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Abstract

Breast cancer remains the most prevalent malignancy and a leading cause of mortality in
women worldwide. Early and accurate molecular characterization is critical for prognosis and
treatment selection. Molecular subtyping, traditionally guided by invasive tissue biopsies and
immunohistochemical analysis, enables personalized therapies but is costly, time-consuming,
and not universally feasible. Non-invasive alternatives leveraging medical imaging, particularly
mammography, have gained research interest for molecular classification.

This study evaluates the potential of Transformer-based DL models to classify molecular
subtypes of invasive ductal carcinoma using mammographic images exclusively from the
public CMMD (The Chinese Mammography Database) dataset. A systematical analysis was
conducted to compare three state-of-the-art Transformer architectures, Vision Transformer
(ViT), Swin Transformer (Swin), and Multi-Axis Vision Transformer (MaxViT), against a
traditional CNN model, ResNet-101. The experimental methodology addresses key challenges
such as class imbalance through weighted loss functions, oversampling, data augmentation,
and robust cross-validation strategies.

Results demonstrate that transformer-based models consistently outperform the CNN
baseline. ViT achieved the highest average AUC (0.635 + 0.016) and balanced accuracy
(0.385 + 0.042) on test sets, compared to ResNet-101 (AUC: 0.563 £ 0.03; balanced accuracy:
0.322 + 0.062). Statistical analysis confirmed significant performance differences (p < 0.05),
supporting the hypothesis that transformer self-attention mechanisms better model global
spatial relationships in mammograms.

Despite these advances, overall performance remains below clinically acceptable thresholds,
highlighting the inherent difficulty of non-invasive molecular subtyping based solely on
imaging and the need for larger datasets or multimodal integration. Nevertheless, this work
demonstrates the potential of transformer-based approaches for accessible, non-invasive breast
cancer characterization, establishing a robust foundation for future Al-driven advancements
in medical imaging.



Resumen

El cancer de mama sigue siendo la neoplasia maligna més prevalente y una de las principales
causas de mortalidad en mujeres a nivel mundial. La caracterizacién molecular temprana y
precisa es crucial para el prondstico y la seleccion de tratamientos. La subtipificacion molecular,
tradicionalmente basada en biopsias tisulares invasivas y andlisis inmunohistoquimicos,
permite terapias personalizadas, pero resulta costosa, consume tiempo y no siempre es
viable. Las alternativas no invasivas que aprovechan imagenes médicas, particularmente la
mamografia, han ganado interés investigativo para la clasificacién molecular.

Este estudio evalia el potencial de modelos de aprendizaje profundo basados en Trans-
formers para clasificar subtipos moleculares de carcinoma ductal invasivo utilizando ex-
clusivamente imégenes mamogréaficas del conjunto de datos piblico CMMD (The Chinese
Mammography Database). Comparamos sisteméticamente tres arquitecturas Transformer de
vanguardia: Vision Transformer (ViT), Swin Transformer (Swin) y Multi-Axis Vision Trans-
former (MaxViT), frente a una red neuronal convolucional (CNN) tradicional, ResNet-101.
La metodologia experimental aborda desafios clave como el desbalance de clases mediante
funciones de pérdida ponderadas, sobremuestreo, aumentacién de datos y estrategias robustas
de validacién cruzada.

Los resultados indican que los modelos basados en Transformers superan consistentemente
a la CNN de referencia. ViT logr6 el mayor AUC promedio (0.635 4+ 0.016) y precisién
balanceada (0.385 £ 0.042) en los conjuntos de prueba, frente a ResNet-101 (AUC: 0.563
=+ 0.03; precisién balanceada: 0.322 £+ 0.062). El andlisis estadistico confirma diferencias
significativas (p <0.05), respaldando la hipétesis de que los mecanismos de autoatencién en
Transformers modelan mejor las relaciones espaciales globales en mamografias.

A pesar de estos avances, el rendimiento general sigue estando por debajo de los umbrales
clinicamente aceptables, subrayando la dificultad inherente de la subtipificaciéon molecular no
invasiva basada unicamente en imagenes y la necesidad de investigar con conjuntos de datos
mas amplios o integracién multimodal. No obstante, este trabajo demuestra el potencial
de los enfoques basados en Transformers para caracterizar el cancer de mama de manera
accesible y no invasiva, estableciendo un referente solido para futuros avances en imégenes
médicas impulsadas por IA.



Resum

El cancer de mama continua sent la neoplasia maligna més prevalent i una de les
principals causes de mortalitat en dones a nivell mundial. La caracteritzacié molecular precog
i precisa és crucial per al pronostic i la seleccié de tractaments. La subtipificacié molecular,
tradicionalment basada en biopsies tissulars invasives i analisi immunoistoquimics, permet
terapies personalitzades, pero resulta costosa, consumeix temps i no sempre és viable. Les
alternatives no invasives que aprofiten imatges meédiques, particularment la mamografia, han
guanyat interes investigador per a la classificacié molecular.

Aquest estudi avalua el potencial de models d’aprenentatge profund (DL) basats en
Transformers per classificar subtipus moleculars de carcinoma ductal invasiu utilitzant
exclusivament imatges mamografiques del conjunt de dades public CMMD. Comparem siste-
maticament tres arquitectures Transformer d’avantguarda: Vision Transformer (ViT), Swin
Transformer (Swin) i Multi-Axis Vision Transformer (MaxViT), front a una xarxa neuronal
convolucional (CNN) tradicional, ResNet-101. La metodologia experimental aborda reptes
clau com el desequilibri de classes mitjancant funcions de perdua ponderades, sobremostreig,
augmentacié de dades i estrategies robustes de validacié creuada.

Els resultats indiquen que els models basats en Transformers superen consistentment la
CNN de referéncia. ViT va assolir el major AUC mitja (0,635 + 0,016) i precisié balancejada
(0,385 + 0,042) en els conjunts de prova, front a ResNet-101 (AUC: 0,563 £ 0,03; precisié
balancejada: 0,322 £ 0,062). L’analisi estadistica confirma diferéncies significatives (p <
0,05), recolzant la hipotesi que els mecanismes d’autoatencié en Transformers modelen millor
les relacions espacials globals en mamografies.

Malgrat aquests avencgos, el rendiment global segueix estant per sota dels llindars cli-
nicament acceptables, subratllant la dificultat inherent de la subtipificacié molecular no
invasiva basada tnicament en imatges i la necessitat d’investigar amb conjunts de dades
més amplis o integracié multimodal. No obstant aix0, aquest treball demostra el potencial
dels enfocaments basats en Transformers per caracteritzar el cancer de mama de manera
accessible i no invasiva, establint un referent solid per a futurs avencos en imatges mediques
impulsades per TA.
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Chapter 1

Introduction

1.1. Problem Context

Breast cancer is one of the leading causes of mortality among women and the most
common cancer type in this population. It is estimated that, on average, one in every twenty
women worldwide will be diagnosed with breast cancer during their lifetime [1]. Recent
projections suggest that, if the current trend continues, by 2050 there will be approximately
3.2 million new cases and 1.1 million deaths from this disease, with a particularly significant
impact in countries with low Human Development Index (HDI) scores [1].

In this context, early diagnosis and diagnostic imaging tools play a fundamental role
in improving patient prognosis and survival [2]. However, breast cancer is a heterogeneous
disease! that can be classified into various subtypes according to clinical and, particularly,
molecular characteristics. The 2013 St. Gallen International Consensus Guidelines [3]
defined four main subtypes based on hormone receptors (estrogen and progesterone) and
the proliferation marker Ki67: Luminal A, Luminal B, HER2 positive (HER2-enriched),
and Triple Negative (see Figure 1.1). This classification has direct clinical implications,
as prognosis, therapeutic response, and treatment options are largely determined by the
molecular subtype of the tumor.

Currently, molecular tumor characterization is mainly performed through tissue biopsy,
an invasive and costly procedure that may require repetition, potentially delaying treatment
initiation and increasing the clinical, physical, and emotional burden on patients. Therefore,
there is a growing need to develop non-invasive, accessible, and efficient methods for reliable
molecular subtype classification. In this regard, x-ray mammography stands out as the
gold standard imaging modality, as it is a non-invasive, low-cost technique widely utilized
for breast cancer screening and diagnosis due to its demonstrated effectiveness in clinical

LCellular diversity present within a tumor (intratumoral heterogeneity) or between different tumors in the
same individual (intertumoral heterogeneity).
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Hormone Receptors ( Luminal A (~40%) | g’
ER: estrogen receptor ER+ and/or PR+, HER2-, 2
PR progesterone Ki67 low
receptor
HERZ : human epidermal
growth factor receptor 2 Luminal B (~20%)
ER+ and/or PR+, HER2-,
i i Ki67 high; ER+ and/or PR+, either
‘P};gl;feratlon Marker HER? or Ki6? high
HER2-enriched (10-15%)
ER-, PR-, HER2+
Basel-like or Triple Negative -
15-20%, g
Breast Cancer ER(_, PR, HEF)EZ- g

Figure 1.1: Classification of breast cancer molecular subtypes, showing approximate pro-
portions (%) among all breast cancer cases. Subtypes are ordered by prognosis severity,
with those having better outcomes at the top and progressively worse prognoses toward the
bottom [4].

practice.

In recent years, advances in artificial intelligence (AI), together with the increasing
availability of data and increasingly powerful computational resources, have driven the devel-
opment of deep learning (DL) models for breast cancer classification, detection, and prognosis
prediction, as well as applications in other diseases. Several studies have demonstrated that
these systems can match or even surpass the performance of human experts or CAD? systems
in these tasks [5—8], highlighting the significant potential of this technology to improve clinical
practice and patient outcomes.

Recent research has explored breast cancer molecular subtype classification from mammo-
graphic images. For example, Mota et al. (2024) [9] investigated this challenge, achieving a
multi-class area under the curve (AUC)? of 60.62% using a ResNet-101 architecture. Similarly,
Rabah et al. (2025) [10] obtained an AUC of 61.3% with a Xception model in unimodal*
settings and developed a multimodal approach integrating clinical metadata, which achieved
88.87% AUC. While unimodal approaches yield modest performance that remains below
clinically acceptable thresholds ( 80% AUC), these studies highlight the diagnostic potential
of mammographic imaging and underscore the importance of continued research to improve
the accuracy and clinical utility of these models.

This study proposes a unimodal approach based exclusively on the inference based on
mammograms from the public CMMD dataset (The Chinese Mammography Database) [11],
comparing the performance of state-of-the-art Transformer architectures including Vision
Transformer (ViT), Swin Transformer (Swin), and Multi-Axis Vision Transformer (MaxViT)

2Computer-Aided Diagnosis
3A metric used in machine learning to evaluate the performance of classification models.
4Use only one type of data as input (images, text, video, etc.).
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against a traditional ResNet-101 baseline. While multimodal models typically achieve superior
results by integrating complementary clinical data, a unimodal approach focused exclusively
on mammographic images offers significant practical advantages, especially in resource-
limited settings or when clinical data standardization is unavailable. Recent studies have
demonstrated that Transformers-based models outperform convolutional neural networks
(CNN) in accuracy and robustness for medical image classification tasks due to their self-
attention mechanisms, which enable them to capture global spatial relationships across images
[12]. Based on these architectural advantages, this study hypothesizes that Transformer
architectures will achieve superior performance in molecular subtype classification, even
under a unimodal approach.

Ultimately, this work seeks to contribute to the development of non-invasive diagnostic
tools through systematic evaluation of transformer-based models, advancing automated,
accessible, and efficient molecular characterization of breast cancer. This approach is
particularly valuable in clinical scenarios where tissue biopsy is not immediately feasible,
potentially improving diagnostic equity and reducing time to treatment initiation.

1.2. Planning

1.2.1. Objectives

The primary objective of this study is to systematically compare Transformer-based ar-
chitectures against a CNN baseline for mammography-based molecular subtype classification,
establishing performance benchmarks for non-invasive breast cancer characterization.

To achieve this primary objective, the following secondary objectives are proposed:

1. Conduct a comprehensive literature review of Al approaches for breast cancer
molecular subtype classification, analyzing current research and performance benchmarks.

2. Identify and address dataset challenges through appropriate preprocessing strategies,
including class imbalance mitigation via weighted loss functions, balanced sampling
techniques, and data augmentation methods.

3. Develop and implement a robust stratified k-fold cross-validation framework for
training and evaluating Vision Transformer architectures (ViT, Swin and MaxViT) on
mammographic images.

4. Establish comparative performance analysis against a ResNet-101 baseline and
benchmark results from existing literature using standardized evaluation metrics (Accuracy,
AUC, F1-Score, Precision, Recall, Cohen-Kappa).

5. Perform statistical validation of model performance differences through statistical
tests to ensure result significance and reliability.

6. Conduct a comparative analysis with recent literature to identify advancements and
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the practical implications of the findings.

7. Apply interpretability analysis using Grad-CAM and attention visualization techniques
to identify mammographic features most relevant to molecular subtype discrimination.

8. Synthesize findings and provide recommendations for future research directions
and clinical implementation considerations.

1.2.2. Tasks to Develop

In order to address the aforementioned objectives of the project, several tasks have been
identified, as described below.

State of the Art

1. Medical context: Review current scientific literature on breast cancer to contextualize
its clinical and epidemiological relevance.

2. Problem intuition: Analyze the importance of molecular characterization in breast
cancer, highlighting its advantages, limitations, and current challenges.

3. Previous works: Examine recent advances in AI and DL for breast cancer characteriza-
tion and diagnosis, comparing approaches and results reported in the literature.

Implementation

1. Data Collection: Acquire images and familiarize with the dataset’s structure, organiza-
tion, and provided metadata.

2. Data Analysis and Preprocessing: Analyze class distribution, data consistency, and
perform image preprocessing.

3. Project Coding: Develop code to conduct experiments, train, and evaluate the different
models.

4. Result Analysis: Evaluate and interpret results to draw conclusions and propose future
work.

Report Preparation

1. Report Writing: Document all procedures, including methodology, materials, results,
and conclusions.

2. Revisions: Incorporate feedback from advisor and refine until achieving acceptable
quality.

3. Submission and Presentation: Submit the thesis and prepare a summary of key
findings for the committee presentation.
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1.2.3. Planning

The project planning is represented in the Gantt chart below (Figure 1.2), outlining
previously defined tasks across the 4 months of the project (Spring Semester).

w1 w2 w3 w4 w1 w2 W3 w4 w1 w2 w3 w4 w1 w2 W3 w4 w1 w2 w3 w4

State of the art

Implementation

Report

Medical Context
Problem intuition
Previous works
Data collection
Data processing
Coding
Results analysis
Report writting
Corrections

Presentation

]
.
C—
s
G

(

Figure 1.2: Gantt Chart.

)
)
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Chapter 2

Background

2.1. Breast Cancer

Breast cancer is a malignant neoplasm' that originates in the glandular tissue of the
breast, mainly in the ducts and lobules, where certain cells undergo genetic mutations that
disrupt their growth control.

These alterations allow cells to multiply uncontrollably, forming tumor masses that can
infiltrate adjacent tissues and even spread to distant organs through the lymphatic system
and bloodstream. In the absence of early diagnosis and timely treatment, this spread, also
known as metastasis, can seriously compromise patient survival. Figure 2.1 illustrates the
anatomical structure of the breast, showing how tumors develop within normal breast tissue.

Breast cancer

\ \\\X\/// Chest muscles
A\

—Rib

Tumor

L\
’:‘4 Milk duct

[

f J—Fat
o
t

Figure 2.1: Anatomy of breast cancer [13].

1 An abnormal and uncontrolled growth of cells that gives rise to a mass or tumor, called benign if it grows
slowly and remains localized, or malignant if it is invasive and fast-growing.

6
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2.1.1. Epidemiology

Globally, it is the most common neoplasm among women and the leading cause of cancer-
related mortality in this population. In 2022, approximately 2.3 million new cases were
estimated, with 670,000 deaths from this disease, according to the World Health Organization
(WHO) [14]. In Spain, breast cancer accounts for nearly 30% of all cancer cases, and
projections from the Spanish Society of Medical Oncology (SEOM) estimate around 37,400
new cases in 2025 [15].

2.1.2. Clinical Classification

Most breast cancers are carcinomas, which are malignant tumors that originate in the
ducts or lobules of the breast. These carcinomas constitute more than 95% of all breast
cancer cases [16,17]. From a clinical perspective, these tumors can be classified according to
various criteria, among which the following stand out:

According to their degree of invasion

= Carcinoma in situ: A tumor in which abnormal cells are confined within the breast
ducts and have not crossed the natural barrier separating them from the rest of the breast
tissue. Although not invasive, it is considered a precursor lesion and high-risk.

= Invasive carcinoma: A tumor that has breached the ducts or lobules of the breast and
invaded the surrounding breast tissue. It can spread to lymph nodes or distant sites.

According to histological origin

» Ductal carcinoma: Originates in the milk ducts? and is the most common subtype.

» Lobular carcinoma: Originates in the breast lobules and tends to show a more diffuse
pattern of spread.

Figures 2.2 and 2.3 show the differences between ductal and lobular carcinoma, both in
situ and invasive.

According to staging systems

Clinical staging systems are a way of determining how much cancer there is and how far
it has spread in the body, using tests and assessments done before surgery or other treatment.
This provides standardized frameworks for prognosis and treatment planning.

» BI-RADS Staging System: The Breast Imaging-Reporting and Data System (BI-
RADS) [19] standardizes mammographic interpretation and assigns suspicion categories
that guide medical management (see Table 2.1).

?Ducts that carry milk from the mammary glands to the nipple.
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Ductal Carcinoma In Situ (DCIS) Invasive Ductal Carcinoma (IDC) of the Breast
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(a) Ductal carcinoma in situ (b) Invasive ductal carcinoma

Figure 2.2: Anatomical comparison between ductal carcinoma in situ (DCIS) and invasive
ductal carcinoma (IDC). (a) DCIS shows abnormal cells confined within the milk duct
structure, while (b) IDC demonstrates cancer cells that have broken through the duct wall
and invaded surrounding breast tissue [18].

Lobular Carcinoma In Situ (LCIS) Invasive Lobular Carcinoma
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(a) Lobular carcinoma in situ (b) Invasive lobular carcinoma

Figure 2.3: Progression from lobular carcinoma in situ (LCIS) to invasive lobular carcinoma
(ILC). (a) LCIS represents abnormal cell growth restricted to the milk-producing lobules,
whereas (b) ILC shows malignant cells spreading from lobules into adjacent breast tissue [18].

= TNM Staging System: This is the most widely used staging system [20]. It evaluates
three key anatomical factors:

e Tumor(T): Size and local extent of the primary tumor, ranging from TX (tumor
cannot be assessed) to T4 (extensive local invasion).

e Node(N): Regional lymph node involvement, from NX (nearby lymph nodes cannot
be assessed) to N3 (extensive nodal spread).
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o Metastasis(M): Presence or absence of distant metastases (M0 or M1).

The current TNM system, updated in 2018, incorporates new parameters like estrogen
receptor (ER), progesterone receptor (PR), and others clinical variables to provide more
accurate prognostic stratification [21].

Table 2.1: Breast Imaging-Reporting and Data System (BI-RADS) classification [22].

Category Definition Likelihood of cancer
BI-RADS 0 Incomplete N/A
BI-RADS 1 Negative Essentially 0%
BI-RADS 2 Benign Essentially 0%
BI-RADS 3 Probably benign > 0% but < 2%
BI-RADS 4 Suspicious > 2% but < 95 %
BI-RADS 5  Highly suggestive of malignancy > 95%
BI-RADS 6 Known biopsy-proven malignancy N/A

In addition to these classifications, in recent years, molecular subtyping of breast cancer,
based on biomarker expression and genomic profiles, has gained particular relevance, which
will be addressed in the next section.

2.1.3. Molecular Subtypes

Although clinical and histological classification of breast cancer provides important
information for diagnosis, it does not always allow for precise prediction of the tumor’s
biological behavior or its response to specific treatments.

The research by Perou et al. (2000) [23] and Serli et al. (2003) [24] laid the groundwork
for the molecular characterization of breast cancer. Through gene expression profiling®, Perou
et al. demonstrated that breast cancer is a heterogeneous disease and proposed a molecular
subtype classification based on the genetic expression patterns of the tumors analyzed. Four
subtypes were initially defined: Luminal A, Luminal B, HER2, and Basal-like (Triple
negative).

Serli et al. reinforced these findings. They replicated the research in different patient
cohorts, demonstrating that the results were not artifacts of a single study. They also showed
that molecular subtypes are associated with clinically significant differences, such as prognosis
and risk of distant metastasis, giving this characterization greater predictive value than
traditional histological classification.

Following these studies, efforts focused on translating the findings into clinical practice.
Since the technique used for classification at the time (DNA microarrays) was expensive,

3A study that identifies which genes are active and to what extent in a cell or tissue by analyzing RNA
levels produced by thousands of genes simultaneously.
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Figure 2.4: Dendrogram from the study by Sgrli et al. showing the clustering of subtypes

according to genetic patterns [24].

complex, and not accessible to most hospitals, an alternative was sought. It was at the St.
Gallen international consensus meetings that classification criteria based on immunohisto-
chemical (IHC) markers* were proposed, formalizing the subtypes using a combination of

the following hormone receptors [25]:

= Estrogen (ER) and Progesterone (PR) Receptors: Define the tumor’s hormonal
dependence, which can affect its growth. Tumors with these receptors respond well to

hormonal therapy.

= HER2 (Human epidermal growth factor receptor 2): A protein that stimulates cell
growth. Its overexpression usually indicates a more aggressive subtype.

= Ki-67: The cell proliferation index. High Ki-67 suggests a more aggressive and rapidly

proliferating tumor.

Table 2.2 shows these classification criteria.

Table 2.2: Classification criteria for molecular subtypes from the St. Gallen 2013 consensus

[3]
Subtype HER2 ER PR Ki-67
Luminal A Negative Positive  Positive < 14%
Luminal B/HER2-  Negative Positive - > 14%
Luminal B/HER2+  Positive  Positive - -
HER2-enriched Positive  Negative Negative -
Triple Negative Negative Negative Negative -

The Luminal A subtype is the most frequent, representing 70% of cases at diagnosis.
These tumors are characterized by slower growth and respond well to hormonal therapies,
making them tumors with a better prognosis and higher survival rates. Luminal B tumors

4Specific proteins or antigens present in cells or tissues that can be detected using antibodies in a laboratory

technique called immunohistochemistry.



2.2 Medical Imaging 11

are more aggressive, have a more guarded prognosis, and are more likely to recur. They tend
to be more resistant to hormonal treatments and may require chemotherapy.

HER2-enriched tumors account for 10-15% of cases, distinguished by a rapid growth
rate and overexpression of HER2, without hormone receptors. Finally, the triple negative
subtype, also appearing in 10-15% of diagnoses, lacks expression of ER, PR, and HER2.
This group displays more aggressive clinical behavior, with a high rate of early recurrence
and limited therapeutic options, as it does not respond to hormone therapy or targeted
treatments. Conventional chemotherapy is currently the main therapeutic strategy.

2.2. Medical Imaging

Medical imaging encompasses a set of techniques and procedures used to generate visual
representations of the interior of the human body for clinical and scientific purposes. These
tools enable non-invasive visualization of anatomical structures and physiological processes,
facilitating disease diagnosis and the study of normal and pathological anatomy.

For breast cancer diagnosis, several imaging techniques are currently employed, each with
specific advantages and limitations depending on patient characteristics and clinical context,
as shown in Figure 2.5.

1-Conventional Mammography
2-Digital Breast Tomosynthesis (DBT)
3-Contrast-Enhanced Digital Mammography (CEDM)

1-Sonography

2-Automatic Breast Ultrasound (ABUS)
3-Contrast-Enhanced Ultrasound (CEUS)
4-Three-Dimensional Ultrasound
5-Color Doppler

6-Power Doppler

7-Tissue Elasticity imaging

8-Stress Elastography

. 9-Shear Wave Elastography (SWE)
Breast Imaging

Modalities

1- Magnetic Resonance Imaging (MRI)
2-Diffusion-Weighted Imaging (DWI)
3-Magnetic Resonance Elastography (MRE)

Magnetic
Field

4-Magnetic Resonance Spectroscopy (MRS)

-
GammaRadi
ation
(Nuclear

1-single-Photon Emission Computed Tomography (SPECT)
2-Positron Emission Tomography(PET)

Non- 1-Optical Imaging
Ionj_xln'g 2-Breast Microwave Imaging

Figure 2.5: Overview of breast imaging modalities classified by the type of physical principle
used, including x-ray, ultrasound, magnetic field, gamma radiation and non-ionizing tech-
niques [26].
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2.2.1. X-ray Mammography

In this work, X-ray mammography images will be used as input to our model to infer the
molecular subtype of breast cancer. As the standard imaging technique in population-based
screening programs, X-ray mammography was specifically developed to examine the breast
and other soft tissues. The procedure is performed using a specialized medical imaging device
known as a mammography unit or mammography machine. During the exam, the breast is
positioned on a flat support plate and gently compressed with a paddle. A brief burst of
X-rays is then passed through the breast to a detector on the opposite side, which captures
detailed images for analysis (Figure 2.6).

Mammography

Figure 2.6: Illustration showing the traditional mammography procedure [27].
Each breast is typically imaged using two standard views to ensure tissue visualization:

» Craniocaudal (CC) view: CC view is obtained from above the breast (head-to-foot)
providing a top-down perspective (0°), allowing a greater visualization of the posterior and
superior breast tissue. This view is particular effective for identifying whether abnormalities
are located medial or lateral to the nipple [28].

= Mediolateral oblique (MLO) view: In the MLO view, the breast is compressed at an
oblique angle (usually around 45°), enabling coverage of nearly all breast tissue [28]. This
view is particularly valuable because it includes the axillary tail and a significant portion
of the pectoralis major muscle, areas where a considerable percentage (between 30% and
40%) of breast cancer are found [29, 30].

Modern mammography units can be either analog or digital, with digital mammography
now representing the most widely used and preferred technology in clinical practice [32,
33]. Digital systems offer significant advantages over their analog counterparts, including
immediate image acquisition, enhanced image quality, and easier storage and retrieval.

These technological advancements have further strengthened the role of mammography
in clinical care. The use of x-ray mammography enables the identification of breast cancers,
benign tumors, and cysts before they become palpable, often detecting tumors at a much
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Figure 2.7: Tllustration of CC view acquisition: (a) The breast is positioned horizontally on
the detector and compressed with a paddle. (b) Top-down compression is applied to obtain
the X-ray projection. (¢) Resulting mammogram image (CC view) [31].

Figure 2.8: Mlustration of MLO view acquisition: (a) The breast is positioned at an oblique
angle on the detector and compressed with a paddle. (b) Compression is applied from the
upper inner to the lower outer aspect to obtain the oblique X-ray projection. c) Resulting
mammogram image (MLO view) [31].

earlier stage than physical examination alone [34]. As a result, this technique is employed
not only for routine screening in asymptomatic women, but also for diagnosing breast cancer
following the detection of a lump or other symptoms, as well as for ongoing surveillance after
a breast cancer diagnosis.

2.2.2. Other modalities

Breast Ultrasound

Breast ultrasound imaging is a widely used technique for breast analysis that uses a
handheld device called a transducer® to produce real-time images of the internal breast tissue
by emitting high-frequency sound waves (Figure 2.9).

Unlike mammography, ultrasound does not use ionizing radiation, making it a safe
and non-invasive option for patients of all ages. This modality is particularly valuable

5A device that produces sound waves that bounce off body tissues, receives the echoes, and transforms
the signals into pictures.



14 Background

for evaluating palpable lumps, distinguishing between solid and cystic masses, and further
characterizing lesions detected on mammography, especially in women with dense breast
tissue, where mammography may be less sensitive [35].

However, it is important to take into consideration that the accuracy and quality of
ultrasound examinations are highly dependent on the skill and experience of the operator. In
addition, compared to mammography, ultrasound is less effective at distinguishing between
benign and malignant lesions, which may result in more follow-up procedures.

Breast ultrasound

Transducer

Lump in r
the breast Cleveland

Clinic
©2024

(a)

Figure 2.9: (a) Breast ultrasound representation [36]. (b) Breast ultrasound example showing
an irregular, dark gray spiculated mass, highly suspicious for cancer [37].

Magnetic Resonance Imaging (MRI)

MRI is a noninvasive imaging procedure that uses strong magnetic fields and radio waves
to produce a series of highly detailed images of structures inside the body. In breast imaging,
MRI operates on the same fundamental principle and is often used alongside other breast
imaging modalities to detect breast cancer or other abnormalities [38].

Breast MRI is particularly valuable for women at high risk of developing breast cancer,
such as those with genetic mutations or a strong family history of the disease. This is due to
its high sensitivity, with detection rates exceeding 90%, making it the most sensitive imaging
modality for identifying breast cancer [39].

Despite these advantages, MRI is more expensive and less widely available than mam-
mography or ultrasound. Its high sensitivity can sometimes lead to more false positives,
resulting in additional follow-up imaging. Furthermore, accurate interpretation of breast
MRI requires specialized training and experience [40].
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MRI of the Breast

Figure 2.10: lustration of a breast MRI procedure. The patient lies prone on a dedicated
breast coil, allowing for optimal imaging of the breast tissue [38].

2.3. Cancer Screening

Cancer screening is the process of using tests to look for cancer or pre-cancerous changes
in people, mainly targeting those who do not have any symptoms of the disease. The purpose
is to detect cancer at an early stage, when treatment is more likely to be successful and
before symptoms appear [41].

There are different kinds of screening tests that can be used in the process depending on
the subject’s needs. These may include physical examinations and clinical history reviews,
laboratory tests, imaging procedures, and genetic tests [41]. In the context of breast cancer,
x-ray mammography is the gold-standard screening tool. As mentioned earlier, it is a widely
available, noninvasive, and cost-effective technique, and it has been proven to detect tumors
up to two years before they become palpable or cause symptoms [42].

2.3.1. General process description

The general process of breast screening is very similar worldwide in its main steps, but
certain aspects, such as the starting age, screening frequency, and technology used may vary
from country to country. In Spain, the breast cancer screening program began in 1990 and is
performed only in women between 50 and 69 years old, using biennial® mammograms [43].
The following steps are the core steps of breast cancer screening;:

1. Invitation: Eligible women (based on age and sometimes risk factors) are invited to
participate, either through organized national programs or through healthcare providers.

2. Screening test: The screening test is performed, typically a mammogram, which

SEvery two years
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may be supplemented by other tests. For example, in Spain, an ultrasound is also
recommended [44].

3. Image review: Radiologists review the mammograms for signs of cancer, such as masses
or microcalcifications.

4. Results notification: Women are informed of their results. Those with abnormal
findings are called back for additional tests.

5. Follow-up: If abnormalities are detected, further diagnostic procedures, such as additional
imaging or biopsy, are conducted to confirm or rule out cancer.

At this stage, non-invasive techniques, such as those investigated in this work, can
contribute to improved diagnostic outcomes and offer more detailed insights. Specifically, in
the context of molecular subtype classification, having such a tool would provide additional
information for cases with abnormal findings or confirmed cancers. This could lead to a
better prognosis and help guide clinical decision-making, potentially reducing the need for
further invasive procedures like biopsies.

2.3.2. Biopsy Techniques

When imaging or other screening tests detect abnormalities suggestive of breast cancer,
a biopsy is typically required to obtain a definitive diagnosis. A breast biopsy involves
removing a small sample of tissue from the suspicious area, which is then examined under a
microscope by a pathologist [45]. This step is crucial not only for confirming the presence of
cancer but also for determining its type, grade, and increasingly, its molecular characteristics.

Classification

Several biopsy techniques are commonly used for the diagnosis and characterization of
breast lesions, including;:

= Fine Needle Aspiration (FNA): A minimally invasive procedure that uses a thin,
hollow needle to extract cells or fluid from a suspicious area. It is often performed when
the lesion is likely to be a cyst”. FNA is quick, cost-effective, and generally well-tolerated,
offering high diagnostic accuracy when performed correctly. However, it may provide
limited information about tissue structure and can sometimes yield inconclusive results,
requiring further evaluation with a core needle or surgical biopsy [46,47].

= Core Needle Biopsy (CNB): This technique employs a larger, hollow needle to obtain
small cylinders (cores) of tissue, usually under image guidance [47,48]. CNB yields a
larger tissue sample, allowing for accurate histological diagnosis and molecular marker
assessment, both of which are essential for molecular subtyping. It is considered the
standard diagnostic approach due to its high concordance with surgical specimens for key
biomarkers such as ER, PR, HER2, and Ki67 [49].

7A fluid-filled sac
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» Vacuum-Assisted Biopsy (VAB): VAB uses a vacuum-powered device to collect
multiple tissue samples through a single insertion, typically guided by stereotactic® or
ultrasound imaging. It is particularly effective for sampling microcalcifications or small
lesions detected via mammography and yields larger tissue samples, thereby reducing
sampling error. This method is reliable, well-tolerated, and can sometimes eliminate the
need for surgical biopsy, especially for benign lesions [50].

= Surgical Biopsy: When needle-based techniques are inconclusive or not feasible, a surgical
biopsy may be performed to excise part or all of the suspicious tissue. While it provides
the most comprehensive tissue sample, it is also more invasive and costly, and is generally
reserved for cases where less invasive methods fail to yield a definitive diagnosis [47].

Limitations

The choice of biopsy technique is influenced by factors such as lesion size, location,
imaging characteristics, and patient-specific considerations. Although biopsy remains the
gold standard for cancer diagnosis, it is associated with several significant limitations,
including:

» Invasiveness: The procedure may cause discomfort and carries a potential risk of infection
or bleeding, particularly when tumors are located in hard-to-reach areas [51].

s Logistical Barriers: In resource-limited settings, a lack of trained personnel and the need
for patients to travel long distances for care can hinder timely diagnosis and treatment [47].

= Inconclusive Results: If not performed by experienced personnel, biopsies can yield
insufficient or non-diagnostic samples, increasing patient burden and discomfort due to
the need for repeat procedures.

Given these limitations, there is a clear need for developing non-invasive diagnostic
approaches. Such techniques could facilitate earlier intervention, reduce the dependence on
tissue sampling, and improve access to timely and accurate diagnosis, especially in settings
where biopsy is not feasible.

8A surgical technique or procedure that uses a three-dimensional coordinate system to precisely locate
and target a specific area.



Chapter 3
Technological Review

This section explores the modern definitions and structures of AI models, as well as their
use in modern medicine and specifically in medical imaging.

3.1. Artificial Intelligence

Artificial Intelligence (AI) refers to a collection of technologies that allow computers and
machines to mimic human intelligence, including learning, problem-solving, and decision-
making with varying levels of creativity and autonomy [52]. The conceptual roots of Al can
be traced back to the 1940s and 1950s, when pioneers like Alan Turing explored the idea of
machines simulating human thought. Turing’s work, including the influential “Turing Test”
and his 1950 paper, laid the groundwork for the field [53]. AI was formally established as a
discipline in 1956 at the Dartmouth Conference, where the term “artificial intelligence” was
introduced by John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon [54].
Figure 3.1 summarizes the evolution of Al over the decades and highlights key milestones in
its development.
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Figure 3.1: Condensed timeline of key AI milestones
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3.1.1. Classical AI

The early years of artificial intelligence focused on explicit programming and rule-based
systems, known as expert systems, which aimed to mimic human problem-solving. Notable
examples include Dendral, used for chemical structure analysis, and Mycin, developed for
diagnosing bacterial infections and suggesting treatments. These systems, developed in
the 1960s and 1970s, demonstrated the promise of Al in fields like medicine and scientific
research [54].

However, rule-based approaches soon revealed significant limitations, such as their inability
to adapt to new information or handle complex, unstructured data. Combined with limited
computational resources and unrealistic expectations, these challenges led to periods of
stagnation in AI research, known as “Al winters.” The field eventually revived as digital data
became more widely available and new Al paradigms emerged.

3.1.2. Machine Learning

Machine Learning (ML) is a branch of artificial intelligence that enables computers to
learn from data and experience, allowing them to recognize patterns, make inferences, and
predict outcomes without explicit rule-based programming [55]. Its rapid growth has been
driven by the explosion of big data, advances in computational resources, and the availability
of large annotated datasets. ML encompasses several main learning paradigms:

= Supervised Learning: Models are trained on labeled data, where each input is paired
with a known output, enabling the model to learn the mapping between them [56].

= Unsupervised Learning: Models work with unlabeled data, aiming to discover hidden
patterns or structures within the dataset [57].

» Reinforcement Learning: Models learn by interacting with an environment, receiving
feedback through rewards or penalties, and gradually improving their decision-making
strategies [58].

The adoption of ML has had a transformative impact across numerous industries. In
healthcare, ML models now assist in tasks ranging from automated medical image analysis
to personalized treatment recommendations. The rapid advancement of ML applications,
combined with the explosion of available data and improvements in hardware (such as GPUs),
paved the way for the next major leap in AI: deep learning (DL).

3.1.3. Deep Learning

DL is a specialized subset of ML that utilizes artificial neural networks (ANN) composed of
multiple layers to automatically extract complex features from large datasets. This approach
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has enabled unprecedented performance in fields such as image analysis, speech recognition,
and natural language processing [59].

Unlike traditional ML methods, which often rely on manual feature engineering and
are best suited for structured, moderate-sized datasets, DL models excel at processing vast
amounts of unstructured data, including images, audio, and text. These models are capable
of autonomously learning hierarchical representations directly from raw inputs, significantly
reducing the need for human intervention and enhancing both scalability and accuracy [59].
Figure 3.2 illustrates how DL fits within the broader context of AI and ML.
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Figure 3.2: Overview of Al subsets [60].

3.1.4. Deep Learning in Medical Imaging

The advent of DL techniques has profoundly transformed the field of medical imaging,
enabling highly accurate analysis of complex visual data across a broad spectrum of clinical
applications, including:

= Image classification and detection: DL models are trained to identify and classify
abnormalities in radiological images such as X-rays, MRI, or mammograms, often achieving
expert-level performance.

= Segmentation: DL architectures facilitate the precise delineation of anatomical structures
and pathological regions, which is essential for treatment planning, diagnosis, and disease
monitoring.

= Image enhancement and generation: DL is employed to improve image quality
(e.g., denoising, super-resolution) and to generate synthetic data for augmentation or
cross-modality image synthesis.
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These advancements have been largely driven by the success of Convolutional Neural
Networks (CNNs), which have become the foundation of most state-of-the-art models in
medical image analysis. CNN-based models are currently being actively explored for the
classification of breast cancer molecular subtypes using mammography images, as recent
studies have demonstrated their potential for this challenging task [9,10]. For this reason,
CNNs, particularly ResNet101, serve as the baseline architecture in this study. A detailed
review of CNNs will be provided in the following section.

3.2. Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of DL model designed to automatically
learn features from data, especially images, using convolution operations. First introduced
by LeCun et al. for digit recognition [61] with the LeNet architecture (Figure 3.3). CNNs
became widely adopted after the success of AlexNet in the 2012 ImageNet competition [62].
Their main advantage is the ability to learn hierarchical features directly from raw data,
reducing the need for manual feature extraction and enabling strong performance in computer
vision tasks.
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Figure 3.3: LeNet, considered the first CNN architecture for digit recognition [61].

3.2.1. Core Components

Convolutional Layers

A convolutional layer is a core part of a CNN that scans the input image with small filters
(kernels), performing a convolution operation, essentially a sliding dot product between the
filter and local image regions. This process creates feature maps that emphasize important
patterns, such as edges or textures [63]. These feature maps are then passed through
additional layers to extract more complex features. Figure 3.4 illustrates the convolution
operation and a feature map example of a breast image.

Activation Functions

Activation functions introduce non-linearity into neural networks, allowing them to learn
complex patterns rather than just linear relationships [64]. They are typically applied
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(b)

Figure 3.4: (a) Illustration of the convolution operation [63]. (b) Breast feature maps
extracted from the first convolutional layer of Resnet101.
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Figure 3.5: Popular activations functions used in CNN [65].

after convolution operations to produce feature maps. Among various activation functions,
the rectified linear unit (ReLU) is most commonly used in CNNs due to its simplicity,
computational efficiency, and its ability to address the vanishing gradient problem !. Popular
activations functions are shown in the Figure 3.5.

Pooling Layers

Pooling layers reduce the spatial dimensions of feature maps, decreasing computational
complexity and helping control overfitting? [66]. Unlike convolutional layers, pooling layers
perform pooling operations instead of convolutions. The most common operations are max
pooling, selecting the maximum value in a region, and average pooling, computing the mean
value of a region (Figure 3.6). Pooling is usually applied after activation functions and is
often repeated throughout the network.

Fully Connected Layer

1The difficulty of training deep networks caused by gradients becoming very small as they propagate

through many layers.
2A common problem in machine learning where a model learns the training data too closely, rather than

capturing patterns that generalize to new, unseen data.
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Figure 3.6: Max pooling and Average pooling representation [67].

Fully connected layers, or dense layers, are usually placed near the end of a convolutional
neural network (CNN). They connect every neuron from the previous layer, consolidating
features from earlier convolutional and pooling layers into a global representation. Feature
maps are flattened into a one-dimensional vector before inputting into these layers, facilitating
the mapping of extracted features to outputs like class probabilities [68]. Figure 3.7 illustrates
a neural network with several fully connected layers.

Deep neural network

Input layer Multiple hidden layer Output layer

Figure 3.7: Neural network with three fully connected layers and three outputs [69)].
Training
With all this building blocks, CNN are constructed. Once a network is defined, it goes
through the process of training, which involves the following steps [69]:
1. Forward pass: The input data passes through the network, layer by layer, to produce
an output prediction.

2. Loss function calculation: The difference between the predicted output and the true
label is measured using a loss function.

3. Backpropagation: The network computes gradients of the loss with respect to each
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parameter, propagating the error backward through the layers.

4. Gradient descent: The network updates its parameters (weights and biases) using the
computed gradients to minimize the loss.

After training, the network is ready to make predictions on new, unseen data. Figure 3.8
shows an example of a complete CNN architecture for breast cancer prediction.
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Figure 3.8: CNN for breast cancer prediction [70].

3.2.2. Main Architectures

VGGNet (VGG16/VGG19)

Symonyan et al. (2015) introduced VGGNets [71]. Renowned for their straightforward
design and depth, they employ solely 3x3 convolutions and can have up to 19 layers. They
are extensively utilized as feature extractors and serve as a fundamental benchmark for
transfer learning in both medical and general image applications.

ResNet

He et al. (2015) [72] presented Residual Networks, or ResNets, as a solution for training
very deep neural networks with over 50 layers, which helps address the problem of vanishing
gradients. This is achieved through the implementation of residual or skip connections
between layers. ResNet is the default choice for many image analysis tasks due to its
robustness and ease of training.

As previously stated, this study uses ResNet-101 as the baseline model. This architecture,
comprised of 101 layers with residual connections, proves highly performance at managing
complex tasks. Figure 3.9 illustrate an overview of its structure.

3.2.3. CNNs Limitations

CNNs offer numerous advantages and a wide range of applications; however, they also
have certain limitations that deserve consideration:
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Figure 3.9: ResNet-101 Architecture.

= Limited global context: CNN mainly capture local features and struggle with global
context, which is important in medical imaging.

s Rigid inductive bias: Their design enforces assumptions like locality and translation
invariance, limiting flexibility for learning more abstract or non-local patterns.

= Generalization across diverse data: CNNs often have difficulty generalizing to data
from different sources or patient populations, reducing their robustness in clinical settings.

Recent advances in Transformer-based models offer promising solutions to some of these
limitations by enabling better modeling of global context and improving generalization, which
will be discussed in the following section.

3.3. Transformer-Based models

Transformer models are built upon the Transformer architecture, which was initially
developed for natural language processing (NLP) tasks. Since their introduction to computer
vision, these models have gained significant popularity as an alternative to CNNs due to
their effectiveness in capturing global context and modeling long-range dependencies within
images [73].

In this section, we review what transformer-based models are and describe the architectural
designs of those analyzed in this work for the task of breast cancer molecular subtype
classification.

3.3.1. The Transformer architecture

The Transformer architecture is a DL model introduced by Vaswani et al. (2017) in their
seminal paper “Attention is All You Need” [74]. Originally developed as an alternative to
recurrent neural networks (RNNs)? for sequence-to-sequence tasks in NLP, the Transformer
has since become widely adopted in computer vision as well.

3A special class of artificial neural network designed to process sequential or time-series data, such as text,
speech, or sensor readings.
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At its core, the Transformer consists of an encoder-decoder structure built from repeated
layers containing two key components: multi-head self-attention and position-wise feed-
forward networks (see Figure 3.10). This design enables the model to capture both local and
global dependencies by relating every element in the input sequence to every other element,
regardless of their positions.
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Figure 3.10: The Transformer Architecture [74].
Self-Attention

Self-attention is an attention mechanism? that allows a network to relate different positions
within a single input sequence, thereby computing a context-aware representation for each
element. In simpler terms, it enables the model to efficiently prioritize and integrate important
information from across the entire input. The concept of attention was first introduced
by Bahdanau et al. (2014) [75], but it was the Transformer architecture that first relied
entirely on self-attention to compute representations [74]. In a concise overview, this process
functions as follows:

= Projection: Each input element is projected into three distinct vectors:

e Query (Q): Represents the current element (e.g., a word or image patch) for which we
want to find relevant information from the sequence.

4A technique in machine learning that enables models to focus on the most relevant parts of the input
data when making predictions or generating outputs.
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« Key (K): Represents each element in the sequence and is used to match against queries
to measure their relevance.

o Value (V): Contains the actual information of each element, which will be combined
according to the attention scores.

= Score Calculation: For each element, an attention score is computed by taking the dot
product between its query and all keys in the sequence.

= Scaling: Each score is divided by the square root of the key dimension to stabilize training
and prevent large gradients.

» Softmax Normalization: The softmax® function is applied to the scaled scores to obtain
attention weights.

= Weighted Sum: A new, context-aware representation for each input element is obtained
by computing the weighted sum of all value vectors using the attention weights.

Figure 3.11 illustrates the process of scaled dot-product attention in detail. Mathemati-
cally, the process can be summarized as follows:
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Figure 3.11: Scaled dot-product attention mechanism [74].

5The softmax function transforms the scores into probabilities that sum to one.
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3.3.2. Vision Transformer

A Vision Transformer (ViT) is a DL architecture introduce by Dosovitskiy et al. (2020) [76]
designed for computer vision tasks, inspired by the Transformer architecture originally
developed for NLP.

VIiT processing pipeline

A VIiT processes an image by first dividing it into fixed-size patches, for example, a
224 %224 image split into 16x16 patches results in 196 patches. Each patch is then flattened
and projected into an embedding space by the patch embedding layer. Because the ViT
architecture lacks inherent spatial awareness, positional encodings are added to each patch
embedding to preserve spatial information within the image. This design allows the input
to be treated analogously to a sequence of tokens in NLP Transformers. As the sequence
passes through multiple layers of multi-head self-attention, the model learns to capture both
local and global relationships among the patches, enabling robust image understanding. This
process and the ViT architecture is depicted in the Figure 3.12.

ML 3
Malignant  ————7 Head > benign 1
e MLP

Transformer Encoder D Layer normalization
Iy i i i [} [} i [} T [} : 3
[ <
~ v SN ~ ~ ~ VO ] il
o8 €0 &) &0 0 D D €0 &) &
R T 1T 1 1 711 Multi-head self-

attention

| ’ Layer normalization
o = .

Patch +
Pasition Encoding

Input image

Embedded patches
Figure 3.12: ViT architecture, in this example, for breast cancer classification [77].

ViTs have rapidly expanded their reach to many computer vision tasks, including image
classification, object detection, and image segmentation. In medical imaging, several studies
have evaluated their performance on tasks such as breast cancer classification, consistently
reporting strong results [12,78,79].

3.3.3. Shifted-Window Transformer

Shifted-Window Transformers (Swin), introduced by Liu et al. (2021) [80], are a specialized
architecture derived from Vision Transformers (ViT). They are designed to address some of
the limitations of ViT, particularly regarding computational efficiency and scalability when
processing high-resolution images.
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To achieve this, Swin employs a shifted window mechanism. Unlike ViT, which typically
applies self-attention globally, Swin divides the image into a set of non-overlapping windows
(Figure 3.13), with each window containing a subset of image patches. Self-attention is
then applied locally within each window, significantly reducing computational complexity.
The windows are shifted between layers to enable cross-window connections and enhance
information flow across the entire image.
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Figure 3.13: Comparison of Swin and ViT attention mechanisms. Left: Swin Transformer
with shifted window self-attention. Right: Vision Transformer (ViT) with global self-
attention across all patches [80].

As a result of this mechanism, Swin exhibits a computational complexity of O(n), whereas
ViT has a complexity of O(N?).
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Figure 3.14: Swin Transformer Architecture [80].

3.3.4. Multi-Axis Vision Transformer

Multi-Axis Vision Transformer (MaxViT) is a hybrid vision transformer architecture
introduced by Tu et al. (2022) [81]. It is designed to capture both local and global
spatial relationships in images, overcoming scalability and capacity limitations of previous
transformer-based models. MaxViT achieves this by combining blocked local attention
(as in Swin, but without shifting) and dilated global (grid) attention within each block,
together with convolutional layers. This multi-axis attention mechanism allows MaxViT to
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efficiently model both short- and long-range dependencies while maintaining the same linear
computational complexity as Swin. Figure 3.15 illustrates this structure.
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Figure 3.15: MaxVit Architecture [81].

Multi-Axis Attention

Multi-axis attention is the key component of MaxViT. It works by splitting the attention
mechanism into two parts: a block of local attention, which focuses on local regions (similar
to Swin’s), and a grid attention block, which enables global information flow across the entire
image through a dilated, grid-like pattern. This design allows MaxViT to efficiently capture
both local and global dependencies within each block (see Figure 3.16).
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Figure 3.16: Multi-Axis attention blocks [82].
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3.4. Training and Evaluation Techniques

3.4.1. Transfer Learning

Transfer learning is a ML technique in which a model developed and trained on one task
or dataset is reused or fine-tuned to improve performance on a different, but related, task.
It is especially valuable when data is limited or the target task has few labeled examples
available [83]. In other words, instead of training a new model from scratch, transfer learning
leverages knowledge previously obtained, such as learned features and weights, often from
large datasets, to accelerate and enhance learning on a new problem.

This approach is very popular and widely used to avoid training new machine learning
or deep learning models from scratch. In medical imaging, for example, where annotated
data is often scarce or expensive to obtain, transfer learning has enabled the development
and training of models that reduce training time, improve performance, and promote feature
reuse [84]. This process is depicted in Figure 3.17.
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Figure 3.17: Transfer learning process where

3.4.2. Fine-Tuning

Fine-tuning is a specific technique within transfer learning that involves taking a pre-
trained model and continuing its training on a smaller or more specialized dataset to adapt
its capabilities to a particular case or domain [85]. During fine-tuning, some or all of the
model’s parameters are unfrozen and updated, allowing the model to learn features relevant
to the new task while retaining the general knowledge acquired during pre-training. However,
training large models on small datasets can lead to overfitting, so it is common practice
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to use a lower learning rate during fine-tuning to make gradual adjustments and preserve
previously learned representations.

3.4.3. K-Fold Cross-Validation

K-Fold Cross-Validation is a robust evaluation technique used in machine learning when
data is limited or a single train/test split may not provide reliable results. The dataset is
divided into K equal parts, or folds. The model is then trained and validated K times, each
time using a different fold as the validation set and the remaining folds for training. This
process ensures that every sample is used for both training and validation, leading to a more
reliable and less biased estimate of model performance. By averaging results across all folds,
K-Fold Cross-Validation reduces variance and is especially useful for small or imbalanced
datasets. Figure 3.18 illustrates this process.
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Final evaluation ﬂ Test data ‘

Figure 3.18: K-Fold cross validation process, in this example, K = 5 [86].

3.4.4. Al Explainability

DL models, while highly effective in medical image analysis, are often criticized for their

"6 problem. Explainability

lack of interpretability—commonly referred to as the “black box
techniques aim to address this challenge by providing visual or quantitative insights into
the decision-making process of these models. In the context of breast cancer detection and
molecular subtyping from mammographic images, model transparency is especially important

for building clinical trust and aiding radiologists in understanding Al-driven predictions. Two

6Refers to a system where the internal workings are opaque and not easily understandable, even by the
creators.
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Figure 3.19: Example of the Grad-CAM technique applied to a mammogram, highlighting
the region corresponding to the mass [89].

state-of-the-art explainability methods are presented: Grad-CAM, designed for convolutional
neural networks, and ViT-ReciproCAM, tailored for Vision Transformers.

Grad-CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) is an explainability technique
for CNNs that creates visual explanations by highlighting key regions in input images that
significantly influence a model’s prediction [87]. It computes gradients of the target class
score relative to the feature maps of a selected convolutional layer to generate a class-specific
localization map. This technique aids in interpreting image regions contributing to model
decisions, especially useful in medical imaging where model transparency is critical.

ViT-ReciproCAM

ViT-ReciproCAM is a recent explainability method specifically designed for Vision
Transformers (ViTs). Unlike traditional techniques such as Grad-CAM, which rely on
gradient and attention information, ViT-ReciproCAM is gradient and attention-free [88].
It operates by masking tokens in the feature map from the last transformer encoder block
and measuring the effect of these masks on the model’s output. This process exploits the
correlation between masked tokens and the network’s predictions for a given class, producing
localized saliency maps that indicate the most influential image regions.



Chapter 4

Materials and Methods

This section outlines the materials and methods utilized in this study. It begins with
a description of the dataset chosen for model training and analysis, then discusses the
processing and preparation of the images, and concludes with the evaluation metrics for
assessing model performance.

4.1. The Chinese Mammography Database

The Chinese Mammography Database (CMMD) is a public dataset developed by Cai et
al. (2023) [11] and hosted on The Cancer Imaging Archive (TCIA)!. This dataset includes a
total of 3,712 mammograms from 1,775 Chinese patients, in CC and MLO views, collected
between July 2012 and January 2016. CMMD is divided into two subsets:

= CMMD1: This subset includes samples with both malignant and benign diagnoses, along
with key clinical data such as patient age, type of abnormality, and tumor classification.

= CMMD2: This subset contains only malignant diagnoses, providing the same metadata
as CMMD1, but with the addition of molecular subtype classification for each tumor.

Table 4.1 shows the main features detailed of each subset.

4.1.1. CMMD2 Subset Selection

In this research, the focus is exclusively on the CMMD2 subset, as it is the only publicly
available and of free access dataset that provides molecular subtype annotations. These

Ihttps://www.cancerimagingarchive.net/collection/cmmd/
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Table 4.1: Main features of the CMMD subsets

CMMD1 CMMD2
Number of patients 1026 749 1775
Number of mammographies 2230 1498 3728
Mean patient age 45.92 (17-84 years) 49.82 (21-87 years) -
Diagnosis outcome Benign and Malignant Malignant -
Mbolecular subtype No Yes -

annotations are essential for training models in breast cancer molecular subtype classification,
which is the primary objective of this study.

4.1.2. CMMD2 General Description

For the composition of CMMD2, only cases with complete immunohistochemical marker
information and a confirmed diagnosis of invasive carcinoma were selected, as detailed in the
inclusion and exclusion criteria shown in Figure 4.1. Applying these criteria resulted in a
subset comprising 1,498 mammographies from 749 patients. Since each patient has both CC
and MLO views, the total number of images is 2,996 for this subset.

___ Inclusion criteria :
* Histologically confirmed benign or malignant breast

Inclusion criteria

CMMD (N =1775)
Archive data of histologically confirmed benign or
malignant breast from July 2012 and January 2016

prommeemmeemseeee Exclusion criteria 1 Exclusion criteria 2 -----------------
CMMD 1 (N =1026) CMMD 2 (N =749)
Mammography data and complete clinical Complete immunohistochemical markers
data including age, abnormality, benign or including ER, PR, HER2, Ki-67 and
malignant of tumor molecular subtypes

Exclusion criteria 1:
 Patients who had the history of previous breast biopsy  Exclusion criteria 2:

within a week or any therapy for breast lesions prior * Patients who were diagnosed with non-invasive

to mammography carcinoma
* Patients who had the breast prosthesis « The pathological reports were not complete indicators
* Mammography images with substantial motion of ER, PR, HER2 and Ki67

artifact

Figure 4.1: CMMD’s inclusion and exclusion criteria [11].

Image Collection

The mammography images were collected using the GE Senographe DS mammography
system, obtaining both CC and MLO views for each patient. The images were then stored
in 8-bit grayscale at a image size of 2294x1914 pixels [11].
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Image Format and Resolution

The main format of the images in the dataset is DICOM (Digital Imaging and Communi-
cations in Medicine), the standard in medical imaging, as it allows clinical metadata to be
stored alongside the image and enables interoperability between equipment from different
manufacturers as well as interaction between different information systems in hospitals and
healthcare centers.

4.1.3. CMMD2 Metadata

For each patient, the dataset provides a CSV? (Comma Separated Values) file with
additional information to the obtained images, including age, laterality, type of abnormality,
classification, and in the case of CMMD2, also the molecular subtype of the tumor. Table
4.2 describes these data in detail.

Table 4.2: Description of metadata variables present in the CMMD2 dataset.

Column Description Possible values
ID1 Unique patient identifier Format: D2-XXXX
LeftRight Breast laterality L (left), R (right)
Age Patient age at the time of the Between 21 and 87 years
study
Number Number of images available per Between 2 and 4
study
Abnormality  Type of abnormality Mass, Calcification, Both
Classification Nature of the abnormality Benign, Malignant
Subtype Molecular subtype of breast can- Luminal A, Luminal B, HER2-enriched,
cer Triple negative

It is important to note that, the laterality column indicates the side where the tumor
was found; therefore, the opposite side is considered benign [11].

The age distribution of patients follows an approximately normal distribution with slight
asymmetries. The most frequent age range is between 45 and 55 years, which is consistent
with breast cancer epidemiology, where the majority of cases are diagnosed during this
age interval [citation needed]. The inclusion of younger patients in the dataset enhances
population diversity and enables analysis of model performance across underrepresented
demographic subgroups. Figure 4.2 illustrates this distribution.

The analysis of molecular subtype distribution within the CMMD2 dataset is also crucial,
as it determines the statistical representativeness of each class and consequently affects
the models’ generalization capability in clinical scenarios. The dataset exhibits significant

2A plain text file that stores data in tabular form, where each line represents a row and each value in the
row is separated by a comma
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Figure 4.2: CMMD2 Overall age distribution of patients and molecular subtype.

class imbalance®, with Luminal B being the most prevalent subtype (376 patients, 50.2%),
followed by Luminal A (152 patients, 20.3%), HER2-enriched (135 patients, 18.0%), and
Triple Negative as the least represented subtype (86 patients, 11.5%).

The class imbalance is also reflected in the total number of images available per subtype,
as each patient contributes at least two mammographic views (CC and MLO projections),
with few exceptions. This imbalance presents a significant challenge for machine learning
classification models, which tend to exhibit bias toward majority classes when appropriate
balancing strategies are not implemented. Nevertheless, this distribution accurately reflects
the relative prevalence observed in clinical practice, where Luminal subtypes (A and B) are
most common, while Triple Negative breast cancer represents approximately 10-15% of all
cases.

Triple Negative

subtype
= Luminal B
0 = HER2-enriched
= Luminal A
= Triple Negative

HER2-Enriched

Luminal B

Luminal A

Luminal B HER2-enriched Luminal A Triple Negative
Subtype

(a) Subtype distribution (b) Subtype distribution (pie chart)

Figure 4.3: Subtype distribution of patients (CMMD2)

3Class imbalance refers to unequal representation of different classes in a dataset, where some classes have
substantially more or fewer samples than others.
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4.1.4. CMMD2 Limitations and Challenges

Although CMMD?2 is a valuable dataset for this study, it presents certain limitations that
should be kept in mind:

1. Lack of region of interest (ROI) annotations: The dataset does not provide annotated
ROIs for tumor locations, which makes it challenging for machine learning models to focus
on the relevant areas within the images.

2. Single image provider: All mammograms were acquired using the same imaging device.
As a result, models trained on this dataset may not generalize well to images obtained
from different devices or providers.

3. High class imbalance: As mentioned earlier, the dataset suffers from significant class
imbalance. This can cause models to overfit to the dominant class, although it does reflect
the real-world distribution of breast cancer molecular subtypes.

4.1.5. Examples of CMMD2 Images

Luminal B HER2-enriched Triple-negative Luminal A

Figure 4.4: Example of mammography images of the CCMD2 dataset. Top row represent a
CC view whereas bottom row illustrated a MLO view. Each column depicted one subtype of
cancer.
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4.2. The TOMPEI-CMMD analysis

The TOMPEI-CMMD is an enhanced analysis of the original CMMD dataset, developed
by Kashiwada et al. (2025) [90]. This enhancement was designed to provide comprehensive
radiological insights and to enable a systematic re-evaluation of the existing mammographic
images.

A board-certified radiologist with 20 years of experience in breast imaging assessed all
images, documenting detailed radiological findings, including masses, calcifications, focal
asymmetric densities, architectural distortions, and their anatomical locations. This new
analysis also provides pixel-level segmentation masks for all identified findings in the MLO
views, generated based on the radiologist’s expert assessment.

The TOMPEI-CMMD is valuable for this study because it also provides additional insights
into the data in the CMMD2 subset, specifically regarding mammographies exclusions and
laterality corrections guided by the expert radiologist. These enhancements further curate
the CMMD2 dataset, improving its quality.

Table 4.3 summarizes the exclusion reasons identified during the TOMPEI-CMMD
analysis, as well as the number of items affected in the CMMD2 subset.

Table 4.3: Number of CMMD2 mammographies affected by each exclusion reason following
the TOMPEI-CMMD analysis.

Exclusion reason Description Affected mammographies

CV Port Presence of a central venous port visible 7
in the mammography image.

Lymphedema Presence  of  lymphedema-related 1
changes visible in the image.

Neurofibromatosis ~ Presence of neurofibromatosis-related 2
findings visible in the image.

White objects Presence of extraneous white objects or 2
artifacts in the image.

Invisible Lesion not visible or undetectable in the 76
mammography image.

Benign Lesion determined to be benign upon 10
expert review.

Normal No abnormal findings detected in the 724
image.

Total 824

After applying all exclusions and performing 9 laterality corrections (where images were
mislabeled), our final dataset is summarized in Table 4.4.

There are 672 unique patients in the final dataset. However, two patients were diag-
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Table 4.4: Final dataset overview after exclusions and corrections.

Patients Mammographies Images

672 674 1348

4

nosed with bilateral breast cancer®, resulting in a total of 674 mammographies. As each

mammography includes both CC and MLO views, the final dataset includes 1,348 images.

4.3. Image Preprocessing

To prepare the dataset for DL experiments, image preprocessing is essential. The original
images are stored in DICOM (.dcm) format, and many include a substantial black background,
which can negatively impact both computational efficiency and model performance if not
addressed. The following preprocessing steps were applied, and the final result is illustrated
in Figure 4.5:

1. Smart Cropping: A heuristic algorithm ® was applied to automatically crop the majority
of the black background from each image, retaining only the region containing breast
tissue. This step maximizes the model’s focus on relevant anatomical structures and
reduces computational overhead.

2. Median Filtering: A median filter was used to reduce noise while preserving edges and
important details in the mammograms. This helps enhance image quality and supports
more reliable feature extraction by DL models.

3. Image Conversion and Storage: The preprocessed images were converted into a
standard format (PNG) and stored in a more accessible directory. This step also facilitates
efficient data loading and reproducibility in subsequent experiments.

After applying this preprocessing pipeline, the resulting folder directory is as follows.
Each image is stored within a folder labeled with the corresponding patient identification:

data/

L reprocessed
D2-0001
t:CC—L.png

MLO-L.png

D2-0002

4Cancer in both the left and right breasts.
5A practical, rule-based approach designed to quickly find a good solution to a problem when finding the
optimal solution would be too complex or time-consuming.
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(a) (b) (c)

Figure 4.5: Ilustration of the preprocessing pipeline result: (a) original image, (b) image
after cropping, and (c) image after median filter application.

In addition to these preprocessing steps, a histogram standardization® technique is also
applied. However, this is performed during the data splitting phase to avoid data leakage 7.
Details regarding this procedure will be discussed in the following section.

4.4. Data splitting and stratification

Once images are preprocessed, the next step is to create training and testing splits of the
data. In DL, it is standard practice to divide the dataset into separate subsets to accurately
assess model performance and prevent overfitting, ensuring that the model generalizes well
to unseen data [91]. In particular, three key points must be addressed:

= Ensure reproducibility of experiments.

= Keep the same data distribution across splits (stratification) to ensure balanced represen-
tation of classes.

= Avoid data leakage by ensuring that no information from the test set is used during
training.

SHistogram standardization is a technique used to adjust the intensity values of an image so that its
histogram has a specified mean and variance, usually mean 0 and variance 1. This helps to make images
from different sources more comparable and consistent for further analysis.

“When information that would not be available at prediction time is unintentionally used during model
training. This leads to overly optimistic performance during evaluation but poor results in real-world use,
because the model has learned patterns it should not have access to
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4.4.1. Repeated holdout strategy

To best assess the model’s performance, the repeated holdout strategy was used. Also
known as Monte Carlo Cross-Validation, this approach consists of randomly splitting the
dataset into training and testing sets multiple times, resulting in different train-test splits
for each iteration. The model is trained and evaluated on each split, and the results are
averaged to provide a more robust estimate of performance [92].

In this study, three different train-test splits consisting of 80% training and
20% test data were used. Each split was generated with a different fixed random seed (0,
21, and 42) to ensure reproducibility of the data splitting process. For clarity, each split is
named according to its corresponding seed (e.g., Split 0).

4.4.2. Data distribution

To ensure consistent data distribution across the different train-test splits, stratification
was performed based on the molecular subtype annotations. This guaranteed that each
train and test split maintained a similar proportion of each molecular subtype, thereby
reducing the risk of biased performance estimates due to class imbalance. The resulting data
distributions for the three train-test splits are shown in Figure B.3 and Figure B.4, along
with additional insights regarding image overlap.

4.4.3. Avoiding Data Leakage

To avoid data leakage, the splits were performed at the patient level. This means that
patient identification was used to ensure that all samples from a given patient were assigned
exclusively to either the training or test set, preventing any overlap between the two. This
consideration was included in the training, where employing a Stratified Grouped K-Fold
ensured no patient data leaked between folds.

4.4.4. Histogram Standardization

Histogram standardization is an important preprocessing step that equalizes image
intensities to reduce variability, even within datasets acquired from a single device such
as CMMD2. This technique has been shown to improve domain generalization and model
performance [93]. In this study, histogram standardization was applied after data splitting,
following the repeated holdout strategy. For each train-test split, intensity landmarks were
learned from the training set and then applied to standardize both the training and test
images. An example of the effect of this technique on image appearance and intensity
distribution is shown in Figure 4.6.
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Figure 4.6: Example of an image before and after applying histogram standardization. The
histograms demonstrate how intensity distributions become more similar after standardiza-
tion.

4.4.5. Final splits overview

Following preprocessing, data splitting, and histogram standardization, the images were
systematically organized by seed, split, and subtype to enable efficient data loading during
training. The final image format chosen was .npy®, due to its capability for efficient storage,
rapid loading of large arrays, and preservation of exact intensity values, including standardized
histogram ranges, without any loss or alteration. The directory structure of the splits is
presented as follows:

splits/

| SEEDO

| train
her2-enriched
| D2-0001-CC-R.npy
luminal-a
luminal-b
triple-negative

| test

| SEED21

| SEED42

8NumPy binary format
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4.5. FEvaluation Metrics

Selecting appropriate evaluation metrics is essential for accurately assessing model perfor-
mance, especially in multiclass classification tasks like distinguishing breast cancer molecular
subtypes. To ensure consistency with recent studies, such as those by Mota et al. [9] and
Rabah et al. [10], this work reports metrics including AUC, Precision, Recall, and F1-Score,
with an emphasis on macro-averaged values. Macro-averaging treats each class equally by
averaging metrics calculated independently for each class, which is particularly important
given the high class imbalance in the dataset.

Additionally, Cohen’s Kappa coefficient is included to measure agreement between pre-
dicted and true labels, accounting for chance. To further address class imbalance, Balanced
Accuracy is reported instead of standard accuracy. For metrics visualization, the ROC AUC
curve was used to compare the overall results of this metric and a confusion matrix [94] to
evaluate predictions.

Table 4.5 summarizes the evaluation metrics used in this study:

Table 4.5: Overview of evaluation metrics used in this work. All metrics except AUC and
Cohen’s Kappa are reported as macro-averaged values.

Metric Formula Description

Balanced Accuracy ~ Zz 1 m Average recall across all
classes; robust to class imbal-
ance.

Macro Precision N21 1 W Average of per-class pre-
cision; treats all classes
equally.

Macro Recall (Sensitivity) # ZZ 1 m Average of per-class recall;

treats all classes equally.
Macro F1-Score + Zf\il 2. % Average of per-class FI-
scores; balances precision
and recall.
Cohen’s Kappa Measures agreement between
predictions and true labels,
adjusted for chance.
Macro AUC (ROC) — Average area under the ROC
curve for each class; mea-
sures the ability to distin-

guish between classes.
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4.6. Model Architectures and Pipeline

4.6.1. Models Backbones Selection

For this study, the model architectures (backbones) were selected using the timm library
[95], which provides a wide range of state-of-the-art pretrained models for image classification.

» ResNet-101: timm/resnet101
» ViT: timm/vit_base_patchl6_ 384
» MaxVit: timm/maxvit_small tf 384

» Swin: timm/swin_base_patch4d windowl2 384

4.6.2. Models input format

Defining the input shape is essential when working with pretrained models, as they are
typically trained on benchmark datasets with fixed input sizes such as 224x224, 384x384 or
512x512. To ensure a fair comparison across all four architectures, we standardized the input
size to 384x384x3 (RGB). This decision is supported by empirical evidence showing that
transformer-based models achieve optimal performance at higher resolutions, while CNNs
like ResNet101 are flexible and also benefit from larger images.

Since the dataset does not provide region of interest (ROI) annotations, as said earlier,
we apply a transformation pipeline that first resizes each image so that its smallest dimension
matches 384 pixels, preserving the original aspect ratio, and then applies a center crop
to obtain a 384x384 patch. This straightforward approach is effective in practice and is
illustrated in Figure 4.7.

Figure 4.7: Examples of centered 384x384 patches extracted from the original images, which
are then converted to tensors for model input.
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4.6.3. Model Output Format

After processing an input image, each model produces a one-dimensional tensor containing
the predicted probabilities for each of the four molecular subtypes. This means that for
every image, the model assigns a likelihood to each subtype, reflecting its confidence in the
classification. These probabilities are calculated using a softmax activation function in the
final layer, ensuring that all values sum to one and can be interpreted as true probabilities.
The subtype with the highest probability is then selected as the model’s final prediction for
that case.

By adopting this standardized output format across all models, we make it easy to compare
their predictions directly and to apply consistent evaluation metrics. This approach not only
streamlines the analysis but also ensures that differences in performance can be attributed
to the models themselves, rather than to variations in output processing. Figure 4.8 provides
a high-level overview of the inference process, from image input to final subtype prediction.

= at [ HER2-Enriched |

i ,:, ) I ‘ Luminal B J

B ] - j [ 3’ [ Luminal A ]
\ |

Triple Negative

Data Splitting and Standardization Input Transform

P centered g
& ﬁ patches &’;
| . .

Figure 4.8: Overview of the workflow pipeline for model inference after training and evaluation.

v

4.7. Experiments

This section presents the experimental design employed to compare the performance of the
four models (ResNet-101, ViT, Swin, and MaxViT). Common guidelines and configurations
applied across all experiments are detailed, along with the different modalities evaluated
using three distinct train-test splits.

4.7.1. Evaluation Pipeline

To systematically evaluate model performance in classifying breast cancer molecular
subtypes, four training modalities were proposed. Each modality is designed to address and
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mitigate class imbalance within the dataset as effectively as possible:

Weighted loss without image augmentation
= Weighted loss with image augmentation
= Oversampling without image augmentation

= Oversampling with image augmentation

Each modality is applied to all four models using a 3-fold cross-validation strategy
on the training set, and this process is repeated for each of the three different train-test
splits. Validation metrics from the cross-validation are collected and summarized for each
train-test split, providing the basis for subsequent statistical analysis.Based on the results
of this analysis, the best-performing training modalities are selected for fine-tuning on the
entire training set, followed by evaluation on the corresponding test holdout set for each
split. In total, the evaluation required 144 experiments, calculated as 4 models x 3 folds
x 4 modalities x 3 train-test splits. The overall pipeline can be summarized as follows:

Step 1: Select a train-test split (e.g., SPLITO).
Step 2: Select a model backbone (ResNet-101, ViT, Swin, or MaxViT).

Step 3: Evaluate the model using each of the four training modalities with 3-fold cross-
validation.

Step 4: Collect validation metrics for each modality, seed, model, and fold.

Step 5: Repeat the process for all train-test splits and models.

4.7.2. Common Hyperparameters

A set of common training hyperparameters was selected to ensure they were suitable for
all model types evaluated in this study. Table 4.6 summarizes the hyperparameters used.

Table 4.6: Common training hyperparameters.

Hyperparameter Value

Optimizer AdamW

Learning Rate le-4 (1e-5 for fine-tuning)
Weight Decay (L2-Regularization) 1le-2

LR Scheduler OneCycleLR

Batch Size 32

Epochs 100 (max)
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4.7.3. Experiment modalities
Using image augmentation

Image augmentation is a technique used to increase the diversity and size of a dataset by
generating modified versions of existing images in memory through various transformations
or contrast adjustments [96]. For model training, only slight transformations were applied,
including horizontal flipping (50%), rotations between —10° and 10° (30%), and CLAHE
(10%)°. These augmentations are medically safe and help the models generalize better and
mitigate class imbalance. Figure 4.9 illustrates these augmentations.

Original

Figure 4.9: Image augmentations example.

Using Weighted Cross-entropy Loss

The Cross-Entropy loss is a function to measure the difference between predicted and
actual class distributions. The weighted version applies a scaling factor (typically the inverse
of class frequencies) to address class imbalance effectively or emphasize certain classes during
model training. Mathematically can be expressed as:

Jwce = —

K
1 > D wk Yk log (ho(am, k)) (4.1)

M
m=1 k=1

Where: Jwcg : weighted cross-entropy loss, M : number of samples in the batch, K :
number of classes, wy, : weight for class k, yn, & : indicator (1 if sample m belongs to class k,
else 0), and hg(x.,, k) : predicted probability for class k (softmax output).

This loss function can help significantly improve model performance in imbalanced
datasets.

Using Weighted Random Sampler

Weighted random sampling is another technique to mitigate class imbalance. In this

9Contrast Limited Adaptive Histogram Equalization, an advanced image processing technique used to
enhance local image contrast.
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approach, sampling probabilities are assigned based on the inverse frequency of each class,
giving samples from minority classes a higher probability of selection during batch training
compared to samples from majority classes. This is especially useful in datasets like CMMD2,
where one class, such as Luminal B, dominates and has significantly more samples than the
others.

However, a key limitation is that weighted random sampling should not be combined
with weighted cross-entropy loss, as both techniques address class imbalance and using
them together can lead to overcompensation, potentially introducing bias during training.
For this reason, weighted random sampling is implemented as a separate experimental
modality. Figure 4.10 shows the typical class distribution within a batch (batch size 32),
while Figure 4.11 illustrates the batch distribution after applying the Weighted Random
Sampler.

200 = her2-enriched
= luminal-a
= luminal-b
17.5| == triple-negative

100

No. of images in batch

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Batch index

Figure 4.10: Class distribution within a typical batch (batch size = 32) during a training
epoch using default sampling. The average number of images per batch for each class is:
HER2: 6.03, LumA: 6.72, LumB: 15.75, and TN: 3.50.

= her2-enriched
= luminal-a
= luminalb
= triple-negative

No. of images in batch

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Batch index

Figure 4.11: Class distribution within a batch (batch size = 32) after applying weighted
random sampling. The average number of images per batch for each class is: HER2: 8.25,
LumA: 7.88, LumB: 7.28, and TN: 8.59.
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4.7.4. Statistical Test

After completing the experiments, this should be evaluated statistically. In studies of this
nature, it is common practice to apply statistical methods to determine whether observed
differences in model performance are significant or could have occurred by chance. The
common methodology involves a two-step statistical analysis. For this study, a Friedman
test was performed first to assess overall differences among models, followed by Wilcoxon
signed-rank tests for pairwise comparisons between models [97].

Friedman Test

The Friedman test is a simple, non-parametric statistical'® test used to compare three or
more related groups. The null hypothesis is that all models perform equally, meaning there are
no significant differences in their median performance across repeated measurements [97]. To
perform the test, each model’s performance (e.g., AUC) is ranked within each experimental
unit (such as each combination of fold, seed, and modality). Then, the test statistic is
calculated as:

12

k
2 2
(Y ;R] 3n(k +1) (4.2)

Where n is the number of experimental units, & is the number of models being compared,
and R; is the sum of ranks for model j. This statistic follows a chi-square distribution with
k — 1 degrees of freedom. If the resulting p-value!! is less than 0.05, the null hypothesis can
be rejected.

Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a non-parametric test used to determine if there is a
statistically significant difference between two sets of paired or related values by ranking the
absolute differences between each pair, then comparing the sums of the positive and negative
ranks to assess whether the observed differences are likely due to chance or reflect a true
effect [97]. The test statistic is defined as:

W =min (WF, W™) (4.3)

Where W is the sum of the ranks for the positive differences, and W~ is the sum of the
ranks for the negative differences.

10Non-parametric methods are statistical techniques that do not assume a specific distribution for the data,
making them suitable for non-normal or ordinal data.
1A measure of how likely your observed results are if there were no real difference or effect.
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Results and Discussion

This chapter presents the main findings of the study, including the performance evaluation
of the proposed models and training modalities for breast cancer molecular subtyping using
mammographic images. The results are analyzed using the evaluation metrics and statistical
methods described in previous chapters. Comparative analyses highlight the strengths and
limitations of each approach, and the implications of these findings are discussed in the
context of current research.

5.1. Experiments Results

A total of 144 experiments were conducted to collect cross-validation metrics. As defined
earlier, each model was trained using 3-fold cross-validation, recording validation metrics for
each fold across 3 distinct train-test splits (seeds 0, 21, and 42) and 4 different modalities.
To ensure the reliability of the results, each experiment used the same seed for the K-Fold
partitioning, guaranteeing consistent data splits across all runs. The complete set of results is
presented in Table C.1, while the results averaged by seed are shown in Tables C.2, C.3, and
C.4. To provide an overview of the validation metrics obtained from K-Fold cross-validation
for each seed, Table 5.1 presents the averaged values.

Table 5.1: Average per seed validation metrics obtained after 3 Folds cross validation in 3
different train-test splits.

Model Sampling Aug. B. Acc. AUC F1 Prec. C. Kappa
ResNet101 ‘Weighted No 0.2977 + 0.5649 + 0.2788 + 0.2842 + 0.0734 +
0.032 0.0307 0.0345 0.0356 0.0409
ResNet101  Weighted Yes 0.3133 +  0.5692 + 0.2941 + 0.3037 + 0.0931 +
0.0158 0.0215 0.0213 0.0218 0.0250
ResNet101  Oversampled No 0.2971 +  0.5619 +  0.2699 +  0.3049 +  0.0677 +
0.0259 0.0294 0.0333 0.0295 0.0384

Continued on next page

o1
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Model Sampling Aug. B. Acc. AUC F1 Prec. C. Kappa

ResNet101 Oversampled  Yes 0.3002 + 0.5681 + 0.2530 + 0.3229 + 0.0647 +
0.0298 0.0241 0.0489 0.0777 0.0421

ViT Weighted No 0.3319 +  0.5852 +  0.3002 +  0.3158 +  0.0888 +
0.0439 0.0202 0.0450 0.0457 0.0466

ViT ‘Weighted Yes 0.3397 + 0.5864 + 0.3062 + 0.3313 + 0.1066 +
0.0255 0.0202 0.0467 0.0338 0.0436

ViT Oversampled  No 0.3134 + 0.5821 +  0.2816 +  0.3178 + 0.0719 +
0.0378 0.0235 0.0273 0.0304 0.0367

ViT Oversampled  Yes 0.3214 +  0.5820 + 0.2923 +  0.3082 +  0.0867 +
0.0293 0.0172 0.0406 0.0347 0.0362

Swin Weighted No 0.3212 +  0.5819 +  0.2836 + 0.3083 + 0.0814 +
0.0292 0.0193 0.0355 0.0207 0.0334

Swin Weighted Yes 0.3170 + 0.5825 +  0.2811 +  0.3051 + 0.0812 +
0.0232 0.0169 0.0327 0.0254 0.0288

Swin Oversampled  No 0.3152 + 0.5775 +  0.2838 + 0.3132 +  0.0790 +
0.0183 0.0161 0.0325 0.0157 0.0180

Swin Oversampled  Yes 0.3143 +  0.5820 +  0.2806 + 0.3147 + 0.0812 +
0.0211 0.0208 0.0391 0.0272 0.0317

MaxVit Weighted No 0.3155 + 0.5776 +  0.3010 +  0.3098 +  0.0618 +
0.0086 0.0171 0.0103 0.0116 0.0210

MaxVit Weighted Yes 0.3140 +  0.5836 + 0.2875 +  0.3119 +  0.0686 +
0.0261 0.0255 0.0343 0.0332 0.0371

MaxVit Oversampled  No 0.3157 +  0.5799 +  0.2886 +  0.2969 +  0.0649 +
0.0270 0.0202 0.0240 0.0212 0.0322

MaxVit Oversampled  Yes 0.3107 + 0.5805 + 0.2896 + 0.3096 + 0.0637 +
0.0355 0.0248 0.0297 0.0283 0.0438

From these averaged results, it is notable that the best-performing model is ViT, which
achieves the highest validation metrics, particularly in the modality using Weighted Cross-
Entropy Loss and Data Augmentation. Although the results are modest and both training
and validation were performed using only the classifier head, this provides an initial indication
of the model’s general performance. Focusing solely on the AUC score, the best-performing
models and modalities are presented in Table 5.2.

Table 5.2: Best validation AUC scores by model and modality.

Model Sampling  Augmentation AUC

ViT Weighted Yes 0.5864 £ 0.0202
MaxVit Weighted Yes 0.5836 £ 0.0255
Swin Weighted Yes 0.5825 £+ 0.0169
ResNet-101  Oversample No 0.5681 £ 0.0241

Although these scores are quite low, this is understandable given the inherent difficulty of
multiclass classification and the high heterogeneity of molecular subtypes. Nevertheless, based
on these insights alone, we can suspect that our study hypothesis (that transformer-based
models generalize somewhat better than our CNN baseline) is supported. The differences in
performance across the three folds, particularly in metrics such as AUC and F1-score, suggest
that transformer-based models may be capturing more complex patterns when classifying
molecular subtypes compared to the ResNet-101 architecture.

To ensure these findings are not due to random chance or experimental variability, a
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statistical significance test was performed. Specifically, a Friedman test was applied to all
collected validation metrics (Table C.1). This test determines whether there are statistically
significant differences among the experiments for each metric, with significance indicated by
a p-value less than 0.05. Table 5.3 summarizes these results.

Table 5.3: Friedman test statistics and corresponding p-values for different evaluation
metrics comparing model and modality performance on the validation set. Statistically
significant results (p < 0.05) are highlighted in bold.

Metric Friedman Statistic p-value
Balanced Accuracy 8.53 0.03
AUC 15.36 0.001
Macro F1-Score 5.36 0.15
Macro Precision 2.23 0.52
Cohen-Kappa 4.89 0.18

hese results show that the p-values for Balanced Accuracy and AUC are below the
significance threshold of 0.05, indicating statistically significant differences among the models
or modalities for these metrics. In other words, at least one model or modality performs
differently from the others in terms of Balanced Accuracy and AUC. For the remaining metrics,
the p-values are above 0.05, so there is not enough evidence to conclude that significant
differences exist among the groups. This suggests that the models perform similarly with
respect to these metrics, or that any observed differences are likely due to random variation.

Based on these findings, a Wilcoxon signed-rank test was conducted to identify which
models perform significantly better than others in terms of Balanced Accuracy and AUC.

Table 5.4: Wilcoxon signed-rank test p-values for each model pair, for both Balanced
Accuracy and AUC. Statistically significant results (p < 0.05) are highlighted in bold.

Model Pair Balanced Accuracy (p-value) AUC (p-value)
ResNet101 vs. ViT 0.004 0.008
ResNet101 vs. Swin 0.02 0.01
ResNet101 vs. MaxVit 0.03 0.007
ViT vs. Swin 0.101 0.809
ViT vs. MaxVit 0.111 0.508
Swin vs. MaxVit 0.658 0.882

As shown in Table 5.4, all transformer-based models exhibit statistically significant
differences compared to ResNet-101 in both Balanced Accuracy and AUC. Notably, ViT
and MaxVit show the lowest p-values for AUC when compared to ResNet-101, indicating
particularly strong differences. These results support the findings presented in Table 5.2.
Therefore, we have significant evidence to conclude that the transformer-based models
outperform ResNet-101 with respect to these metrics. For the remaining model pairs, the
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Wilcoxon signed-rank test did not reveal statistically significant differences, suggesting that
the transformer-based models perform comparably to each other in these metrics. Taken
together, these findings provide strong support for our hypothesis that transformer-based
models achieve superior performance compared to CNNs for this task.

5.2. Fine-Tuning and Test-Set Evaluation

With the statistical differences established, a fine-tuning phase was conducted. The
modalities with the best averaged results, as shown in Table 5.2, were selected for this phase
across the three train-test splits. In this stage, the entire training set was used for model
training, and evaluation was subsequently performed on the corresponding holdout test set.

The fine-tuning process was performed using the same hyperparameters listed in Table 4.6,
except for the learning rate, which was set to a value ten times lower. Additionally, the
training was conducted in two steps: first, the classifier head was trained for 10 epochs; then,
fine-tuning was carried out for 5 epochs with all backbone layers unfrozen, in order to avoid
overfitting.

The complete results can be explored in the Table C.5, but the Table 5.5 summarizes the
average per seed.

Table 5.5: Test Set results average after Fine-Tuning across three different train-test splits.

Model B. Acc. AUC F1 Prec. C. Kappa
ViT 0.385 + 0.042 0.635 + 0.016 0.354 + 0.049 0.362 + 0.039 0.159 + 0.063
MaxVit 0.341 + 0.016 0.605 + 0.019 0.325 + 0.012 0.336 + 0.011 0.12 4+ 0.021
Swin 0.358 + 0.033 0.619 + 0.008 0.319 + 0.041 0.339 + 0.051 0.118 + 0.04
ResNet-101 0.322 + 0.062 0.563 + 0.03 0.285 + 0.07 0.337 + 0.112 0.095 + 0.078

As shown in the averaged test set results, the transformer-based models outperform
ResNet-101 in almost all metrics, particularly in the AUC score. The best performing model
was ViT, which achieved the highest values across all experiments. This suggests that the
global attention mechanism in ViT may play a significant role in this classification task, in
contrast to the local operations of the ResNet-101 model.

It is important to note, however, that these metrics are still quite low and fall below the
clinically accepted threshold. Nonetheless, the results highlight the potential of transformer-
based models or attention mechanism in the classification of breast cancer molecular subtypes.

Figure 5.1 shows the mean AUC curves from the models on the test set and reveals
some interesting details. From these curves, we can see that the easiest class to classify is
HER2-Enriched; in all cases, it is the class with the most prominent performance across all
models. Another interesting pattern is that the Triple Negative class, which is the minority
class in the dataset and the most difficult class to classify due to its high heterogeneity [98],
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is more classifiable by the transformer-based models than by ResNet-101. This insight is
especially valuable since it indicates that despite the class’s significant heterogeneity, attention
mechanisms can utilize patterns for its classification.
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Figure 5.1: Mean AUC curves for each model (ViT, ResNet, MaxVit, and Swin). Each curve
represents the average AUC across the three train-test splits.

We now focus on the top-performing ViT and ResNet models, both derived from the
Seed 42 train-test split (see Table C.5). The first one achieves 65.09% AUC and the best
ResNet achieves 58.84% AUC. Figure 5.2 displays the confusion matrices from these models.

The confusion matrices demonstrate that the ViT model consistently outperforms the
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Figure 5.2: Confusion matrices from the best ViT (a) and best ResNet-101 (b). Classes: 0 =
HER2-enriched, 1 = Luminal A, 2 = Luminal B, 3 = TN.

ResNet-101 model, corroborating our previous findings. Both models exhibit excellent
performance for the HER2-Enriched subtype, achieving high classification accuracy (33/50
correct predictions for ViT and 32/50 for ResNet-101). This performance confirms our earlier
observation that HER2-Enriched represents the most distinguishable molecular subtype
across all evaluated models. For Luminal A classification, the predictions show notable
differences, ViT correctly classified 19/56 cases, while ResNet-101 achieved 22/56 correct
predictions. However, ViT demonstrates reduced cross-class misclassification, particularly
with the TN subtype. ViT also shows superior performance in the classification of Luminal
B cases, demonstrating better discrimination patterns than ResNet-101, achieving 58/136
correct classifications compared to 51/136. Finally, although the TN class is the most difficult
to classify, ViT demonstrates that it can better capture the complex features characteristic
of this subtype.

Additionally, the t-SNE! representation for each model’s classification is presented to
assess the models’ ability to cluster the different molecular subtype classes (Figure 5.3).

These visualizations demonstrate that the ViT model achieves superior feature organiza-
tion compared to ResNet-101, with more distinct clustering patterns particularly visible in
the upper regions where HER2-enriched cases form tighter groupings. While both models
struggle with Luminal A and Luminal B overlap, the ViT model shows better separation
of molecular subtypes and reduced intermixing of Triple Negative cases with other classes.
Even though this visual evidence isn’t perfect, it supports the idea that Vision Transformers
are better at capturing discriminative mammographic features for molecular subtyping than
traditional CNN architectures.

1t-Distributed Stochastic Neighbor Embedding is a powerful statistical method for visualizing high-
dimensional data by reducing it to a two or three-dimensional map.



5.2 Fine-Tuning and Test-Set Evaluation

57

10 10
° .
.
. o
. . .
. ® & o
3 5
o
o o
-
S o6 ® L S os
g 2
2 2
£ £
8 3
z > H
904 £ o4
.
. .
& M &
. e
o o o
02 % 02
. .
. o
° .
00 00 .
00 02 04 06 ) 10 00 02 04 06 ) 10
t-SNE Component 1 t-SNE Component 1
(a) ViT (b) ResNet-101

Figure 5.3: t-SNE visualizations of the learned feature representations from the best ViT (a)
and best ResNet-101 (b) models.

5.2.1. A Brief Explainability Analysis

Explainability analysis provides critical insights into model decision-making processes
and enhances clinical trustworthiness. The best-performing ViT model and ResNet-101 were
compared specifically for HER2-Enriched classification, given the ViT model’s demonstrated

superior capability in distinguishing this molecular subtype, as established in previous
sections.

For the ResNet-101 model Captum [87,99] GRAD-Cam was employed and for the ViT,
ViT-ReciproCam [88] algorithm was used.

Original GradCam Overlay

| — | ——————
0.0 0.5 1.0 0.0 0.5 1.0
(a) (b)

Figure 5.4: GradCAM (a) vs. ViT-ReciproCAM (b) on a MLO mammogram.

In Figure 5.4, the explainability outputs of both methods are compared for a HER2-
Enriched MLO mammogram from the holdout test set. The ResNet-101 Grad-CAM highlights
pixel attributions that contribute to the prediction score via gradient analysis, while ViT-
ReciproCAM identifies salient regions by iteratively masking tokens in the transformer’s
feature space and measuring prediction impact.

Both models successfully detect the mass present in the image; however, their attribution
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patterns differ significantly. The Grad-CAM output highlights specific, localized regions with
discrete boundaries, whereas the ViT-ReciproCAM attribution map displays more diffuse
coverage with broader regions of importance. This difference reflects the Vision Transformer’s
tendency to capture global and distributed patterns across the entire image, contrasting with
the CNN’s focus on localized, patch-based features.

Using the TOMPEI-CMMD [90] MLO segmentation mask, a comparison between both
models is shown in Figure 5.5. The results indicate that the ViT model focuses more
accurately on the mass region for classification compared to ResNet-101, which displays a
less precise localization in its attribution map.

(a) ()

Figure 5.5: Mammogram with mass segmentation (a), Grad-CAM (b), ViT-ReciproCAM (c)

This is further corroborated in Figure 5.6, where the CC view from this same patient
is analyzed. Here it is visible that again, ViT considers a wider area of the mammogram,
covering a more extensive region than the actual mass boundaries, while the ResNet-101
Grad-CAM provides more spatially constrained attributions that closely correspond to the
dense tissue regions visible in the original image.

Original GradCam Overlay
u
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Figure 5.6: GradCAM (a) vs. ViT-ReciproCAM (b) on a CC mammogram.

In summary, ViT global attention seems to be a more effective approach for capturing
distributed and context-rich patterns across the entire mammogram, allowing the model to
consider broader regions that may be relevant for accurate classification.
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5.2.2. Performance Comparison with Recent Literature

As stated previously, recent research has provided insights into this very same problem.
Comparing our results is a crucial step in validating our findings. For this reason, the
research conducted by Mota et al. [9] and Rabah et al. [10] served as references for this
study. It is important, however, to be clear about the differences in experimental settings
and study parameters between the studies. Table 5.6 summarizes their results and settings
and compares them with ours.

Table 5.6: Comparison with related studies on breast cancer molecular subtyping using
different datasets, model architectures, and experimental settings.

Study Dataset Classes Patients Images Size Model ROI Acc. AUC
Ours CMMD2 4 672 1348 384 ViT No 0.385 0.635
Rabah et al. [10] CMMD2 5 1750 4101 224 Xception No 0.3178  0.613
Mota et al. [9] OMI-DB 5 660 1397 - ResNet-101  Yes - 0.6084

The study by Rabah et al. was focused more on a multimodal approach; however, it
provides insights from a multiclass unimodal test using the same dataset as this study, but
additionally taking into account the Benign class from the CMMD1 subset, which augments
the total number of patients and images for training. For the experiment, an Xception
backbone was used.

On the other hand, Mota et al. conducted different classification experiments, including
multiclass and one-vs-all approaches against 5 classes. The dataset used in this case was the
OMI-DB, which has the particularity of splitting the Luminal B subtype into Luminal-B1
and Luminal-B2 based on their HER2 expression. Another feature of this dataset is the
availability of regions of interest in the images, which indeed helped the model focus only on
the relevant parts of the lesions.

The three studies show different experimental settings that make it challenging to establish
a completely fair comparison between all of them, but there are several meaningful insights
that can be drawn:

= Despite methodological variations, our ViT model demonstrates competitive performance
with an AUC of 0.635 £ 0.016, surpassing Rabah et al’s unimodal results (AUC = 0.613)
using the same CMMD dataset.

s The use of pre-segmented regions of interest in the study by Mota et al. provides a
significant boost in performance compared to our best ResNet-101 model (0.563 + 0.03
AUCQC).

= Increasing the input size to 384 x 384 may contribute to improved feature extraction,
particularly for transformer-based models.

Figure 5.7 presents the ROC curves from the three studies. Although the experimental
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settings differ, a comparative analysis remains valuable for highlighting relative model
performance.
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Figure 5.7: ROC curves for breast cancer molecular subtyping. (a) Ours (b) Mota et al. [9],
(c) Rabah et al. [10].

Mota et al’s results confirm our earlier observations. They identified the HER2-enriched
subtype as the most distinct class [9], as previously mentioned. This is evident from their
ROC curve 5.7b, where the HER2 class (yellow line) performs best. Contrastingly, Rabah et
al’s ROC curve presents a more modest performance for the HER2 class.

In summary, while direct comparison is limited by differences in datasets and class
definitions, our ViT model achieves competitive or superior AUCs, especially for the HER2-
enriched subtype. These results highlight the potential of transformer-based models for
breast cancer molecular subtyping using mammographic images.



Chapter 6

Conclusions and Future Work

6.1. Conclusions

The primary objective of this study was to systematically evaluate the performance of
DL Transformer-based models compared to a CNN baseline for mammography-based breast
cancer molecular subtype classification. This aim was achieved through rigorous statistical
testing, comprehensive performance evaluation, and a robust analytical framework. Our
results demonstrate that Transformer-based architectures (ViT, MaxVit, Swin) significantly
outperform the CNN baseline (ResNet-101) in this diagnostic task, achieving a mean AUC
of 0.635 £ 0.016 with a Vision Transformer architecture, a notable improvement over
published benchmarks in recent literature. While these results remain modest and below
clinical acceptance thresholds, they highlight the potential of Al-driven tools for non-invasive
molecular subtyping. Such tools could reduce patient burden and minimize exposure to risks
associated with invasive diagnostic procedures like biopsies.

In addition to these findings, the study also revealed that the HER2-enriched subtype
was the most easily classifiable among the molecular subtypes, a trend similarly observed by
Mota et al. [9]. In addition, while the triple-negative subtype remains the most challenging to
classify, Transformer-based models demonstrated a greater ability to capture discriminative
patterns compared to CNNs. Beyond these insights, the secondary objectives were essential
for drawing robust conclusions about the effectiveness of these models:

I. A comprehensive literature review was conducted, enabling comparative analysis and
contextualization of current methodologies and research trends in mammography-based
molecular subtyping.

II. Key challenges and limitations of the problem framework and dataset were identified,
with targeted mitigation strategies successfully implemented to address them.

ITI. A rigorous evaluation protocol combining repeated holdout and K-fold cross-validation
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was applied, ensuring robust validation of model performance across diverse train-test
splits.

IV. A two-step statistical approach (Friedman Test followed by Wilcoxon signed-rank test)
was employed to confirm statistically significant differences between Transformer-based
models and the CNN baseline.

V. A comparative analysis with current state-of-the-art approaches was conducted, en-
abling a thorough assessment of the relative strengths of the proposed models within
the context of existing literature.

VI. A brief explainability analysis was performed to evaluate the interpretability of
Transformer-based attention mechanisms in comparison to traditional CNN approaches,
providing insights into model decision-making processes.

6.1.1. Limitations

The primary limitation of the study is the absence of data annotations for molecular
subtype classification. CMMD is the sole public dataset offering these features, yet optimal
training of DL models, especially transformer-based ones, demands larger datasets. OMI-DB
also includes molecular subtype annotations but requires access permissions. This limitation
results in data imbalance, which we attempt to mitigate through data augmentation and
oversampling. Another consequence of this limitation is the absence of generalization testing.
CMMD images were acquired with one device, whereas mammographic images typically
originate from various vendors and providers. Access to images from diverse settings enhances
generalization robustness and clinical value.

6.2. Future Work

To expand this study, several enhancements can be pursued. Addressing the previously
discussed limitations is crucial, particularly the need for models capable of producing
generalizable predictions across diverse clinical settings. In this context, training on OMI-DB
and testing on CMMD would provide valuable insight into model robustness and real-world
applicability, thereby offering significant clinical relevance. Furthermore, inspired by the work
of Ben Rabah et al. [10], who achieved an impressive AUC of 88.87% through the integration
of medical metadata with imaging features, a promising direction for future research lies in
multimodal learning. Combining this strategy with transformer-based architectures could
potentially lead to even more accurate and interpretable models.

Finally, exploring alternative approaches such as Multi-View input models (where features
from CC and MLO views are learned independently), along with ensemble techniques or
hybrid architectures that merge CNNs and Transformers, offers a promising approach to
enhance both performance and clinical trustworthiness.



Appendix A

Development Tools

A.1. Programming language and libraries

The study’s code was developed entirely in Python (v3.12), employing several libraries
(Table A.1). All experiments were run in Google Colaboratory [100], which provided access
to specialized GPU (NVIDIA A100-SXM4-40GB).

Table A.1: Libraries used in this study.

Package Version Utility

pandas [101] 2.2.3 Data manipulation and analysis.

pytorch/torchvision [102]  2.6.0 DL framework and computer vision utilities.

scikit-learn [103] 1.6.1 ML algorithms and evaluation metrics.

wandb [104] 0.19.10 Experiment tracking and visualization.

numpy [105] 2.2.5 Numerical computations and array operations.

pydicom [106] 3.0.1 DICOM medical image processing.

opencv-python [107] 4.11.0 Image processing and computer vision.

pytorch-lightning [108] 2.5.1.post0  High-level interface for PyTorch training.

torchmetrics [109] 1.7.1 Metrics for ML and DL models.

albumentations [110] 2.0.7 Data augmentation for images.

seaborn [111] 0.13.12 Statistical data visualization.

timm [95] 1.0.15 Pretrained computer vision models and utili-
ties for PyTorch.

scipy [112] 1.15.2 Statistical operations.

captum [99] 0.8.0 Explainability methods.

openvino-xai [113] 1.1.0 Explainability toolkit.
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Splits distribution and
overlapping

Overlap in train sets per seed (Jaccard Index)
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Figure B.1: Jaccard Index overlap between training sets for the three selected seeds. About
67%—68% of patients are shared between different training splits, providing both sufficient
data reuse and variation across experiments.
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Overlap in test sets per seed (Jaccard Index)
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Figure B.2: Jaccard Index overlap between test sets for the three selected seeds. Only
12%-14% of patients are shared between different test splits, indicating that the test sets are
largely independent across experiments.
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Dist per subtype and seed
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Figure B.3: Per seed distribution of images (Pie Chart)
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Figure B.4: Per seed distribution of images (Histogram)
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Results

Table C.1: Performance metrics for all experiments

# Model Seed Fold Sampling Aug. Acc. AUC F1 Prec. Rec. C. Kappa
1 ResNet101 0 0 weighted no 0.261 0.524 0.246 0.239 0.261 0.017
2 ResNet101 0 1 weighted no 0.264 0.548 0.259 0.265 0.264 0.051
3 ResNet101 0 2 weighted no 0.332 0.568 0.322 0.328 0.332 0.134
4 ResNet101 0 0 weighted yes 0.284 0.537 0.272 0.268 0.284 0.054
5 ResNet101 0 1 weighted yes 0.306 0.550 0.279 0.278 0.306 0.082
6 ResNet101 0 2 weighted yes 0.311 0.565 0.293 0.296 0.311 0.115
7 ResNet101 0 0 oversampled no 0.273 0.513 0.252 0.347 0.273 0.031
8 ResNet101 0 1 oversampled no 0.319 0.551 0.290 0.313 0.319 0.086
9 ResNet101 0 2 oversampled no 0.323 0.560 0.291 0.290 0.323 0.112
10 ResNet101 0 0 oversampled yes 0.261 0.536 0.217 0.344 0.261 0.006
11 ResNet101 0 1 oversampled yes 0.266 0.549 0.174 0.190 0.266 0.011
12 ResNet101 0 2 oversampled yes 0.290 0.562 0.231 0.333 0.290 0.051
13 ViT 0 0 weighted no 0.358 0.601 0.353 0.353 0.358 0.145
14 ViT 0 1 weighted no 0.385 0.609 0.353 0.366 0.385 0.155
15 ViT 0 2 weighted no 0.310 0.566 0.289 0.319 0.310 0.074
16 ViT 0 0 weighted yes 0.352 0.599 0.347 0.354 0.352 0.149
17 ViT 0 1 weighted yes 0.379 0.601 0.367 0.368 0.379 0.160
18 ViT 0 2 weighted yes 0.325 0.575 0.302 0.340 0.325 0.094
19 ViT 0 0 oversampled no 0.318 0.587 0.300 0.331 0.318 0.083
20 ViT 0 1 oversampled no 0.315 0.583 0.303 0.339 0.315 0.084
21 ViT 0 2 oversampled no 0.340 0.594 0.297 0.324 0.340 0.086
22 ViT 0 0 oversampled yes 0.330 0.600 0.302 0.311 0.330 0.114
23 ViT 0 1 oversampled yes 0.372 0.592 0.363 0.361 0.372 0.151
24 ViT 0 2 oversampled yes 0.341 0.574 0.322 0.335 0.341 0.106
25 Swin 0 0 weighted no 0.304 0.575 0.230 0.280 0.304 0.064
26 Swin 0 1 weighted no 0.342 0.577 0.328 0.325 0.342 0.138
27 Swin 0 2 weighted no 0.300 0.582 0.255 0.300 0.300 0.065
28 Swin 0 0 weighted yes 0.321 0.571 0.297 0.299 0.321 0.095
29 Swin 0 1 weighted yes 0.322 0.572 0.300 0.290 0.322 0.109
30 Swin 0 2 weighted yes 0.327 0.589 0.285 0.341 0.327 0.106
31 Swin 0 0 oversampled no 0.306 0.577 0.291 0.292 0.306 0.077
32 Swin 0 1 oversampled no 0.312 0.571 0.314 0.329 0.312 0.107
33 Swin 0 2 oversampled no 0.326 0.588 0.306 0.317 0.326 0.100
34 Swin 0 0 oversampled yes 0.310 0.579 0.229 0.288 0.310 0.060
35 Swin 0 1 oversampled yes 0.329 0.580 0.335 0.353 0.329 0.124
36 Swin 0 2 oversampled yes 0.326 0.591 0.263 0.316 0.326 0.094

Continued on next page
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# Model Seed Fold Sampling Aug. Acc. AUC F1 Prec. Rec. . Kappa
37 MaxVit 0 0 weighted no 0.321 0.603 0.317 0.318 0.321 0.095
38 MaxVit 0 1 weighted no 0.309 0.564 0.305 0.307 0.309 0.062
39 MaxVit 0 2 weighted no 0.321 0.567 0.296 0.316 0.321 0.073
40 MaxVit 0 0 weighted yes 0.339 0.603 0.336 0.338 0.339 0.124
41 MaxVit 0 1 weighted yes 0.292 0.561 0.239 0.274 0.292 0.038
42 MaxVit 0 2 weighted yes 0.347  0.611 0.316 0.360 0.347 0.115
43 MaxVit 0 0 oversampled no 0.339 0.606 0.326 0.328 0.339 0.100
44 MaxVit 0 1 oversampled no 0.276 0.571 0.258 0.263 0.276 0.023
45 MaxVit 0 2 oversampled no 0.317 0.578 0.286 0.297 0.317 0.064
46 MaxVit 0 0 oversampled yes 0.310 0.581 0.280 0.328 0.310 0.073
47 MaxVit 0 1 oversampled yes 0.297 0.558 0.290 0.296 0.297 0.063
48 MaxVit 0 2 oversampled yes 0.275 0.565 0.261 0.286 0.275 0.043
49 ResNet101 21 0 weighted no 0.340 0.583 0.320 0.326 0.340 0.117
50 ResNet101 21 1 weighted no 0.290 0.580 0.280 0.296 0.290 0.063
51 ResNet101 21 2 weighted no 0.335 0.620 0.323 0.328 0.335 0.119
52 ResNet101 21 0 weighted yes 0.317  0.580 0.296 0.311 0.317 0.094
53 ResNet101 21 1 weighted yes 0.309 0.570 0.308 0.330 0.309 0.081
54 ResNet101 21 2 weighted yes 0.345 0.601 0.338 0.336 0.345 0.142
55 ResNet101 21 0 oversampled no 0.277  0.577  0.254 0.281 0.277 0.052
56 ResNet101 21 1 oversampled no 0.317 0.586 0.310 0.345 0.317 0.096
57 ResNet101 21 2 oversampled no 0.313 0.607  0.227 0.309 0.313 0.064
58 ResNet101 21 0 oversampled yes 0.333 0.585 0.294 0.319 0.333 0.103
59 ResNet101 21 1 oversampled yes 0.319 0.592 0.315 0.323 0.319 0.110
60 ResNet101 21 2 oversampled yes 0.309 0.589 0.223 0.489 0.309 0.063
61 ViT 21 0 weighted no 0.365 0.601 0.258 0.329 0.365 0.091
62 ViT 21 1 weighted no 0.345 0.598 0.337 0.355 0.345 0.113
63 ViT 21 2 weighted no 0.254 0.560 0.249 0.251 0.254 0.022
64 ViT 21 0 weighted yes 0.357  0.607  0.362 0.389 0.357 0.176
65 ViT 21 1 weighted yes 0.351 0.600 0.317 0.320 0.351 0.102
66 ViT 21 2 weighted yes 0.293 0.548 0.288 0.289 0.293 0.065
67 ViT 21 0 oversampled no 0.297  0.606 0.284 0.361 0.297 0.098
68 ViT 21 1 oversampled no 0.366 0.606 0.323 0.344 0.366 0.120
69 ViT 21 2 oversampled no 0.246 0.529 0.234 0.270 0.246 0.009
70 ViT 21 0 oversampled yes 0.318 0.589 0.263 0.291 0.318 0.082
71 ViT 21 1 oversampled yes 0.326 0.602 0.330 0.344 0.326 0.087
72 ViT 21 2 oversampled yes 0.303 0.546 0.287 0.303 0.303 0.088
73 Swin 21 0 weighted no 0.367  0.617  0.339 0.346 0.367 0.131
74 Swin 21 1 weighted no 0.289 0.554 0.267 0.291 0.289 0.041
75 Swin 21 2 weighted no 0.279 0.558 0.257 0.288 0.279 0.055
76 Swin 21 0 weighted yes 0.359 0.616 0.306 0.341 0.359 0.122
7 Swin 21 1 weighted yes 0.300 0.564 0.283 0.297 0.300 0.056
78 Swin 21 2 weighted yes 0.284 0.564 0.277 0.276 0.284 0.061
79 Swin 21 0 oversampled no 0.318 0.599 0.254 0.338 0.318 0.075
80 Swin 21 1 oversampled no 0.275 0.550 0.241 0.303 0.275 0.045
81 Swin 21 2 oversampled no 0.310 0.556 0.241 0.299 0.310 0.075
82 Swin 21 0 oversampled yes 0.334 0.614 0.324 0.345 0.334 0.117
83 Swin 21 1 oversampled yes 0.277  0.553 0.229 0.273 0.277 0.027
84 Swin 21 2 oversampled yes 0.290 0.552 0.256 0.295 0.290 0.050
85 MaxVit 21 0 weighted no 0.323 0.598 0.305 0.304 0.323 0.071
86 MaxVit 21 1 weighted no 0.323 0.567  0.310 0.310 0.323 0.073
87 MaxVit 21 2 weighted no 0.319 0.580 0.287 0.306 0.319 0.073
88 MaxVit 21 0 weighted yes 0.340 0.612 0.292 0.325 0.340 0.076
89 MaxVit 21 1 weighted yes 0.305 0.557  0.283 0.299 0.305 0.054
90 MaxVit 21 2 weighted yes 0.313 0.581 0.278 0.307 0.313 0.070
91 MaxVit 21 0 oversampled no 0.316 0.598 0.260 0.290 0.316 0.053
92 MaxVit 21 1 oversampled no 0.286 0.556 0.287 0.289 0.286 0.040
93 MaxVit 21 2 oversampled no 0.339 0.582 0.316 0.322 0.339 0.120
94 MaxVit 21 0 oversampled yes 0.347 0.619 0.315 0.337 0.347 0.106
95 MaxVit 21 1 oversampled yes 0.291 0.559 0.286 0.302 0.291 0.029
96 MaxVit 21 2 oversampled yes 0.350 0.594 0.334 0.335 0.350 0.131
97 ResNet101 42 0 weighted no 0.267  0.525 0.255 0.260 0.267 0.032
98 ResNet101 42 1 weighted no 0.283 0.555 0.266 0.253 0.283 0.060
99 ResNet101 42 2 weighted no 0.308 0.581 0.236 0.263 0.308 0.069

Continued on next page
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# Model Seed Fold Sampling Aug. Acc. AUC F1 Prec. Rec. C. Kappa
100 ResNet101 42 0 weighted yes 0.311 0.551 0.306 0.310 0.311 0.079
101  ResNetl101 42 1 weighted yes 0.316 0.574 0.273 0.305 0.316 0.088
102 ResNet101 42 2 weighted yes 0.320 0.597 0.281 0.299 0.320 0.103
103 ResNet101 42 0 oversampled no 0.271 0.529 0.243 0.271 0.271 0.041
104  ResNet101 42 1 oversampled no 0.261 0.554 0.242 0.268 0.261 0.007
105 ResNet101 42 2 oversampled no 0.321 0.582 0.320 0.320 0.321 0.120
106 ResNet101 42 0 oversampled yes 0.282 0.535 0.235 0.292 0.282 0.047
107 ResNet101 42 1 oversampled yes 0.292 0.566 0.272 0.286 0.292 0.064
108 ResNet101 42 2 oversampled yes 0.349 0.597 0.316 0.329 0.349 0.127
109 ViT 42 0 weighted no 0.336 0.579 0.323 0.317 0.336 0.084
110 ViT 42 1 weighted no 0.359 0.598 0.306 0.320 0.359 0.095
111 ViT 42 2 weighted no 0.275 0.555 0.235 0.233 0.275 0.020
112 ViT 42 0 weighted yes 0.319 0.581 0.276 0.305 0.319 0.079
113 ViT 42 1 weighted yes 0.353 0.600 0.228 0.321 0.353 0.072
114  ViT 42 2 weighted yes 0.329 0.566 0.269 0.296 0.329 0.062
115 ViT 42 0 oversampled no 0.350 0.586 0.260 0.312 0.350 0.087
116 ViT 42 1 oversampled no 0.270 0.584 0.269 0.282 0.270 0.017
117 ViT 42 2 oversampled no 0.319 0.564 0.264 0.296 0.319 0.063
118 ViT 42 0 oversampled yes 0.328 0.576 0.238 0.289 0.328 0.069
119 ViT 42 1 oversampled yes 0.264 0.584 0.253 0.246 0.264 0.022
120 ViT 42 2 oversampled yes 0.312 0.573 0.273 0.294 0.312 0.062
121  Swin 42 0 weighted no 0.330 0.589 0.288 0.312 0.330 0.067
122 Swin 42 1 weighted no 0.336 0.597 0.291 0.315 0.336 0.081
123  Swin 42 2 weighted no 0.344 0.588 0.298 0.317 0.344 0.091
124  Swin 42 0 weighted yes 0.331 0.593 0.299 0.321 0.331 0.077
125  Swin 42 1 weighted yes 0.289 0.591 0.198 0.272 0.289 0.034
126 Swin 42 2 weighted yes 0.322 0.581 0.285 0.307 0.322 0.070
127  Swin 42 0 oversampled no 0.325 0.587 0.316 0.317 0.325 0.087
128 Swin 42 1 oversampled no 0.338 0.587 0.274 0.298 0.338 0.068
129  Swin 42 2 oversampled no 0.328 0.582 0.319 0.325 0.328 0.078
130 Swin 42 0 oversampled yes 0.326 0.586 0.281 0.336 0.326 0.095
131  Swin 42 1 oversampled yes 0.302 0.606 0.297 0.302 0.302 0.070
132 Swin 42 2 oversampled yes 0.336 0.576 0.311 0.324 0.336 0.094
133  MaxVit 42 0 weighted no 0.298 0.561 0.284 0.296 0.298 0.031
134  MaxVit 42 1 weighted no 0.308 0.561 0.304 0.333 0.308 0.044
135  MaxVit 42 2 weighted no 0.316 0.595 0.301 0.297 0.316 0.035
136 MaxVit 42 0 weighted yes 0.272 0.561 0.255 0.274 0.272 0.020
137  MaxVit 42 1 weighted yes 0.290 0.555 0.259 0.279 0.290 0.029
138  MaxVit 42 2 weighted yes 0.327 0.611 0.330 0.351 0.327 0.092
139  MaxVit 42 0 oversampled no 0.296 0.550 0.275 0.282 0.296 0.039
140 MaxVit 42 1 oversampled no 0.314 0.572 0.281 0.286 0.314 0.054
141  MaxVit 42 2 oversampled no 0.359 0.605 0.309 0.316 0.359 0.091
142  MaxVit 42 0 oversampled yes 0.270 0.561 0.239 0.264 0.270 -0.003
143 MaxVit 42 1 oversampled yes 0.288 0.567 0.281 0.290 0.288 0.028
144  MaxVit 42 2 oversampled yes 0.368 0.620 0.320 0.348 0.368 0.103
Table C.2: Summarized results table (SEED 0)
Model Sampling Aug. Acc. AUC F1 Prec. Rec. C.
Kappa
Resnet101  Weighted No 0.2856 =+ 0.5467 £ 0.2759 + 0.2772 0.2856 =+ 0.0672 =+
0.0327 0.0180 0.0334 0.0375 0.0327 0.0494
Resnet1l01  Weighted Yes 0.3005 £+ 0.5506 + 0.2815 =+ 0.2808 0.3005 £ 0.0835 =+
0.0120 0.0118 0.0090 0.0117 0.0120 0.0248
Resnet1l01  Oversampled  No 0.3050 =+ 0.5411 +£ 0.2775 =+ 0.3169 0.3050 £ 0.0763 =+
0.0228 0.0205 0.0181 0.0233 0.0228 0.0337
Resnet101 Oversampled  Yes 0.2726 + 0.5493 £+ 0.2072 + 0.2891 0.2726 + 0.0228 =+
0.0128 0.0106 0.0240 0.0702 0.0128 0.0201
ViT Weighted No 0.3511 £+ 0.5921 &= 0.3314 + 0.3458 0.3511 £+ 0.1246 =+
0.0314 0.0185 0.0303 0.0199 0.0314 0.0359

Continued on next page
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Model Sampling Aug. Acc. AUC F1 Prec. Rec. C.
Kappa
ViT Weighted Yes 0.3518 = 0.5919 + 0.3389 = 0.3538 + 0.3518 == 0.1341 +
0.0219 0.0118 0.0270 0.0115 0.0219 0.0290
ViT Oversampled  No 0.3242 £+ 0.5882 + 0.3001 + 0.3315 + 0.3242 + 0.0842 =+
0.0110 0.0046 0.0025 0.0063 0.0110 0.0012
ViT Oversampled  Yes 0.3477 £ 0.5888 + 0.3289 + 0.3356 + 0.3477 £+ 0.1237 =+
0.0177 0.0111 0.0255 0.0207 0.0177 0.0199
Swin Weighted No 0.3154 £ 0.5778 £ 0.2709 + 0.3016 + 0.3154 + 0.0892 =+
0.0187 0.0030 0.0417 0.0183 0.0187 0.0348
Swin Weighted Yes 0.3230 £ 0.5773 £ 0.2942 + 0.3103 += 0.3230 + 0.1034 =+
0.0027 0.0080 0.0066 0.0224 0.0027 0.0060
Swin Oversampled  No 0.3146 £ 0.5786 =+ 0.3037 + 0.3127 + 0.3146 + 0.0945 =+
0.0084 0.0069 0.0096 0.0151 0.0084 0.0130
Swin Oversampled  Yes 0.3216 £ 0.5835 £ 0.2757 £ 0.3191 + 0.3216 + 0.0925 =+
0.0084 0.0054 0.0440 0.0266 0.0084 0.0260
MaxVit Weighted No 0.3173 £ 0.5783 £ 0.3057 £+ 0.3139 += 0.3173 £+ 0.0766 =+
0.0057 0.0177 0.0085 0.0047 0.0057 0.0135
MaxVit Weighted Yes 0.3261 £ 0.5917 £ 0.2970 + 0.3240 = 0.3261 + 0.0924 =+
0.0240 0.0221 0.0421 0.0365 0.0240 0.0388
MaxVit Oversampled  No 0.3107 £ 0.5849 £ 0.2900 + 0.2957 £+ 0.3107 £ 0.0625 =+
0.0262 0.0152 0.0281 0.0264 0.0262 0.0316
MaxVit Oversampled  Yes 0.2941 £ 0.5680 £ 0.2772 £ 0.3032 = 0.2941 £ 0.0597 =+
0.0147 0.0096 0.0122 0.0178 0.0147 0.0125

Table C.3: Summarized results table (SEED 21)

Model Sampling Aug. Acc. AUC F1 Prec. Rec. C.
Kappa
Resnet1l01  Weigthed No 0.3219 £ 0.5942 = 0.3078 + 0.3165 =+ 0.3219 + 0.0995 =+
0.0224 0.0186 0.0195 0.0148 0.0224 0.0255
Resnet1l01  Weighted Yes 0.3238 £ 0.5834 + 0.3141 + 0.3254 + 0.3238 + 0.1059 =+
0.0151 0.0129 0.0179 0.0105 0.0151 0.0262
Resnet1l01  Oversampled No 0.3024 £+ 0.5899 + 0.2637 + 0.3114 + 0.3024 £ 0.0708 =+
0.0177 0.0127 0.0343 0.0261 0.0177 0.0186
Resnet101 Oversampled Yes 0.3204 + 0.5887 £+ 0.2774 + 0.3770 + 0.3204 £+ 0.0922 +
0.0097 0.0026 0.0395 0.0795 0.0097 0.0207
ViT Weighted No 0.3213 £+ 0.5863 + 0.2810 + 0.3119 + 0.3213 £ 0.0755 =+
0.0484 0.0183 0.0395 0.0440 0.0484 0.0385
ViT Weighted Yes 0.3335 = 0.5850 + 0.3222 = 0.3325 = 0.3335 == 0.1143 +
0.0287 0.0264 0.0304 0.0417 0.0287 0.0459
ViT Oversampled  No 0.3030 £ 0.5803 +£ 0.2806 + 0.3250 + 0.3030 + 0.0758 =+
0.0490 0.0361 0.0364 0.0398 0.0490 0.0482
ViT Oversampled  Yes 0.3154 £+ 0.5794 + 0.2934 + 0.3128 + 0.3154 + 0.0856 =+
0.0095 0.0240 0.0277 0.0228 0.0095 0.0025
Swin Weighted No 0.3115 £ 0.5765 £ 0.2877 + 0.3082 + 0.3115 + 0.0753 =+
0.0392 0.0290 0.0368 0.0266 0.0392 0.0395
Swin Weighted Yes 0.3142 £ 0.5815 £ 0.2885 =+ 0.3048 + 0.3142 + 0.0796 =+
0.0323 0.0245 0.0126 0.0271 0.0323 0.0300
Swin Oversampled  No 0.3007 £ 0.5684 + 0.2450 + 0.3132 + 0.3007 £+ 0.0651 =+
0.0188 0.0221 0.0061 0.0174 0.0188 0.0140
Swin Oversampled  Yes 0.3000 £ 0.5729 £ 0.2696 + 0.3043 + 0.3000 + 0.0650 =+
0.0245 0.0289 0.0398 0.0300 0.0245 0.0381
MaxVit Weighted No 0.3218 £ 0.5817 £ 0.3008 + 0.3067 =+ 0.3218 £+ 0.0722 =+
0.0018 0.0128 0.0097 0.0025 0.0018 0.0012
MaxVit Weighted Yes 0.3196 £ 0.5834 + 0.2842 + 0.3103 = 0.3196 + 0.0665 =+
0.0148 0.0223 0.0062 0.0111 0.0148 0.0092
MaxVit Oversampled No 0.3137 + 0.5788 £ 0.2874 + 0.3006 =+ 0.3137 £ 0.0710 =+
0.0220 0.0175 0.0229 0.0155 0.0220 0.0350
MaxVit Oversampled  Yes 0.3294 £+ 0.5904 £+ 0.3116 £ 0.3248 £+ 0.3294 £ 0.0887 =+

0.0269 0.0244 0.0196 0.0159 0.0269 0.0431
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Table C.4: Summarized results table (SEED 42)
Model Sampling Aug. Acc. AUC F1 Prec. Rec. C.
Kappa
Resnet101 Weigthed No 0.2857 =+ 0.5539 =+ 0.2527 =+ 0.2588 =+ 0.2857 =+ 0.0534 =+
0.0168 0.0230 0.0124 0.0044 0.0168 0.0158
Resnet101 Weighted Yes 0.3157 =+ 0.5738 =+ 0.2866 =+ 0.3049 =+ 0.3157 =+ 0.0899 =+
0.0039 0.0189 0.0141 0.0046 0.0039 0.0099
Resnet101 Oversampled  No 0.2840 £ 0.5548 + 0.2684 =+ 0.2865 =+ 0.2840 £ 0.0561 =+
0.0263 0.0214 0.0369 0.0240 0.0263 0.0472
Resnet101 Oversampled  Yes 0.3078 £ 0.5662 + 0.2745 + 0.2745 £ 0.3078 £ 0.0791 =+
0.0296 0.0255 0.0331 0.0331 0.0296 0.0343
ViT Weighted No 0.3233 + 0.5773 £ 0.2881 + 0.2898 £+ 0.3233 + 0.0664 =+
0.0355 0.0173 0.0378 0.0404 0.0355 0.0328
ViT Weighted Yes 0.3336 = 0.5822 £+ 0.2575 + 0.3075 £+ 0.3336 = 0.0713 =+
0.0142 0.0142 0.0213 0.0104 0.0142 0.0068
ViT Oversampled No 0.3130 + 0.5778 £ 0.2641 + 0.2969 £+ 0.3130 £+ 0.0555 =+
0.0327 0.0098 0.0038 0.0126 0.0327 0.0289
ViT Oversampled Yes 0.3012 + 0.5779 £ 0.2544 + 0.2762 £+ 0.3012 + 0.0508 =+
0.0274 0.0047 0.0141 0.0215 0.0274 0.0206
Swin Weighted No 0.3366 + 0.5912 = 0.2922 + 0.3150 £ 0.3366 + 0.0797 =+
0.0057 0.0042 0.0043 0.0020 0.0057 0.0100
Swin Weighted Yes 0.3138 + 0.5887 £+ 0.2606 + 0.3002 £+ 0.3138 + 0.0606 =+
0.0182 0.0053 0.0448 0.0207 0.0182 0.0188
Swin Oversampled No 0.3304 £+ 0.5854 + 0.3028 = 0.3138 £+ 0.3304 £ 0.0773 =+
0.0052 0.0025 0.0206 0.0114 0.0052 0.0077
Swin Oversampled Yes 0.3214 £+ 0.5895 + 0.2964 + 0.3207 £+ 0.3214 £ 0.0860 =+
0.0143 0.0124 0.0125 0.0141 0.0143 0.0116
MaxVit Weighted No 0.3075 £+ 0.5726 + 0.2965 + 0.3088 =+ 0.3075 £ 0.0367 =+
0.0074 0.0162 0.0086 0.0174 0.0074 0.0055
MaxVit Weighted Yes 0.2964 + 0.5756 £ 0.2814 + 0.3013 £ 0.2964 £ 0.0470 =+
0.0231 0.0249 0.0346 0.0350 0.0231 0.0323
MaxVit Oversampled No 0.3228 + 0.5759 £ 0.2882 =+ 0.2946 £ 0.3228 + 0.0611 =+
0.0263 0.0226 0.0147 0.0155 0.0263 0.0220
MaxVit Oversampled Yes 0.3087 + 0.5830 £ 0.2799 + 0.3009 £ 0.3087 £ 0.0426 =+
0.0423 0.0263 0.0329 0.0348 0.0423 0.0448
Table C.5: Test Set results per seed
Model Seed Acc. AUC F1 Prec. Rec. C. Kappa
ViT 0 0.3437 0.6192 0.2991 0.3208 0.3437 0.0952
21 0.3825 0.6358 0.3700 0.3665 0.3825 0.1625
42 0.4279 0.6509 0.3936 0.3988 0.4279 0.2207
0.385 + 0.635 + 0.354 + 0.362 + 0.385 + 0.159 +
0.042 0.016 0.049 0.039 0.042 0.063
MaxVit 0 0.3218 0.5826 0.3119 0.3243 0.3218 0.1005
21 0.3467 0.6129 0.3321 0.3386 0.3467 0.1155
42 0.3530 0.6182 0.3318 0.3464 0.3530 0.1425
0.341 + 0.605 + 0.325 + 0.336 + 0.341 + 0.120 +
0.016 0.019 0.012 0.011 0.016 0.021
Swin 0 0.3763 0.6196 0.3623 0.3865 0.3763 0.1395
21 0.3200 0.6105 0.2810 0.2845 0.3200 0.0717
42 0.3765 0.6272 0.3131 0.3450 0.3765 0.1438
0.358 + 0.619 + 0.319 + 0.339 + 0.358 + 0.118 +
0.033 0.008 0.041 0.051 0.033 0.040
ResNet 0 0.3309 0.5709 0.2992 0.3135 0.3309 0.1075
21 0.2565 0.5298 0.2086 0.2386 0.2565 0.0115
42 0.3788 0.5884 0.3473 0.4591 0.3788 0.1657
0.322 + 0.563 + 0.285 + 0.337 + 0.322 + 0.095 +
0.062 0.030 0.070 0.112 0.062 0.078
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