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Abstract: This work investigates attractive potentials of the form 1/rN for N ≥ 2 in Quantum
Mechanics. For the inverse square potential (N = 2) with sufficiently strong coupling, we examine
how classical scale symmetry is broken through the renormalization process, representing the
simplest example of a quantum anomaly and touching upon the fundamental question of what
symmetries are present in reality. This anomaly is exemplified by the existence of a critical dipole
moment required to bind an electron to a polar molecule. In contrast, singular potentials with N > 2
exhibit stronger divergences, and we argue why a complete theory cannot be recovered with finitely
many parameters, drawing an analogy with nonrenormalizable theories in quantum field theory.
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I. INTRODUCTION

Quantum mechanics provides a robust framework
for describing physical systems governed by various
potentials. Standard examples, such as the harmonic
oscillator or the Coulomb potential, exhibit well-behaved
properties like discrete bound-state spectra and uniquely
determined scattering phase shifts. However, a class of
potentials known as singular potentials, characterized
by a divergence stronger than or equal to 1/r2 at the
origin, challenges our standard framework and intuition
[1]. These exhibit the form

VN (r) = −Γ̃N/r
N , r ∈ [0,∞) (1)

and the attractive cases, Γ̃N > 0, are particularly
problematic. Indeed, for N ≥ 2, a naive approach
to the resulting dynamics leads to paradoxical results:
classically, particles spiral into the centre because no
stable orbits exist, even with angular momentum;
quantum mechanically, there appears to be no ground
state, and bound states seem possible at any negative
energy. Furthermore, scattering processes become
ambiguous [2, 3].

The inverse square potential (N = 2) holds a special,
transitional status. While it exhibits pathologies under
sufficiently strong attraction (Γ̃2 ≥ ℏ2/8m), it displays a
unique connection to classical scale invariance. In three
dimensions, it respects the symmetries of the conformal
group O(1, 2) [4]. This marginal behaviour permits
renormalization of the theory, breaking scale symmetry
and encoding the original coupling into a new parameter
that must be determined experimentally. In doing so, it
engages with one of the most fundamental questions in
physics: what are the true symmetries present in nature?

This anomaly arises in several important systems,
including electron binding to polar molecules [5, 6], the
interaction of neutral atoms with a charged wire [7], and
the capture of matter by a black hole [8].

On the other hand, potentials with N > 2 represent

truly singular cases. Their stronger divergence at the
origin leads to more severe mathematical and physical
difficulties, generally rendering them nonrenormalizable
in the sense that defining physics requires an infinite
number of parameters.
In this work, we study the renormalization of the

transitional N = 2 potential by introducing an arbitrary
cutoff and discuss its implications. Finally, we shed light
on the physics underlying the non-renormalizability of
more singular potentials and point to a correspondence
with renormalization theory in quantum field theory.

II. THE INVERSE SQUARE POTENTIAL

For a central potential, the Hamiltonian commutes
with the angular momentum operator, allowing
decomposition by angular momentum ℓ ≥ 0. For the
case N = 2 in Eq. (1), dimensional analysis reveals that
the potential and centrifugal barrier contribute equally.
Defining ΓN = 2mΓ̃N/ℏ2, we introduce an effective
barrier via ν(ν+1) = ℓ(ℓ+1)−Γ2. With q2 = 2mE/ℏ2,
the radial differential equation becomes[

d2

dr2
− ν(ν + 1)

r2
+ q2

]
Rℓ(r) = 0 . (2)

A. Pathologies and Scale Invariance

We observe that a peculiar property of this scenario
already becomes apparent: if we rescale r → βr for
β > 0, then Rℓ(βr) remains a solution corresponding
to an energy β2E. This is a manifestation of scale
invariance, and it implies that the mere existence of a
single bound state guarantees the existence of infinitely
many bound states with arbitrarily negative energy —
and thus, the absence of a ground state. This paradoxical
result stems from the lack of an intrinsic energy scale
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in the parameters (ℏ,m, Γ̃2); no combination yields an
analogue of the Rydberg energy for the hydrogen atom.

By setting Rℓ(r) = uℓ(r)/r and gℓ =

√
Γ2 −

(
ℓ+ 1

2

)2
,

the most general solution takes the form (Appendix A):

uℓ(r) =
√
qr [C1Jigℓ(qr) + C2Yigℓ(qr)] . (3)

For a repulsive potential, Γ2 < 0, gℓ is imaginary and
there is nothing strange; there are no bound states and,
regarding the scattering states, the asymptotic behaviour
of the Bessel functions allows us to identify a phase shift
which, as expected, does not depend on the energy,

δℓ =
π

2

(
ℓ+

1

2
− igℓ

)
. (4)

For an attractive potential, things start to get
complicated when Γ2 > 1/4. In this case, some gℓ become
real, and the solutions oscillate infinitely many times near
the origin with

√
qre±igℓ ln r, falling to the centre in the

search for a ground state, as displayed in Fig. (1). The
following pathologies are found.

• Bound States: For any binding energy Ebs =
−ℏ2µ2/2m < 0, a solution can be found in the form
uℓ(r) ∝

√
µrKigℓ(µr) satisfying uℓ(0) = 0.

FIG. 1: Bound state wave function for N = 2. Note that it
oscillates infinitely many times near the origin. If the nodes
count the number of lower-energy states, one can always find
infinitely many states with lower energy.

• Scattering States: For E > 0, it is convenient
to write the general solution in terms of Hankel
functions as

uℓ(r) =
√
r[C1H

(2)
igℓ

(qr) + C2H
(1)
igℓ

(qr)] . (5)

The condition uℓ(0) = 0 is automatically satisfied.
Thus, the ratio C2/C1, which determines the
reflection amplitude and phase shift, remains
undetermined.

B. Regularization and Renormalization

One way to regularize these pathologies is to prevent
the fall to the centre by imposing uℓ(ε) = 0 at a small

cutoff ε > 0. This new parameter breaks scale invariance,
and the goal will then be to take the limit ε → 0
and recover some meaningful predictions. We call this
strategy renormalization, and we claim that the results
obtained in the renormalized theory capture the physics
of the original system. For µε≪ 1,

Kigℓ(µε) ∝ sin
[
gℓ log

(µε
2

)
− arg Γ(1 + igℓ)

]
. (6)

Bound states arise for n ≥ 1 upon imposing the
aforementioned boundary condition Kigℓ(µε) = 0,

En,ℓ = −
ℏ2µ2

n,ℓ

2m
= − ℏ2

2m

(
2e[arg Γ(1+igℓ)−nπ]/gℓ

ε

)2

. (7)

Solutions for n ≤ 0 are discarded as they violate the
assumption that µε≪ 1. As for the scattering states, the
cutoff condition, together with the asymptotic behaviour
of the solution, yields, for every channel with gℓ ∈ R,
e2iδℓ = −iH(2)

igℓ
(qε)/H

(1)
igℓ

(qε).
With a bit of algebra and the small-argument

expansion of the Hankel functions [9, Sec. 8.4], one can
isolate the expression for the scattering phase shift in
each channel,

tan δℓ =
tan ξ + tanh (πgℓ/2)

tan ξ − tanh (πgℓ/2)
(8)

where ξ = gℓ ln(qε/2)− arg Γ(1 + igℓ).
The time has come to eliminate the artificial parameter

we introduced—but let’s do it carefully! Note that our
requirements only fix the product µε, so it is legitimate
to ask that as ε → 0, the constant runs g0 → 0 in such
a way that the ground state energy (for n = 1, ℓ = 0)
remains fixed. This implies a scaling

g0(ε) = − π

log(µ0ε/2) + γ
(9)

where we used that for gℓ ≪ 1, then arg Γ(1 + igℓ) =
−γgℓ + O(gℓ)

2 with γ ≈ 0.577 is Euler’s constant. The
price to pay for this procedure is that if g0 → 0, then all
channels with ℓ > 0 acquire imaginary gℓ, removing the
pathology—but also eliminating bound states. Similarly,
in the ℓ = 0 channel for n > 1, Eq. (7) shows that the
bound state energies go to zero. We are thus left with a
single bound state.
Returning to the scattering states, all cases lead back

to the phase shift given by Eq. (4), except for n = 1, ℓ =
0. In this case, setting µ0 = µ1,0, one can revisit Eq. (8)
by writing ξ ≈ g0 ln(q/µ0)− π, obtaining

δ0(q) = tan−1

[
ln(q/µ0) + π/2

ln(q/µ0)− π/2

]
. (10)

We note that, in order to remove the cutoff, we need to
force the parameter of the theory flow towards Γ2 → 1/4.
This procedure allows us to extract the phase shift from a
single additional parameter, as shown in Fig. (2), which
captures the dependence on the original coupling.
The renormalization process, then, has revealed an

intrinsic scale in the theory, breaking scale invariance
through what is known as a quantum anomaly.
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FIG. 2: Phase shift as a function of q/µ0 for low energy
scattering, Eq. (10). The inset shows the logarithmic-like
running of the coupling parameter Γ2 → 1/4 with the cutoff
parameter ε → 0 for µ0 = 0.1 m−1, Eq. (9).

C. Self-Adjoint Extensions

To make sense of the pathologies in the unrenormalized
theory, we have seen how quantum theory acquires an
intrinsic scale through renormalization. In doing so,
we adjusted the coupling of the theory so that all
but one angular channel fall outside the problematic
regime. Thus, only the S-channel requires special
treatment, where the dependence on the original coupling
is absorbed into an unknown parameter. We now turn
to a more formal analysis of this procedure.

At the foundations of quantum mechanics lies the
requirement that every observable be represented by a
self-adjoint operator, ensuring real eigenvalues. However,
in the case at hand, we find that the naive theory admits
an overabundance of eigenvalues and some of them turn
imaginary, a clear symptom of the Hamiltonian’s lack
of self-adjointness. Indeed, checking Hermiticity via
integration by parts reveals a boundary term at r = 0
that fails to vanish precisely when Γ2 > 1/4.

Fortunately, the requirement of self-adjointness can be
relaxed to that of essential self-adjointness, which only
requires the existence of a unique self-adjoint extension.
To quantify this, von Neumann introduced the deficiency
indices (n+, n−) [10], which count the eigenvalues of the
Hamiltonian of the form ±iη, with η > 0. If n+ =
n− = n < ∞, there exists an n2-parameter family of
self-adjoint extensions; if n+ = n− = 0, the operator
is already self-adjoint; and if n+ ̸= n−, no self-adjoint
extension exists. In our case, renormalization required a
single parameter to restore consistency, implying n+ =
n− = 1. We will return to this later.

D. Critical Dipole Moment for Electron Binding

The breaking of scale invariance will allow us to explain
the existence of an unexpected minimum dipole moment
for electron capture by a polar molecule, a phenomenon
known as molecular anomaly. Through renormalization,
we found that sufficiently strong attractive interactions
lead to the existence of a single bound state, and none

for weakly attractive and repulsive scenarios. We will
see how this threshold determines the critical moment
required to bind an electron [5, 6, 11].
The interaction potential between an electron (charge

Q = −e) and a stationary point dipole p is given by

V (r, θ) = Ke
(−e)p cos θ

r2
(11)

where θ is the angle relative to the dipole axis.
While anisotropic, this potential shares the crucial 1/r2

radial dependence and, consequently, the classical scale
invariance of the isotropic potential studied previously.
Indeed, the coupling can be written in a dimensionless
form too,

λ =
2mKe

ℏ2
ep =

p

p0
(12)

with p0 ≈ 1.271 Debye. By separating variables and
introducing the separation constant ζ, we obtain coupled
equations for the coordinates r and θ given by[

d2

dr2
+

ζ

r2
+ q2

]
u(r) = 0 (13)

and [
−L2/ℏ2 + λ cos θ

]
Θ(θ) = ζΘ(θ). (14)

The separation constant is implicitly related to the
coupling by means of the eigenvalue equation Eq. (14).
As we know, the system undergoes anomalous symmetry
breaking at a critical coupling strength of ζ ≥ ζ∗ = 1/4.
This, at its turn, determines a critical value for the
dimensionless dipole coupling λ ≥ λ∗ = 1.279, which
amounts to a critical dipole moment p∗ ≈ 1.625 Debye.
Quantum mechanics predicts that only molecules with

a dipole moment p > p∗, corresponding to what we
identified as the pathological regime, should be capable
of binding an electron to form a stable anion. This
prediction is remarkably well supported by experimental
observations and numerical simulations on a wide range
of polar molecules (see Appendix B).

E. Quantum Reflection of Matter Waves

So far, we have discussed the radial inverse square
potential generated by a point-like source. We now turn
to a related scenario of interest, motivated by recent
work [12] in which I have been involved. Here, the
setup reduces to one dimension: a particle subject to
an attractive 1/z2 potential created by a planar surface,
where z denotes the distance of the particle from it. The
most notable feature of this model is the phenomenon
of quantum reflection, in which a quantum particle is
scattered off an attractive potential despite the absence
of a barrier. Such a configuration can be reproduced
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by attaching polar molecules to a planar substrate and
reflecting charged particles, as shown in Eq. (11).

Simpleminded boundary conditions trivialize quantum
reflection. However, analyzing the effect away from
the origin reveals interesting features, motivating the
use of tools such as the WKB approximation. Indeed,
the wavelike nature of the system prevents a precise
identification of a reflection point, making it reasonable
to assume that reflection occurs where the WKB
approximation breaks down [13]. That is, where the wave

function’s effective momentum, p(z) =
√
q2 − ΓN/zN ,

oscillates faster than the potential varies. This point
corresponds to the maximum of the badlands function

B(z) = ℏ2
(
3

4

[p′(z)]
2

p4(z)
− 1

2

p′′(z)

p3(z)

)
, (15)

as noted in [14, p.58]. An analytical expression for the
approximate reflection point can be derived, offering a
first motivation for implementing such a setup [12]. For
N = 2, we find (Appendix C):

z0 =
√
|Γ2|/2q. (16)

For a given incident energy, the reflection point seems to
consistently occur at the same number of wavelengths.
Inserting this into Eq. (5), the reflection probability can
be computed by decomposing the potential into linear
segments and matching them, solving a Riccati equation.

An apparent scale independence of the reflection
probability is found for the inverse square potential—a
feature that, at first glance, seems to set it apart
from other potentials (see Fig. 3). This suggests that
the semiclassical approximation fails to capture the
anomaly, providing further motivation for experimental
investigation. Whether more refined methods near the
origin can reveal the symmetry breaking remains an open
question and a direction for future work.

FIG. 3: Naive calculation of the reflection probability as
a function of wave number [15] reveals unbroken scale
invariance, even in the pathological coupling regime.

III. MORE SINGULAR POTENTIALS (N > 2)

We consider now the attractive potential V (r) =

−Γ̃N/r
N with N > 2. Dimensional analysis reveals that

at short distances, the effect of the potential dominates
over the kinetic energy and the centrifugal barrier. This
will result in a much stronger fall to the centre [16].

A. Stronger Fall to the centre

With the exception of the case N = 4 [1, 17],
the derivation of closed-form analytical solutions over
the entire domain for the Schrödinger equation with
attractive singular potentials is not known. Near the
origin, Case suggested a set of algebraic manipulations
that allow for a recursive solution to be found [18]. For
example, for N = 3, ones finds

ψ3(r) =

(√
r

Γ3

)3/2
[
C1e

2i
√

Γ3/r
∞∑

n=0

cn

(√
r

Γ3

)n

+ C2e
−2i

√
Γ3/r

∞∑
n=0

(−1)ncn

(√
r

Γ3

)n
]
, (17)

where

cn = −i (n+ 1/2)(n− 3/2)

4n
cn−1 − i

q2Γ2
3

n
cn−5 . (18)

This is illustrated in Fig. (4). In general, the WKB
approximation tells us that near the origin, the solutions
will take the form

ψN ∼ rN/4e±i 2
N−2

√
ΓN/rN−2

, (19)

in which the phase oscillates infinitely many times
as it approaches the origin. While previously these
divergences were logarithmic, they now take a power-
law form, an indication typically encountered in
nonrenormalizable theories.

FIG. 4: Bound state wave function for N = 3, where sharper
oscillations indicate a higher density of bound states and
suggest that the previous analysis will be more intricate.

In such cases, repeating the previous strategy becomes
more challenging due to the lack of analyticity. However,
we note a crucial difference: the dominance of the
potential over the centrifugal barrier near the origin
causes the different angular momentum channels to
decouple. As a result, we cannot rely on the possibility
that treating the S-wave channel of the theory will
eliminate the pathologies in the other channels ℓ > 0.

Treball de Fi de Grau 4 Barcelona, June 2025



B. Failure of Renormalization

Due to the strong singular behavior at the origin,
these potentials yield deficiency indices of (1, 1) for each
individual angular channel. However, the decoupling of
the channels now necessitates separate renormalization
for each, introducing a distinct parameter per case.
Consequently, the complete theory would require an
infinite set of additional parameters, as the full
Hamiltonian exhibits deficiency indices of (∞,∞) [19,
20]. In other words, if we decompose the Hamiltonian
for different angular momenta, H =

⊕∞
ℓ=0Hℓ, so that

every Hℓ acts on a Hilbert space Hℓ ⊂ L2(R3), then we
will need to provide one parameter for every Hℓ.

C. Relation to Field Theory

In quantum field theory, nonrenormalizable theories
are a common occurrence. In momentum space, the
short-distance behavior we have studied translates into
high-energy phenomena. As divergences arise at very
high energies, they are isolated, and the theory is
reformulated as an ’effective theory at low energies’.

In the context of relativistic physics, a canonical
example involving a critical coupling constant—beyond
which the system develops pathological behavior—is
the Coulomb scattering of a Klein–Gordon particle,
where the critical coupling is found at Zc = 137/2.
In this vein, one can establish a parallel between
regular, transitional, and singular potentials and

their relativistic analogues. Reference [21] further
highlights a correspondence between these systems and,
respectively, super-renormalizable, renormalizable, and
nonrenormalizable quantum field theories.

IV. CONCLUSIONS

We have seen how renormalization allows us to
construct a theory that captures the physics of an
originally pathological system. This requires introducing
a measurable parameter that absorbs the original
coupling. We have shown how the existence of a critical
coupling strength helps explain molecular anomalies and
motivates experiments on matter-wave reflection off polar
substrates. As for singular potentials, the independence
of different angular channels requires an infinite number
of measurements to renormalize the theory, rendering
them nonrenormalizable. The study of quantum
anomalies and the transition to singular potentials offers
a valuable point of contact with phenomena commonly
encountered in quantum field theory.
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[10] D Maksimovič et. al. Self-adjoint extensions in quantum
mechanics, volume 62. Springer Science, 2012.
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”Educació de qualitat”, en ser fruit del treball desenvolupat arrel de la Beca de Col·laboració amb Departaments
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SUPPLEMENTARY MATERIAL

A. Analytic solution for the inverse square potential

I will write down the calculations for ℓ = 0. The solution for other angular momenta is trivially derived from it.

ψ′′(r) + q2ψ(r) +
Γ2

r2
ψ(r) = 0 (20)

and change y = 1/r. By expressing the solution as a descendent power series, we obtain

∞∑
n=0

cn(a− n)(a− n− 1)y−n−2 + 2

∞∑
n=0

cn(a− n)y−n−2 + Γ2

∞∑
n=0

cny
−n−2 + q2

∞∑
n=0

cny
−n−4

=

∞∑
n=0

cn

[
(a− n)(a− n+ 1) + Γ2

]
y−n−2 + q2

∞∑
n=0

cny
−n−4 = 0.

For y−2, we get the equation

c0[a(a+ 1) + Γ2] → c0 = 0 or a = −1/2±
√
1/4− Γ2 .

Set c0 = 0 and see that for y−3, we get

c1[(a− 1)a+ Γ2] = 0 → c1 = 0 or a = 1/2±
√
1/4− Γ2 .

We choose the latter and give a solution in terms of c1. One sees that this choice sets to zero all even coefficients and,
for odd coefficients, yields the expression

c2n+1 = (−1)nq2nc1

n∏
i=0

1

(a− 2i− 1)(a− 2i) + Γ2
= (−1)nq2n

c1
4n

n∏
i=0

1

i(i+ b)
(21)

where we have defined b = ∓
√
1/4− Γ2. Note now that since the Pochhammer symbols are defined such that

(z)n = z(z + 1) . . . (z + n− 1) = Γ(n+ z)/Γ(z), we can write

c2n+1 = (−1)nq2n
c1
4n

1

n! · (b)n+1
(22)

and one can write the solution in terms of

ψ(y) = c1y
a−1

∞∑
n=0

(−1)n
1

n! · (b)n+1

( q2
4y2

)n
and re-arranging

ψ(r) =
c1
b
r1−a

∞∑
n=0

(−1)n

n! · (b+ 1)n

(r · q
2

)2n
=
c1Γ(b+ 1)

b
r1/2∓

√
1/4−Γ2

∞∑
n=0

(−1)n

n! · Γ(n+ b+ 1)

(r · q
2

)2n
.

Now recall that a Bessel function has the form

Jν(z) =

∞∑
n=0

(−1)n

n! · Γ(n+ ν + 1)

(z
2

)2n+ν

.

Plugging C1 = c1Γ(b+1)
b and re-arranging a bit, one sees that we can write ψ(r) = C1

√
r · Jb(q · r). For the next step,

recall that for non integer ν, the functions Jν(z) and J−ν(z) are linearly independent. Since we have fixed the choice
of b, and regarding the form of the Von Neumann functions, a general solution is given by

ψ(r) = C1

√
r · J√

1/4−Γ2
(qr) + C2

√
r · Y√

1/4−Γ2
(qr) .
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B. Experimental evidence of molecular anomaly

The renormalization of the inverse square potential has shown that, in sufficiently attractive scenarios, a single
bound state exists, while no bound states appear in weakly attractive or repulsive cases. We have interpreted this
anomaly as the inability of a polar molecule to bind an electron when the dipole moment is too small and stated
that this prediction is supported by both simulations and experiments. The results obtained in [6] are shown below:
simulations are represented by solid lines, and experimental data by points.

FIG. 5: Simulation and experimental data for electron binding energy as a function of the polar molecule’s dipolar moment.

C. Calculation of the approximate reflection point

What follows is based on the supplementary material provided in [12], an article currently under review for
publication in EPL, where we outline the derivation of the reflection point. As mentioned, the reflection occurs
at the maximum of the badlands function

|B(z)| =

∣∣∣∣∣ℏ2
(
3

4

[p′(z)]
2

p4(z)
− 1

2

p′′(z)

p3(z)

)∣∣∣∣∣≪ 1 . (23)

Let us use the form of a more general potential, U(z) = λzN +U0, which is singular for N ≤ −2. It should be noted
that we have changed the convention used in the main thesis in order to include more general solutions. A classical
returning point can be evaluated by balancing the kinetic and potential energy

E = U(zc) = λzNc + U0 . (24)

Consequently, the local classical momentum reads

p(z) =
√
2mλ (zNc − zN ) . (25)

We can now plug this into 23, obtaining

|B(z)| =

∣∣∣∣∣ℏ2Nm2λ2zN−2
[(

N
4 + 1

)
zN + (N − 1)zNc

]
p(z)6

∣∣∣∣∣ . (26)

In order to maximize this expression, we take the derivative

dB

dz
=

ℏ2NzN−3

8mλ(zNc − zN )4

[
(N + 4)(N + 2)

4
z2N+ (27)

(N − 1)(5N + 8)

2
zNzNc + (N − 1)(N − 2)z2Nc

]
(28)

and the maximum can be found by writing t = zn and solving a second-order polynomial, obtaining

zN = zNc
−(N − 1)(5N + 8)±N

√
3(N − 1)(7N + 13)

(N + 4)(N + 2)
, (29)
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where

zNc =
E − U0

λ
, (30)

which can be written as

z0 =

∣∣∣∣∣−5N2 +
(√

21N2 + 18N − 39− 3
)
N + 8

N2 + 6N + 8

E − U0

λ

∣∣∣∣∣
1/N

. (31)

For N = −2,−4, one sees that the denominator diverges. This is, of course, because the quadratic term in Eq. (27)
becomes zero. In these cases, going back to Eq. (27), the maximum is found to be in

z0 =

∣∣∣∣ N − 2
5
2N − 4

∣∣∣∣1/N |zc| . (32)

For the case of interest, we note that N = −2, U0 = 0 and λ = Γ̃2, so that zc =
√
|Γ̃2/E| =

√
|Γ2|/q2 =

√
|Γ2|/q.

Therefore, Eq. (32) reads

z0 =

√
|Γ2|
2q

, (33)

as stated in the thesis. This coordinate will be relevant for computing the reflection probability. The strategy will be
to approximate the continuous potential by dividing it into linear segments

U(z) = Ui , if z ∈ [zi, zi+1] , (34)

with the discontinuous boundaries located at zi. The reflection of matter waves at the boundary at z = zi can be
constructed from the elementary reflection and transmission coefficients

ri,i+1 =
qi+1 − qi
qi+1 + qi

, t =
2qi

qi + qi+1
, (35)

respectively, via the recursive formula

r̃i,i+1 =
ri,i+1 + r̃i+1,i+2e

2iqi+1(zi+1−zi)

1 + ri,i+1r̃i+1,i+2e2iqi+1(zi+1−zi)
. (36)

Considering equidistant layering zi = ∆i and the wave vector qi+1 = q(z −∆), the generalised reflection coefficient
can be written in continuous variables

r̃(z) =
r(z) + r̃(z −∆)e2iq(z−∆)∆

1 + r(z)r̃(z −∆)e2iq(z−∆)∆
. (37)

By taking the continuum limit ∆ → 0 and expanding series, one finds that the reflection coefficient is determined by
a Ricatti equation,

r̃′(z) = 2iq(z)r̃(z) +
q′(z)

2q(z)

[
1− r̃2(z)

]
, (38)

which must be solved numerically with the appropriate boundary conditions. It is convenient (and realistic) to consider
a constant potential beyond the reflection point found in Eq. (33).
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