SARS-CoV-2 RNAemia had higher frequencies of immunocompromise (p < 0.001) and RNAemia was more frequent in the 
Omicron than Alpha or Delta VOC periods (p < 0.001). Multiple logistic regression analysis of the whole cohort (Table 4) 
showed that immunocompromise (odds ratio [OR]: 3.66 [2.47–5.44]), lymphocyte count < 1000/µL (OR: 1.60 [1.16–2.19]) 
and LDH > 300 UI/L (OR: 2.51 [1.84–3.42]) were independently associated with the presence of SARS-CoV-2 RNAemia 
at COVID-19 diagnosis. RNAemia seems independently associated with the Omicron VOC period, but this effect was no 
longer present (OR: 1.44 [0.97–2.15]) when SpO

2
 was removed from the model. The AUC-ROC were 0.763 (0.731−0795, 

p < 0.001) and 0.759 (0.726–0.791, p < 0.001) for both models (Supplementary S1 Fig).
In the immunocompromised sub-cohort (Supplementary S6 Table), SARS-CoV-2 RNAemia was more frequent in 

the Alpha or Omicron than in Delta VOC periods (p = 0.05). Multiple logistic regression analysis (Table 4) identified the 

Variables, N (%) Whole cohort N = 1011 Immunocompromised N = 392 Immunocompetent N = 619 P

IgM ng/ml (median, IQR) 92.4 (57.5-222.2) 77.4 (42.6-180.7) 94.5 (60.0-242.3) 0.039

IgG positive 531 (85.1) 176 (82.2) 355 (86.6) 0.148

IgG ng/ml (median, IQR) 2088.8 (612.9-3592.9) 1531.9 (348.8-3180.9) 2279.0 (750.7-3621.3) 0.014

Neutralising antibodies absence 232 (35.7) 180 (50.7) 52 (17.7) <0.001

Neutralising antibodies (GMT, IC95) 216.1 (175.3-267.1) 107.0 (77.34-147.6) 359.4 (272.5-472.9) <0.001

IFN-α undetectable 86 (11.5) 32 (9.4) 54 (13.3) 0.092

IFN-α pg/mL (median, IQR) 23.75 (11.76-60.62) 43.70 (19.59-81.50) 18.32 (9.28-29.43) <0.001

IFN-γ undetectable 215 (25.2) 124 (35.0) 91 (18.3) <0.001

IFN-γ pg/mL (median, IQR) 69.12 (17.27-182.09) 52.74 (9.84-84.90) 106.97 (24.96-272.88) <0.001

Treatment

Antiviral 269 (27.0) 179 (47.5) 90 (14.6) <0.001

Remdesivir 208 (20.9) 118 (31.3) 90 (14.6) <0.001

Tocilizumab 123 (12.4) 56 (14.9) 67 (10.8) 0.062

Dexamethasone 558 (62.1) 216 (57.3) 342 (65.6) 0.011

Antibiotics 180 (20.0) 97 (27.2) 83 (15.3) <0.001

Outcome

Hospital admission 969 (95.8) 358 (91.3) 611 (98.7) <0.001

Length of hospital stay
(days, median [IQR])

7 (4-12) 8 (5-14.5) 6 (4-10) <0.001

HFNO4 48 (4.8) 24 (6.1) 24 (3.9) 0.106

Intensive care unit admission 76 (7.5) 32 (8.2) 44 (7.1) 0.505

WHO clinical progression scale 7–103 129 (12.8) 58 (14.8) 71 (11.5) 0.123

Mortality at day + 30 79 (7.8) 47 (12.0) 32 (5.2) <0.001

1Percentages respect to the patients in each VOC period; 2 Percentages respect to the vaccinated patients in each VOC period; 3 https://doi.org/10.1016/
S1473-3099(20)30483-7; 4 HFNO: High-Flow Nasal Oxygen.

https://doi.org/10.1371/journal.pone.0330495.t001

Table 1.  (Continued)
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Alpha and Omicron VOC periods (OR: 1.95 [1.01–3.79]), pneumonia (OR: 1.96 [1.10–3.50]), LDH > 300 UI/L (OR: 1.64 
[1.02–2.63]) and the absence of neutralizing antibodies (OR: 2.51 [1.57–4.00]) as independent factors associated with the 
presence of SARS-CoV-2 RNAemia at COVID-19 diagnosis, with an AUC-ROC of 0.678 (0.619–0.737, p < 0.001) (Supple-
mentary S1 Fig).

The immunocompromised sub-cohort includes different types of immunocompromise (Supplementary S3 Table) without 
difference in mortality rates (p = 0.429). However, RNAemia was more frequent (p = 0.045) in hematological malignancies 
(HM) and solid organ transplant recipients (SOT) than in solid neoplasia (SN) and other causes of immunocompromise 
(Supplementary S6 Table). As a sensitivity analysis, we next analyzed factors associated with the presence of RNAemia 
in these different immunocompromised patients (Supplementary S7 Table). Pneumonia (OR: 2.53 [1.18–5.40]) in HM, 
pneumonia (OR: 2.50 [1.15–5.47]) and neutralizing antibodies absence (OR: 2.81 [1.48–5.35]) in SOT, and neutralizing 
antibodies absence (OR: 5.37 [1.32–21.87]) in SN were factors independently associated with RNAemia.

SARS-CoV-2 RNAemia in the immunocompetent sub-cohort (Supplementary S8 Table) was more frequent in the Delta 
and Omicron than in Alpha VOC periods (p = 0.003). Factors independently associated with RNAemia were Delta and 
Omicron VOC periods (OR: 2.27 [1.46–3.52]), lymphocyte count < 1000/µL (OR: 1.81 [1.16–2.80]) and LDH levels > 300 
IU/L (OR: 3.99 [2.51–6.36]) (Table 4). The model has an AUC-ROC of 0.720 (0.670–0.770, p < 0.001) (Supplementary S1 
Fig).

Discussion

The present study identifies factors associated with the SARS-CoV-2 RNAemia at the COVID-19 diagnosis. Regarding the 
host underlying condition, diseases causing immunocompromise are the most prominent ones in the whole cohort. Among 
the virologic factors, patients included in the Omicron VOC period have more RNAemia, both in immunocompromised 
and immunocompetent patients. Pneumonia in immunocompromised patients, high serum LDH levels in all patients, and 
markers of lower immune response, neutralizing antibodies absence in immunocompromised and lymphopenia in immu-
nocompetent patients, were also associated with RNAemia.

Table 2.  Variables associated with 30-day all-cause mortality in the whole cohort and in the immu-
nocompromised and immunocompetent sub-cohorts: Multivariate Cox regression analyses.

Whole cohort

Variables, deaths = 79 HR (95% CI) P

Male sex 0.48 (0.30-0.75) 0.001

Charlson Comorbidity Index ≥3 5.43 (2.19-13.46) <0.001

Dyspnea 1.81 (1.13-2.92) 0.014

C-reactive protein > 100 mg/L 1.70 (1.08-2.67) 0.021

RNAemia 2.19 (1.37-3.51) 0.001

Immunocompromised sub-cohort

Variables, deaths = 47 HR (95% CI) P

Male sex 0.37 (0.20-0.68) 0.002

Age > 70 years 2.98 (1.65-5.38) <0.001

Alpha and Delta VOC periods 3.10 (1.74-5.53) <0.001

Dyspnea 1.97 (1.06-3.64) 0.031

RNAemia 3.30 (1.57-6.93) 0.002

Immunocompetent sub-cohort

Variables, deaths = 32 HR (95% CI) P

Charlson Comorbidity Index ≥3 22.42 (3.06-164.39) 0.002

RNAemia 2.35 (1.16-4.75) 0.018

https://doi.org/10.1371/journal.pone.0330495.t002

https://doi.org/10.1371/journal.pone.0330495.t002
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Table 3.  Demographics, chronic underlying diseases, clinical characteristics and outcomes of patients in the whole cohort with vs. without 
SARS-CoV-2 RNAemia at COVID-19 diagnosis.

Variables Whole cohort N = 1011 RNAemia N = 311 (30.8%) No RNAemia N = 700 (69.2%) P

Demographics and chronic underlying conditions

Male sex 629 (62.2) 200 (64.3) 429 (61.3) 0.360

Age (median, IQR) 64 (54-74) 66 (57-74) 63 (52-75) 0.081

Age > 70 years 354 (35.0) 111 (35.7) 243 (34.7) 0.764

Smoking (>10 packets/year) 101 (10.4) 38 (12.3) 63 (9.5) 0.178

Diabetes mellitus 276 (27.3) 93 (29.9) 183 (26.1) 0.215

Chronic kidney disease 163 (16.2) 73 (23.6) 90 (12.9) <0.001

Charlson Comorbidity Index ≥3 673 (66.6) 237 (76.2) 436 (62.3) <0.001

Chronic prednisone therapy (>10 mg/day) 154 (18.2) 71 (25.3) 83 (14.7) <0.001

Immunocompromise 392 (38.8) 195 (62.7) 197 (28.1) <0.001

Variant of Concern (VOC) periods

Alpha 438 (43.3) 87 (19.9)1 351 (80.1)1 <0.001

Delta 196 (19.4) 52 (26.5)1 144 (73.5)1

Omicron 377 (37.3) 172 (45.6)1 205 (54.4)1

COVID-19 vaccination in all patients and by VOC periods

All vaccinated patients 558 (55.2) 220 (70.7) 338 (48.3) <0.001

Alpha 15 (2.7) 5 (33.3)2 10 (66.7)2 <0.001

Delta 181 (32.4) 49 (27.1)2 132 (72.9)2

Omicron 362 (64.9) 166 (45.9)2 196 (54.1)2

Symptoms and signs at diagnosis

Fever 262 (26.5) 89 (29.4) 173 (25.3) 0.181

Cough 675 (66.9) 224 (72.3) 451 (64.5) 0.016

Dyspnoea 484 (48.0) 163 (52.4) 321 (46.0) 0.059

SpO
2
 < 95% 377 (37.4) 142 (45.7) 235 (33.8) <0.001

Pneumonia 819 (82.0) 258 (84.0) 561 (81.1) 0.260

CURB-65 ≥ 2 153 (23.8) 64 (30.8) 89 (20.4) 0.004

WHO clinical progression scale 6–93 77 (7.6) 46 (14.8) 31 (4.4) <0.001

Laboratory findings at diagnosis

Neutrophil count >7500/μL 195 (20.0) 66 (21.9) 129 (19.2) 0.320

Neutrophil count (median, IQR) (x1000) 4.5 (3.2-6.8) 4.3 (2.9-7.1) 4.6 (3.3-6.6) 0.265

Lymphocyte count<1000/µL 546 (54.9) 211 (68.5) 335 (48.8) <0.001

Lymphocyte count (median, IQR) (x1000) 0.9 (0.6-1.4) 0.7 (0.5-1.2) 1.0 (0.7-1.5) <0.001

Platelets <130 000/μL 182 (18.3) 75 (24.4) 107 (15.6) 0.001

Platelets (median, IQR)) (x1000) 189.0 (142.0-258.0) 172.5 (131.0-236.7) 201.0 (148.0-268.0) <0.001

Creatinine >1.3 mg/dL 280 (28.2) 126 (41.2) 154 (22.4) <0.001

Creatinine, mg/dL (median [IQR]) 0.9 (0.7-1.4) 1.1 (0.8-1.7) 0.9 (0.7-1.2) <0.001

C-reactive protein > 100 mg/L 344 (35.0) 145 (47.7) 199 (29.3) <0.001

C-reactive protein mg/L (median [IQR]) 66.2 (27.1-132.0) 94.1 (47.1-158.3) 56.8 (22.2-112.0) <0.001

D-dimer >600 ng/mL 463 (55.2) 157 (63.3) 306 (51.8) 0.002

D-dimer (median, IQR) 670.0 (380.0-1244.0) 750.0 (472.5-1355.0) 640.0 (340.0-1150.0) <0.001

LDH > 300 IU/L 446 (47.0) 182 (62.1) 264 (40.2) <0.001

LDH IU/L (median [IQR]) 291.0 (232.0-368.0) 328.0 (257.0-439.5) 276.0 (227.0-344.0) <0.001

IgM positive 338 (54.1) 85 (42.9) 253 (59.3) <0.001

IgM ng/ml (median, IQR) 92.4 (57.5-222.2) 86.2 (53.2-181.4) 94.1 (59.5-223.4) 0.364

IgG positive 531 (85.1) 164 (83.2) 367 (85.9) 0.379

(Continued)
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In the present study, as a first analysis, we confirmed that SARS-CoV-2 RNAemia was an independent risk factor for 
30-day all-cause mortality in both immunocompromised and immunocompetent individuals. Our group and others have 
previously evaluated the relevance of RNAemia in monitoring COVID-19 patients. The rate of SARS-CoV-2 RNAemia is 
highly variable in the literature, ranging from 10% to over 60% [3–9,18,22–30], which could be explained by the differ-
ences found among the demographic characteristics, underlying conditions, and time from symptom onset. The rate of 
RNAemia in this study was in line with previous reports by our group and colleagues in both immunocompetent [9,22,23] 
and immunocompromised patients [9,18]. In addition, despite most patients being fully vaccinated since June 2021, 
especially in the immunocompromised group, the incidence of RNAemia remained elevated at close to four out of ten 
cases. The mortality rate in our study was lower than that in previous studies conducted by our group in non-vaccinated 
immunocompromised and immunocompetent patients [9,22], which is in line with other studies in pre-vaccination cohorts 
[6,31]. As previously observed in a cohort of 408 immunocompetent individuals and 47 solid organ transplant recipients 
[9], RNAemia was independently associated with mortality in all immunocompetent or immunocompromised patients.

The increased frequency of RNAemia and its strong association with mortality in immunocompromised patients may 
reflect impaired viral control and persistent systemic inflammation, which together could facilitate viral dissemination. 
Weak immune responses may not efficiently eliminate viral replication or bloodstream dissemination. Another associated 
factor is LDH, an enzyme involved in inflammatory processes, which in turn leads to tissue damage. This could explain 
the bloodstream release and dissemination of the virus [32,33]. Moreover, higher LDH levels have been associated with 
severity of COVID-19 pneumonia [34]. In addition, in immunocompetent patients, lymphopenia was independently asso-
ciated with RNAemia, which is explained by the implication of lymphocytes in the innate immune response, including 

Variables Whole cohort N = 1011 RNAemia N = 311 (30.8%) No RNAemia N = 700 (69.2%) P

IgG ng/ml
(median, IQR)

2088.8 (612.9-3592.9) 1748.0 (490.3-3423.7) 2128.9 (743.2-3688.2) 0.093

Neutralising antibodies absence 232 (35.7) 128 (51.0) 104 (26.1) <0.001

Neutralising antibodies (GMT, IC95) 216.1 (174.2-264.9) 140.7 (99.11-198.0) 258.7 (201.4-337.3) 0.016

IFN-α undetectable 86 (11.5) 24 (9.8) 62 (12.4) 0.296

IFN-α pg/mL (median, IQR) 23.75 (11.76-60.62) 38.91 (17.44-77.06) 20.84 (10.85-45.74) <0.001

IFN-γ undetectable 215 (25.2) 80 (29.0) 135 (23.4) 0.081

IFN-γ pg/mL (median, IQR) 69.12 (17.27-182.09) 60.29 (12.80-147.21) 72.5 (22.12-226.21) 0.007

Treatment

Antiviral 269 (27.0) 113 (37.7) 156 (22.4) <0.001

Remdesivir 208 (20.9) 90 (30.0) 118 (17.0) <0.001

Tocilizumab 123 (12.4) 77 (25.7) 46 (6.6) <0.001

Dexamethasone 558 (62.1) 214 (74.0) 344 (56.5) <0.001

Antibiotics 180 (20.0) 77 (27.9) 103 (16.5) <0.001

Outcome

Hospital admission 969 (95.8) 299 (96.1) 670 (95.7) 0.753

Length of hospital stay (days, median [IQR]) 7 (4-12) 10 (5-15) 6 (4-10) <0.001

HFNO4 48 (4.8) 31 (10.0) 17 (2.4) <0.001

Intensive care unit admission 76 (7.5) 42 (13.6) 34 (4.9) <0.001

WHO clinical progression scale 7–103 129 (12.8) 75 (24.1) 54 (7.7) <0.001

Mortality at day + 30 79 (7.8) 52 (16.7) 27 (3.9) <0.001

1Percentages respect to the patients in each VOC period; 2 Percentages respect to the vaccinated patients in each VOC period; 3 https://doi.org/10.1016/
S1473-3099(20)30483-7; 4 HFNO: High-Flow Nasal Oxygen.

https://doi.org/10.1371/journal.pone.0330495.t003

Table 3.  (Continued)
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lymphoid cells type 1 as the first line of defense against viruses. In a previous Spanish nationwide study in a cohort of 
4035 patients with COVID-19, lymphopenia was more common in patients who died, being an important predictor of mor-
tality [31] similar to RNAemia, which was also associated with lymphopenia in other studies [4,5,9].

In immunocompromised patients, despite vaccination, the absence of neutralizing antibodies was independently asso-
ciated with RNAemia. The absence of neutralizing antibodies seems to favor viral dissemination and, in turn, increase 
tissue damage, which explain the leakage of viral particles and their components from the tissues into the bloodstream 
[35]. This finding was observed in immunocompromised patients as a whole and, specifically, in both SOT recipients 
and patients with solid neoplasia. In patients with hematological malignancies, with a vaccination rate similar to the other 
immunocompromised patients, RNAemia was associated with the presence of pneumonia, as previously reported [18], 
but not with the absence of neutralizing antibodies; this fact may be explained by the heterogeneity of diseases included 
in this type on immunocompromised patients.

Our study has several limitations. Although it was a prospective cohort, inclusion was dependent on having blood 
samples to evaluate RNAemia after obtaining informed consent from patients. Additionally, the number of patients with 
mild disease not requiring hospital admission was smaller than the number of patients admitted to the hospital, although 
more patients had moderate rather than severe disease at the time of blood sampling. Another limitation was the differ-
ent vaccination rates between immunocompromised patients, who were the first scheduled to receive the vaccine, and 
immunocompetent patients. Despite these limitations, the strength of this study lies in the multicenter design of our cohort, 
which was recruited from six Spanish hospitals. Each hospital had its own clinical practice and protocols, although the 

Table 4.  Risk factors associated with the presence of RNAemia in the whole cohort and in the 
immunocompromised and immunocompetent sub-cohorts: Multivariate logistic regression 
analyses.

Whole cohort

Model A, N = 945 OR (95% CI) P

Immunocompromise 3.74 (2.51-5.58) <0.001

Omicron period 1.55 (1.03-2.32) 0.035

SpO
2
 < 95% 1.67 (1.21-2.30) 0.002

Lymphocyte count<1000/µL 1.54 (1.12-2.11) 0.008

LDH > 300 IU/L 2.25 (1.64-3.09) <0.001

Model B, N = 948 OR (95% CI) P

Immunocompromise 3.66 (2.47-5.44) <0.001

Omicron VOC period 1.44 (0.97-2.15) 0.071

Lymphocyte count<1000/µL 1.60 (1.16-2.19) 0.004

LDH > 300 IU/L 2.51 (1.84-3.42) <0.001

Immunocompromised sub-cohort

N = 317 OR (95% CI) P

Alpha and Omicron VOC periods 1.95 (1.01-3.79) 0.048

Pneumonia 1.96 (1.10-3.50) 0.023

LDH > 300 IU/L 1.64 (1.02-2.63) 0.041

Neutralizing antibodies absence 2.51 (1.57-4.00) <0.001

Immunocompetent sub-cohort

N = 605 OR (95% CI) P

Delta and Omicron VOC periods 2.27 (1.46-3.52) <0.001

Lymphocyte count<1000/µL 1.81 (1.16-2.80) 0.008

LDH > 300 IU/L 3.99 (2.51-6.36) <0.001

https://doi.org/10.1371/journal.pone.0330495.t004

https://doi.org/10.1371/journal.pone.0330495.t004
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clinical practice was similar because all followed common national and international guidelines, confirmed by comparing 
the treatments received by patients with severe and mild patients. Immunocompromised and immunocompetent patients 
with clinically severe COVID-19, which has previously been associated with RNAemia [4,6,9], were treated more fre-
quently with tocilizumab and dexamethasone at the discretion of the physicians in charge. Finally, the present study has 
not considered the possible viral and bacterial co-infections [36]. However, the accuracy of co-infections diagnosis in the 
viral community-acquired respiratory infections, including pneumonia, is a difficult issue because of the lack of specificity 
of many bacterial isolates from respiratory clinical samples. A study on 50,419 upper respiratory samples, positive for 
SARS-CoV-2, detected 4% and 33% of viral and bacterial co-infections, respectively, but without expressing the method to 
differentiate Staphylococcus aureus or Haemophilus influenzae detection, as examples, from asymptomatic carriers [37]. 
In addition, a review of 13 studies disclosed a wide co-infection and secondary infection rates in SARS-CoV-2 infection, 
from 0.6% to 45.0% [38], which denotes the very different criteria for diagnostic specificity used in the different studies.

Conclusions

The results of this study show that the main factor determining the presence of SARS-CoV-2 RNAemia at COVID-19 
diagnosis depends on underlying conditions such as immunodeficiency, with RNAemia rates almost three times higher 
in this population than those in immunocompetent individuals. Pneumonia and absence of neutralizing antibodies in 
immunocompromised patients, biomarkers of tissue damage as LDH in all patients, and lymphopenia in immunocompe-
tent patients were also associated with bloodstream dissemination of the virus. These data highlight the need for quick 
detection of SARS-CoV-2 RNAemia for early initiation of antiviral treatment, especially in the most vulnerable populations, 
as RNAemia is associated with poor clinical outcomes. The efficacy of antiviral treatments, through clinical studies, must 
consider the different demographics features and chronic underlying diseases of patients.
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