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by Georgia ZAVOU

Huntington’s disease (HD) is a progressive neurodegenerative disorder caused
by CAG repeat expansion in the HTT gene. While the length of this expansion
explains a large portion of the variability in age of onset (AO), additional genetic
modifiers, including regulatory variants, contribute to the remaining variability. In
this work, we investigate the utility of genomic language models (gLMs), specif-
ically Borzoi, for predicting tissue-specific gene expression changes from individ-
ual genomic data. We applied Borzoi to whole-genome sequencing data and inte-
grated RNA-seq coverage predictions for relevant brain regions, including putamen
and caudate. After weighting logSED scores using enhancer proximity, we aggre-
gated these expression predictions at the gene level. We then trained multiple ma-
chine learning models to classify AO residuals such as a baseline XGBoost model
using coding SNPs, CAG repeat length, and sex, an expression-based model us-
ing Borzoi-derived features and a multimodal model combining both genomic and
predicted expression features. Our results show that Borzoi expression predictions
capture meaningful regulatory signals, with functional enrichment analysis high-
lighting genes involved in transcription regulation, DNA repair, and glutamate sig-
naling. While genotype-based models achieved the highest predictive performance,
the multimodal model demonstrated complementary information from expression-
based features. This study illustrates the potential of incorporating gLM-based ex-
pression predictions into phenotype modeling, offering insights into HD molecular
mechanisms and genetic modifiers. The corresponding notebooks and scripts for
this thesis, can be found in the following GitHub FPDS Thesis GitHub Repository

. . .
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Chapter 1

Introduction

1.1 Motivation

Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by
an abnormal expansion of CAG trinucleotide repeats in the HTT gene (Jurcau and
Anamaria, 2022). Although the disease is monogenic, considerable variation in the
age of onset and symptom severity has been observed among individuals with the
same CAG repeat length. This variability is understood to be influenced by genetic
modifiers and regulatory variation across the genome. Research has shown that
intermediate alleles with 27–35 CAG repeats, even if it is traditionally considered
non-pathogenic, can still have mild effects on motor, cognitive, or psychiatric traits.
This underscores the importance of advancing research and deepening our under-
standing of gene regulation.

1.2 Objectives

The objective of this thesis is to explore the use of genomic language models to pre-
dict tissue-specific gene expression changes from genomic variants, and to evaluate
their relevance for phenotype prediction in HD. Specifically, we aim to:

• Generate gene expression predictions using Borzoi for tissues relevant to HD,
such as putamen and caudate, based on individual genotype data.

• Investigate whether Borzoi-derived expression predictions contain functional
information that can help predict residual age of onset (AO), after accounting
for the effect of CAG repeat length.

• Compare different phenotype prediction models using XGBoost: one using
only genotype information, one using Borzoi-derived expression features, and
a multimodal model combining both.

• Analyze which genes and regulatory pathways are prioritized by the models,
and whether expression-based features reveal candidate genetic modifiers in-
volved in HD progression.

By addressing these objectives, the thesis seeks to better understand how regu-
latory variation contributes to HD variability, and whether gene expression predic-
tions can improve genotype-to-phenotype modeling.



4 Chapter 1. Introduction

1.3 Contributions

In this thesis, we applied genomic language models to improve phenotype predic-
tion in HD. Using Borzoi, a transformer-based model trained to predict RNA-seq
coverage directly from genomic sequence, we generated tissue-specific expression
predictions for brain regions relevant to HD like putamen and caudate. These pre-
dictions were based on individual-level variant data from the Enroll-HD cohort,
combining both protein-coding variants and variants located in regulatory regions
such as enhancers and promoters. We integrated these Borzoi-derived expression
features into phenotype prediction models for residual AO, alongside traditional
genotype-based features, CAG repeat length, and sex. Multiple XGBoost classi-
fication models were trained and compared such as a genotype-only model, an
expression-only model using Borzoi predictions, and a multimodal model combin-
ing both types of features. Finally, feature importance analysis was performed to
identify key genes, regulatory elements, and biological pathways contributing to
AO.

1.4 Layout

The remainder of this thesis is organized as follows. Chapter 2 provides background
on HD, genome-wide association studies (GWAS), and genomic language models
(gLMs), including Borzoi. Chapter 3 describes the methodology, covering data pro-
cessing for genotype and RNA-seq data, generation of gene expression predictions
using Borzoi, and the development of phenotype prediction models, including base-
line, expression-based, and multimodal models. Chapter 4 presents the results and
discussion, structured into gene expression predictions and augmentation of pheno-
type prediction models. Chapter 5 discusses the implications and limitations of the
findings, while Chapter 6 summarizes the conclusions and outlines future research
directions.
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Chapter 2

Background

2.1 Huntington’s Disease

Huntington’s disease (HD) (Jurcau and Anamaria, 2022) is an incurable neurodegen-
erative disease (NDD) that is mainly inherited and results in the progressive break-
down of neurons in the brain. The cause is a genetic mutation in the HTT gene
characterized by a gradual degeneration of neurons in the brain. This mutation can
lead to motor dysfunction, cognitive decline, and psychiatric disturbances. Only one
copy of the altered gene is enough for an individual to develop the disorder since
the disease is classified as an autosomal dominant condition.

As there is currently no cure, it leads to premature death, often 15 to 20 years after
initial diagnosis. The onset of symptoms usually occurs between the ages of 30 and
50, even if both juvenile and late-onset cases are observed. The disease is chronic
and progressive, therefore symptoms are worsening over time and ultimately re-
sulting in total dependency and death, often from secondary complications such as
pneumonia, heart failure, or aspiration. HD affects approximately 4 to 15 individ-
uals per 100,000 people of European descent Network, 2024, making it one of the
most common inherited NDD. It affects males and females equally.

2.1.1 Genetic Etiology

HD is caused by a well-defined genetic mutation in the HTT gene located on chro-
mosome 4 (locus 4p16.3) (James F Gusella, 2021). The mutation involves an unstable
CAG trinucleotide repeat expansion in the first exon of the gene. This exon encodes
a polyglutamine tract near the amino terminus, an alpha-helical solenoid-like scaf-
fold. In the general population repeats in this expansion are observed to be up to
35 but length polymorphisms exceeding this number can cause HD, affecting the
structure, phosphorylation pattern and activities of the protein. There are cases of
juvenile-onset HD that involve expansions greater than 60 repeats and are associ-
ated with earlier onset and a more aggressive disease course. The allele is classified
into four categories, namely normal, intermediate, reduced penetrance and full pen-
etrance based on the length of the expansion (Table 2.1).

A count of 36 or more CAG repeats leads to the production of a mutant HTT
(mHTT) protein with an expanded polyglutamine tract that misfolds and forms
toxic aggregates inside neurons. As a result, these aggregates interfere with essential
cellular functions, including axonal transport, transcriptional regulation, mitochon-
drial activity, and protein degradation. Over time, this contributes to neuronal dys-
function and cell death. This affects critical regions for motor control and cognitive
function such as striatum and cerebral cortex.

It is important to note that a feature of HD’s inheritance is the phenomenon of
genetic anticipation, in which the disease tends to appear at an earlier age. This is
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TABLE 2.1: Classification of CAG Expansion Alleles in HTT.

Allele Classification CAG Repeats Expression
Normal Allele <27 Not associated with a phenotype;

inherited stably.
Intermediate Allele 27–35 Typically not linked to HD; may

show germ line instability.
Reduced Penetrance HD Allele 36–39 Disease may or may not develop

due to reduced penetrance.
Full Penetrance HD Allele >39 High likelihood of developing

Huntington’s Disease.

most often observed when the mutation is inherited from the father, due to increased
instability of the CAG repeat during spermatogenesis.

2.1.2 Genetic Modifiers

Genetic modifiers (GeMs) are the genes whose natural polymorphic variation con-
tributes to modifying the development of disease symptoms (Gusella and MacDon-
ald, 2009). In greater depth, a gene is considered a disease modifier if changes in
its sequence or expression influence the onset of the symptoms caused by the pri-
mary disease mutation, in this case, the HD CAG expansion. Searching for these
modifiers aims to determine the biochemical changes that occur many years before
diagnosis in order to provide validated target proteins and pathways to guide the
development of strategically designed therapeutic approaches. Additionally, iden-
tifying GeMs in human studies ensures that the associated pathways are already
validated to modify the pathogenic process in HD patients. This helps to overcome
a major obstacle early in the drug development process.

To highlight the importance of this study, it is worth noting that two individuals
with identical HD CAG repeat lengths are unlikely to develop motor symptoms at
the exact same age (Gusella and MacDonald, 2009). While the presence and length
of the expanded CAG repeat are the primary factors in determining if and when
an individual will develop HD, the specific symptoms and their timing can also
be significantly influenced by other factors. This emphasizes the role of additional
GeMs.

Figure 2.1 illustrates the inverse correlation between CAG repeat length and age
at neurologic onset in HD. For each individual, the age where a person first shows
motor symptoms of HD (x-axis) is plotted against the measured CAG repeats in the
HTT gene (y-axis). Each dot represents a single individual (from a dataset of 1,200).
There is clearly an inverse correlation since when CAG repeat length increases, age
of onset decreases. The curve drawn through the dots is a logarithmic regression line
that fits best to the data. The CAG repeat length accounts for approximately 67% of
the overall variation in age at onset which makes it the main factor, but still not the
only one. The remaining 33% variation is influenced by other heritable factors and
the environment (Gusella and MacDonald, 2009). From that remaining variation,
about 56% is heritable, suggesting other genes besides CAG length influence onset
timing. These findings support the idea that, even though CAG length is the primary
predictor, individuals with the same repeat length can show symptoms at different
ages.
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FIGURE 2.1: Neurologic Onset (adapted from (Gusella and MacDon-
ald, 2009)).

2.2 Genome-wide Association Studies (GWAS)

A genome-wide association study (GWAS) is an observational study in genomics
that contributes to identifying genetic variations associated with a particular disease
(Cano-Gamez and Trynka, 2020). This method studies the entire genome of a large
group of people, searching for small variations such as single nucleotide polymor-
phisms (SNPs). The goal is to estimate if any variant is associated with a trait by
comparing them among people who have a particular trait or disease (referred to as
phenotype) with people without it.

Due to the lack of variance explained in the phenotype by the CAG repeat length,
researchers began searching for HD GeMs (Huntington’s Disease (GeM-HD) Con-
sortium, 2015). When advancing GWAS studies, many modifier loci (position on a
genome) were identified. For instance, the GeM-HD Consortium in 2015 identified
important loci on chromosomes 8 and 15 that accelerated or delayed onset with re-
spect to the mean. These discoveries were later validated as HD modifiers through
biological models confirming key genes involved in DNA repair such as FAN1 in
chromosome 15, and RRM2B, in chromosome 8, a ribonucleotide reductase. More
recent research has continued to uncover additional modifier loci, including hits in
chromosome 7. The potential of such studies is still being exploited.

2.2.1 Genotype Data

Every biological species is defined by a common set of genetic characteristics, but
there still exists variation even between individuals of the same species. In humans,
such variation is noted in physical features like eye color, hair texture, or disease
susceptibility. This genetic variation is caused by inherited differences in DNA se-
quences.

Genotyping is the process of identifying differences in the genotype of an in-
dividual by examining their DNA sequence. It typically concentrates on specific
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genetic variants known as single nucleotide polymorphisms (SNPs), which consist
in genetic variation in a particular genetic locus. As previously discussed, these loci
are the subject of study, and their relationship with phenotypes, in GWAS (Gallagher
and Chen-Plotkin, 2018). Scientists typically perform genotyping by analyzing par-
ticular genetic variations which occur at SNPs. These particular genetic variations
show connections to both disease risk and gene regulation and the study of traits of
interest (L. Chen et al., 2022; Gallagher and Chen-Plotkin, 2018).

Within this study scope, the genotyping data is analyzed to find what variants
are carried by individuals in non-coding regulatory regions like enhancers and pro-
moters. In coding regions, SNPs can lead to protein isoforms that disrupt the nor-
mal cellular functioning. Furthermore, in regulatory regions, such as enhancers or
promoters, SNPs can disrupt the regulation of downstream target genes. In the pres-
ence of the latter, we can estimate how much an individual’s gene expression profile
might be altered due to their unique set of variants (R. v. d. Lee et al., 2022; Fulco
et al., 2019).

2.2.2 Phenotype Prediction

In general, phenotype prediction through GWAS is the analysis of genetic data aim-
ing to identify links between particular genetic variations and observable traits. This
allows researchers to estimate traits based on an individual’s genotype. Taking into
account the strong associations between genotypes and disease phenotypes, espe-
cially in brain disorders, machine learning techniques can be utilized for phenotype
prediction across different scales.

More specifically, phenotype prediction is applied to estimate observable traits
or disease characteristics in individuals by using genetic and clinical data. In the case
of HD, it is usually the prediction of traits such as age of onset, symptom severity, or
progression speed based on a person’s genetic profile. Knowing that the expanded
CAG repeat in the HTT gene is the main cause of HD, individuals carrying interme-
diate CAG alleles with 27–35 repeats which are typically considered non-pathogenic
have still shown evidence of subtle motor, cognitive, or psychiatric changes. This
demonstrates that distinction of non-pathogenic and pathogenic CAG repeat lengths
seems more complex than previously assumed (Meléndez et al., 2023).

Moreover, genetic modifiers outside the HTT locus have been shown to influence
phenotype, especially age of onset. As previously discussed, recent work leveraging
GWAS has led to the discovery of several modifier genes, such as FAN1, MSH3, and
RRM2B, which are involved in DNA repair and regulatory pathways (Huntington’s
Disease (GeM-HD) Consortium, 2015). As a result, phenotype prediction models
that integrate both CAG repeat length and genetic variants can give more accurate
predictions compared to models based only in CAG.

Phenotype prediction is becoming more feasible because of the advances in ma-
chine learning and the availability of large-scale genetic datasets, such as the UK
Biobank (Meléndez et al., 2023). When combining and applying these approaches,
the goal is to uncover complex and potentially nonlinear relationships between geno-
type and phenotype in order to better understand the molecular basis of the disease.
This will later on support the development of personalized prognostic tools or ther-
apeutic strategies to delay symptom onset.
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2.2.3 Variant Effect Prediction

Variant effect prediction (VEP) consists in the prediction of the biological impact of
genetic variants. More specifically, VEP allow researcher to study how a change
in the DNA sequence might affect genes, proteins, or traits in an organism. VEP
in HD involves identifying modifier genes apart from HTT that can influence the
onset of HD in individuals. It includes assessing regulatory variants since some can
possibly affect gene expression or splicing, especially in brain-specific pathways.
Additionally, it engages the prediction of protein impact as missense variants might
affect protein function in pathways involved in neurodegeneration, inflammation,
or DNA repair such as FAN1, MLH1, MSH3 which are known modifiers in HD.

In addition to coding mutations, non-coding variants the ones found in regu-
latory regions such as enhancers, promoters, and introns also play a crucial role
in modulating gene expression without altering protein sequence (Li et al., 2017).
These variants apply strong regulatory effects even if they may be silent in most tis-
sues. For example, a variant located within a brain-specific enhancer or promoter
could influence the expression levels of HTT or modifier genes, and contribute to
inter-individual differences in disease onset.

Recent studies have proved that rare non-coding variants are enriched near genes
with extreme expression and show higher conservation (Chandrashekar et al., 2023).
This is indicating that they are relevant in disease phenotypes. Moreover, models
that integrate genomic and transcriptomic data rather than just relying on sequence
annotations only, can improve the prediction of regulatory variant effects across tis-
sues. These findings highlight the importance of incorporating tissue-specific ex-
pression and regulatory context into VEP, especially in the study of complex, neuro-
degenerative diseases like HD.

2.3 Genomic Language Models (gLMs)

Genomic Language Models (gLMs) are Large Language Models (LLMs) trained on
genomic sequences like DNA and RNA, instead of natural language (Benegas et al.,
2024). Analogous to the goal of Natural Language Processing (NLP) which is to
analyze languages and understand large sequences of words, gLMs aims to under-
stand biological sequences. Just like language models learn patterns in words, gLMs
learn patterns in genomic sequences. This gives them the capability to comprehend
genomes and how DNA elements at various scales interact.

What makes genomic gLMs particularly powerful is the ability to learn contex-
tual representations of DNA, which allows them to capture functional regions and
long-range dependencies in the genome and, therefore, identify transcription fac-
tor binding sites, splicing signals, and other regulatory motifs (Benegas et al., 2024).
In addition they can provide strong transfer learning capabilities as after training,
their learned representations can be fine-tuned for a wide range of tasks like gene
expression prediction, enhancer/promoter detection, or genome annotation.

A major application of genomic LLMs is predicting the impact of genetic vari-
ants, such as SNPs. In the context of gene expression, gLMs can be fine-tuned to
predict how specific variants or sequence changes influence transcriptional output
across tissues. This facilitates the interpretation of genetic variants in complex traits
and diseases, including Huntington’s disease.

As gLMs continue to advance, they are becoming vital for interpreting genome
function, evolution, and disease (Benegas et al., 2024). Their ability to generalize
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across cell types, and biological contexts makes them a key mechanism for person-
alized medicine, variant effect prediction, and innovative therapeutic discovery.

2.3.1 State of the Art

Models like DNABERT and the Nucleotide Transformer (Consens et al., 2025) are
built upon the approach of gLMs by using self-supervised learning on large, unla-
beled genomic datasets. Their aim is to learn biologically meaningful features such
as transcription factor binding sites, splice junctions, and enhancer regions. These
foundation models have proven effective for a range of genomics tasks, including
regulatory element identification, variant effect prediction, and increasingly, gene
expression modeling. The Nucleotide Transformer, for instance, was trained on
hundreds of genomes from multiple species and demonstrated strong performance
across various tasks related to the identification of chromatin features, DNA reg-
ulatory elements and splice sites in the human genome (Consens et al., 2025). Its
embeddings generalize well to expression-related tasks via fine-tuning, even if it is
not trained on expression data directly.

Given that current tools do not predict RNA-seq expression profiles due to the
complexity of modeling regulatory processes, Borzoi (Linder et al., 2025) was intro-
duced to overcome these challenges through an integrated modeling approach. It is
a supervised transformer-based model, derived from Enformer. Just like Enformer,
Borzoi is trained on RNA-seq data to predict RNA coverage across the genome.
Borzoi distinguishes itself by modeling transcription, splicing, and polyadenylation
from a single input, enabling more direct predictions of steady-state gene expres-
sion across tissues. In contrast to the methods mentioned above, instead of using
self-supervised learning, models like Enformer and Borzoi use supervised learning,
trained on labeled datasets such as RNA-seq coverage and epigenetic profiles, in-
stead. Therefore, a key strength of gLMs, including Borzoi, lies in their potential to
improve gene expression prediction directly from raw DNA sequence. Moreover, it
is important to highlight that Borzoi also supports VEP, one of the major applications
of gLMs. It scores variants by estimating their effect on predicted RNA-seq coverage
and was shown to outperform the Enformer model in identifying functional regula-
tory variants.

Borzoi as a gLm trained on RNA-seq data, has the flexibility to be fine-tuned for
specific biological contexts, including those relevant to Huntington’s Disease (HD).
Although HD is driven by a CAG repeat expansion in the HTT gene, variation in dis-
ease onset and progression is also influenced by non-coding variants and regulatory
elements in modifier genes such as FAN1, MSH3, and MLH1. The effects of these
modifiers act through gene expression regulation and DNA repair pathways, espe-
cially in brain tissues. As Borzoi learns from RNA-seq coverage, it can be adapted to
model tissue-specific expression patterns and to assess variant effects even in non-
coding regions. This is crucial for HD where pathogenicity may not be driven by
protein changes alone.

Furthermore, the model’s ability to model transcription, splicing, and polyadeny-
lation in an integrated framework allows for the analysis of alternative isoforms
and untranslated regions (UTRs). This could also play a role in HD phenotypes
through post-transcriptional regulation. This is highly significant for analyzing the
effects of intermediate CAG alleles (27–35 repeats) and understanding gene expres-
sion changes in HD-affected tissues.

Borzoi represents a state-of-the-art tool for linking genomic variation to expression-
level changes in the context of complex diseases like HD. While foundation models
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like DNABERT and Nucleotide Transformer excel in versatility and transferability,
task-specific models like Borzoi provide greater precision in expression prediction.
More detailed training and evaluation analysis is presented in the following sections.

2.3.2 Model Training & Inference

Borzoi is built based on the Enformer’s architecture as illustrated in Figure 2.2. It
combines convolutional layers, downsampling, and self-attention blocks, with U-
net-style upsampling for high-resolution predictions. It uses 524 kb DNA input se-
quences and outputs predictions in 32 bp bins. Borzoi is trained on uniformly pro-
cessed RNA-seq data from ENCODE which consists of datasets with 866 human and
279 mouse samples. It is also trained with GTEx RNA-seq across various tissues, and
lastly on Enformer multi-omics datasets such as CAGE, DNase-seq, ATAC-seq, and
ChIP–seq for multi-modal learning. During these training sessions, the tiling strat-
egy was applied, meaning the genome was divided into 524 kb windows, creating
training examples where genes appear in variable locations within the window.

Because RNA-seq coverage incorporates effects of transcription, splicing and
polyadenylation, hence, Borzoi learns all three processes from a single data type
at the same time. The model learns to predict RNA-seq coverage across introns, ex-
ons, transcription start sites (TSSs), and polyadenylation sites (PASs), and is bench-
marked on its ability to predict exon/intron boundaries and splicing dynamics.
To assess model performance variance and enable ensembling, training process in-
volved four randomly initialized replicate models. This implies that training was
conducted using four separate Borzoi models, each starting from a different random
initialization, with their outputs combined. This technique is standard in machine
learning as it often leads to more reliable performance, especially when models are
trained on complex, noisy biological data like RNA-seq. In Borzoi’s case, this helps
ensure that the model generalizes well across tissues and gene structures.

A primary metric used to evaluate how well Borzoi predictions match observed
RNA-seq data is the Pearson correlation coefficient (R), which measures the aver-
age correlation between predicted and actual values across multiple test sequences.
Borzoi makes base-resolution predictions of RNA-seq coverage and demonstrates
strong performance at both the gene-level and bin-level. Specifically, gene-level pre-
diction on held-out genes yields a Pearson’s R of 0.87 as shown in the Figure 2.3, in-
dicating that the model effectively captures general gene expression patterns. When
evaluating bin-level coverage across exons and introns, particularly in the top 20%
most variable genes, Borzoi achieves a Pearson’s R of 0.88, showing strong predictive
accuracy at finer resolution. Additionally, tissue-specific expression is evaluated by
comparing residual expression across tissues using quantile-normalized data, result-
ing in a Pearson’s R of 0.58, which reflects a moderate but meaningful performance
in capturing expression differences across biological contexts.

Beyond general expression prediction, Borzoi was assessed on tissue-specific
gene regulation tasks across five GTEx tissues (blood, liver, brain, muscle, and esoph-
agus), including differential expression fold changes, transcription start site (TSS)
usage, and alternative polyadenylation (APA) site usage. For tissue-specific fold
changes, the model achieved Spearman’s R values ranging from 0.52 to 0.75 as illus-
trated in Figure 2.4, suggesting that it effectively captures regulatory shifts across
tissues.

A key application of Borzoi is variant effect prediction, particularly for assessing
the functional consequences of non-coding variants such as expression quantitative
trait loci (eQTLs), splicing QTLs (sQTLs), and polyadenylation QTLs (paQTLs). As
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FIGURE 2.2: Borzoi neural network Architecture (adapted from (Lin-
der et al., 2025)).

mentioned earlier, it is trained to model transcriptional, splicing, and polyadeny-
lation dynamics directly from sequence, in order to evaluate variants by scoring
their predicted impact on RNA-seq coverage. The model’s performance in variant
effect prediction is measured using metrics such as the Area Under the Receiver
Operating Characteristic curve (AUROC), Area Under the Precision-Recall Curve
(AUPRC), and Spearman correlation with experimentally determined eQTL effect
sizes. In comparisons with Enformer, Borzoi demonstrated superior performance,
achieving a mean AUROC of 0.794 compared to 0.747 from Enformer. In addition,
Borzoi’s predicted variant scores showed a Spearman correlation of R = 0.334 with
known eQTL coefficients, indicating a meaningful alignment between model predic-
tions and biological data.

2.3.3 Limitations and Challenges

Borzoi shows strong predictive performance across gene expression and variant ef-
fect tasks, however, the model faces several important limitations that affect its in-
terpretability, biological resolution, and generalizability.

One key challenge is its limited ability to model tissue-specific splicing events.
Although Borzoi predicts RNA-seq coverage with high accuracy on average, it often
fails to capture fine-grained, tissue-dependent transcript variants. This indicates a
tendency to default to consensus transcript profiles rather than condition-specific
isoforms, which reduces its effectiveness in studying alternative splicing patterns.

Furthermore, technical biases inherent in RNA-seq data, such as GC-content bias
and 3’ end bias, can impact the model’s performance by introducing misleading
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FIGURE 2.3: Pearson Correlation Coefficient (R) (adapted from (Lin-
der et al., 2025)).

signals. These biases often lead to false positives, particularly in the prediction of
alternative splice sites. This variation underscores a critical limitation of relying
solely on RNA-seq data as a training signal, especially when interpreting regulatory
elements.

A major challenge is disentangling overlapping regulatory signals, as RNA-seq
data capture the combined output of multiple, interdependent regulatory programs.
While Borzoi is trained to model transcription, splicing, and polyadenylation in par-
allel from sequence data, these layers of regulation are deeply interconnected, mak-
ing it difficult to attribute signal components to individual processes. This complex-
ity limits the precision with which Borzoi can isolate the effects of specific regulatory
mechanisms or variants that act through only one layer.

Finally, the interpretability of Borzoi’s predictions is highly dependent on the
choice of attribution method. Different interpretation techniques, such as input gra-
dients, in silico mutagenesis (ISM), and window-shuffled ISM, yield different re-
sults depending on the genomic context. For instance, while input gradients and
in silico mutagenesis (ISM) produced high-quality attributions for splicing and en-
hancer–promoter communication, window-shuffled ISM performed better in 3’ UTR
regions due to signal buffering effects. This variability introduces uncertainty in
identifying causal regions and reduces confidence in variant interpretation.

Together, these limitations point to key areas for future improvement, including
better modeling of splicing and isoform dynamics, incorporation of experimental
data on mRNA stability, and development of more robust interpretability frame-
works suited for diverse genomic contexts.

2.3.4 Transformers

In gLMs, transformers are used in the same way as in NLP, but in this case they are
processing biological sequences like DNA, RNA, or proteins. A revolution has taken
place after LLMs based on the transformer deep learning architecture were utilized
for NLP. Hence, researchers started developing genome language models that are
based on transformer architecture as soon as they observed the parallel between
human language and the genome’s biological code.
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FIGURE 2.4: Spearman’s R values for tissue-specific fold changes
(adapted from (Linder et al., 2025)).

Transformers use a self-attention mechanism (Vaswani et al., 2017) that empow-
ers the model to consider every position in a sequence and decide how important
each other position is when making a prediction for a given token. This allows them
to inspect the whole DNA sequence at once and decide which parts are relevant
to each other, regardless of how far apart they are. This gives them the capability
to capture relationships between distant nucleotides which is something that CNNs
and RNNs ofter struggle with. This happens because RNNs read the sequences step-
by-step and can forget context over long distances and because CNNs have visibility
only of what’s in their small window called the receptive field.

The fact that most genomic data do not have human-labeled annotations presents
a significant challenge. However, transformers offer a powerful solution by pre-
training on huge amounts of raw DNA sequence with unsupervised learning. In the
same way that GPT is trained to predict the next word, genomic LLMs learn to pre-
dict masked nucleotides or relationships in sequences. This enables them to learn
generalizable representations without the need for manual annotation, especially
when data is sparse, which is typically the case in biological research.

2.3.5 Architectural Overview

The Transformer is a deep learning architecture originally introduced in 2017, de-
signed to model relationships between elements in a sequence regardless of their
position (Consens et al., 2025). In contrast to models like CNNs that focus on local
patterns or RNNs that process sequences sequentially, transformers rely on a mech-
anism called self-attention. This mechanism allows every position in a sequence to
attend to every other position to capture both local and global context.

The Transformer architecture consists of a variety of core components as shown
in the Figure 2.5. One of them is the Self-Attention Mechanism that can take as an
input a nucleotide or k-mer, which is then transformed into three vectors: Query
(Q), Key (K), and Value (V). Next, the attention mechanism calculates how relevant
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each position in the sequence is to every other position based on these vectors. The
output is a weighted sum of values, where the weights are the attention scores that
reflect how much each token should "pay attention" to others.

Another key component is multi-head attention. Instead of computing one at-
tention map, the transformer does it in parallel across multiple heads, allowing it to
learn diverse patterns and dependencies from different perspectives. Transformers
also include a Feed-Forward Neural Network (FFNN). After attention, each posi-
tion is independently passed through this fully connected FFNN for transformation
and interaction across layers. Since transformers do not inherently understand se-
quence order, positional embeddings are added to each input to provide information
about the relative or absolute position in the sequence. This step is called Positional
Encoding. After this, a normalization layer is necessary to stabilize and accelerate
training. Each sub-layer includes layer normalization and skip connections that pass
information forward more directly.

Lastly, the major core components are the Encoder and the Decoder. An encoder
is the part of a transformer that processes the entire input sequence at once and trans-
forms it into a rich, context-aware representation. It looks in both the left and right
directions of the sequence, which means that it understands the full context of the
input based on what comes before and after it. This makes it bidirectional, which is
ideal for tasks like classifying DNA sequences, predicting whether a base belongs to
a promoter, exon, enhancer,annotating genomic regions and finding motifs or splice
sites. A decoder, on the other hand, is designed for generative tasks in which the
model needs to predict the next token based only on the past. It is unidirectional,
meaning that it only looks left-to-right from earlier positions in the sequence toward
the current one. Decoders are typically used for generating sequences or filling in
missing bases of DNA design or mutational simulations.

2.3.6 Capabilities and Applications

Transformer-based models have emerged as a powerful architecture in genomics
due to their ability to learn deep, context-aware representations of DNA sequences.
Unlike CNNs or RNNs which are restricted by local window sizes or sequential
memory limits, they can capture global text and long-range dependencies across
DNA sequences (Consens et al., 2025). This is due to the fact that they use a self-
attention mechanism which allows them to learn contextual embeddings, consid-
ering upstream and downstream information and therefore have bidirectional and
context representations. Moreover, they are pre-trained on unlabeled data using a
self-supervised pre-training to learn from massive unannotated genomic datasets,
which makes them extremely powerful. These pretrained transformers can be fine-
tuned on specific genomic tasks with limited labeled data and can also perform zero-
shot inference, meaning they make predictions on enhancer or splice site without
task-specific fine-tuning.

Transformers have rapidly gained traction in genomics due to their versatility
across a wide range of predictive tasks, many of which are central to understanding
gene regulation and genome function. These models have been applied to vari-
ous tasks that demonstrate strong generalization and interpretability across scales.
An important application is the prediction of variant effects, which indicates that
they can score genetic variants by predicting their functional effects on regulatory
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FIGURE 2.5: Transformer Architecture (adapted from (Consens et al.,
2025)).

elements or gene expression. Secondly, transformers can model transcription, splic-
ing, polyadenylation, and chromatin accessibility, Implying that they predict RNA-
seq coverage and tissue-specific gene expression. In addition, transformers iden-
tify functional genomic elements like enhancers, promoters, and splice sites directly
from sequence. Lastly, some hybrid transformer models like C.Origami are designed
to predict 3D genome interactions and chromatin organization from sequence and
epigenetic data which is crucial for understanding gene regulation beyond linear
DNA.
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Chapter 3

Methodology

3.1 Genotype Data

Studying rare diseases with machine learning (ML) is challenging because ML gen-
erally requires large-scale datasets. The data used for this study was assembled by
Lee et al. (J. Lee et al., 2019), combining samples from several large HD observa-
tional studies, including the GeM-HD Consortium, Enroll-HD, and Registry. Enroll-
HD, which is one of the largest contributors, is the world’s largest observational
HD study, with more than 20,000 participants enrolled globally (Sathe1 et al., 2021).
However, for this study, the final combined dataset includes whole-genome SNP
genotypes for 9,064 individuals, along with their CAG trinucleotide repeat lengths
and recorded AO. These data were obtained by sequencing blood samples.

FIGURE 3.1

Since our goal is to identify genetic modifiers that contribute to the variability
in AO beyond the known effect of CAG length, we first fitted a second-order lin-
ear regression model: AO ∼ CAG + CAG2. The residuals from this model repre-
sent the unexplained variability in AO after accounting for CAG length. To enable
classification-based machine learning models, these residuals were divided into five
quantiles, assigning individuals into five equally sized classes. Each class reflects
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how early or late an individual’s onset is compared to what is expected given their
CAG length as seen in figure 3.1.

Moreover, in this project, we are focusing on SNPs with a Minor Allele Frequency
(MAF) greater than 1%. MAF refers to the frequency at which the less common allele
occurs in a given population. This means that the alternative allele is present in at
least 1% of the individuals. This threshold helps filter out rare or private mutations
that are unlikely to contribute meaningfully to population-level gene regulation pat-
terns. Combined with regulatory annotations, this forms the basis for assigning pre-
dicted expression changes per gene and per individual.

3.1.1 Protein-coding regions

To reduce computational burden and focus on biologically meaningful features, SNPs
were filtered to include only those located in protein-coding genes that are function-
ally associated with HD pathogenesis. Specifically, we used Gene Ontology (GO)
terms related to DNA repair, transcription regulation, and other relevant processes
(Dickey and La Spada, 2018; Gatto et al., 2020). This filtering process resulted in a
final dataset containing 339,886 SNPs across 2,774 protein-coding genes.

3.1.2 Regulatory regions

Regulatory regions were included by scoring variants located in enhancers and pro-
moters. Enhancers were obtained from GeneHancer (Fishilevich et al., 2017), which
provides enhancer-to-gene mappings. Promoters were defined as 4 kilobase (kbp)
windows centered at the transcription start site (TSS) of each gene.

3.2 RNA-seq Data

3.2.1 Retrieval of RNA-seq Data

Since we hypothesized that what could give us information related to the real molec-
ular contex taking place in HD brains is predicting the differential expression in the
most affected tissues like putamen and caudate, we firstly obtained RNA-seq data
from healthy individuals which served as the basis for our gLM predictions. To do
so, transcriptomic reference data for downstream analysis, RNA-seq coverage files
were downloaded for the putamen and caudate brain regions from the recount3
project. Specifically, we used data from the study SRP074904, available through the
Sequence Read Archive (SRA). Recount3 provides uniformly processed RNA-seq
data in BigWigformat. The relevant files were retrieved using wget, with download
URLs obtained from the recount3 portal. After download, coverage tracks from indi-
vidual samples were merged to create tissue-specific aggregate signal files. By doing
this, we enable their use as reference inputs for modeling gene expression with Bor-
zoi. Then, we had to convert raw RNA-seq data from the bigWig format into .w5
format that Borzoi expects for the targets.

Next, we generated the targets\_human.txt file that is required for inference
and evaluation in Borzoi. This file is the configuration file that defines the target
dataset, such as the tissues and expression bins to predict. Without this file, the
model wouldn’t know how to map internal predictions to interpretable biological
outputs. As stated in the borzoi paper, it is used both during training to define the
loss function and during evaluation or inference in order to interpret the predicted
outputs. In this project, this file was customized to include only the tissues relevant

https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP074904&o=acc_s%3Aa&s=SRR3500570
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to HD such as putamen and caudate to reduce complexity and focus the model on
brain-relevant signals.

3.3 Genomic Language Model Gene Expression Prediction

Gene expression prediction is the estimation of mRNA presence for specific genes
based on underlying genomic information. This includes predicting expression lev-
els directly from DNA sequences, integrating additional biological features such as
transcription factor binding motifs, chromatin accessibility, and regulatory element
interactions. Accurate prediction of gene expression is essential to understand cellu-
lar function, tissue identity, and the regulatory architecture of the genome, especially
in the context of disease (L. Chen et al., 2022).

In HD, predicting gene expression from genotypic data is very important because
many disease-associated variants, especially those influencing the age of onset, are
in non-coding regions of the genome, where they affect transcriptional regulation.
These variants can alter the expression of the HTT gene or other modifier genes in
DNA repair, neuronal signaling, and neuroinflammation like FAN1, MSH3, MSH1)
(Huntington’s Disease (GeM-HD) Consortium, 2015; Linder et al., 2025). Under-
standing how these variants affect gene expression can help us explain why symp-
toms differ between people with HD and can contribute to the search for new treat-
ments.

As previosuly discussed, recent advances in deep learning have led to the devel-
opment of gLMs, models that predict gene expression directly from DNA sequences.
Transformer-based architectures such as Borzoi have demonstrated strong perfor-
mance in modeling RNA-seq coverage from genomic sequence by capturing signals
related to transcription, splicing, and polyadenylation (Linder et al., 2025). Unlike
foundational gLMs like DNABERT or Nucleotide Transformer, Borzoi is trained in
a supervised way using labeled RNA-seq data which allows it to produce tissue-
specific predictions of gene expression with higher resolution.

Furthermore, these models can support VEP by simulating the presence of a vari-
ant and assessing how it alters predicted expression. For example, Borzoi’s predic-
tions can be used to compute log-fold changes in expression. This is possible because
SNPs in enhancers or promoters can highlight regulatory variants that may not be
apparent through GWAS alone (Linder et al., 2025; Gallagher and Chen-Plotkin,
2018). Such approaches are particularly useful in HD, where regulatory variation
in brain-specific tissues is hypothesized to modulate disease onset and severity (Li
et al., 2017).

3.3.1 Liftover of VCF Files

In order to replicate individual-specific regulatory effects in the genome, it was nec-
essary to generate Variant Call Format (VCF) files which contain the genetic variants
that are present in each individual. The VCF format is standard and widely accepted
as a representation of genomic variation. These VCF files include information such
as the genomic coordinates of variants, the reference and alternate alleles, genotype
calls for each individual, and some metadata annotations. VCF files are critical for
enabling personalized sequence modeling for the Borzoi prediction pipeline. They
way Borzoi uses these files, is by predicting the impact of DNA sequence on RNA
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expression profiles. To personalize this, Borzoi modifies the reference genome se-
quence for each individual by embedding the specific genetic variants described in
the VCF.

As previously mentioned, our analysis focuses on SNPs found in regulatory re-
gions because these are the responsible for gene expression alterations. In addition,
the genotype field in the VCF encodes whether an individual carries zero, one, or
two copies of the alternate allele at a given position. Therefore, Borzoi can accurately
model the effects of heterozygous or homozygous variants by taking advantage of
this information.

Using VCF files in the way explained above, Borzoi is able to generate variant-
aware, individualized predictions of transcriptional activity. This is necessary for
understanding the functional consequences of genetic variation, especially in com-
plex tissues like the brain. In this project, genomic variant data was originally avail-
able in the GRCh37 (hg19) reference genome coordinate system. However, the Bor-
zoi model is trained and designed to operate on the more recent GRCh38 (hg38)
reference genome. To ensure compatibility, a critical preprocessing step involved
lifting over the variant coordinates from hg19 to hg38. This coordinate conversion is
essential because even minor differences in genome assemblies can lead to incorrect
positional mapping, which would affect prediction accuracy. The liftover process
was performed using tools such as the UCSC LiftOver utility. These tools need pre-
computed files in order to map positions from one genome build to another.

This step was crucial in order to correctly use Borzoi because the model reads
sequences directly from the hg38 reference and modifies them based on VCF input.
Feeding it variants mapped to an older assembly would result in mismatched se-
quences and misaligned predictions. Therefore, accurate liftover was essential to
ensure that each SNP is placed at the correct genomic position relative to regulatory
elements.

3.3.2 Setup and Configuration of Borzoi

Before applying Borzoi to our custom large genomic input, it is essential to ensure
that the model and its environment function in the way we expect. This is highly
recommended by the model authors and was successfully completed in this project
as a necessary check before proceeding to the more complex VEP workflow. There-
fore, in this step we run Borzoi using the example inputs provided by the developers
that were included in the GitHub. This process involved supplying preprocessed in-
puts, including a reference FASTA file, a sample VCF, and the targets_human.txt
file provided by the authors, to ensure that the model could successfully generate
RNA-seq coverage predictions. The resulting outputs are in the.h5 format, and a
script was constructed in order to make them readable in the .txt format and check
for correctness and consistency. This test served multiple purposes such as confirm-
ing that necessary software dependencies were correctly installed and verifying that
the GPU environment and CUDA support were functional for efficient inference.
Laslty, it provided a benchmark for comparing actual outputs with expected refer-
ence results.

After this first test, we proceeded with a second one, this time using a small sub-
set of our own data. This involved replacing the example VCF with one derived
from our dataset and using our own targets_human.txt file that was generated us-
ing brain-specific (Putamen) enhancer annotations. This extra test confirmed that
the pipeline can process real, custom data correctly and that our inputs are properly
formatted and compatible with Borzoi’s requirements. In this test we used data only
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for the tissue putamen which allowed us to generate Putamen-specific regulatory
effects (logSED) predictions, aligned with the biological focus of our study. To clar-
ify whether using tissue-relevant data produces meaningful differences in predicted
regulatory effects, we compared the logSED outputs from these two tests.

Firstly, we did a gene-level comparison by aggregating logSED values by gene
and compared total predicted regulatory across the two tissues, putamen from our
input and RNA-K562 from Borzoi’s input. After observing the result in Figure 3.2,
we can see that FAN1 shows dramatic differences in predicted regulation between
K562 and Putamen, indicating tissue-specific effects. Therefore, we will continue to
analyze some more things based on these two tissues and the gene FAN1.

FIGURE 3.2: Top genes by sum of predicted regulatory effect.

Secondly, we did an SNP-level comparison for FAN1 by aligning matching SNPs
between the two runs and compared their individual logSED values. The resulting
plots in Figure 3.3 show several variants with opposite or divergent effects. This
means that there is need for tissue-specific analysis.

FIGURE 3.3: Per SNP predicted regulatory effect on FAN1.

In addition to gene- and SNP-level comparisons, we also examined the overall
distribution of predicted regulatory effects across all genes for each tissue. Figure 3.4
illustrates the sum of logSED scores computed from all variant-gene pairs, grouped
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by tissue. The predictions based on Putamen-specific input showed an overall posi-
tive effect on gene regulation, while the predictions using K562 data showed a neg-
ative effect. This difference in both the direction and size of the predicted effects
shows that the tissue used in the analysis has a big impact on the results. Because of
this, it makes sense to use tissue-specific data for the rest of our analysis.

FIGURE 3.4: Total predicted effect across tissues

Finally we plotted one more graph Figure 3.5 that compares the predicted logSED
of SNPs in the FAN1 gene between two tissues. Each dot represents a single SNP,
with its predicted effect in K562 plotted horizontally and in Putamen vertically. The
red dashed line marks the line of equal effect (y = x), meaning SNPs that fall on this
line have identical predicted effects in both tissues. Points above the line indicate
a stronger effect in Putamen, while those below indicate a stronger effect in K562.
Most SNPs do not lie on the red line which means that predicted regulatory effects
differ between tissues. It is also notable that most of them are above the line, indi-
cating a stronger regulatory influence in Putamen which once again validates our
choice to run Borzoi with tissue-specific input.

In the Borzoi paper, authors explain that generating logSED predictions they ap-
ply a distance-based weighting step to the logSED values. This is suggested because
SNPs located closer to the center of an enhancer are more likely to influence gene
regulation. Therefore, after generating logSED predictions for all chromosomes us-
ing Borzoi, we applied to all of them the distance-based weighting step suggested in
their publication. Specifically, we used enhancer annotations to map SNPs to nearby
enhancer regions, and for each SNP-enhancer pair, we calculated a Gaussian weight
based on the distance between the SNP position and the center of the enhancer. The
standard deviation for the Gaussian kernel was set to 300 base pairs, consistent with
the parameters described in the original Borzoi study. We then multiplied the origi-
nal logSED value by this weight to obtain a weighted logSED score, which prioritizes
SNPs located centrally within enhancer regions. This approach helps make the pre-
dicted effects more biologically realistic by giving more importance to SNPs that are
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FIGURE 3.5: FAN1 SNP effect in both tissues

closer to the center of enhancer regions. It also reduces the impact of SNPs that are
farther away or less likely to be relevant.

To better illustrate the Gaussian weighting applied to SNPs within enhancer re-
gions, we include two example plots that show how the assigned weight depends
on the SNP’s position relative to the enhancer center. In both cases, the gray shaded
region represents the enhancer’s genomic span, the dashed vertical line marks the
center of the enhancer, and the solid vertical line indicates the SNP position. The
black curve is the Gaussian function used to calculate the weight as detailed before.
In the first example Figure 3.6, the SNP lies within the enhancer but it is far from the
center. As a result, the Gaussian curve assigns a relatively lower weight to this vari-
ant. This reflects the assumption that SNPs closer to the center of the enhancer are
more likely to contribute to its regulatory activity. In contrast, the second example
Figure 3.7 shows a SNP positioned almost exactly at the center of the enhancer. Here,
the Gaussian function reaches its peak, assigning the maximum possible weight to
the SNP’s predicted regulatory effect. These two examples clearly illustrate how
the weighting method emphasizes variants that are more centrally located within
enhancer elements.

Flowing, to better visualize this effect, we created the histograms in Figure 3.8.
These histograms demonstrate the distribution of logSEDs before and after applying
Gaussian weighting for two brain tissues used in this project Putamen and Caudate.
The histograms show the frequency of SNPs across different logSED values, plotted
on a logarithmic y-axis to capture the wide range of frequencies. The gray bars repre-
sent the unweighted logSED values, while the black bars show the weighted values,
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FIGURE 3.6: Gaussian Weighting of LogSED SNP1

FIGURE 3.7: Gaussian Weighting of LogSED SNP2

which as explained above, are calculated based on the SNPs’ distance from the cen-
ter of enhancer regions. In both tissues, the weighted logSED values are more tightly
centered around zero and show a reduced spread compared to the unweighted val-
ues. This verifies the necessity of the weighting step, which reduces the influence of
more weakly associated SNPs. This helps to focus the analysis on those variants that
are more likely to be biologically meaningful.

After applying the Gaussian weighting to adjust each SNP’s logSED score based
on how close it is to the center of an enhancer, we grouped the results by gene. This
means that for each gene, we collected all the weighted logSED values from SNPs
linked to that gene’s enhancers. Then, for each individual (subject) we summed
up the weighted logSED values for each gene. This gave us a single number per
gene, per subject. It is a summary score showing how much that person’s variants
are predicted to affect expression of that gene in a specific tissue like Putamen or
Caudate.

To make sure the aggregation and the overall logic coded for this, we created
a notebook with toy examples in order to debug each step. Once we made sure
that everything works as expected, we repeated this for every subject in the dataset
and for all genes that had enhancer-linked SNPs. The result is a matrix where each
row represents a subject, each column represents a gene, and each cell contains the
summed, weighted logSED score for that gene in that subject. This matrix captures
the predicted regulatory impact of variants on gene expression for each person.
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FIGURE 3.8: LogSED Distribution with Gaussian

3.4 Phenotype prediction

In the context of HD, this study explored whether predicted regulatory effects from
gLMs like Borzoi’s logSED scores could improve phenotype prediction models. More
specifically for classifying residual AO. The residual AO is defined after regressing
out CAG repeat length, and it captures variance in AO unexplained by CAG length
alone. To evaluate this, several phenotype prediction models were developed using
XGBoost. XGBoost (T. Chen and Guestrin, 2016) is a gradient-boosted decision tree
algorithm that builds an ensemble of trees sequentially, where each new tree cor-
rects errors made by the previous ones. The model’s parameters, like tree depth and
learning rate, were optimized via grid search using 5-fold CV. Feature importance
was assessed using XGBoost’s gain score, which reflects how much each feature con-
tributes to reducing the loss function during training.

3.4.1 Baseline Prediction Model

As a baseline model, an XGBoost classifier was trained using genotype information
derived from coding variants (Fuses et al., 2025). SNPs were first filtered to include
only those located within protein-coding regions selected based on GO as explained
previously in order to keep the ones related to HD, such as DNA repair and somatic
expansion. This filtering resulted in a dataset containing 339,886 SNPs spanning
2,774 protein-coding genes as mentioned in the data preprocessing section. In ad-
dition to the genotype data, covariates including CAG repeat length and sex were
included as features. The model aimed to classify subjects into five classes derived
from the residuals of a second-order linear regression model predicting AO from
CAG repeat length.

XGBoost performs classification by sequentially building an ensemble of K re-
gression trees, where the prediction for each individual is given by:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F = {regression trees}.

For multi-class classification, each tree outputs logits for each class. These are
later transformed into probabilities through a softmax function. The model mini-
mizes a regularized loss function of the form:
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L(t) = ∑
i
ℓ(yi, ŷi(t)) + ∑

j
ω( fk),

where ℓ is the multiclass log loss and ω( fk) penalizes tree complexity. The model’s
hyperparameters, such as tree depth and learning rate, were optimized via grid
search using 5-fold cross-validation. Feature importance was assessed using the
gain score, which reflects how much each feature contributes to reducing the loss
function at each split.

3.4.2 A Phenotype Prediction Model Based on RNA-seq Coverage

In this model, only gene expression predictions derived from Borzoi were used, to-
gether with clinical covariates, to predict residual AO. Borzoi, a genomic language
model trained to predict tissue-specific RNA-seq coverage, was applied to each sub-
ject’s VCF file to generate logSED scores. Predictions were made using enhancer
annotations for brain tissues such as putamen and caudate which are relevant to
HD. Following Borzoi’s recommended approach, the predicted logSED scores were
weighted using a Gaussian kernel based on the distance between each variant and
the center of its assigned enhancer as described earlier in this thesis. The weighted
logSED scores were aggregated at the gene level to create matrices that represent the
predicted regulatory impact for each individual.

These logSED features were combined with CAG repeat length and sex to form
the input feature set. The classification target was defined by dividing residuals of
a second-order linear regression model AO ∼ CAG + CAG2 into five quantiles, cre-
ating five equally sized AO classes. Model training was performed using XGBoost,
with hyperparameters optimized via grid search and 5-fold cross-validation.

The purpose of this model was to check if Borzoi’s predicted regulatory effects,
even without using the actual genotype data, contain useful information for predict-
ing AO. This allowed us to test how useful the tissue-specific regulatory predictions
are on their own, before adding them together with the genotype data in the multi-
modal model.

3.4.3 Multimodal Phenotype Prediction Model

The multimodal prediction model was designed to combine both genotype and pre-
dicted expression features for phenotype prediction. This is aiming to test whether
the integration of regulatory effect predictions with raw genotypes could enhance
model performance.

Genotype data consisted of SNPs filtered to protein-coding regions selected based
on GO processes related to HD, such as DNA repair and transcription regulation, re-
sulting in 339,886 SNPs across 2,774 genes.

For predicted expression features, Borzoi was used to estimate tissue-specific
gene expression effects based on subject-specific VCFs as mentioned earlier. The
resulting logSED scores were aggregated into gene-level features by summing across
variants, and combined with genotype features, CAG repeat length, and sex to form
the multimodal feature set. The model was trained using XGBoost again.
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3.4.4 Evaluation Metrics

The models were evaluated using Balanced Accuracy (BA) which is the average re-
call over all classes. For multi-class classification problems with potential class im-
balance, BA provides a more reliable performance estimate than overall accuracy, as
it equally weights the contribution of each class regardless of its prevalence. Specif-
ically, BA is calculated as:

BA =
1
C

C

∑
c=1

TPc

TPc + FNc

where C represents the total number of classes, TPc denotes the true positives for
class c, and FNc denotes the false negatives for class c. This metric ensures that
the model’s ability to correctly classify each class is fairly represented, making it
particularly suitable for imbalanced datasets such as those encountered in residual
AO prediction.

All models are evaluated using 10-fold cross-validation, ensuring that perfor-
mance estimates generalize beyond a specific train-test split. To estimate the vari-
ability and confidence of model performance, we compute 90% confidence intervals
through bootstrapping with 1,000 resamples of the test predictions. We also apply
statistical significance tests, including the binomial test to assess whether model per-
formance exceeds random chance and the Wilcoxon signed-rank test to compare the
performance of alternative models. This multi-level evaluation strategy provides
both quantitative accuracy and statistical confidence, ensuring a robust assessment
of model effectiveness.
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Chapter 4

Results and Discussion

4.1 Tissue-specific Gene Expression Predictions

4.2 Gene Expression Predictions Are Informative

To evaluate the predictive value of gene expression predictions generated by Borzoi,
an phenotype prediction model was trained only on its gene expression predictions.
In this setting, only Borzoi-predicted logSED scores, CAG repeat length, and sex
were used as features. The logSED values were generated for putamen and caudate
tissues, weighted according to their distance to enhancers using a Gaussian kernel
with σ = 300, and aggregated at the gene level as previously explained.

The expression-only model achieved a median BA of 0.242. This is significantly
better than random classifier, which would produce a BA of 0.242 (pBinom < 0.2).
Even though this is not as accurate as models trained on genotype data alone, the
resulting BA suggests that the predictions produced by Borzoi contain some pre-
dictive value about the onset of the disease. This gives it the possibility to help
identify new variants in regulatory regions that affect when HD symptoms start. In
addition, feature importance analysis revealed that CAG repeat length remained an
informative feature even when using only the expression features derived from Bor-
zoi. Specifically, for models with tree depth 2, approximately 65% of decision trees
selected CAG length as the first splitting feature in 24% of cases. This is indicating
that even when Borzoi predictions are included, CAG repeat length often remains
the most powerful predictor of AO.
This model also prioritized regulatory variants located in enhancer regions, includ-
ing three variants not previously reported as HD genetic modifiers: 19_50651485_A_C
(rs180918699), 5_60241142_G_A, and 1_157069597_G_A. These variants, identified
through their predicted regulatory effects, suggest that Borzoi-based expression pre-
dictions can uncover novel candidate modifiers located outside protein-coding re-
gions.

4.3 Augmentation of an HD Phenotype Prediction Model

To assess whether gene expression predictions from Borzoi improve phenotype pre-
diction when combined with genotype information, a multimodal model was trained
using both protein-coding SNP genotypes and gene-level logSED predictions, to-
gether with CAG repeat length and sex. To the best of our knowledge, this was the
first time that a phenotype prediction model introduces predictions obtained from a
gLM.

The multimodal model achieved significantly better performance than the model
with only the expression as shown in Figure 4.1, demonstrating that combining
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Borzoi-based expression predictions with genotype data improves classification ac-
curacy. When comparing its performance to the genotype-only model, there is no
statistically significant difference observed (pWilc = 0.19). However, feature impor-
tance analysis indicated that Borzoi-based expression predictions contributed com-
plementary information to the model. Among the top 100 most important features,
44% were expression-based features derived from Borzoi predictions. After aver-
aging importance scores for the same gene across both tissues, the proportion of
expression-derived features among the top features decreased to 35%. This suggests
that the importance of expression level depends on the tissue.

FIGURE 4.1: AO prediction accuracy improves when adding geno-
type to RNA coverage features.

Functional enrichment analysis of the top-ranked expression features revealed
significant enrichment for biological processes such as transcription regulation, DNA
binding, protein degradation via the ubiquitin-proteasome system, and brain sig-
naling pathways like glutamate receptor activity. The model showed that several
genes involved in these pathways contribute to predicting AO. Notably, two genes
ranked highly among expression features. One gene is GRIK1 which is a glutamate
ionotropic receptor involved in neuronal signaling and the other one is CUL2, a gene
involved in ubiquitin-dependent protein catabolic processes. Both of these processes
have previously been linked to HD pathogenesis.

An additional analysis was performed to investigate how the importance of ex-
pression features depends on CAG repeat length. Specifically, trees from the multi-
modal XGBoost model with a maximum depth of 2 were examined. In these trees,
CAG repeat length was often selected as the first splitting feature. The expression
features that appeared in the second split were then analyzed separately for individ-
uals with larger or smaller CAG expansions. In figure 4.2 for example, the expres-
sion of MED23 was more frequently used for individuals with smaller CAG repeat
lengths (less than approximately 45–46 repeats), while genes such as MT1B appeared
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more often for individuals with larger CAG expansions. Similar CAG-dependent ef-
fects were also observed for other genes like DMBX1, EXOC3L1, and DMBX1. This
means that the relevance of different genes depends on the CAG repeat size.

FIGURE 4.2: Number of trees using each gene as a secondary feature,
split by branch direction (larger or smaller residual AO).

Overall, while Borzoi-based predictions did not significantly increase predic-
tive accuracy beyond genotype-only models, they contributed biologically mean-
ingful information, identifying candidate regulatory variants, CAG-dependent in-
teractions, and tissue-relevant gene networks involved in HD.
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Chapter 5

Discussion

In this thesis, we investigated the application of gLMs, specifically Borzoi, for pre-
dicting gene expression changes and their relevance for phenotype prediction in
HD. Our main objective was to evaluate whether predicted gene expression changes
based on a person’s genetic variants could help improve predictions of the residual
AO, beyond what is explained by CAG repeat length and protein-coding variants.

To address this, we generated tissue-specific gene expression predictions for brain
regions relevant to HD, like putamen and caudate, by applying Borzoi to individual
genotype data, including both protein-coding SNPs and variants located in regula-
tory regions like enhancers and promoters. These predictions were integrated into
machine learning models built using XGBoost, where we compared three types of
models, a baseline genotype-only model, an expression-only model based solely on
Borzoi predictions, and a multimodal model combining both types of features.

The expression-only model achieved a balanced accuracy of approximately 0.24,
significantly better than random classification. This demonstrates that predicted ex-
pression features from Borzoi, derived from individual variants, contain meaningful
regulatory information relevant to AO. Although this model did not outperform the
genotype-only model, it allowed us to capture functional variation outside of cod-
ing regions, particularly in enhancers. Several regulatory variants identified through
Borzoi predictions have not been previously described as HD modifiers, suggesting
the potential of this approach for highlighting novel non-coding genetic modifiers.

When combining both expression and genotype information in the multimodal
model, we observed comparable performance to the genotype-only model (pWilc =
0.19), consistent with findings from previous work. While no significant improve-
ment in predictive accuracy was achieved, feature importance analysis revealed
that Borzoi-derived expression features contributed complementary information,
enabling the model to prioritize additional regulatory regions not captured by geno-
type data alone.

Furthermore, feature analysis indicated that the relevance of specific expression
features may depend on CAG repeat length. In particular, certain expression fea-
tures, such as MED23, were more informative for individuals with smaller CAG
expansions, while others, like MT1B, were more relevant for larger CAG repeat
lengths. This CAG-dependent effect suggests that genetic modifiers may act through
different regulatory pathways depending on the CAG expansion size. This is an ob-
servation that has not been extensively described in the HD modifier literature.

Functional enrichment analysis of the top expression features revealed signifi-
cant enrichment for transcription regulation, DNA binding, ubiquitin ligase bind-
ing, and glutamate receptor activity. These are the all pathways that have been
implicated in HD pathogenesis. Notably, genes such as GRIK1, involved in glu-
tamate signaling, and CUL2, involved in ubiquitin-mediated protein degradation,
were highlighted as important features contributing to AO variability.
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To the best of our knowledge, this represents one of the first applications of ge-
nomic language models to produce multimodal phenotype prediction models in
HD. This approach provides a framework not only for integrating genotype and
regulatory information but also for identifying candidate regulatory variants that
may affect gene expression and modify disease onset.

Overall, this work highlights the potential of integrating predicted gene expres-
sion features derived from genomic language models with genotype data to improve
the understanding of regulatory mechanisms involved in HD, and opens new av-
enues for exploring the role of non-coding variants in complex neurodegenerative
diseases.



35

Chapter 6

Conclusion and Future Work

In this thesis, we explored the application of genomic language models, specifically
Borzoi, to study the regulatory impact of genetic variation in HD. By generating
tissue-specific gene expression predictions for brain regions relevant to HD, we in-
vestigated whether these expression-based features could contribute to predicting
residual AO, in addition to traditional genotype information.

Our results show that Borzoi-based expression predictions contain useful regu-
latory information that can help with phenotype prediction. The expression-only
model performed better than random classification, suggesting that non-coding ge-
netic variation carries important information. When combining expression features
with genotype data in multimodal models, performance was similar to the genotype-
only models. However, adding expression predictions allowed us to identify addi-
tional regulatory regions and genes that may influence age of onset. The feature
importance and enrichment analyses highlighted biological pathways involved in
transcription regulation, DNA binding, protein degradation, and glutamate signal-
ing which are processes that are known to play a role in HD.

We also observed that some expression features were more important depending
on CAG repeat length, suggesting that certain modifier effects may depend on the
size of the CAG expansion, which should be further studied.

Although the results are promising, several limitations remain. Borzoi was trained
on RNA-seq data from healthy individuals like GTEx and ENCODE (Linder et al.,
2025), which may not fully capture the transcriptomic dysregulation that occurs in
Huntington’s Disease. The enhancer-gene assignments used for weighting regula-
tory variants are based on existing databases such as GeneHancer, which may not
be fully complete or fully accurate for all regulatory elements. In addition, while the
genotype dataset used in this study is one of the largest available for HD, even larger
cohorts may be needed to detect more subtle modifier effects that were not captured
here.

In future work, such models could enable large-scale in silico perturbations to
explore potential gene therapy targets aimed at modulating gene expression to delay
symptom onset.
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