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A major difficulty in quantum computation is the ability to implement fault
tolerant computations, protecting information against undesired interactions
with the environment. The theory of stabiliser codes has been developed over
recent years which protects information when storing or applying computations
in Hilbert spaces where the local dimension is fixed, i.e. in Hilbert spaces of
the form (CD)⊗n. If D is a prime power then one can consider stabiliser codes
over finite fields [KKKS06], which allows a deeper mathematical structure to
be used to develop stabiliser codes. However, there is no practical reason that
the subsystems should be required to have the same local dimension and in
this work, we introduce a stabiliser formalism for mixed dimension Hilbert
spaces, i.e. of the form CD1 ⊗ · · · ⊗ CDn . We redefine entanglement measures
for these Hilbert spaces and follow [HESG18] to define absolutely maximally
entangled states as states which maximize this entanglement measure, and give
an example of such a state on a mixed dimension Hilbert space.
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1 Introduction
Ever since Claude Shannon introduced his mathematical theory for communication on
fundamentally noisy channels[Sha48], error correcting codes have been studied for clas-
sical channels to trade off bandwidth for uncertainty. From early single-error-correcting
Hamming codes[Ham50] and multi-error-correcting Golay codes[Gol49] to high-tolerance
polynomial-based Reed-Solomon codes[RS60] for storage applications and efficiently de-
coded convolutional codes[Vit03] for real-time communication applications, to the Turbo
codes supplanting them approaching the theoretical limit using iterative decoding processes,[BGT93]
classical error correction made leaps and bounds that informed the development of quantum
error correction methods[HDB07, Got96, Pra20, LXW08, AGK+07, FGG07, WHB13], in-
cluding the correspondence of classical additive codes and quantum stabilizer codes[Got97],
and the study of block code weight enumerators[SL97, Rai02b, Rai02a] leading to non-
existence results[Rai02c] for both. The inherent need to correct for imperfect quantum
processes as well as natural decoherence of information is as intrinsic a motivation for
quantum error correction as Johnson-Nyquist thermal noise is to classical error correc-
tion, as the cost of taking advantage of superposition and entanglement properties which
enable quantum computing theoretical algorithmic advantages[Gro96]. Throughout many
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branches of quantum sciences, entanglement shows up as a valuable resource in application,
algorithm, and analysis. Absolutely Maximally Entangled (AME) states, then, enable var-
ious applications even moreso by taking this notion to the extreme, such as quantum secret
sharing[SWGW25, HCL+12], open-destination teleportation[HC13], and holographic quan-
tum error correction[PYHP15]. Where first understandings of maximal entanglement yield
Bell states and GHZ states, which perfectly determine correlations on remaining subsys-
tems when measuring one qubit or qudit, absolutely maximally entangled states guarantee
perfect correlations between all choices of bipartition for the systems involved. Due to A.
J. Scott, it is known there is in fact a direct correspondence between requiring all these
correlations on such states, to maximally distance separable (MDS) stabilizer codes[Sco04],
meaning it is at once both possible to use non-existence results of one to show non-existence
of the other, as well as the explicit constructions for one to directly construct the other.
In particular, all known results so far cover only specific instances or classes of Hilbert
spaces, and there are even fewer published results generalizing to systems consisting of a
heterogeneous mix of qudits. In this work, we explore this relation between AME states
and MDS codes on mixed-dimensional systems, generalize to mixed dimensionality both
the notions of (maximal) distance for error-correcting codes and a class of multipartite
entanglement measures based on the subsystem linear entropy, and provide an unconven-
tional stabilizer construction for an explicit MDS code, corresponding to an absolutely
maximally entangled state over a mix of qubits and qutrits.

2 Background
2.1 Generalizations of Pauli operators
The Pauli operators combined form an orthonormal, Hermitian, traceless, and local-error
basis for operators on systems of arbitrary numbers of qubits when combined with the
identity and pairwise commute up to a phase, which are five properties helpful for different
respective reasons:

• Their orthonormality and completeness as a basis means any operator can be uniquely
decomposed as a linear combination of them, which allows substitution of treating
only local-Pauli operators in place of treatment of arbitrary operators.

• Their Hermitivity means they directly correspond to physical observables and do not
require additional ancillas or basis transformations to measure.

• The tracelessness of individual Paulis means all operators describable as a tensor
product of at least one are traceless as well, leaving only the identity as non-traceless
in the basis of operators.

• The ability to compose a local-error basis for arbitrary numbers of qubits is tied to
simple recursive analyses.

• The proportionality of E1E2 to E2E1 for all errors in the basis is tied to simple
analyses of products of basis elements involving commutation relations.

To extend this to qudits of prime local dimensions, there are two main families of matri-
ces due to Murray Gell-Mann and James Joseph Sylvester which manage to preserve most
of the above properties of niceness, sacrificing one in exchange for arbitrary dimensionality.
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The generalized Gell-Mann matrices are orthonormal, traceless aside from identity, and
Hermitian, which is useful in expressions involving error transposes. Their constructions
can be conceptualized in three families:

X-like matrices: For each pair of off-diagonal entries ejk, ekj , j ≠ k, there is a basis
matrix with those two entries set to 1 and all other entries set to 0.

Y -like matrices: For each pair of off-diagonal entries ejk, ekj , j ̸= k, there is also a basis
matrix with those two entries set to +i and −i so that it is Hermitian, and all other entries
set to 0.

Z-like matrices: For each k ≤ d, there is a basis matrix with all entries ejj = 1, j ≤ k,
ek+1,k+1 = −k set to make the matrix traceless, and a normalization factor of

√
2

k(k+1) ,
where for k = d this is instead the identity for d dimensions.

The other family of generalizations is the Weyl-Heisenberg matrices, which are orthonor-
mal, traceless, and form a multiplicative group of order d for the additive basis with only
two generating elements, which is useful in expressions involving exchanges of error order.
Their constructions are in general thus:

Shift operator: like the Pauli X operator, the shift operator takes |j⟩ to |j + 1 mod d⟩.

Clock operator: like the Pauli Z operator, the clock operator takes |j⟩ to ωj |j⟩, where
ω = e

2πi
d is the d-th root of unity.

Since both of these constructions led to d2 orthonormal matrices, they do indeed form
complete bases for all d× d matrices.

2.2 Quantum Error Correcting Codes
A quantum code embedded in a Hilbert space is a subspace of k dimensions, which allows
for the encoding of k orthonormal logical states, also referred to sometimes as codewords as
in classical coding theory. The use of a proper subspace instead of using the k-dimensional
Hilbert space directly means some physical errors can take a system into the code’s or-
thogonal space. Any error that does so, is said to be detectable. Formally, an error E is
detectable if and only if for any two logical states |i⟩ , |j⟩ of an orthonormal basis spanning
the code Q,

⟨j|E |i⟩ = C(E)δij (1)

with C(E) a constant depending on E. This allows a syndrome measurement to be
made without destroying the logical state. A syndrome measurement is a combination
of measurements which partition the full physical Hilbert space into subspaces of states
which yield the same measured outcomes, one of which contains all of the code’s logical
states and only those logical states. Then, along with the defined subspaces, there are
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operators which act to move between those subspaces, which can be applied depending on
the syndrome readout to send the physical state into the code space.

Additionally, if we make the assumption that under a local-error model it is exponen-
tially unlikely to have errors occurring with higher weight, where weight is defined as the
number of parties the overall error acts nontrivially upon, we can heuristically choose to
send a state back into the code space using the lowest weight operators possible, probabilis-
tically favouring it over higher-weight operators. This informs an approach of separating
into a set of errors we make ourselves resistant to, and a set of errors we accept remaining
vulnerable to. Formally, a set of errors E is said to be correctable by Q if and only if for
all E1, E2 ∈ E ,

⟨j|E†
2E1 |i⟩ = C(E)δij (2)

Additionally, a code is said to be pure if C(E) = 1 only for E = I, and C(E) = 0
otherwise.

A ((n,K, d))D quantum-error-correcting code is defined as a a K-dimensional subspace
of (CD)⊗n spanned by an orthonormal logical basis {|jL⟩ |j = 0, . . . ,K − 1} such that

⟨jL|E |iL⟩ = C(E)δij (3)

for all E ∈ E for some error basis E , that spans all operators over (CD)⊗n with weight less
than d. An ((n, 1, d))D code is required to be pure by convention.

((n,K, d))D Quantum-error-correcting codes obey the quantum Singleton bound[Jos58]:

K ≤ Dn−2d+2 (4)

and codes which saturate this bound are called Maximally Distance Separable (MDS)
codes. Quantum Maximally Distance Separable codes have been proven to be pure in
[Rai99], and each correctable error corresponds to exactly one unique syndrome readout[KKÖ15].

2.3 Stabilizer codes
One notable class of codes conducive to error correction is constructed with respect to its
stabilizers: for a set S of unitary operators over a Hilbert space H, define the corresponding
stabilizer code QS as the joint +1 eigenspace of all of S. That is:

QS := {v ∈ H|Uv = v,∀U ∈ S} (5)

Because the defining condition for any two operators U1, U2 ∈ S, U1U2v = U1(U2v) =
U1v = v for all v, so S can be extended to include U1U2 without removing any vector
from QS . Also, because the definition is a joint eigenspace, no vector can be added to
QS by extending S. Then, we can extend S to the multiplicative group generated by its
elements without changing QS , and it suffices to define the stabilizer group by a set of
linearly independent generators.
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On the other hand, because QS is defined as nothing less and nothing more than the
whole subspace stabilized by S, we have

⟨v|U |v⟩ = 1,∀U ∈ S (6)

and can define
Q⊥

S := {|u⟩ ∈ H|⟨u|v⟩ = 0,∀ |v⟩ ∈ QS} (7)

for which
∀v ∈ Q⊥

S ,∃U ∈ S, s.t. ⟨v|U |v⟩ ≠ 1 (8)

That is, any error that projects off of the code space by definition requires it to have
a nonzero probability in an observable outcome different from +1 for some stabilizer in S,
and it is safe to measure all of them for any state in the code space, without disturbing
the code state.

Then, a set of errors that do not commute with all generators of S is detectable. For
each distinct syndrome, a correction can be made that maps a coset of logically equivalent
states into the set of codewords.

Taken together, this suggests measuring each element of the stabilizer in some way
constitutes a projector for the code space, a code projector. To see this, let PS be the
unweighted average over S:

PS := 1
|S|

∑
M∈S

M (9)

Theorem 1. The dimension of QS is

1
|S|

∑
M∈S

tr(M). (10)

Proof. Observe that

P 2
S = 1

|S|
∑

N∈S
N

1
|S|

∑
M∈S

M =
∑

N,M∈S

1
|S|2

NM = 1
|S|

∑
M∈S

M = PS (11)

and that
1

|S|
∑

M∈S
M (12)

fixes any element of QS .

Since P 2
S = PS , the eigenvalues of PS are zero and one. The image of PS is its eigenspace

of eigenvalue one, which is also QS . Thus, PS is the projector onto the subspace QS . Since
the eigenvalues of PS are zero and one, the dimension of the eigenspace of eigenvalue one
is equal to the sum of eigenvalues, which is tr(PS).

dim(QS) = tr(PS) = 1
|S|

∑
M∈S

tr(M) (13)
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2.4 Entanglement measures
Entanglement is a quantum property defined abstractly oppositely to the property of sys-
tems that can be represented as several independent systems together. There is agreement
that a separable state which can be written entirely as a tensor product is minimally en-
tangled, and a system which has maximal correlation between subsystems is maximally
entangled, but the choice of entanglement measures for values in-between have some degree
of flexibility.

From [BDSW96] a postulate is established that entanglement measures that capture
this genuinely quantum property, are to be defined such that they are non-increasing
on average under local operations and classical communication (LOCC): for a system
HA ⊗ HB, entanglement between systems A and B do not increase by operators of form
UA(⟨ψ|B UB |ψ⟩B) ⊗ IB, IA ⊗ UB(⟨ψ|A UA |ψA⟩), acting on one side of the bipartition de-
pendent on the classically communicated results of any measurement (including identity)
of the other.

To choose an entanglement measure befitting our purpose, we consider that the prop-
erties of maximal and minimal entanglement can be thought of in terms of what happens
under partial trace:

A minimally entangled pure state of independent systems retains purity in any subsys-
tem S when tracing out its complement, SC . A maximally entangled pure state becomes
maximally mixed in any subsystem S when tracing out a complement SC of higher di-
mension. Then, we can use the starting point of linearized subsystem purity, tr ρ2

S , where
ρS = trSC |ψ⟩⟨ψ| is the reduced density operator for the subsystem after partially tracing
out SC . As we are free to define the range of our measure aside from vanishing for sep-
arable states, we’ll arbitrarily choose [0, 1]. To normalize to a minimum point of 0 from
the maximum purity of 1 we change to 1 - tr ρ2

S , and to normalize to a maximum point
of 1 from the minimum purity of 1

DS
we multiply by a factor of DS−1

DS
, where DS is the

dimension of the smaller of the two partitions. Finally, since we are interested in a relevant
overall measure for entanglement over the entire system, we wish to align a notion of maxi-
mal overall entanglement with reaching maximal entanglement in any choice of bipartition.
That means we wish to impose the above on every choice of S, so after taking a normalized
sum and putting it all together:

Q(ψ) ≡ 1
2n

∑
S⊆{1,...,n}

DS

DS − 1
(
1 − tr(trSC |ψ⟩⟨ψ|)2

)
(14)

Where the normalization factor 1
2n is due to the size of the power set of a set of n parties.

To prepare for a correspondence with the notion of distance, it will also be of use to
consider dividing up this normalized sum into a family of entanglement measures due to
Scott[Sco04]. For the set of all bipartitions {(S, SC)||S| = m,m < n}, originally defined
for a uniform system of n qudits of dimension D:

7



Qm(ψ) = 1(n
m

) ∑
|S|=m

DS

DS − 1
(
1 − tr(trSC |ψ⟩⟨ψ|)2

)
(15)

=m!(n−m)!
n!

∑
|S|=m

Dm

Dm − 1
(
1 − tr(trSC |ψ⟩⟨ψ|)2

)
(16)

= Dm

Dm − 1

1 − m!(n−m)!
n!

∑
|S|=m

tr(trSC |ψ⟩⟨ψ|)2

 (17)

Where the reduced final form is the original given by Scott, more obviously starring
the average linear subsystem entropy.

2.5 Absolutely Maximally Entangled States
With the choice of multipartite entanglement measures defined above, we can define a class
of absolutely maximally entangled (AME) states, which are pure states that saturate the
limit of Q(ψ) = 1, as well as a class of m-uniform states, which are states over qudits of
equal dimension that saturate the limit of Qm(ψ) = 1. An absolutely maximally entangled
state over qudits of equal dimension is then also m-uniform for all m < ⌊n

2 ⌋.

Interestingly thanks to Scott[Sco04, Proposition 3], there is a known bijective relation
between AME states and QMDS stabilizer codes on uniform-dimension systems which we
replicate below, in order to extend to mixed-dimensional systems in Theorem 6

Theorem 2. Qm(ψ) = 1 ⇐⇒ |ψ⟩ is a pure ((n, 1,m+1))D quantum-error-correcting code.

Proof. Let us consider an element of the orthonormal basis of displacement operators
D(µ, ν) with support S, wt[D(µ, ν)] ≡ |S| = k ≤ m, such that D(µ, ν) = ISC ⊗ DE , where
DE = trSC D(µ, ν) is the local error operator reduced to only where it acts nontrivially,
and ISC is the identity on SC and has dimension Dn−k. This basis is chosen such that it
is traceless over any non-empty subset of its support. Note also that for an m-uniform
state, by definition, trSC |ψ⟩⟨ψ| = D−kI.

⟨ψ| D(µ, ν) |ψ⟩ = tr[|ψ⟩⟨ψ| D(µ, ν)] (18)
= trS [trSC [|ψ⟩⟨ψ| D(µ, ν)]] (19)
= trS [trSC [|ψ⟩⟨ψ| (DE ⊗ ISC )]] (20)
=D−k trS [ISDE ] (21)
=δµ0δν0 (22)

Which is indeed the quantum-error-correcting code condition for the set of errors with
weight m or less.

Since the basis chosen is an orthonormal basis for all operators of dimensions Dn ×Dn,
we can decompose |ψ⟩⟨ψ| in it using coefficients cµν = ⟨ψ| D(µ, ν) |ψ⟩:

Dn |ψ⟩⟨ψ| = I +
∑

1≤wt[D(µ,ν)]≤m

cµνD(µ, ν) +
∑

m+1≤wt[D(µ,ν)]≤n

cµνD(µ, ν) (23)
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Where we have chosen the first sum such that all of its coefficients are zero due to
the quantum-error-correcting code condition. Then, tracing down to m or fewer parties is
traceless for everything in the second sum, because a local displacement operator must be
traced over, and all local displacement operators are themselves traceless. So, we are left
with only

trSC |ψ⟩⟨ψ| = D−kI (24)
This holding for all choices of S with k = m is the condition of m-uniformity, and yields

Qm(ψ) = 1.

2.6 Shadow inequalities
Due to Rains[Rai02c], it is known that for all positive semi-definite Hermitian operators
M and N on parties (1, ..., n) of dimensions (d1, d2, . . . , dn) and any choice of subset
T ⊆ {1, ..., n},

∑
S⊆{1,...,n}

(−1)|S∩T | trS [trSC (M) trSC (N)] ≥ 0 (25)

In particular, choosing M = N = ρ = |ψ⟩⟨ψ| reduces this to∑
S⊆{1,...,n}

(−1)|S∩T | trS

[
ρ2

S

]
≥ 0 (26)

Which is a constraint on subsystem purities with an exponential number of terms.
While this is true in general, there are simplifications which can be made for uniform-
dimensional cases.

Consider a hypothetical AME state on a system of n qudits of equal dimension D. By
the definition of AME states, reduction to any bipartition {S, SC} yields a density operator
of rank min{|S|,

∣∣∣SC
∣∣∣} with equal eigenvalues, which results in a partial trace square of

trS [trSC [ρ]2] = 1
Dmin{|S|,|SC |} (27)

Then, we can organize the terms in this sum by size, as all choices of |S| = m yield the
same contribution magnitude, though not necessarily sign, and the sum is symmetrical be-
tween choices of size |n/2 −m|. Consider the terms with |S| = m,m+1 ≤ n−m−1. There
are

(n
m

)
ways to choose S, each of which yields a term with magnitude 1

Dm . There are
( n

m+1
)

terms for the next sizes of subsets, each with magnitude 1
Dm+1 . There are (n−m)/(m+ 1)

as many terms of size |S| = m + 1 as there are of size |S| = m, after canceling out
parts of factorials. The magnitude of each |S| = m + 1 has a magnitude 1

D smaller than
each |S| = m. The total of the contribution magnitudes of a level is greatest when its ra-
tio to the previous level is not less than 1, and its ratio to the next level is not more than 1.

That means the comparison we care about is (n−m)/D(m+ 1) and 1, or equivalently
n−m and D(m+ 1). Setting them equal gives a threshold of

n−m = D(m+ 1) ⇐⇒ n = (D + 1)m+D ⇐⇒ m = (n−D)/(D + 1) (28)
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For D = 2, that means n = 4 gives m = ⌈2/3⌉ = 1 yields the most dominant level
of contributions. Choosing T = {1, 2, 3, 4} to be the full system makes the signs of all
contributions only dependent on m, (−1)|S∩T | = (−1)m, which maximizes negative contri-
butions from the dominant level. Indeed, choosing T = {1, 2, 3, 4} gives that a four-qubit
AME state is forbidden with a sum of -1/2.

Choosing T = {1, 2, 3, 4} also yields a negative sum for systems on H = C2⊗C2⊗C3⊗C3,
and H = C2 ⊗ C2 ⊗ C3 ⊗ C3, but not H = C2 ⊗ C3 ⊗ C3 ⊗ C3. There are no other ways to
choose T such that a lower sum is yielded in any of the above systems, and indeed we will
see it is possible to construct an AME state for H = C2 ⊗ C3 ⊗ C3 ⊗ C3, once we establish
some extensions for our machinery into mixed dimensionality.

3 Extension to mixed dimensions
3.1 Absolutely Maximal Entanglement in mixed dimensions
For a system of parties with mixed dimensions D1, D2, D3, . . . Dn, we extend the notion
of absolutely maximally entangled states in the same sense as Huber et al.[HESG18], that
tracing out a subsystem SC of dimensionDSC =

∏
i∈SC Di equal to or larger than that of its

complement DS =
∏

i∈S Di always leaves it maximally mixed. Equivalently to DS ≤ DSC ,
since DSDSC =

∏
Di, the condition can be written:

∀S ⊂ {1, 2, 3 . . . n}, DS ≤
√∏

Di, trSC |ψ⟩⟨ψ| = 1
DS

I (29)

3.2 Entanglement measure
For general systems of mixed-dimensional parties, choosing the same number of parties
does not always yield the same dimension of subsystem. Worse, some such choices may
yield the smaller subsystem and some the larger. It makes more sense for our purposes
then, to define a family of entanglement measures analogously based on subsystem dimen-
sion instead. Let

QM (ψ) := 1
f

∑
dim S=M

M

M − 1(1 − tr ρ2
S) (30)

Where f is the number of ways to choose any number of parties with dimensions fac-
torizing M .

To justify this is indeed a entanglement measure, we now show three essential proper-
ties.

Define |ψ⟩ to be an M -separable state if |ψ⟩ is a product state on any bipartition of
dimensions M , (

∏
Di) /M . That is,

∀S s.t. |S| = M,∃ |ψA⟩S ∈ HS , |ψB⟩SC ∈ HSC , |ψ⟩ = |ψA⟩S ⊗ |ψB⟩SC (31)

Lemma 3 (Vanishing for product states). QM (|ψ⟩) = 0 if and only if |ψ⟩ is M -separable.
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Proof. For an M -separable state |ψ⟩, any choice of bipartition of dimensions M , (
∏
Di) /M

yields a pure state on each subsystem when partially tracing out the other, leading to every
term in the measure evaluating to 0.

For any choice of S, the Schmidt decomposition of an arbitrary |ψ⟩ can be written

|ψ⟩ =
n∑

i=1
λi |ψi⟩S |ϕi⟩SC (32)

with some integer n,
∑n

i=1 |λi|2 = 1, some orthonormal states {|ψi⟩S} over subsystem S,
and some orthonormal states {|ϕi⟩SC } over its complement subsystem SC ,

1 − tr
(
ρ2

S

)
= 1 −

n∑
i=1

|λi|4 (33)

With the quadratic normalization over eigenvalues, this equation only equals 0 if there is
only one non-zero eigenvalue, {λi} = {1}, meaning the decomposition is a product state,
|ψ⟩ = |ψA⟩S ⊗ |ψB⟩SC .
This measure being a weighted average of non-negative numbers, as the trace of any state
squared cannot exceed 1, means

QM (ψ) = 0 =⇒ (1 − tr ρ2
S) = 0,∀S s.t. dimS = M (34)

thereby requiring |ψ⟩ to be a product state for any choice of S with dimension M .

Lemma 4. The proposed entanglement measure is 1 if and only if |ψ⟩ is maximally
entangled for any choice of S with dimension M .

Proof. The minimal purity for a density operator on a subsystem of dimension M is for a
mixed state of M equal eigenvalues, |λi|2 = 1

M , which has

tr
(
ρ2

)
=

M∑
i=1

|λi|4 = 1
M

(35)

which means the maximal value for (1−tr
{
ρ2

S

}
) is M−1

M , and normalizing with the prefactor
means the maximal value for each term of the sum is 1.

If |ψ⟩ is maximally entangled for any choice of S with dimension M , trSC |ψ⟩ ⟨ψ| is a
maximally mixed state I/M and satisfies QM (ψ) = 1.

Additionally, as this is the maximal value for an sum,

QM (ψ) = 1 =⇒ M

M − 1(1 − tr ρ2
S) = 1,∀S s.t. dimS = M (36)

thereby requiring ρS = trSC |ψ⟩ ⟨ψ| to be a maximally mixed state I/M for any choice of
S with dimension M .

Lemma 5. The proposed entanglement measure is non-increasing on average under LOCC.

Proof. Due to [Życ03] it is established that the linear entropy is non-increasing under
LOCC. As QM (ψ) is a linear sum of non-increasing functions, it is also non-increasing.

11



Then, we can also define M -uniform states as states |ψ⟩ which saturate the bound
QM (ψ) = 1. Note that while m-uniform states on uniform-dimensional systems imply
m − 1 uniformity, the nature of mixed-dimensional systems mean M -uniformity does not
imply M − 1-uniformity. Instead, a state which is M -uniform is also M/Di-uniform, for
all Di ∈ (D1, . . . Dn) which factor M .

Finally, note that while these measures relax some conditions for the states corre-
sponded to by states which fulfill their maximal and minimum values, it is possible to
write the full average (14) as

Q(ψ) =

∏
Di∑

M=0

1
|{S ∈ {1, . . . n}| dim(S) = M}|

QM (ψ) (37)

which does recover the properties of bijection between Q(ψ) = 0 and |ψ⟩⟨ψ| being fully
separable and between Q(ψ) = 1 and |ψ⟩⟨ψ| being absolutely maximally entangled.

3.3 Quantum-error-correcting codes
Similar to entanglement measures, while it is still possible to preserve the same notion of
distance, it may prove more useful to define a metric based on the minimum dimensions
affected for an uncaught error rather than the number of parties. We define the dimen-
sional weight as

dimwt(E) =
∏

i∈supp(E)
Di (38)

Let Q be a K-dimensional subspace of H = CD1 ⊗ . . .CDn spanned by the orthonormal
basis {|jL⟩ |j = 0, . . . ,K− 1}, and E an orthonormal basis spanning the space of operators
over H, in which all elements are traceless over any subsets of its support. We define Q to
be a (((D1, . . . Dn),K,∆)) quantum-error-correcting code if

⟨jL|E |iL⟩ = C(E)δij (39)

for all E ∈ E for an error basis E spanning all operators over H with dimwt(E) < ∆ and
0 ≤ i, j ≤ K − 1. The corresponding correction capability is that a (((D1, . . . Dn),K,∆))
QECC can detect and recover all errors acting on <

√
∆ dimensions.

3.4 QECC-AME bijection
Theorem 6. QM (ψ) = 1 ⇐⇒ |ψ⟩ is a pure (((D1, . . . Dn), 1,M + 1)) quantum-error-
correcting code.

Proof. From the definition above, it is now plain to see we can rearrange the decomposition
of a (((D1, . . . Dn), 1,M + 1)) QECC |ψ⟩⟨ψ| in basis E = {Ei}:(∏

Di

)
|ψ⟩⟨ψ| = I +

∑
1≤dimwt(E)≤M

cEE +
∑

M+1≤dimwt(E)≤dim(H)
cEE (40)

where cE = ⟨ψ|E |ψ⟩ is zero in the first sum. Tracing down to M or fewer dimensions
requires tracing over a non-empty subset of the support of any operator in the second sum,
which is always traceless. Then,

ρS = trSC |ψ⟩⟨ψ| = D−MIS (41)

12



whenever
∏

i∈S D
i = M . Thus |ψ⟩ is M -uniform and QM (ψ) = 1.

To show the converse, consider an element Ei of the orthonormal basis E , with
dimwt(E) = DS ≤ M , such that Ei = ISC ⊗ EiS , where S = supp(E), DS =

∏
i∈S Di,

EiS = trSC E is the nontrivial portion of E, and ISC is the identity on SC and has dimension∏
i/∈S Di. Note also that for an M -uniform state, by definition, trSC |ψ⟩⟨ψ| = DSI.

⟨ψ|Ei |ψ⟩ = tr[|ψ⟩⟨ψ|Ei] (42)
= trS [trSC [|ψ⟩⟨ψ|Ei]] (43)
= trS [trSC [|ψ⟩⟨ψ|EiS ⊗ ISC ]] (44)
=DS trS [ISEi] (45)
=c(Ei) (46)

Where c(Ei) is 1 if and only if Ei = I and 0 otherwise, as all other basis elements are
traceless. This fulfills the condition for a pure quantum-error-correcting code for the set of
errors with dimensional weight M or less.

4 Examples
Consider the mixed system H = C2 ⊗ C3 ⊗ C3 ⊗ C3, the only 4-party mix of qubits and
qutrits for which absolutely maximally entangled states can exist.

4.1 Numerical example
In [HESG18], Huber et al gave an example of an absolutely maximally entangled state on
this system found numerically by means of semidefinite programming.

|ψH⟩ = α(− |0011⟩ + |0022⟩ + |0102⟩ + |0120⟩ − |0201⟩ − |0210⟩ +
|1012⟩ − |1021⟩ + |1101⟩ − |1110⟩ − |1202⟩ + |1220⟩)

+β(− |0012⟩ + |0021⟩ − |0101⟩ + |0110⟩ + |0202⟩ − |0220⟩
− |1011⟩ + |1022⟩ + |1102⟩ + |1120⟩ − |1201⟩ − |1210⟩) (47)

where two sets of coefficients were specified given by

α = 1
6

√
3
2 ±

√
65
6 , β = 1

54α = 1
6

√
3
2 ∓

√
65
6 (48)

corresponding to constraints

12(α2 + β2) = 1, 54αβ = 1 (49)

This was achieved with a semi-definite program [Hub17] iteratively alternating maximiz-
ing the expectation value of a density operator ρ with respect to a fixed vector

∣∣∣ψ(i)
〉
, and

setting
∣∣∣ψ(i+1)

〉
to the eigenvector corresponding to the maximal eigenvalue of ρ, subject to

maximally mixed subsystem constraints and standard quantum normalization constraints,
until convergence.
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4.2 Stabilizer construction example
We give an example AME state on the same system motivated from a stabilizer code con-
struction, prove that the code spanned by |ψ⟩ can detect all errors of dimensional weight at
most 6, which is the largest error within the threshold

√∏
Di =

√
54, and apply Theorem 6

to prove that |ψ⟩ is an absolutely maximally entangled state.

Let

|ψ⟩ = 1√
12

(|0⟩ (|022⟩ + |201⟩ + |120⟩ + |011⟩ + |102⟩ + |210⟩))

+ |1⟩ (− |101⟩ + |110⟩ − |012⟩ + |202⟩ − |220⟩ + |021⟩) (50)

Firstly, we prove that the subspace spanned by |ψ⟩ is actually a stabilizer code.
Let

U0 = I ⊗

 −1 0 0
0 i 0
0 0 i

 ⊗

 −1 0 0
0 i 0
0 0 i

 ⊗

 −1 0 0
0 i 0
0 0 i

 (51)

and observe that U0 |ψ⟩ = |ψ⟩.
To be able to state the other stabilizers of |ψ⟩ we define an orthogonal set for H,

|ϕ1⟩ = |0⟩ |022⟩ |ϕ7⟩ = − |1⟩ |110⟩ |ϕ13⟩ = |1⟩ |022⟩ |ϕ19⟩ = |0⟩ |110⟩
|ϕ2⟩ = |0⟩ |210⟩ |ϕ8⟩ = |1⟩ |101⟩ |ϕ14⟩ = |1⟩ |210⟩ |ϕ20⟩ = − |0⟩ |101⟩
|ϕ3⟩ = |0⟩ |102⟩ |ϕ9⟩ = − |1⟩ |021⟩ |ϕ15⟩ = |1⟩ |102⟩ |ϕ21⟩ = |0⟩ |021⟩
|ϕ4⟩ = |0⟩ |011⟩ |ϕ10⟩ = |1⟩ |220⟩ |ϕ16⟩ = |1⟩ |011⟩ |ϕ22⟩ = − |0⟩ |220⟩
|ϕ5⟩ = |0⟩ |120⟩ |ϕ11⟩ = − |1⟩ |202⟩ |ϕ17⟩ = |1⟩ |120⟩ |ϕ23⟩ = |0⟩ |202⟩
|ϕ6⟩ = |0⟩ |201⟩ |ϕ12⟩ = |1⟩ |012⟩ |ϕ18⟩ = |1⟩ |201⟩ |ϕ24⟩ = − |0⟩ |012⟩ .

(52)

To define U1 we use the notation 12 7→ 23 to mean that |1⟩ on the second system gets
mapped to |2⟩ on the third system, etc. Using this notation

U1 = Z ⊗ (13 7→ 12 7→ 14 7→ 23 7→ 22 7→ 24 7→)(03 7→ 02 7→ 04 7→). (53)

As a permutation of the orthogonal set |ϕj⟩ this is the permutation (on the indices)

(1 2 3 4 5 6 )(7 8 9 10 11 12)(13 14− 15 16− 17 18−)(19 20− 21 22− 23 24−). (54)

where 14− indicates − |ϕ14⟩.
Note that U1 fixes ψ since

|ψ⟩ = 1√
12

12∑
j=1

|ϕj⟩ . (55)

Using the same notation, we define

U2 = ZX ⊗ (022324 7→ 022314 7→ −021314 7→ 021324 7→)
(120324 7→ 220324 7→ −220314 7→ 120314 7→)(122304 7→ 121304 7→ −221304 7→ 222304 7→)

(56)

and identity on the remaining elements in the computational basis.
As a permutation of the orthogonal set |ϕj⟩ this is the permutation (again on the

indices)

(1 9 4 12)(2 10 5 7)(3 11 6 8)(13 21 16 24)(14 22 17 19)(15 23 18 20). (57)
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Hence, U2 also fixes |ψ⟩.
Since U0 is a local operator whose components are diagonal matrices it commutes with

both U1 and U2. Furthermore,

U1U2 = U2U1 = (1 10 6 9 5 8 4 7 3 12 2 11)(13 22− 18 21− 17 20− 16 19− 15 24− 14 23−)
(58)

and U2 acts as the identity on the remaining kets in the computational basis.
We can then define an abelian (commutative) subgroup

S = ⟨U0, U1, U2⟩ (59)
of linear operators on H.

Our next step is to prove that the subspace Q(S) of states which are stabilized by S
is the one-dimensional subspace spanned by |ψ⟩. To do this, we calculate the trace of all
the elements of S and apply Theorem 1.

Since U0 has order 4, U1 has order 6, U2 has order 4 and S is Abelian, we have that
|S| = 96.

The 48 operators with non-zero trace are listed in the following table. Note that, since
U1 is the traceless Z operator on the qubit system, all other operators in S will have trace
zero.

tr tr tr tr
I 54 U0 2(2i− 1)3 U2 30 U0U2 −4i− 2
U2

0 −2 U3
0 2(−2i− 1)3 U2

0U2 −26 U3
0U2 4i− 2

U2
1 6 U0U

2
1 −4i− 2 U2

1U2 6 U0U
2
1U2 −4i− 2

U2
0U

2
1 −2 U3

0U
2
1 4i− 2 U2

0U
2
1U2 −2 U3

0U
2
1U2 4i− 2

U4
1 6 U0U

4
1 −4i− 2 U4

1U2 6 U0U
4
1U2 −4i− 2

U2
0U

4
1 −2 U3

0U
4
1 4i− 2 U2

0U
4
1U2 −2 U3

0U
4
1U2 4i− 2

U2
2 30 U0U

2
2 −4i− 2 U3

2 30 U0U
3
2 −4i− 2

U2
0U

2
2 −26 U3

0U
2
2 4i− 2 U2

0U
3
2 −26 U3

0U
3
2 4i− 2

U2
1U

2
2 6 U0U

2
1U

2
2 −4i− 2 U2

1U
3
2 6 U0U

2
1U

3
2 −4i− 2

U2
0U

2
1U

2
2 −2 U3

0U
2
1U

2
2 4i− 2 U2

0U
2
1U

3
2 −2 U3

0U
2
1U

3
2 4i− 2

U4
1U

2
2 6 U0U

4
1U

2
2 −4i− 2 U4

1U
3
2 6 U0U

4
1U

3
2 −4i− 2

U2
0U

4
1U

2
2 −2 U3

0U
4
1U

2
2 4i− 2 U2

0U
4
1U

3
2 −2 U3

0U
4
1U

3
2 4i− 2

By Theorem 1, the dimension of Q(S) is (summing the sums of the four columns)

(72 + 24 + 24 − 24)/96 = 1 (60)

since

2(2i− 1)3 + 2(−2i− 1)3 = 44. (61)
Since we already observed that |ψ⟩ is stabilized by the elements of S, we conclude that

Q(S) = ⟨|ψ⟩⟩, (62)
where

|ψ⟩ = 1√
12

(|0⟩ (|022⟩ + |201⟩ + |120⟩ + |011⟩ + |102⟩ + |210⟩)

+ |1⟩ (− |101⟩ + |110⟩ − |012⟩ + |202⟩ − |220⟩ + |021⟩)) (63)
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It remains to prove that
⟨ψ|E |ψ⟩ = 0 (64)

for all operators E of dimensional weight less than
√

54.
By arguments of symmetry, it suffices to consider

E ∈ {σ1 ⊗ I ⊗ I ⊗ I, I ⊗ σ2 ⊗ I ⊗ I, σ1 ⊗ σ2 ⊗ I ⊗ I}, (65)

where σ1 is a Pauli operator on the qubit system and σ2 is a Weyl-Heisenberg type gener-
alized Pauli operator on the qutrit system.

One can readily see that for σ1 ∈ {X,Z,XZ}, we have

⟨ψ|X ⊗ I ⊗ I ⊗ I |ψ⟩ = 0, (66)

⟨ψ|Z ⊗ I ⊗ I ⊗ I |ψ⟩ = 1
12(6 − 6) = 0 (67)

⟨ψ|XZ ⊗ I ⊗ I ⊗ I |ψ⟩ = 0. (68)

For all a, b ∈ Z/3Z, a ̸= 0,

⟨ψ| I ⊗X(a)Z(b) ⊗ I ⊗ I |ψ⟩ = 0, (69)

and
⟨ψ| I ⊗ Z(b) ⊗ I ⊗ I |ψ⟩ = 1

12(2(1 + η + η2) + 2(1 + η + η2)) = 0, (70)

since η = e2πi/3.
For the dimensional weight 6 operators, we have

⟨ψ|X ⊗X(1)Z(b) ⊗ I ⊗ I |ψ⟩ = η2b

12 ((⟨1220| + ⟨1202|)(− |1220⟩ + |1202⟩)

+(− ⟨0201| + ⟨0210|)(|0201⟩ + |0210⟩)) = 0, (71)

⟨ψ|X ⊗X(2)Z(b) ⊗ I ⊗ I |ψ⟩ = ηb

12((⟨0102| − ⟨0120|)(|0102⟩ + |0120⟩)

+(⟨1101| + ⟨1110|)(− |1101⟩ + |1110⟩)) = 0, (72)

⟨ψ|XZ ⊗X(1)Z(b) ⊗ I ⊗ I |ψ⟩ = η2b

12 (−(⟨1220| + ⟨1202|)(− |1220⟩ + |1202⟩)

+(− ⟨0201| + ⟨0210|)(|0201⟩ + |0210⟩)) = 0, (73)

⟨ψ|XZ ⊗X(2)Z(b) ⊗ I ⊗ I |ψ⟩ = ηb

12((⟨0102| − ⟨0120|)(|0102⟩ + |0120⟩)

−(⟨1101| + ⟨1110|)(− |1101⟩ + |1110⟩)) = 0. (74)

For a ̸= 0
⟨ψ|Z ⊗X(a)Z(b) ⊗ I ⊗ I |ψ⟩ = 0, (75)

and
⟨ψ|Z ⊗ Z(b) ⊗ I ⊗ I |ψ⟩ = 1

12(2(1 + η + η2) − 2(1 + η + η2)) = 0. (76)

Thus, Q(S) is a (((2, 3, 3, 3), 1,
√

54)) quantum error correcting code and by Theorem 6,
|ψ⟩ is an absolutely maximally entangled state.
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4.3 Higher dimensional codes over C2 ⊗ C3 ⊗ C3 ⊗ C3

One might consider subgroups of S of index two, in the hope that these might provide
higher dimensional codes which can also detect some non-trivial class of errors. However,
in each case we find a two-dimensional undetectable error.

name generators basis for Q(Si) undetectable error
S0 U2

0 , U1, U2 |ψ⟩, |0000⟩ Z ⊗ I ⊗ I ⊗ I
S1 U0, U2

1 , U2 |ψ⟩, 1√
12

∑24
j=13 |ϕj⟩ ZX ⊗ I ⊗ I ⊗ I

S2 U0, U1, U2
2

1√
6

∑6
j=1 |ϕj⟩, 1√

6
∑12

j=7 |ϕj⟩ Z ⊗ I ⊗ I ⊗ I

4.4 Other AME states over C2 ⊗ C3 ⊗ C3 ⊗ C3

While the example state Huber et al. gave (47) is appreciably different than that which
we detailed above, showing Theorem 6 is fulfilled actually weakens the constraints not to
require the right-hand side of (49). Because of this, actually (α, β) can take on any pair of
values in a circle, 10 arbitrary choices of which we have numerically verified. Of note are
the choices of (1, 0) or (0, 1), which select only the α coefficient half of the state or the β
coefficient half of the state respectively, and end up with two simpler 12-term AME states
which are also orthogonal to each other.

Then, we redefine |ψH⟩ = α |ψHα⟩ + β |ψHβ⟩, where

|ψHα⟩ = − |0011⟩ + |0022⟩ + |0102⟩ + |0120⟩ − |0201⟩ − |0210⟩
+ |1012⟩ − |1021⟩ + |1101⟩ − |1110⟩ − |1202⟩ + |1220⟩ (77)

and similarly

|ψHβ⟩ = − |0012⟩ + |0021⟩ − |0101⟩ + |0110⟩ + |0202⟩ − |0220⟩
− |1011⟩ + |1022⟩ + |1102⟩ + |1120⟩ − |1201⟩ − |1210⟩ (78)

The same principle applies to our example, and actually |ψβ⟩ :=
∑24

j=13 |ϕj⟩ constitutes
another example of an AME state over the same system, although it is not stabilized by the
exact same stabilizers, instead corresponding to ⟨U0,−U1,−U2⟩. This can be thought of as
a change of logical basis on the qubit system and its operators, resulting in a mapping of
Z → −Z and X → X, and any other change of basis will do, but are linearly dependent on
these. Similar to |ψHα⟩ and |ψHβ⟩, we now refer to our first example as |ψα⟩ :=

∑12
j=1 |ϕj⟩.

5 Discussion
5.1 Use of nonlocal stabilizers
Of notable concern is our use of the "skew-permutation" U1 and nonlocal but in-place
U2 operators, which deviate from the uniform-dimensional norm of using Weyl-Heisenberg
Pauli extensions to construct local errors for the generators of the stabilizer group. How-
ever for a mixed system of Da- and Db-dimensional qudits, with Da, Db co-prime, it is
only possible to have two such local stabilizers commute if they independently commute
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over the qudits of each dimension. This is because a pair of Weyl-Heisenberg operators
of dimension D commute up to a phase of e

2πij
D , for some integer j. With a single qubit,

this would restrict the qubit part of such local operators to only be the identity, and codes
constructed from such operators would fail to detect any errors on the qubit.

During this work, the potential existence of some local error basis was not formally
ruled out using Gell-Mann matrices for the stabilizers corresponding to AME states on
H = C2 ⊗ C3 ⊗ C3 ⊗ C3, but even if a construction were found, due to significantly non-
trivial commutation relations it is believed it would be much less generalizable to higher
dimensions, as the complexity of generalized Gell-Mann matrix products scales in general
with only embeddings of SU(2) to look to for hope in simplification, to the authors’ knowl-
edge.

5.2 Further constructions of similar type
It is conjectured further codes and therefore AME states may be found over other mixed-
dimensional systems by generalizing the notions of U0, U1, and U2:

U0 is a diagonal operator which selects a subset {|ψj⟩} of the computational basis of
size ab and discards the remaining

∏
di − ab.

U2 organizes the selected subset into a cycles of b states, while acting as identity on
the remaining

∏
di − ab.

U1 permutes between a qudits of equal dimension, connecting between subsets of c
cycles with order ac, where c divides b.

5.3 Orthogonality of AME states
By noticing that the Huber state can be written in terms of |ϕj⟩, we actually see

|ψHα⟩ = − |0011⟩ + |0022⟩ + |0102⟩ + |0120⟩ − |0201⟩ − |0210⟩
+ |1012⟩ − |1021⟩ + |1101⟩ − |1110⟩ − |1202⟩ + |1220⟩ (79)

= − |ϕ4⟩ + |ϕ1⟩ + |ϕ3⟩ + |ϕ5⟩ − |ϕ6⟩ − |ϕ2⟩ +
12∑

j=7
|ϕj⟩ (80)

and similarly

|ψHβ⟩ = − |0012⟩ + |0021⟩ − |0101⟩ + |0110⟩ + |0202⟩ − |0220⟩
− |1011⟩ + |1022⟩ + |1102⟩ + |1120⟩ − |1201⟩ − |1210⟩ (81)

=
24∑

j=19
|ϕj⟩ − |ϕ16⟩ + |ϕ13⟩ + |ϕ15⟩ + |ϕ17⟩ − |ϕ18⟩ − |ϕ14⟩ (82)

Then, 1√
2(|ψHα⟩ − |ψHβ⟩) is orthogonal to our examples |ψα⟩ and |ψβ⟩.
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5.4 Application
While quantum computing device manufacturers typically produce symmetrical qudits (ig-
noring connectivity) intending for uniform-dimensional systems, both manufacturing de-
fects and operational drift yield different error rates on each physical qudit as well as
the two-qudit operations. Using error-correcting-codes on mixed-dimensional systems al-
low quantum compilers to take better advantage of calibration data to be hardware-aware
in error rate optimization heuristics by assigning lower-dimension logical requirements to
higher-error physical components. In particular, while both 4-qutrit and now 3-qutrit-1-
qubit systems are known to have absolutely maximally entangled states and their corre-
sponding stabilizer codes, it is also known due to shadow inequalities that 4-qubit systems
do not have them.
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A Shadow inequality counterexamples
For a system on C2 ⊗ C2 ⊗ Cp ⊗ Cq, a choice of T = {1, 2, 3, 4} yields the terms:

|S| = 0 : + 1
|S| = 1 : −1/2 − 1/2 − 1/p− 1/q = − 1 − (p+ q)/pq
|S| = 2 : 1/4 ∗ 2 + 1/2p ∗ 4 = + 1/2 + 2/p
|S| = 3 : −1/2 − 1/2 − 1/p− 1/q = − 1 − (p+ q)/pq
|S| = 4 : + 1

Then the condition is:

2 + 2(−1 − (p+ q)/pq)) + 1/2 + 2/p ≥0
1/2 − 2(p+ q)/pq + 2/p ≥0

(pq/2 − 2p− 2q + 2q)/pq ≥0
pq/2 − 2p ≥0

q ≥4

B Code used
The code used to set up linear algebra and verify stabilizer candidates over the course
of this work, including code to generate matrix representations based on our mapping
representations of nonlocal stabilizers, is available at https://github.com/Saphius1a/
stabiliser-verification under Creative Commons license CC0 1.0 Universal.
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