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Abstract

Despite the emergence of Industry 4.0 and the rise of a data-driven
manufacturing paradigm, the acquisition of valuable data in a cost-
efficient and sustainable manner for manufacturing processes remains
a challenge for many companies. Conducting non-productive tests on
the production line in an industrial plant results in a waste of raw mate-
rials, energy, human resources, and time. Furthermore, executing high-
fidelity manufacturing simulations entails a significant temporal and
computational burden. Consequently, these drawbacks hinder the cre-
ation of knowledge in manufacturing processes and the development
of technologies that aim to enhance and influence in the process perfor-
mance, such as optimization or AI-based tools. This is especially criti-
cal for tools that benefit from the availability of large volumes of data
and real-time responses, like Digital Twins and Reinforcement Learn-
ing agents. Therefore, it is necessary to provide methods that facilitate
data generation in industrial environments.

This dissertation is devoted to present a set of general methods to com-
panies and manufacturers to boost the data generation phase in the
industrial context. Concretely, we focus on a fast and efficient way
to model manufacturing processes through the development of Ma-
chine Learning-based Surrogate Models. We propose different general
theoretical frameworks implementing or combining machine learning
techniques for surrogate modeling applicable in distinct manufacturing
process. The thesis demonstrates that the proposed methods enable sig-
nificant cost and time reductions in different practical manufacturing
applications while maintaining high accuracy in modeling and predict-
ing process variables. We investigate the importance of the data chosen
to construct the Surrogate Models and the transfer of the knowledge in
the Surrogate Models from simulation to real plants by means of Trans-
fer Learning. Overall, this supposes an improvement of the presented
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surrogate modeling methods and it facilitates the deployment of Sur-
rogate Models in real-world industrial plants. The developed models
during the thesis are a valuable asset in other studies, acting as a virtual
environment to train Reinforcement Learning agents in hot stamping or
supporting a Digital Twin of the high pressure die casting process. The
thesis helps to advance towards the innovation of data-driven manu-
facturing by providing practical and efficient solutions in the direction
of a better understanding of the manufacturing processes, leading to an
enhancement in their performance and sustainability.

Keywords: Surrogate Models, Machine Learning, Artificial Intelligence, In-
dustry 4.0, Hot Stamping, High Pressure Die Casting, Plastic Injection Mould-
ing



Resum

Malgrat l’aparició recent de la Indústria 4.0 i l’auge d’un paradigma
industrial basat en la fabricació en dades, l’adquisició de dades de va-
lor de manera efficient en costos i sostenible en processos de fabricació
continua sent un repte per a moltes empreses. La realització de proves
no productives a la línia de producció d’una planta industrial compor-
ta un malbaratament de matèries primeres, energia, recursos humans
i temps. A més, executar simulacions de fabricació d’alta fidelitat su-
posa un cost temporal i computacional important. En conseqüència,
aquestes limitactions dificulten la creació de coneixement en els proces-
sos de fabricació i el desenvolupament de tecnologies que tenen com a
objectiu millorar i influir en el rendiment del procés, com l’optimitza-
ció o eines basades en IA. Això és especialment crític per a eines que
es beneficien de la disponibilitat de grans volums de dades i respostes
en temps real, com ara els bessons digitals i els agents d’aprenentatge
per reforç. Per tant, és necessari proporcionar mètodes que facilitin la
generació de dades en entorns industrials.

Aquesta tesi està dedicada a presentar un conjunt de mètodes generals
a empreses i fabricants per impulsar la fase de generació de dades en
el context industrial. Concretament, ens centrem modelar els processos
de fabricació d’una manera una manera ràpida i eficient mitjançant el
desenvolupament de models substituts basats en l’aprenentatge auto-
màtic. Proposem diferents marcs teòrics generals que implementen o
combinen tècniques d’aprenentatge automàtic per al modelatge substi-
tut aplicables en diferents processos de fabricació. La tesi demostra que
els mètodes proposats permeten reduccions significatives de costos i
temps en diferents aplicacions pràctiques de fabricació, mantenint una
alta precisió en la modelització i predicció de variables de procés. Inves-
tiguem la importància de les dades escollides per construir els models
substituts i la transferència del coneixement en els models substituts
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des de la simulació a les plantes reals a través del Transfer Learning. En
conjunt, això suposa una millora dels mètodes de modelització subs-
tituts presentats i facilita el desplegament de models substitutius en
plantes industrials reals. Els models desenvolupats durant la tesi són
un actiu valuós en altres estudis, actuant com un entorn virtual per for-
mar agents d’aprenentatge de reforç en l’estampació en calent o donant
suport a un bessó digital del process injecció d’alumini fos a alta pres-
sió. La tesi ajuda a avançar cap a la innovació de la fabricació basada en
dades aportant solucions pràctiques i eficients en la direcció d’una mi-
llor comprensió dels processos de fabricació, permetent una millorara
en el seu rendiment i la sostenibilitat.

Paraules Clau: Models Substituts, Aprenentatge Automàtic, Intel·ligència
Artificial, Indústria 4.0, Estampació en Calent, Fosa a Pressió, Injecció de
Plàstic
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Chapter 1

Introduction

1.1 Context

Industry 4.0 (I4.0) is understood as the introduction of a set of emerging tech-
nologies that have completely changed the manufacturing paradigm. Internet of
Things (IoT), Artificial Intelligence (AI), Big Data, Cloud Computing, Augmented
Reality (AR), robotics, among others, have been established as the fundamental
technological pillars of I4.0. In the past few years, despite the costs that are re-
quired to update the old factories and processes, the traditional manufacturing
has identified huge gain in the incorporation of these advanced innovations, which
has supposed the evolution to this new industrial paradigm. The full potential of
I4.0 lies in the combination and integration of several of the mentioned technolo-
gies, which has triggered a complete change in the way companies manufacture,
improve and distribute their products. Thanks to the concept of a smart and dig-
ital manufacturing, the fabrication of high-quality products is enabled, with the
advantage of an increase in the productivity, flexibility and a reduction of the eco-
nomical and environmental costs in the overall manufacturing chain. To sum up,
I4.0 framework provides not only a massive positive impact in the companies but
also global benefits in the society.

The establishment of I4.0 has contributed in the identification of data as one of
the most important assets in manufacturing. In this field, AI-based tools excel in
the exploitation of data and can be applied in industrial tasks like process moni-
toring, fault detection, computer vision, decision-making or autonomous control.
Among the branches of AI, Machine Learning (ML) has become a strong trend in
the last few years and its implementation has reached many fields. Focusing on
manufacturing, there has been an increase of the application of ML. In fact, there is

2
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a correlation between I4.0 paradigm shift and ML growth in popularity, as it is rep-
resented in Figure 1.1. On the one hand, I4.0 has provided the data availability, the
computational resources and the innovation environment that has accelerated the
development of ML algorithms and applications. On the other hand, the great ca-
pabilities of ML to handle high-dimensionality data, its ability recognizing highly
non-linear patterns, extract valuable information from data or its adaptability to
changes have enabled the implementation of ML solutions in several industrial
problems. In this sense, ML has a significant impact in the I4.0 objectives regarding
efficiency, productivity and sustainability. Thus, I4.0 and ML are two intertwined
concepts, and the evolution of each one has driven the improvement of the other.

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0

1000

2000

3000

4000

5000

6000

7000

8000

P
ub

lic
at
io
ns

I4.0

ML + Manufacturing

Figure 1.1: Number of publications related with the keywords "I4.0" and "ML +
manufacturing" since 2001. Data obtained from Clarivate Web of Science. © Copy-
right Clarivate 2023. All rights reserved. (https://www.webofscience.com/)

However, the progress and successful implementation of AI data-driven so-
lutions such as ML have limitations. Despite big companies have made impor-
tant investments in I4.0 technologies, a majority of the small and medium sized
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companies have struggled in deploying sensors, robots or software due to its el-
evated economical cost. Also, these advanced technologies must be installed in
the production plant in smaller companies, while big enterprises have testing en-
vironments and R&D departments. Consequently, the improvements in the data
accessibility from industrial plants may not always be translated in a better un-
derstanding of the process or to develop data-driven solutions. In many cases,
data acquired from processes performed in industrial environments are centered
in production and the configuration parameters are not modified to avoid pro-
duction disruptions in the machinery and the tools. The few changes in the con-
figurations are a limiting factor for the knowledge inference and the potential of
data-driven techniques. A more extensive exploration of the parameter space is
needed in order to capture and comprehend the behavior of the system and the
undelying physical phenomena of the manufacturing processes. The performance
of tests to this purpose supposes a significant expense in human resources, raw
material, time and the use of the production plant to non fruitful operations.

Historically, mathematical models of the manufacturing systems and the use of
computer simulation methods have been the most common approach to acquire
knowledge of this type of systems. This opens the possibility to the experimen-
tation and the validation of the design and the process, providing insights and
knowledge about the system without perturbing it. Thanks to its high fidelity,
manufacturing simulation models act as alternative environments to explore new
configurations and to generate data for AI-based solutions. Nevertheless, their de-
tailed representation of the system implies high computational demands and an
elevated time cost, leading to a very slow response. In addition, the mentioned
drawbacks added to the problem of the curse of dimensionality in the exploration
of process parameters often make the data generation process unfeasible. Thus, the
exploration of a large parameter space with a simulation model is not sustainable
in terms of time and computational resources. Finally, the adaptation to new sce-
narios demands new designs and calibrations, also supposing an additional time
cost.

Therefore, as showcased in Figure 1.2, the development of AI-based tools for
I4.0 is inherently linked to overcoming the challenges associated with data acquisi-
tion in industrial environments. While real-world data provides the most accurate
representation of the system, it is often limited by practical constraints and cost.
Simulation data offers a valuable alternative, allowing for broader exploration of
the parameter space, but faces limitations in terms of computational resources and
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time. Successfully leveraging AI in I4.0 requires a strategic approach that balances
the strengths and weaknesses of both data sources.

Figure 1.2: Main industrial data sources required for the development of AI-based
tools and their principal limitations.

Some of the most promising and innovative AI-based technologies given by
I4.0 are the Reinforcement Learning (RL) application in autonomous control agents
and the complete virtual representation of the manufacturing system offered by
the Digital Twin (DT) concept. RL is a type of ML algorithm based in an au-
tonomous learning method in which an agent learns to make decision by interact-
ing with an environment. With respect to DTs, they are representations of physical
systems in a virtual environment, which are completely connected through the
exchange of data in real-time. The transferred information enhances the knowl-
edge of the operating status and can optimize the real-world performance. These
technologies highlight the need to enhance the data generation in manufacturing
processes, since they demand a large volume of data and a fast response models.
Otherwise, the training phase of RL is not achievable unless a lot of time and re-
sources are spent. Furthermore, the real-time process monitoring is not possible in
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DTs, which are constraint to a limited time scale larger than the process time.
To sum up, numerous limitations exist to gather and exploit data in industrial

and simulation environments: First, the elevated cost of the investment in the data
acquisition and measuring equipment and the waste of production time and pri-
mary resources in industrial plant. Secondly, the computational and temporal cost
and the unfeasibility of obtaining real-time responses from simulations. In this
scenario, several questions arise: How can we reduce the temporal and economical cost
of data acquisition in industrial plants? How can the drawbacks of simulations regarding
time be mitigated? Which are the constraints to deploy AI-based I4.0 tools like RL and
DTs in industrial plants? How can they be mitigated? How can we model a manu-
facturing process in a fast, sustainable and effective way? How will we adapt the
model to the desired environments? How can we boost the data generation to obtain
manufacturing data with a real-time response? For answering some of these and
other questions, the present thesis is centered on a set of general methods to cre-
ate fast and efficient ML-based metamodels known as Surrogate Models (SMods)
applicable in different manufacturing use cases. This will allow to the manufac-
turing community to diminish the economical and temporal impact in the data
generation process and the cost to implement avant-garde AI-based tools.

1.2 Objectives

The improvement of the productivity, efficiency and sustainability in manufactur-
ing is a current high-interest topic within the I4.0 framework. The emergence of
data-driven tools have resulted in a drift of the manufacturing paradigm towards
data-driven systems and I4.0. Nevertheless, the most promising I4.0 technologies
and AI-based tools that enable these upgrades have some requirements: large vol-
ume of representative data and fast data generation. However, the present data
acquisition in industrial plants implies performing tests that may perturb the pro-
duction line, leading to costly operations that suppose an important consumption
of energy, human resources, raw material and time. Another suitable way to gener-
ate the required amount of data could be simulation, but they require an elevated
computational and temporal cost. Moreover, they have difficulties in the design
and calibration phase in the adaptation to new scenarios.

The main objective of the present work is to provide to companies and manu-
facturers a set of generals methods to boost their data generation process through
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the construction of Surrogate Models (SMods) that can model manufacturing sys-
tems in a fast and efficient way. This will enable the implementation of advanced
AI-based industrial technologies and, at the same time, it will supply a method for
high-speed predictions in manufacturing environments, accelerating the knowl-
edge of the manufacturing system performance under different conditions and
scenarios and thus providing a novel tool for flexible manufacturing in changing
environments. In practice, the time impact of the manufacturing simulations and
the cost of acquiring data from industrial plants will be diminished. In this the-
sis, the surrogate modeling methods will be based on ML algorithms and related
techniques. We specially focus on the practical application of the SMods in indus-
try, which are discussed in different levels of detail through the implementation of
general methods in specific manufacturing use cases. Thus, the thesis objectives
are three-fold:

• Provide a comprehensive definition of Surrogate Model in the industrial field,
highlighting ML-based SMods as the most relevant tendency and identifying
the potential advantages of implementing SMods in manufacturing prob-
lems.

• Develop general frameworks to create baseline ML-based SMods in indus-
trial environments and validate them in real use cases, remarking the gains
by SMod for each particular manufacturing process.

• Present potential improvements that enhance the capabilities the baseline
ML-based SMods to build a complete general optimized procedure for surro-
gate modeling in manufacturing and validate it in the manufacturing process
of hot stamping.

1.3 Contributions

In this thesis, we present some contributions to the acceleration of the data gener-
ation phase in manufacturing processes, through the reduction of the cost of the
simulation methods by the implementation of data-driven ML-based SMods. The
main contribution is a set of tools to construct these SMods, validated in different
practical manufacturing use cases. Thus, the main contributions can be grouped
into three:
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• A comprehensive description about the potential role of the SMods in boost-
ing the data generation process in manufacturing. We define an application
framework where ML-based SMods are crucial to improve the efficiency of
knowledge acquisition. Moreover, it is detailed how ML-based SMods pro-
vide ideal fast response environments that can be employed to ease the de-
velopment of other optimization procedures or advanced data-driven tools
for process control and monitoring, like DTs or RL agents.

• A set of methods to build ML-based SMods in three real-world industrial
processes:

– For plastic injection moulding, a node reduction method is applied. We
construct a ML-based SMod employing Random Forest combined with
a backward selection method. This method leads to cost savings and
simplified system design by minimizing the number of simulated sen-
sors required to generate accurate predictions in the whole geometry.

– In the context of high pressure die casting , a mesh upscaling method is
proposed. We utilize Random Forest to create a ML-based SMod that
predicts fine mesh simulation results using coarse mesh simulations.
This approach reduces computational time and enables a faster analysis.

– For the hot stamping process, a parameter interpolation method is in-
troduced. We generate a ML-based SMod using XGBoost that efficiently
predict simulation results across a wide range of parameter values. This
method allows rapid exploration of the design space and efficient data
generation, facilitating the development of optimized hot stamping pro-
cesses.

These approaches enable enhanced efficiency in data generation through three
distinct surrogate modeling techniques. The benefits are quantified through
accuracy and temporal metrics compared to benchmarking high-fidelity data.
Importantly, the proposed surrogate modeling methods demonstrate poten-
tial for generalization to other manufacturing systems by addressing scenar-
ios and simulation models that are representative and typically encountered
in real-world industrial challenges.

• An extensive study of surrogate modeling for the hot stamping process, us-
ing Deep Neural Networks as the baseline ML algorithm. Continuous im-
provements of the surrogate modeling method for this process are discussed,
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overcoming several limitations. Concretely, we introduce different strategies
for these improvements:

– Importance of the sampling. We study the influence of different sam-
pling techniques in the ML-based SMods of the hot stamping process.
This includes a quantitative analysis of the impact in accuracy and effi-
ciency of the different methods and a comparative study of their perfor-
mance.

– Transfer Learning for efficient real plant modeling. We develop a trans-
fer learning-based methodology for constructing accurate and efficient
ML-based SMods in real industrial hot stamping plants. This method
effectively addresses the sim-to-real gap by combining low-fidelity sim-
ulation data with limited high-fidelity experimental data, significantly
reducing the need for extensive experimental testing.
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1.4 Thesis Outline

Figure 1.3: Diagram of the thesis outline. It shows the relations between the chap-
ters and the differentiation between the introduction and conclusion parts from
the thesis core, and the practice part within the thesis.

The general outline for this dissertation is shown in Figure 1.3. This Industrial
PhD thesis focuses on generating new knowledge with practical applications for
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industry. It aims to address real-world challenges by transferring research findings
to relevant stakeholders. Therefore, the thesis is separated in parts, which contain
several chapters. The order of the chapters tries to be a journey from general to
specific. In the following, the chapters of the thesis are summarized, indicating
their key contributions. Note that the chapters are distributed in a logical order
with the aim of helping the reader to delve into the distinct contributions in a
structured manner.

INTRODUCTION

• Chapter 1: Introduction. The current initial chapter aims to introduce the
thesis. The readers are situated in the context, the main objectives are pre-
sented, along with the contributions and the thesis outline.

THESIS CORE

• Chapter 2: Background: Innovation in Data-Driven Manufacturing. The
first part of the core of this thesis serves to explain the context and to define
key concepts appearing in the thesis for the readers. In the first section, the
current manufacturing paradigm of I4.0 is introduced, highlighting data as
one of the key resources and the benefits of the use of data-driven tools in
manufacturing. Concretely, a review of ML applications in manufacturing is
provided and RL and DTs are presented and identified as key technologies to
improve and optimize manufacturing processes, along with their implemen-
tation challenges in industrial environments. To sum up, the chapter presents
the challenges that this thesis aims to address.

• Chapter 3: Surrogate Models. This chapter provides a definition of the main
topic of the thesis, the concept of SMod, from a manufacturing point of view.
A justification about the importance of SMods is discussed, with different
proposals about the possible roles of SMods in the interaction with AI-based
tools. A description of the existing surrogate modeling methods and appli-
cations is presented, while ML-based SMods are proposed to be applied in
this thesis.

• Chapter 4: Use Cases of the Thesis. In this chapter, the manufacturing pro-
cesses used during the thesis are described in an informative way.

PRACTICE
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• Chapter 5: Machine Learning-based Surrogate Models Approaches in In-

dustry 4.0. This part of the thesis proposes three different practical frame-
works for surrogate modeling in manufacturing use cases. Particularly, each
of the proposed approaches is applied to a specific manufacturing use case.
This results in three different baseline SMods for the simulations of the pro-
cesses of plastic injection moulding, high pressure die casting and hot stamp-
ing, respectively. Despite all these methods aim to reduce the computational
burden from manufacturing simulations, the surrogate modeling approach
varies depending on the defined industrial goal.

• Chapter 6: Extension of the Hot Stamping Case - Importance of Sampling.
In this chapter, the importance of the sampling in surrogate modeling is re-
marked extending the approach presented in the previous chapter for surro-
gate modeling in the hot stamping process. The influence of the sampling
in the creation of the SMod is quantified and a comparison in accuracy and
time between different sampling methods is performed.

• Chapter 7: Extension of the Hot Stamping Case - Transfer Learning to Real

Industrial Plant. This chapter is also considered an extension to the baseline
SMod of the hot stamping process. In particular, it addresses the problem
of implementing a SMod in a real industrial plant. A method to generate
an efficient and effective SMod of a real hot stamping plant overcoming the
sim-to-real gap problem. This method consists in the transfer learning con-
cept, and its key concept lies in using low-fidelity simulation data and few
real high-fidelity data to obtain a reliable SMod reducing a lot the number of
experimental tests.

CONCLUSIONS

• Chapter 8: Conclusions. Finally, this chapter concludes the work, listing the
academic and industrial contributions that have arisen from this dissertation
and pointing out the future research lines that can be explored from this the-
sis.

1.5 Publications Derived from the Thesis

Most of the contributions and results explained in this thesis have been published
in academic conferences and journals and developed within industrial research
projects.
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Chapter 2

Background: Innovation in
Data-Driven Manufacturing

This part of the thesis presents an overview of current trends in manufacturing in-
novation and describes the manufacturing processes employed, providing a brief
overview of key concepts that will be referenced throughout the next chapters.
The aim is to ensure clarity and accessibility for readers who may not be familiar
with certain specialized terminology or theoretical frameworks. Firstly, we pro-
vide an introduction about the idea of the Industry 4.0 (I4.0) and Industry 5.0 (I5.0)
paradigms connected to data-driven manufacturing, which comprehends the ap-
plication of Machine Learning in industrial framework, with a special focus on the
Supervised Learning (SL) solutions. Next, we briefly describe the emergence of
tools to improve manufacturing, such the use of Reinforcement Learning (RL) for
autonomous control or the creation of virtual replicas of the manufacturing system
through the concept of Digital Twin (DT), highlighting the principal challenges re-
garding their implementation in real-world industrial scenarios.

2.1 Industry 4.0 and Industry 5.0 Frameworks

Since its origins, manufacturing has passed through a lot of periods and paradigm
shifts due to the need of the companies to remain competitive. In general, the im-
plementation of new technology solutions is usually one of the main drivers of the
paradigm shifts [10, 11]. Thanks to these solutions, the performance of the man-
ufacturing systems is enhanced, with an increase of the quality of the products,
lower operational costs and better decision making, which can be measured with
the key performance indicators (KPIs) [12]. For instance, during the last decades,

16
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we have experienced the stages of agent-based manufacturing (2000s) [13] and
cloud manufacturing (2010s) [14].

As mentioned in the introduction, the Fourth Industrial Revolution has trans-
formed the manufacturing industry, leading to a digitalization process with the
objective of complete connection between manufacturing elements [15, 16]. This
new understanding is known as I4.0 or Smart Manufacturing and it is supported
by a set of technological tools, the so-called pillars of I4.0 [17–19]. Figure 2.1 dis-
plays a representation of some of these fundamental pillars, and a brief explanation
is given:

Figure 2.1: Fundamental pillars of the I4.0 paradigm.

• Internet of Things (IoT): Network of interconnected devices and physical as-
sets that collect data and the services that enable the communication and
exchange between them and the cloud [20, 21].

• Cloud Computing: On-demand supply of scalable and flexible computing
services that provide efficient storage, servers, software or databases in the
cloud according to the manufacturers needs [22].
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• Artificial Intelligence (AI): Development of models or systems to realize tasks
or actions usually related with human intelligence, including learning from
data, reasoning and self-improvement [23, 24].

• Big Data: Large amounts of data that are generated at high velocity from var-
ious sources and with different structure are collected, processed and anal-
ysed [25].

• Simulation: Powerful tools and models able to provide a digital representa-
tion of the complex manufacturing systems, helping in the design, evaluation
and optimization stage without the risks and costs of altering the real manu-
facturing system [26].

• Robotics: Industrial robots as autonomous agents in the performance of op-
erations, detection of problems and reduction of repetitive and dangerous
tasks [27].

• Cyber-Physical Systems (CPS): Integration of computational elements into
a physical entity allowing real-time data acquisition and transfer, inducing
a potential dynamic control and monitoring of the physical part from the
digital perspective [28].

• Augmented Reality (AR) and Virtual Reality (VR): Virtual environments that
combine real and digital information to enhance the interaction experience
assisting and facilitating some manufacturing jobs [29, 30].

The integration, interaction and cooperation of the technological pillars assets
is the core of I4.0 and it results in a collaborative manufacturing system that con-
stitutes the concept of I4.0 Factory or Smart Factory [31, 32]. The I4.0 Factory can
be understood as an integrated hyperconnected network, being a self-adaptive
system continuously exchanging information, with the capability of identifying
situations or issues, reacting and autonomously modifying operations achieved
through merging the physical and digital environments. It encompasses the ob-
jectives of I4.0 of the fabrication of advanced and personalized high-quality prod-
ucts, improving the management, performance and productivity while reducing
the economical and environmental costs in the entire manufacturing chain [16, 33].
The I4.0 Factory is the core and the meeting point of the technological pillars of
I4.0, as shown in Figure 2.1.
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Recently, accelerated by the COVID-19 pandemic, the term of I4.0 has evolved
into I5.0, which besides the technological developments of I4.0 extends the paradigm
to a more social and environmental dimension [34]. I5.0 promotes a shift to a
human-centered point of view, taking into account the expertise and skills of the
workers in combination with technology and robots for a fruitful human-robot in-
teraction [35]. To sum up, the I5.0 paradigm provides a way to use the advantages
given by I4.0 but in a step-wise direction to reach a human-based approach that
focus on sustainability and resilience, with the objective of the welfare of people
and the planet [36]. During the next chapters of this thesis, for simplicity, we will
use the term I4.0, since we do not address the human-centered point of view of
I5.0. In fact, I4.0 or smart manufacturing are still the most trending word to refer
to the current manufacturing paradigm.

Both I4.0 and I5.0 have established the current data-driven manufacturing frame-
work. This has reinforced the importance of data as one of the key resources in
manufacturing [37, 38]. In fact, the term "data-driven manufacturing" is widely ac-
cepted to define the new era of industrial production. The advanced sensors and
the connectivity offered by IoT services has supposed a big improvement in data
acquisition, leading to large volumes of data from the industrial plants. Big data
and cloud computing capability have allowed the management, processing and
analysis of the obtained data. Consequently, the previous expertise-based manu-
facturing has evolved to this data-driven manufacturing, where both the knowl-
edge from experts of the field and the insights from data exploitation are used in
a balanced way to obtain the maximum profit [39]. In fact, some studies demon-
strate that the productivity and the profitability increases in companies using data-
driven approaches [40, 41]. In this area, AI-based tools excel in industrial tasks
such as process monitoring, fault detection, computer vision, decision-making or
autonomous control.

Concretely, within the context of I4.0/I5.0 and AI-driven tools for manufactur-
ing, ML, RL and DT have significantly impacted industrial innovation in the last
years. These technologies have enabled the drift towards achieving the goal of
efficient, resource-sustainable, high-quality and environmentally friendly manu-
facturing systems.
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2.2 Machine Learning in Manufacturing

ML is a branch of AI that is based on the learning capability of a machine or system
from data, with the objective of making decisions or predictions without being
explicitly programmed [42]. The use of ML has suffered an exponential growth
during the last decade and it has been extended not only in academia or industrial
environments, but in society fields such as healthcare [43] or transportation [44].
The availability of data, the improvement of the computational resources and the
big technological companies interest and investment in ML innovation have been
the main drivers of this popularization.

Focusing on manufacturing, I4.0 has emerged as the perfect scenario for ML
application. It has induced an increment of the available process data at the pro-
duction line, thanks to novel sensors, CPS, metrology equipment, etc. Thus, new
algorithms, methods, technologies and software need to be put in place in order
to collect, extract, save and create value from data. ML techniques have recently
emerged as effective methods for predicting, classifying and controlling processes
inside the production systems for decision support and the enhancement of pro-
cess knowledge of the manufacturing industry. Extracting knowledge from the
given data with the ability to learn from it makes ML able to achieve better perfor-
mance in problem’s resolution than humans. Due to the large number of variables
and the complexity of the manufacturing processes, it is very difficult to establish
cause-effect correlations or to establish analytical expressions governing a highly
non-linear system. Moreover, each manufacturing process may require a tailored
solution. For this purpose, the creation of data-driven models based upon ML
algorithms is key for predicting the desired outcomes, such as the quality of the
manufactured parts or the process stability.

The most classical classification of ML algorithms distinguishes between Su-
pervised Learning (SL) methods, Unsupervised Learning (UL) methods and Re-
inforcement Learning (RL). In the following, SL and UL are grouped together and
described in this section, while RL is explained in the next section. The main reason
of this differentiation lies in the distinct tasks that these algorithms perform in the
industrial framework. SL and UL are based on the concept of predictive modeling
or pattern recognition algorithms and they have been widely used in manufactur-
ing problems. RL is categorized as a decision making algorithm and it has recently
started to show its potential. Furthermore, the training strategies of SL and UL rely
on the learning from existing data. In contrast, RL is usually trained through the
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interaction with an environment, although it can learn from a pre-defined dataset
that simulates this interaction of the environment. Finally, the goal of SL and UL
is to realize predictions and find patters from new data whereas RL aims to make
decisions to accomplish a given objective. Nevertheless, we have dedicated more
attention to the SL techniques and its manufacturing applications, since it is the
most used approach during the thesis. UL and RL methods are briefly described
and some industrial use cases are also presented.

2.2.1 Supervised Learning Methods: Industrial Applications

Supervised algorithms [45] are trained on datasets that contain labeled samples.
The patterns extracted serve to learn a function that related the input data to the
output. Formally, given a dataset Z comprising n samples: Z = {(xi, yi)}, i =

1 . . . n, xi ∈ R
d and yi is the target label, the aim of a SL algorithm is to learn the

unknown function f : x → y. Each of the components of the vector xi are usually
called features. Depending on the nature of the target labels y, there are two types
of SL problems:

• Classification problems [46]: The label set is discrete, y ∈ [K]1. The task is
predicting the class label. A two-class classification problem is also called
binary classification problem and a problem with more than two classes is
called a multi-class classification problem. It is common for classification
models to predict a continuous value as the probability of a given example
belonging to each output class interpreted as the likelihood or confidence of
it belonging to the class.

• Regression problems [47]: The labels are a continuous, usually real, value,
i.e. y ∈ R. These problems are often called multivariate regression problems.

In SL, the standard procedure involves using the algorithm on a set of train-
ing samples to learn a classifier or a regressor, which is an approximation of the
function f . Afterwards, the classifier/regressor predicts y from new values of x
and an evaluation of the prediction quality is done. Some of the most used eval-
uation metrics are accuracy, recall, F1-Score and AUC-ROC in classification [48]
and Mean Absolute Error (MAE), Mean Squared Error (MSE) and R-squared (R2)
in regression [49].

1[K] = {1, . . . ,K}
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In literature, an elevated number of SL algorithms can be found. Many al-
gorithms work for both classification and regression problems after slight mod-
ifications. In the industrial context, SL have been widely applied as a powerful
tool to leverage production data, taking advantage of human expertise and qual-
ity control protocols. The most typical algorithms are Support Vector Machine
(SVM) [50], K-Nearest Neighbour (KNN) [51], Decision Tree [52], Random For-
est (RF) [53], Gradient Boosting (GB) [54], Gaussian Process (GP) [55] and Neural
Networks (NNs) [56]. Within NNs, several types of NNs has been used to deal
with manufacturing processes. Among the most important ones, multi-layer per-
ceptron (MLP) [57], Convolutional Neural Networks (CNNs) [58] and Recurrent
Neural Networks (RNNs) [59] have been widely employed. The term Deep Neural
Networks (DNNs) is a more general way to refer to NNs. Concretely, it is usually
employed for NNs with multiple hidden layers, that can have different activation
functions and also can combine different types of networks within its architecture,
such as convolutional or recurrent layers. However, for convenience, MLPs are of-
ten referred as DNNs, since the term "Deep" usually means that they have several
hidden layers. From now on, during this thesis we will refer to MLPs as DNNs,
while we will keep the nomenclature of CNNs and RNNs. Additionally, the term
Deep Learning (DL) is also a common term referring to the field of study of the uti-
lization of NNs that have several layers and also comprises the related techniques
including data preprocessing, hyperparameter tuning, model evaluation, etc.

The following is a brief overview and classification of the most relevant SL
applications and algorithms used in industry:

• Quality prediction: The SL algorithms are employed to predict defects or
mechanical properties of the process or products which may to reduce the
costs that are associated to the production of non-quality parts. Therefore,
this includes applications such as tool wear monitoring, material identifica-
tion, fault diagnosis and the classification or prediction of the final products
quality.

In [60], SVM algorithm effectively monitored the machining process of thin-
walled parts, where machine tool wear and work-piece deformation always
coexist and in [61], SVM has been also used for the monitoring of the wear
of the tools in micromilling process is done from the vibration and sound
signals. Regarding material identification, while some works also employed
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SVM [62], K-Nearest Neighbours has been utilized to classify biomass based
on its properties [63] and for polymer classification [64].

Focusing on fault diagnosis problems, SVM has served to address the predic-
tion of various bearing defects in combination with preprocessing techniques
[65, 66], the classification of the failures of steel plants [67] or the detection
of the faults produced in photovoltaic arrays [68]. Moreover, KNN inter-
pretability has lead to its use in fault diagnosis [69–72] and Gaussian process
(GP) has been applied to real-time fault diagnosis of wind turbines operating
with SCADA system data [73]. Neural Networks (NNs) have been success-
fully implemented for the same purpose. The application of DNNs ranges
from the modeling of the quality of the injection-molded parts [74] to the pre-
diction of the quality state from process alarm events in semiconductor fabri-
cation [75]. For instance, CNN-based fault diagnosis is realized from wavelet
transforms that can convert vibration signals into multiscale spectrograms
[76] and RNNs like Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) architectures have also been proved for fault diagnosis in aircraft
turbine engines [77]. CNNs have also been employed in other manufacturing
scenarios to classify particle defects on semiconductor wafers from Scanning
Electron Microscopy images and Energy-Dispersive X-ray spectroscopy data
[78], to identify faulty and non-faulty categories from images captured by
drones of wind turbine blades [79] and to distinguish pores in laser powder
bed fusion [80].

In addition, for pure quality prediction and classification, SVM has also been
used to in processes like laser additive manufacturing [81], carbon fiber pro-
duction [82] or in the mining industry for the quality of the iron ore [83].
Likewise, a quality prediction system for steel manufacturing has been real-
ized with GB algorithms in [84], including an additional explainable method
SHAP [85] to understand the contribution of the features to the model predic-
tion. In [86], a GP model combined with a Dirichlet Process to handle noise
and outliers is presented to predict product quality from process parameters
in continuous manufacturing, and the approach is proven in a use case from
a UK foundation industry. Nevertheless, other works also apply GP to clas-
sify the quality of aluminum alloy foams produced via investment casting
[87].
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• Process monitoring and control: The SL algorithms serve to monitor and con-
trol manufacturing processes in real-time to detect anomalies, predict main-
tenance needs or estimate the remaining useful life (RUL) of the tools.

In [88], SVM is used to predict the RUL and the procedure is validated in data
from turbo fan jet engines. The study in [89] proposes an SVM-based model
for accurately predicting bearing life. KNN algorithm has effectively worked
under dynamic manufacturing environments like the monitoring of uneven-
lenght batches comprising multiphase processes with different durations [90]
or the recommendation of adjustments to operators based on similar past
situations to improve the adaptation speed and system performance [91].

Respecting the monitoring of the health of the tools and predictive mainte-
nance, in [92] the benefits of using a kernel-based SVM approach to monitor
the health condition of a marine diesel engine over time were demonstrated.
Extreme Gradient Boosting (XGBoost) [93] has been used to forecast the fa-
tigue lifetime of 3D-printed biomaterials in [94]. DNNs have been used to
predict the motor failure times from vibration data in [95], to forecast faults
in a centrifugal pump [96], to predict tram track gauge deviation [97]. Within
the realm of health monitoring, LSTMs have proven effective in modeling
long-range dependencies for tool wear prediction, handling both raw se-
quential sensory data [98] and processed wavelet-transformed data [99] to
model long-range dependencies for tool wear prediction. As well, in another
interesting work [100], GRU have been employed to predict the RUL of gears
undergoing wear, and its gating mechanism allows it to selectively retain or
discard information from previous time steps, mitigating the vanishing gra-
dient issue and enabling more accurate predictions of gear RUL. Anomaly
detection in aircraft flight data [101], and even online chatter detection in
milling processes [102], where LSTMs process current signals applied to the
ball screw drive. In a different approach, the RUL of ball bearings working
under different conditions is predicted implementing a RF [103]. A similar
work has been presented in [104], consisting in the application of RF com-
bined with Park’s Vector and Principal Component Analysis (PCA) [105] to
detect stator winding short circuit faults in squirrel-cage induction motors.
RF has also been employed for process control in multiple studies. In [106],
from SCADA real-time data, the operational state of a cement production line
has been predicted with RF. A control method of the tapping manufacturing
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process has been successfully implemented in [107], where RF is trained on
historical signal data coming from the spindle motor current and it evaluates
the quality of the tapped holes.

More complex methods such as the combination of NNs architectures have
also been successfully implemented. For example, in [108] a CNN and a
bi-directional LSTM are joined to eliminate the manual feature engineering
and capture the temporal dependencies. In addition, stacked fully-connected
layers process the LSTM output, and a linear regression layer predicts the
tool wear. In a related approach, the RUL of machining tools are estimated
through the extraction of the local temporal features from sequential sensor
data by a 1D-CNN. Afterwards, LSTM layers learn the long-term dependen-
cies and degradation patterns in the time-series data and a fully connected
layer with a sigmoid activation function generates the RUL prediction [109].

• Predictive Modeling: The SL algorithms are used to predict key process pa-
rameters and outcomes, like surface roughness, pressures or temperatures.

Within the applications, the work of [110] proposed a Decision Tree to predict
the pellet sphericity from a set of input variables containing formulation and
process parameters, allowing to identify the key factors that influence the
pellet aspect ratio. In the study of [111], an estimation of the relative humid-
ity is done through RF fed by data from IoT devices, which is an important
factor for the presence of problems such as metal corrosion, moisture conden-
sation or bacteria growth in places like semiconductor factories cleanrooms.
A distinct scenario is presented in [112], where RF interacts with a Model Pre-
dictive Control framework to control the paste thickening process in mineral
processing. RF is applied to forecast the underflow solids concentration and
interface level based on measurements of flocculant dosage and underflow
rate, while an optimization process is performed based on the RF predictions
to select the best control actions. Further, RF has been important in predic-
tive modeling works such as the modeling of the thermal error [113] and the
surface roughness prediction [114], among others.

Other algorithms have also proved their effectiveness in predictive modeling.
In [68], GB has proven to be the best algorithm for the real-time prediction
of rolling force in hot strip rolling, incorporating a self-training function to
adapt the model to changing production conditions and maintain accuracy.
In other works, XGBoost has employed to estimate the heat transfer efficiency
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of oscillating heat pipes [115] and to predict cutting forces in milling [116]. In
another example, a spatial GP is implemented to estimate the porosity in
metallic parts assembled through selective laser melting [117]. Moreover, GP
is employed to model the relationship between process parameters and out-
put metrics such as effective area ratio, height difference, and deposit angle
in Wire Arc Additive Manufacturing in [118]. For predictive tasks, DNNs
have been employed in the works [119] and [120], applied to Fused Depo-
sition Modeling 3D printing process and free-form machining, respectively.
Otherwise, the CNN-LSTM architecture has been implemented in different
scenarios like for intrusion detection in industrial IoT devices [121] and to
forecast melt pool temperature in wire-arc additive manufacturing [122].

2.2.2 Unsupervised Learning Methods: Industrial Applications

UL methods [123] focus on uncovering hidden patterns and structures within datasets
that lack any pre-existing labels. These algorithms process datasets with numer-
ous features, aiming to learn the underlying probability distribution of the data
or identify its key characteristics. Through self-organized learning procedures,
they discover previously unknown patterns or relationships, providing valuable
insights into the data without relying on explicit guidance. In a more formal def-
inition, given a dataset Z with n samples: Z = {x1, ...,xn}, the goal of an UL al-
gorithm is to infer the properties of the underlying probability distribution P (X),
where X represents the random variable from which the samples are drawn and it
is an array comprising all the features of the dataset. This inference is performed
without any prior knowledge of the "correct" answers or labels.

Unsupervised algorithms are widely used in the context of outlier and nov-
elty detection. Those anomalies that deviate sufficiently from most observations
are called outliers and their number is significantly smaller than the proportion
of nominal cases (typically lower than 5 %, but depends on the dataset and case).
The anomalies are called novelties, instead of outliers, when the model has been
trained on a dataset free of anomalies. Excluding outliers from a dataset is a task
from which most data mining algorithms can benefit. For example, a heavy im-
balanced class distribution in the dataset can affect the efficiency and robustness
of supervised algorithms. Therefore, an outlier-free dataset allows for accurate
modeling tasks, making outlier detection methods are extremely valuable for data
cleaning. Examples of outlier detection algorithms and applications are One-class
SVM, Local Outlier Factor (LOF) and Isolation Forest [124–126].
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In addition to outlier detection, clustering is another significant task performed
by UL algorithms. It is used to identify hidden patterns in the data and this is
achieved separating the data into different groups. The groups and patterns are
defined searching for similarity into the data. This is achieved through a metric of
distance as the euclidean distance, Manhattan distance or another metric for dis-
tance. Regarding outlier detection, it is closely tied to clustering because outliers
are often defined as points that do not fit well into any cluster, or that form their
own very small clusters. Many clustering algorithms have built-in ways to identify
or handle outliers. Respecting the algorithms, K-Means [127] and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [128] are commonly im-
plemented for clustering tasks [129, 130].

Furthermore, UL usually addresses dimensionality reduction tasks. The aim is
to reduce the number of features in a dataset. It is a commonly used step in ML,
especially when dealing with a high dimensional space of features. The original
feature space is mapped onto a new reduced dimensional space. The dimension-
ality reduction is usually performed either by selecting a subset of the original di-
mensions or/and by constructing new dimensions. Feature extraction can also be
understood as a type of dimensionality reductions. CNNs have been employed for
feature extraction [131] although its main application lies in SL. The unsupervised
role of CNN has already been mentioned in the combination of CNNs with other
algorithms seen in Section 2.2.1, where the global task is supervised but the CNN
performs unsupervised feature extraction [108, 109, 121, 122]. Other techniques
such as Principal Component Analysis (PCA) [105] and Autoencoders (AEs) [132]
have addressed dimensionality reduction.

Besides, other unsupervised techniques such as Generative Adversial Networks
(GANs) focus on the generation of synthetic manufacturing data or manufacturing
data augmentation [133, 134].

Finally, semi-supervised learning methods have emerged recently and they
been used for data classification, regression and key performance indicators es-
timation in manufacturing processes. They are applied for similar purposes as
supervised learning, but a reduced amount of labelled data and a large amount of
unlabelled data are typically assumed for the leaning process. Nevertheless, they
can be considered more related to the unsupervised methodologies rather than to
the supervised ones since, in the vast majority of cases, a label is not provided per
each sample during the training phase. The semi-supervised techniques are able
to make use of this additional unlabeled data to better capture the shape of the
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underlying data distribution and generalize better to new samples. These algo-
rithms can perform really well in those situations where a very small amount of
labelled observations and a large number of unlabeled points are provided. This
scenario may occur in the industrial domain where mainly bad parts are tagged.
Some of the semi-supervised algorithms consider a so called contamination pa-
rameter. The percentage of outliers is provided to the algorithm, facilitating the
clustering and establishing the models that are able to categorize and predict the
belonging group of new samples. Thus, individual labels are not provided per
sample, but the amount of parts per class is known or statistically estimated. Semi-
supervised learning is particularly useful when the cost associated with labelling
is too high to allow for a fully labelled training process. Instead, unlabelled data is
much cheaper and takes less effort to acquire from the process. In the industry, for
semi-supervised learning, there have been used generative model-based method,
self-training, co-training, graph-based method, etc [135–138].

2.3 Methods for Improving Manufacturing Processes

This section overviews some of the methods that help to improve the manufac-
turing processes, focusing on tools enabled by I4.0, including RL and DTs. The
most relevant applications of these technologies in manufacturing are displayed,
highlighting its potential and its limitations in this context.

2.3.1 Autonomous Process Optimization with Reinforcement Learn-

ing Framework

Reinforcement Learning (RL) [139] is a computational approach to understanding
and automating goal-directed learning and decision making. It is distinguished
from other computational approaches by its emphasis on learning by an agent
from direct interaction with its environment, without requiring exemplary super-
vision or complete models of the environment. The environment provides to the
learner (the agent) the needed training information: the global system status and
the reward, meaning the information on how well the system performed in the re-
spective turn. Based on that, the agent has to uncover which actions generate the
best results by trying instead of being told.

Therefore, RL is an efficient framework for optimal control and decision-making
tasks in stochastic and sequential environments modeled as Markov Decision Pro-
cess (MDP) [140]. An environment is said to be MDP when the state of the system
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contains all information the agent needs to act optimally. Namely, this means that
the current state is enough to forecast the system behavior in the next step. Addi-
tionally, a reward is necessary, i.e., a scalar feedback signal to the agent the results
of its actions.

Manufacturing is increasing its complexity. Production environments are in
constant change and customers want personalized products. The traditional ways
controlling and planning production are not practical anymore. We require smarter
and more flexible methods. RL offers a powerful solution to these challenges, deal-
ing with the common problems encountered in industrial processes. Specifically,
this supposes managing resources and materials effectively, maximizing the effi-
ciency of machinery, minimizing environmental pollution, reducing energy con-
sumption and optimizing logistics systems. Summarizing, RL is a most promis-
ing, flexible and powerful approach regarding the industrial autonomous control
and automation, enabling systems to learn, adapt, and optimize performance in
complex and dynamic environments.

Figure 2.2 illustrates a conceptual model of how RL operates within an indus-
trial setting. In this iterative learning paradigm, an intelligent agent interacts with
the industrial process, which serves as its environment. The environment can also
be a SMod, as it is explained in Section 3.1. At each step, the agent observes the cur-
rent state of the process (encompassing control parameters and KPIs) and selects
an action (such as adjusting setpoints or process parameters). The environment re-
sponds by transitioning to a new state and providing the agent with a reward sig-
nal that reflects the immediate outcome of the chosen action. The agent objective
is to learn an optimal policy, π, a mapping from states to actions that maximizes
the expected cumulative reward over time. In essence, the agent learns to control
the industrial process by trial and error, guided by the feedback it receives in the
form of rewards.

Hence, RL have been used in some key manufacturing tasks:

• Robotic manipulation: RL algorithms have been employed to train robots to
perform complex tasks, such as assembly, welding, and painting, with high
precision and efficiency. The ability of RL agents to adapt to variations in the
environment and generalize to new situations makes them ideal for robotic
applications in manufacturing. The works in [142–144] presentes different
RL strategies to train robots in distinct industrial scenarios.
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Figure 2.2: Schematic representation of RL operation in industrial processes, in-
spired from [141]. The RL training phase interation with a SMod-based environ-
ment is also remarked in red.

• Process control: RL has been used to optimize process parameters in various
manufacturing processes, including injection molding, metal forming, and
welding. By learning to control process variables in real-time, RL agents can
improve product quality, reduce waste, and increase production efficiency.
For instance, some practical applications of RL in process control are studied
in [145–147].

• Planning and schedulling: RL algorithms have been applied to production
scheduling and planning problems, where the goal is to allocate resources
efficiently and meet production targets. The ability of RL agents to handle
uncertainty and adapt to changes in demand makes them valuable for opti-
mizing production schedules in dynamic manufacturing environments. Ex-
amples of this type of RL utilization can be found in [148–150].

• Fault diagnosis: RL has been implemented for fault diagnosis in manufac-
turing equipment, where the goal is to detect and diagnose problems early
to prevent costly downtime. The ability of RL agents to learn from data
and identify patterns makes them effective for fault diagnosis and predic-
tive maintenance. In this sense, the studies in [151, 152] demonstrate the RL
potential in fault diagnosis.

2.3.2 Overview of Digital Twin Framework

DTs are digital representations of a real-world physical entities that facilitates un-
derstanding the present behaviour and predict the future asset evolution and state.
This accountable AI data-driven technology can enable the study of different test
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scenarios to improve efficiency while anticipating undesirable situations and risks.
The idea of DT was introduced by Michael Grieves in 2003, but it kept evolving un-
til the acceptance of the current concept [153]. Also, NASA introduced DT in their
road map and tried to put the idea in practice [154]. DTs consist in a complete con-
nection between the virtual part and real part of the system through the exchange
of data in real-time. This implies the full integration and interconnection of the I4.0
technologies in a industrial environment. It aims and features the bi-directional in-
tegration of the physical and digital worlds. That is, the bi-directional exchange of
information between the real device or system and its digital replica. Thus, the
real system feeds data (in real time) from sensors, IoT devices, management sys-
tems (MES, SCADA) to the digital replica and the digital replica can provide rec-
ommendations for action, parameter changes and control of the physical system.
DTs allow to simulate, monitor and control physical objects or systems, facilitat-
ing data analysis using AI and ML solutions, optimization and predictive main-
tenance. They enable live feedback loops and foster insights to improve perfor-
mance, efficiency and reliability. Thus, there is a bi-directional interaction between
the physical and digital environment, where the digital replica is able to recom-
mend and change the way the physical entity operates. The digital twin allows us
to introduce innovative approaches to asset use and management and allows us to
develop control solutions towards the autonomous factory.

Regardless of the vast potential of DT solutions, there are still few develop-
ments beyond the theoretical or conceptual framework. According to [155], there
is an evident lack of a universal definition, implementation framework, and pro-
tocol. However, we displayed the basic idea behind DT in Figure 2.3.

As mentioned, DT involves three principal aspects: the real system, the virtual
model of the real system and the bidirectional communication between both. Ad-
ditionally, the final user of the technology can also be included within the DT struc-
ture. The candidate real systems for implementing DTs can be processes, products,
machines, structures or large-scale systems like factories or cities. Below, based on
the Figure 2.3, a description of the DT parts is given:

1. The real system is determined by known and controllable input variables
(system operation parameters such as velocity, pressure, etc) or non control-
lable variables (atmospheric conditions, noise, etc). Then, the real system is
dynamic and changes over time, for example due to the wear and tear of its
components. These changes are unknown variables of the system. The out-
put variables of interest are extracted from the system. All these variables
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Figure 2.3: Schematic representation of DT framework in industry. The introduc-
tion of a SMod as a virtual representation of the real system is highlighted in red.

are monitored and collected through several sensors (temperature, pressure,
vibration, etc) and along the configuration parameters, they define the cur-
rent state of the real system. Moreover, the actuators are components that
can modify and have influence on the real system, such as adjusting machine
settings, turning on a valve, etc.

2. The virtual model, which is based on numerical or analytical simulation
methods and simplified models. SMods can also be used as virtual mod-
els, as it is presented in Section 3.1. It allows the unknown variables of the
system to be determined through a correlation of the virtual results with the
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output variables of the real system. Once these variables are correlated and
determined, the DT provides much more information than is available in the
real system. It enables the forecasting of possible scenarios and to evalu-
ate the system under possible but unseen scenarios. In this sense, DTs are
practical tools for engineers and operators to better understand the systems
present and future performance enabling real-time visualization of the real
current state. Furthermore, AI models based on virtual and real data can
be included in the virtual model, performing predictive quality, predictive
modeling of virtual sensors, anomaly detection tasks. Both simulation and
AI models are sustained by integrated computing services. This allows to
support advanced predictive analytics solutions to address new challenges
and opportunities in terms of efficiency, optimization and risk mitigation.

3. The interface is a platform to facilitate the connection between the real and
the virtual system. The real-time data acquired from the sensors are sent to
the virtual system and, in the opposite direction, the information provided
from the virtual system models is sent back to the actuators, which control
the real system to optimize its performance. The key aspect to achieve this
is a real-time bidirectional communication with both real and virtual system.
In the interface, the combination of innovative AI solutions and data-driven
predictive algorithms combined with sensor data and interaction between
various components enable the creation of digital replicas of real systems
with enhanced functionalities. Besides, the platform may allow an easier
interaction with the user, focused on tasks like monitoring, supervision, and
running "what-if" scenarios.

Focusing on manufacturing, DTs are revolutionizing industries enabling engi-
neers to speed up product design, detect malfunctioning and economize the costs.
The DTs allows to explore scenarios and to extract information in a virtual envi-
ronment, for instance through SL and UL algorithms mentioned Section 2.2, and
directly transforming the acquired knowledge in an impact in the real world. Ad-
ditionally, the twinning of the physical and digital worlds provides an enhanced
way to manage resources and improve the customer and operators experience.
Also, real-time modifications and the performance of virtual tests removes the
number of prototypes to be created, reducing the temporal and economical costs.

DTs are a broad and very versatile technology that can be applied at different
levels of the manufacturing value chain, i.e., for product design [156], for process
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design [157], production planning and control [158], for remote monitoring [159,
160] and for asset performance evaluation [161] in new scenarios or conditions.
They enable key functionalities, for instance planning and scheduling optimiza-
tion based on real time monitoring [162], predictive quality [163], predictive main-
tenance for increased asset availability [164], productivity improvement [165] or
fault detection for risk mitigation [166]. Remarkably, one of the key steps for build-
ing digital replicas of real systems is to develop a DT framework that then can be
instantiated or fine-tuned for each individual asset. The main benefit of the DT
based solutions is that captures and models the individual particularities. Thanks
to the data flow from the real system to the virtual model, the DT captures the dif-
ferences in behaviours due to usage, maintenance or manufacturing tolerances of
different individual assets of the exact same system.

2.3.3 Challenges in Real-World Industrial Scenarios

The implementation of these technologies in industrial environments is not an easy
task. In fact, there are several limitations, not only in RL and DTs, also in classical
optimization procedures in manufacturing.

Firstly, the development of accurate models that capture the complex dynam-
ics and high-dimensionality of manufacturing systems is crucial for effective im-
provements, because reliable data is essential for sensitivity analysis, knowledge
acquisition and optimization. However, acquiring sufficient quality data can be
challenging in manufacturing environments. This affects classical optimization,
RL training data and DTs data integration for the virtual model. These methods
usually require a large number of iterations to obtain the necessary data. In real
systems, this is not feasible, since it implies an important consumption of energy,
human resources, raw material and time. To prevent these costs and ensure fruit-
ful operations, the configuration parameters are usually limited to the conditions
required for production. Also, directly training on real systems introduces safety
concerns, because the configurations explored may lie outside the machinery rec-
ommendations. Then, the only possible option is a very efficient learning from
limited data, which is unlikely to happen. As an alternative, simulations can be
employed used for training to reduce costs and risks linked to real-world training,
because they offer great capabilities of the FE simulations to reproduce real-world
systems. Even though, these models are very demanding in terms of computa-
tional resources and time to produce high-fidelity results. A detailed representa-
tion supposes an elevated cost, leading to a tradeoff between the efficiency and
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the quality of the simulation results. Moreover, to perform a rigorous study of the
manufacturing processes, executing a significant amount of simulations is neces-
sary, which magnifies the aforementioned drawbacks of the simulations’ compu-
tational time and resources requirements.

Next, and closely related, achieving real-time performance is crucial for many
manufacturing applications. This poses challenges for RL, due to the need of en-
hancing training and response times. Besides, DTs also suffer a lot from a slow
real-time response, since it is fundamental to maintain real-time synchronization
between real and virtual systems and enabling immediate actuation.

Finally, manufacturing environments are dynamic, making it challenging to
model the system under all the possible scenarios. Additionally, usually these
methods are developed using simulation models. Therefore, there is a need to an
adaptable and flexible modeling procedure, which also is capable to bridge the
gap between simulation and reality. This is essential for successfully deploying
optimization solutions, leading to a significant challenge for RL in transferring
policies from simulated to real environments and DTs in ensuring that the virtual
model accurately reflects the physical system.

To conclude, this thesis aims to accelerate the data generation phase to enhance
the training phase of RL solutions, mitigate the temporal costs associated with
modeling real systems for DTs or boost the pipeline of optimization methods. It
achieves this by proposing alternative efficient and economical environments for
developing RL agents and alternative modeling techniques for DTs that enable
fast responses. These goals address the mentioned challenges of implementing
advanced solutions that can improve the manufacturing processes.



Chapter 3

Surrogate Models

In this chapter we establish a framework for understanding SMods within the in-
dustrial context explained in the previous Chapter 2. We emphasize the impor-
tance of SMods as an alternative and efficient modeling technique in manufactur-
ing. Also, we remark the benefits of SMods respect to manufacturing simulations
and we outline their potential advantages both in enhancing AI-driven tools like
RL agents and DTs for practical manufacturing applications. Therefore, in this
chapter we identify SMods as the main research direction of the thesis and we aim
to demonstrate to stakeholders and engineers why incorporating SMods into their
simulations, data generation processes and AI strategies is crucial for efficient im-
plementation and overcoming challenges in industrial settings. Besides, we advo-
cate for the use of SMods to optimize the improvements offered by RL agents and
DTs in real-world manufacturing scenarios. To support these ideas, we provide a
description about different methods of SMods in industry, with a special focus on
the ML-based SMods that we will apply during the thesis.

3.1 Understanding Surrogate Model in Industry 4.0

Surrogate Models (SMods), sometimes known as reduced order models or re-
sponse surfaces, are metamodels that offer the capability to boost the response of
a complex and expensive model or system. They provide an approximation of the
function that relates the inputs with the outputs, being able to model the system
in a simpler but representative way. The accuracy of the result of a SMod tries to
be as close as possible to the high-fidelity simulation model or the real data. Their
fast response and the quality of the predictions can break the well-known tradeoff
between time and accuracy inherent to the simulation models. Furthermore, they

36



3.1. UNDERSTANDING SURROGATE MODEL IN INDUSTRY 4.0 37

can overcome the costs and temporal limitation in real data acquisition from in-
dustrial plants. A representation of the surrogate modeling concept is displayed
in Figure 3.1.

Figure 3.1: Outline of the surrogate modeling concept.

Formally, the concept of SMod can be understood as a function fs(x) that is an
approximation of the true model f(x), where x represents the input parameters
to the model. The objective of a SMod is to minimize the difference between fs(x)

and f(x). Therefore, surrogate modeling is usually considered to be part of the cat-
egory of regression problems. The main difference between SMods and regression
models is their role as simplified representations of existing models or systems.

In the industrial context, the use of computer simulation methods to model the
manufacturing systems have been the most common approach to acquire knowl-
edge of this type of systems. Manufacturing simulations comprise an elevated
number of methods applied in the different stages of an industrial plant, such as
the design of the parts, the involved physical processes, the scheduling and the
planning of the machinery and resources, among others. For instance, computer-
aided design (CAD) or virtual reality (VR) are more oriented to the design stage,
finite element (FE) analysis or computational fluid dynamics (CFD) are used in
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the physical processes simulation and discrete element simulation (DES) is typical
in the scheduling and planning problems. The aforementioned methods and the
manufacturing simulation tools enable the study of the complex manufacturing
systems without perturbing the real system. This opens the possibility to the ex-
perimentation and the validation of the design and the process, providing insights
and knowledge about the system. The understanding of the complex dynamics
of the different manufacturing stages may lead to better decision-making, which
is translated to an improvement of the key performance indicators (KPIs), like the
product quality or the operational costs.

Thanks to its high fidelity, manufacturing simulation models act as alternative
environments to explore new configurations [167]. Nevertheless, their detailed
representation of the system implies high computational demands and an elevated
time cost, leading to a very slow response [168, 169]. In addition, the mentioned
drawbacks added to the problem of the curse of dimensionality often make the
data generation process unfeasible. Then, the exploration of a high parameter
space with a simulation model is not sustainable in terms of time and computa-
tional resources.

Moreover, the improvements in the data accessibility from industrial plants
brought by the digitalization of I4.0 may not always be translated in a better un-
derstanding of the process or data-driven solutions. In many cases, the processes
performed in industrial environments are centered in production and the config-
uration parameters are not modified to avoid undesired issues in the machinery
and the tools. The few changes in the configurations are a limiting factor for the
knowledge inference and the potential of data-driven techniques. A more exten-
sive exploration of the parameter space is needed in order to capture and com-
prehend the behavior of the system and the complex physical phenomena of the
manufacturing processes [170, 171]. The performance of tests to this purpose, sup-
poses a significant expense in human resources, raw material, time and the use of
the production plant to non fruitful operations [172–174].

To sum up, I4.0 has lead to the emergence of a data-driven manufacturing,
where tools based on AI and ML are fundamental. However, the data generation
phase through simulations and experimental tests in manufacturing plants is still
a challenging task. Also, the most recent advances regarding decision support
systems, sensitivity analysis or optimization techniques rely on fast responses for
their viable application. Some of the presented issues regarding real industrial
plants and simulations are depicted in Figure 1.2.
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Similar data generation problems can be encountered in other disciplines that
are dependent on simulation models of physical systems or phenomena, such as
water management, biomedical engineering or architecture, among others. In fact,
efficient and accurate output generation in real-time is a requirement to overcome
the limitations in the exploration and the study of the physical systems.

Under the presented challenges for faster and reliable data generation methods,
SMods have demonstrated outstanding potential [175–178]. The advantages of
SMods have lead to a trending tendency to use them as a solution to face the curse
of dimensionality problem, to speed up optimization techniques and to enhance
the data generation process in a lot of environments, as shown in Figure 3.2.
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Figure 3.2: Number of publications related with SMods since 2001. Data obtained
from Clarivate Web of Science. © Copyright Clarivate 2024. All rights reserved.
(https://www.webofscience.com/)

Focusing on the industrial field, the use of SMods leads to crucial advantages
that help to overcome the limitations in data generation from real plants or simu-
lation models and to improve KPIs in industrial settings:
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• Production efficiency: SMods significantly reduce the time required for anal-
ysis and exploration of complex manufacturing processes, leading to faster
design iterations and optimization cycles. This translates to quicker turnaround
times for new product development and process improvements.

• Cost reduction: By minimizing the need for extensive physical testing or
time-consuming simulations, SMods help save on resources, materials and
human effort. This can result in significant cost reductions in research and
development, production and quality control.

• Process knowledge: SMods enable a more thorough exploration of the pa-
rameter space in manufacturing processes, facilitating a better understanding
of system behavior, complex physical phenomena and the impact of process
parameters on final product quality.

• Product quality and predictive maintenance: The insights gained from SMods
lead to more informed decisions about process parameters and design choices,
ultimately resulting in improved product quality, well-functioning of the tools
and reduced defects.

• Working with limited data: In situations where real-world data from indus-
trial plants is scarce or expensive to obtain, SMods offer a valuable tool for
understanding, optimizing and controlling manufacturing processes offering
a low-cost data generation alternative.

• Real-Time Response: The SMods can run in parallel to the production pro-
cess, forecasting the output of the system in real-time. This enables to act to
the production system immediately if needed.

In addition to the benefits that SMods directly bring to the data generation
process, these tools can also be applied to the development of RL agents or DT
technology. SMods features can help to deal with the challenges highlighted in
Section 2.3.3. Concretely, the RL training phase requires several interactions with
an environment. Instead of using the real manufacturing system or a simulation
model, an efficient and low-cost environment based on SMods can be employed
as an alternative boosting a lot the training phase, as shown in Figure 2.2. Simi-
larly, SMods can replace the virtual representation of a DT done with simulations,
mitigating the cost of modeling the real manufacturing system. They enable a
real-time response from the virtual part of the DT, which improves the immediate
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actuation capabilities on the real system, accelerates the exploration of "what if"
scenarios, permits the real-time exchange of data between real and virtual parts
and increases the overall DT performance. This is displayed in Figure 2.3.

In this thesis we aim to rigorously quantifying the presented benefits of SMods
in specific real-world manufacturing scenarios. Through detailed case studies and
analysis in the following chapters, we demonstrate how SMods can lead to mea-
surable improvements in efficiency, cost reduction and product quality. Also, the
use cases of application serve us to identify improvements in the original SMods
and to extend them for a more complete solution. Furthermore, in this work we
consider how these SMod implementations can be used as a foundation for devel-
oping advanced AI solutions, such as RL agents and Digital Twins, tailored to the
specific needs of the studied processes. Ultimately, we seek to provide a compre-
hensive framework for leveraging SMods to drive innovation and optimize per-
formance in the I4.0 paradigm.

3.2 Methods and Applications of Surrogate Models

Creating a SMod involves a diverse range of methods, each with its own strengths
and weaknesses depending on the specific application. Nonetheless, despite this
variety, a typical pipeline for building an SMod shares common features. SMods
are generally data-driven, constructed from a limited set of high-fidelity input-
output data. This data is used to train the model, which then undergoes a vali-
dation process to assess its accuracy. Figure 3.3 illustrates this generic procedure
for developing a SMod. The following paragraphs delve deeper into the various
methods used in surrogate modeling and some of their applications in manufac-
turing.

In the origins, the initial approach in surrogate modeling was to develop re-
sponse surfaces [179], which are based on polynomial functions that try to model
the complex relationships between input variables and output responses [180].
This method is called Reponse Surface Method (RSM). For an unknown f(x), RSM
approximation is first-order if the true function takes a linear form

f(x) = a0 + a1x1 + a2x2 + ...+ aixi (3.1)

or second-order if the true function is non-linear
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Figure 3.3: Generic pipeline to build a SMod.

f(x) = a0 +
k∑

i=1

aixi +
k∑

i=1

aiix
2
i +
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i<j

aijxixj (3.2)

where xi are the input variables, i, j = 1, ..., k are indexes for the input variables
and ai, aij are coefficients. RSMs have been used to address engineering problems
in applications such as curve fitting, empirical correlations and simplified physical
models. In addition to the common polynomial approach, other functions can also
be used in RSM. Nowadays, the term response surface is also considered to be a
synonym of SMod.

Many studies from different areas have applied RSM to simplify and enhance
their modeling. For instance, RSM have been used in chemical engineering indus-
tries [181], where the tests to develop a new product are very costly and expensive.
RSM can help to optimize reaction yields, minimize impurities and understanding
the effects of process parameters on product quality. In the aerospace industry,
RSM has been utilized for aerodynamic design, optimizing aircraft wing shapes
and controling surfaces to minimize drag and maximize lift [182] and to replace
time expensive simulations from real-time responses [183]. Finally, in manufactur-
ing machinery it can be used to optimize cutting parameters, to improve surface
finish, tool life and material removal rates [184, 185].
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Kriging [186], which is a specific case of GP regression originally designed for
spatial data, was posteriorly used to build the next generation SMods, and it has
been used until today. Kriging assumes that the underlying function being mod-
eled is a realization of a Gaussian process, characterized by a mean function and a
covariance function. More specifically, from the deterministic response y = f(X)

with X = {X1, ..., XM}T as the M-dimensional input vector, Kriging model consid-
ers a realization of a stationary Gaussian process Y (X) with the following formu-
lation:

Y (X) =
P∑

k=1

akwk(X) + Z(X) (3.3)

where w(X) = {w1(X), w2(X), ..., wP (X)}T are regression functions typically
represented by polynomial functions, a = {a1, ..., aP}T are the regression coeffi-
cients and Z(X) is a Gaussian process. On the one hand, the Kriging model com-
prises the regression part that conveys the data mean trend. On the other hand,
it includes a stationary Gaussian process with zero mean (E[Z(X)] = 0), constant
variance σ2

Y and stationary correlation function Cov[Z(X), Z(X ′)] = σ2
YR(|X −

X ′|, θ), where σ2
Y represents the uncertainty of the statistical inference and the

Gaussian correlation function is used:

R(|X −X ′|, θ) = exp

(
−

M∑
i=1

θi|xi − x′
i|2
)

(3.4)

where θ = {θ1, ..., θM} is the vector of hyper-parameters. The correlation be-
tween x and x′ is primarily determined by their proximity. As the distance between
these points decreases, their similarity increases, leading to a higher correlation.
This implies that predictions made at nearby points will tend to be more alike. The
hyperparameter θi quantifies the influence of the i-th input variable on the model
output. Unimportant variables will have correspondingly small hyperparameter
values.

Under these conditions, it is assumed that the Kriging predictor, denoted as
f̂(x), is a function that estimates the unknown function f(x) at a new input point
x based on observed data points and their corresponding outputs. It is a weighted
average of the observed outputs, where the weights are determined by the spatial
correlation between the observed points and the new point. Mathematically, the
Kriging predictor is expressed as:
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f̂(x) = w(x)Ta+ r(x)TR−1(y − Fa) (3.5)

where w(x)T represents the trend or mean component of the model, r(x)TR−1(y−
Fa) indicates the correlated deviations from the trend, R is the correlation matrix
between observed data points, r(x) is the correlation vector between the new point
and the observed points, y is the vector of observed outputs and F is the matrix
of regression functions w computed at the observed points. The Kriging predictor
also provides an estimate of the prediction error or uncertainty. This uncertainty
estimate is crucial for assessing the reliability of the prediction. The calibration of
the Kriging model is done through the estimation of the hyperparameters θ maxi-
mizing a likelihood function.

The introduction of Kriging permitted a higher flexibility with respect to RSM
to capture higher order non-linearities, deal with irregular data and having a more
precise interpolation method [187]. The main drawback of Kriging with respect
to RSM is that it can be computationally more expensive than RSM, especially for
large datasets.

There are numerous examples of the uses of Kriging in surrogate modeling
in manufacturing. In [188], Kriging method is utilized in the context of three-
dimensional optical surface metrology and its is implemented to address the issue
of invalid data points (artifacts) that arise in surface measurements due to various
factors such as steep edges, material transitions, and environmental influences.
The efficiency of Kriging in structural reliability analysis that involve computa-
tionally intensive FE numerical models is studied in [189], comparing the accuracy
of failure probability predictions using Kriging models against traditional RSM
regression models. The paper in [190] presents a Kriging SMod that establishes
the relation between the input welding process parameters and the bead profiles
in laser brazing, to boost a posterior particle swarm optimization to optimize the
process parameters. In another work, Kriging is applied to predict bend deduction
in sheet metal bending, and acts as a metamodel that offers a simplified represen-
tation of the complex bending process simulation [191].

The rise of ML that has occurred in the first decades of this century has led to
the popularization of ML application in metamodeling, and their reliability and
accuracy have been proved. Both traditional ML techniques such as SVM, RF and
also DNNs (see Section 2.2.1) have gained participation in surrogate modeling and
they have complemented the previously introduced methods of RSM and Kriging.
A ML-based SMod can be defined as a data-driven approximation of a complex
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function or system, constructed using ML algorithms. It learns the underlying
relationship between input parameters and output quantities of interest from a set
of training data, enabling efficient prediction of system behavior without the need
for computationally expensive simulations or experiments.

Formally, given a system represented by the function f : Rm → R
n that maps

the input vector x ∈ R
m to an output vector y ∈ R

n, a ML-based SMods is a predic-
tor f̂ , which approximates this function f̂ : Rm → R

n, where f̂(x) ≈ f(x). In this
case, the predictor is a ML algorithm performing a regression task. Therefore, the
process of constructing a ML-based SMod requires from training and validation
stages that are usually present in the development of ML algorithms:

1. Data: Initially, sufficient and representative training data is necessary for the
ML regressor to perform a training stage and a posterior validation to check
its generalization ability.

2. Loss function: The loss function is a crucial component of the training process
for ML-based SMods. It quantifies the difference between the model predic-
tions and the actual data. The goal of training is to find the model parameters
that minimize the loss function. The choice of the loss function depends on
the problem, the most common ones being MAE and MSE [49].

3. Training the ML model: The training of the model is an optimization proce-
dure aiming to find the model parameters that minimize the loss function.
The optimization algorithms iteratively adjust the parameters based on the
gradients of the loss function with respect to the parameters. Among the
optimization algorithms used to train ML models, some of the most popular
are Stochastic Gradient Descent (SGD) [192] or Adaptive Moment Estimation
(Adam) [193].

4. Validation of the ML model: Validation techniques are used to evaluate the
performance of the trained SMod on unseen data. This helps assess its abil-
ity to generalize to new situations and avoid overfitting. Typical validation
techniques include:

• Hold-out Validation [194]: Splitting the data into training and valida-
tion sets, training the model on the training set and evaluating its per-
formance on the validation set.
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• Cross-Validation [195]: Dividing the data into multiple folds, training
the model on different combinations of folds and averaging the perfor-
mance across folds.

The evaluation of the models is done through the computation of error met-
rics. Error metrics are used to quantify the performance of the SMod. The
choice of metric depends on the specific application and the type of problem.
Common error metrics are MAE, MSE and R2 [49].

Despite they require a certain amount of training data and that they are black-
box models with difficult interpretability, ML-based SMods offer a higher capa-
bility in capturing nonlinear relationships in data than RSM, and they are usually
more efficient than Kriging. They are able to handle a larger number of variables,
they are flexible and adaptable to updates with new data and they very efficient to
deal with large datasets and once trained the outputs are produced in real-time.

These attributes can be found in different works that implement ML-based
SMod in manufacturing processes. In [196], a SMod based on a DNN is trained
to predict the thermal history in wire and arc additive manufacturing using FE
simulations. The trained SMod can accurately predict the temperature history in
cases not used for training in only 38 seconds, compared to 5 hours for the FE
model. A DNN-based SMod is also employed in [197] to quickly predict the wrin-
kling patterns that occur in a biaxial non-crimp fabric layup for any given tool
geometry during forming. The DNN have the flexibility to incorporate various fac-
tors affecting formability and wrinkling within the same model by expanding the
dataset and model inputs. In [198], the development of a DNN that can estimate
the strength of additively manufactured steel based on microstructural images is
described. This DNN that acts as a SMod is a more efficient alternative to tradi-
tional crystal plasticity FE models and it has been trained using a large database of
input-output samples from FE models. A distinct approach is presented in [199],
where a GP model that can predict the probability distributions of the geometri-
cal features is developed from a previous feature engineering based on domain
expertise, which allows them to create a low-dimensional and interpretable repre-
sentation of the cup geometry. The potential of the proposed method to capture
nonlinearities is explicitly highlighted. In [200], a ML-based SMod trained with FE
simulations is used to monitor the quality of thermoplastic composites, predicting
the temperature profile of the composite during manufacturing. The SMods are
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able to find nonlinear correlations between variables and produce real-time out-
puts to control the process, working with a large simulation dataset that includes
all the nodes of the FE mesh. In other works, the combination of ML-SMods with
optimization techniques or inverse design to find the optimal operational parame-
ters is applied to optimize the design of photonic structures [201], the performance
of microchannel heat sinks [202] or the synthesis of lithium-ion battery cathode
materials [203]. Also, focusing on lithium-ion battery cathode, a calculator based
on a NN potential trained on density functional theory data is created in [204]. It
can accurately predict the energy and forces of different cathode materials, allow-
ing for fast and efficient screening of different cathode compositions.

Additionally, several publications are found in literature describing and clas-
sifying surrogate modeling techniques in different application fields. In [205], an
overview of the different types of SMods is provided along with examples of ap-
plications of these models to groundwater modeling. Similarly, the review in [206]
highlights how SMods can improve the phases of building design and it describes
steps for the development of SMods. The work in [207] includes an extensive dis-
cussion of the development of SMods with the objective to be used to perform
a surrogate-based analysis and optimization in aerospace sciences. In [208], a
literature study of the most common SMod algorithms and their applications to
chemical process engineering is performed. Moreover, some recent reviews have
focused on the improvement of the SMods performance considering the tradeoff
between computational time, size and accuracy. For instance, in [176] a practi-
cal guidance for selecting appropriate surrogate modeling methods is presented
and several types of algorithms are discussed, taking into account the mentioned
trade-offs. As well, the review in [209] identifies the most common challenges in
the development of SMods and it describes different strategies that have been used
to overcome these limitations. Finally, the work in [210] has highlighted the value
of the use SMods in the FE computations and the main categories of problems
where they are employed. As commented, models such as FE and CFD play a very
important role in the exploration and understanding the complexity of manufac-
turing systems. The successful application of ML-based SMods to face the compu-
tational and temporal limitations of manufacturing simulations has brought their
identification as an effective solution. Despite the completeness and extension of
the mentioned reviews, they are not specifically centered on manufacturing nor
ML-based SMods. Although some of them propose a generic procedure to recog-
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nize the appropriate method for surrogate modeling, the solutions are specific and
highly dependent on the studied manufacturing use case.

In this scenario, the next chapters of the thesis we extend the theoretical de-
scription of SMods with the support of real manufacturing applications. We de-
scribed the methods in detail, complementing the information provided in this
chapter. By harnessing the capabilities of ML-based SMods, we focus on develop-
ing general methods to generate ML-based SMod that can be applicable to different
manufacturing processes. We validate these general approaches in real manufac-
turing use cases, remarking their advantages and identifying the limitations. In
some cases, we introduce improvements to further enhance the performance of
SMods or broaden their funcionalities.



Chapter 4

Use Cases of the Thesis

In this chapter, our objective is to briefly describe the primary aspects of the manu-
facturing processes we have used for surrogate modeling in the practical applica-
tions of this thesis, addressing the readers who are not familiar with these topics.
Concretely, we have considered the processes of plastic injection moulding, high
pressure die casting and hot stamping, also known as press hardening. It is im-
portant to note that the provided explanation about hot stamping will be extended
during the thesis due to its relevance in the applications of the thesis.

4.1 Plastic Injection Moulding

Plastic injection moulding is the most used manufacturing process for the fabrica-
tion of plastic parts. Plastic is melted using shear and temperature inside a barrel
and afterwards is injected into the mould where it cools and solidifies into the final
part, taking the desired shape [211, 212].

The injection moulding process is divided into four main steps: plastification,
injection, packing and cooling and ejection, represented in Figure 4.1.

In the plasticization step, the process begins with the preparation of the plas-
tic material, which is usually in the form of pellets. These pellets are fed into the
barrel of the injection machine. Then, the mould closes and the plastic is melted in-
side the barrel applying temperature, pressure and shear using a rotational screw.
Once the plastic is completely melted, the injection phase begins, and a shot is car-
ried out injecting a certain amount of plastic at high pressure into a hermetically
sealed mold, which defines the final shape of the part. This mold, usually made of
hardened steel, consists of two halves, one containing the main cavity (where the
plastic is injected) and another creating the external shape of the part.
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Figure 4.1: Representation of the different steps of the injection moulding process.
1. Plasticization. 2. Injection. 3. Packing. 4. Cooling and ejection.

Once the mold is filled, the pressure is maintained for a certain time to ensure
that all cavities are filled correctly and to compensate for the shrinkage of the plas-
tic as it cools. This stage is called as packing, and the pressure applied is usually
known as holding or secondary pressure. Afterwards, the cooling and ejection step
starts. The cooling is done by a cooling system that circulates through the mold,
accelerating the solidification process. When the plastic has cooled sufficiently, the
mould is opened and the part is ejected using an ejection system. Finally, excess
material, such as feed channels or sprues, is removed and the part is ready for use
or to move on to subsequent finishing stages.

Figure 4.2 shows a representative example about how pressure progresses dur-
ing the injection moulding cycle inside the cavity, identifying the previously de-
scribed phases of the process.

Plastic injection moulding is a highly efficient process that allows mass pro-
duction of parts with great precision and repeatability. Automation of the process
contributes to cost reduction and optimisation of production times. However, pre-
cise control of process parameters such as temperature, pressure and cooling time
is essential to ensure part quality [213]. Proper selection of plastic material is also
crucial, as each type of plastic has specific properties that make it suitable for dif-
ferent applications [214].
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Figure 4.2: Example of the evolution of the pressure inside the cavity during the
injection moulding process. The different stages are indicated: 1. Plasticization. 2.
Injection. 3. Packing: 3a. Holding pressure, 3b. Decay. 4. Cooling and ejection.

4.2 High Pressure Die Casting

High Pressure Die Casting (HPDC) is a process in which a molten metallic alloy is
forced under pressure into a locked metal die cavity, where it is held by a powerful
press until the metal solidifies thanks to a set of cooling channels. After solidifi-
cation of the aluminium, the die is opened and the piece ejected. Once the part
is extracted from the cavity, the whole die surface is sprayed with a release agent
to prevent the interaction between molten metal and tool steel. Finally, the die is
closed again for the next cycle [215].

The die filling process is composed of different phases, which are displayed in
Figure 4.3:

1. 1st phase or slow shot phase (prefill): the plunger advances at low speed
until the metal starts to fill the die cavity.

2. 2nd phase or fast shot phase (filling): once the metal reaches the gate of the
die the plunger speed should be sharply increased, between 4 and 10 times.

3. 3rd phase or solidification phase (consolidation): once the die cavity is filled
about 95-98 % of their volume, the plunger reduces its speed and the control-
ling variable is switched from plunger position to pressure, inducing a high
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pressure during the metal solidification process, also induced by the cooling
channels.

4. Ejection of the final solidified part.

Figure 4.3: Representation of the different steps of the HPDC process. 1. Prefill. 2.
Filling. 3. Solidification. 4. Ejection.

HPDC is a versatile and efficient manufacturing process used to produce high-
quality metal parts with complex geometries and tight dimensional tolerances.
This method, which relies on high-speed injection of molten metal into a steel
mold, is widely used in various industries such as automotive [216], electronics
[217] and aerospace [218]. However, it is important to note that HPDC is best
suited for the production of small to medium-sized parts, although recently some
big parts have been done with gigacasting [219], and the cost of manufacturing the
molds can be high, especially for complex designs. Despite these limitations, high-
pressure die casting remains a fundamental manufacturing technique in modern
industry. Its ability to produce high-quality parts quickly and efficiently makes it
an attractive option for a wide range of applications.

4.3 Hot Stamping

Hot stamping, also called press hardening, is a metal forming process where a
steel blank is heated to austenitization temperature (typically over 900 ◦C) and
then transferred to a press where it is formed and quenched in a single step. It
is defined as a "non-isothermal forming process for sheet metals, where forming
and quenching take place in the same forming step" [220]. The main advantage
is the production of lightweight components with complex shape and very high
mechanical properties [221], overcoming the common limitations in the cold form-
ing of Ultra-High Strength Steels (UHSS), such as spring back on the component
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or damage on the tools [222]. Hence, the process of hot stamping is a staple in au-
tomotive lightweight design, being extensively used in safety cage body-in-white
components such as A- and B-pillars.

Hot stamping involves a simultaneous forming and heat treatment, leading to
thermal history of the parts being a key quality indicator: indeed, most of the pro-
cess is designed around the compromise of achieving a successful quench while
minimizing cycle time. These clear-cut aims, combined with the high responsibil-
ity and need for traceability of the parts produced, make hot stamping an interest-
ing use case for digitalization and optimization.

In this use case, we have centered on a popular hot stamping technique called
direct method. It consists in different steps, shown in Figure 4.4. In the first step,
sheet steel blanks are austenitised at a temperature between 900 and 950 ◦C inside
a furnace. Afterwards, an automated system transfers the austenitised blank to a
set of cooled dies, where it is formed in a single stroke while its temperature is ap-
proximately within the 700 and 850 ◦C range (the transfer time decreases the tem-
perature). After forming, the dies are kept close and pressure is applied for a short
period of time (typically 5 to 15 s, depending on the plant characteristics). During
this step, the cooled dies quench the formed component at a cooling rate between
50 to 100 ◦C/s to a temperature of 100-250 ◦C, ensuring full martensitic microstruc-
ture. The finished component is then extracted from the die [223]. Usually, this
process is repeated sequentially several times until the batch size is accomplished.

Figure 4.4: Schematic representation of the direct press hardening method. Source:
Adapted from [224].

The resulting mechanical properties of the final hot stamping components are
induced by the phase transition occurring during the hot stamping process. Ini-
tially, the steel has an austenite microstructure after the the furnace stage. As
displayed in Figure 4.5, a fast cooling rate leads to martensite, which is usually
the desired microstructure for the aforementioned hot stamping applications. The
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principal reason is that martensitic microstructure provides very hard and strong
components that are able to absorb a high quantity of energy without being signif-
icantly deformed. While bainite and ferrite microstructures can be obtained with
slower cooling rates, these phases are generally more ductile and less strong than
martensite, making them suitable for distinct applications.

Figure 4.5: Different steel microstructures depending on the cooling rate during
the hot stamping process.
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Chapter 5

Machine Learning-based Surrogate
Models Approaches in Industry 4.0

Building upon the theoretical foundation of surrogate modeling established in the
previous chapters, in this chapter we delve into the thesis core of boosting the data
generation process through the practical application of Machine Learning-based
Surrogate Models (ML-based SMods) within the context of Industry 4.0. In this
chapter we explore the development and implementation of three distinct SMod
methods applied to real-world manufacturing challenges, including node reduc-
tion in injection moulding, mesh upscaling in HPDC and parameter interpolation
in hot stamping. We introduce each method with a general description and then
we validate it through its application in a specific Industry 4.0 use case.

5.1 Node Reduction

5.1.1 Description of the Method

The node reduction method consists in leveraging SMods to predict relevant vari-
ables in unobserved points within a certain geometric domain. Among the poten-
tial applications of this method, some of the most significant are the optimization
of the sensor placement, the decrease of the mesh size in simulations and the re-
duction the cost of implementing expensive sensors in real processes.

The core concept of node reduction lies in training a SMod on a set of points
within a geometry under different configurations, selecting some points as inputs
and the rest as targets. Then, the SMod is utilized to predict values at the target
points where data acquisition may be expensive or impractical. This approach
reduces the reliance on high-fidelity data acquisition across the entire geometry,
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leading to significant gains in computational efficiency and resource optimization.
A descriptive scheme of the method is displayed in Figure 5.1.

Figure 5.1: Schematic description of the node reduction method for surrogate mod-
eling in a toy geometry.

The node reduction method can be broadly described in the following steps:

1. Data acquisition: Initially, it is required to obtain data from simulations (or
experiments) at a set of points within the geometry under various configura-
tions, boundary conditions, material properties or other relevant parameters
that result in different values of the quantities of interest.

2. Data preparation: Designation of a subset of points as inputs and the re-
maining as target points where the variables of interest will be predicted.
Furthermore, a preprocessing step may be required to prepare the dataset.
The quantities of interest in the input points and other relevant features such
as geometrical coordinates or configuration parameters are included as in-
puts for the SMod and the quantities of interest at the target points as out-
puts. Also, data should be separated into training and test sets containing
different configurations.

3. SMod training: The prepared data is employed to train a suitable ML-based
SMod. This model learns the complex relationship between the considered
points, the geometry, configuration and the quantity of interest.
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4. Prediction and validation of the SMod: The performance of model is evalu-
ated against a separated test set. The unseen configurations are introduced
and only data from the designated input points is available. The trained
SMod predicts the quantity of interest at the target points.

Once the SMod is developed, the posterior implementation in a real system
enable the use its predictions to represent the system behavior with fewer data
points, to evaluate new configurations with minimal computational cost or to esti-
mate quantities at location where direct measurements are difficult.

The node reduction method can be applied to multiple scenarios with a promis-
ing generalization potential. The idea of learning the intricate relationships be-
tween geometry, configurations and quantities of interest can be extended to a
wide spectrum of problems and domains. Among its key advantages, it leads to an
enhancement of data efficiency. By strategically selecting input points and train-
ing the SMod across a range of configurations, the method minimizes the need
for extensive data acquisition for new configurations. This reduction in data re-
quirements translates to significant savings in time, computational resources and
experimental costs, making it particularly attractive for computationally expen-
sive or experimentally challenging scenarios. In real-world systems, this supposes
a reduced need for physical sensors, which can lead to substantial cost savings
and simplified system design. By accurately predicting quantities at unobserved
locations, node reduction allows for effective monitoring and control with fewer
sensor deployments, minimizing the complexity and intrusiveness of the sensing
infrastructure.

Moreover, node reduction provides a considerable boost in computational ef-
ficiency. Evaluating new configurations with the trained SMod is significantly
faster than relying on full-scale simulations or conducting comprehensive exper-
iments. This accelerated evaluation process facilitates rapid exploration of the
design space, enabling more efficient design optimization and analysis. This is
further amplified in simulation contexts where node reduction can allow a signif-
icant mesh coarsening. By accurately predicting quantities at unobserved points,
the method enables the use of coarser meshes without compromising the overall
accuracy of the simulation. This reduction in mesh density leads to substantial
decreases in computational time and memory requirements, making complex sim-
ulations more tractable and efficient.
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5.1.2 Practical Application

We have demonstrated the applicability of the node reduction method in the man-
ufacturing process of plastic injection moulding, presented in Section 4.1. Con-
cretely, in this practical use case, we explore the hybridization of physical phe-
nomenological simulations of the plastic injection moulding process with ML pre-
diction techniques to develop a methodology to increase the simulation efficiency.
The goal of this SMod model is to combine ML predictions with a reduced number
of simulation nodes with the goal of describing a more complete representation
of the system. In the proposed study the best points to simulate in order to ob-
tain a reliable description of the process are identified. Additionally, an adapted
backward selection methodology is used for node selection task.

This practical application of the node reduction method is presented on the
work in [1].

5.1.2.1 Plastic Injection Moulding Simulation

In this use case, the objective is to increase the efficiency of data generation in
plastic injection moulding process. For this reason, simulations of the process
have been performed with the Moldex3D® mold flow analysis commercial soft-
ware [225], based on the FE method. The studied part is a cap injected in a mould
cavity. In Figure 5.2, the geometry of the cap is illustrated. Moreover, nine virtual
or simulated sensors have been displayed in the geometry: SN1 - SN9. The sen-
sors measure the cavity pressure evolution in these nine selected points, since it
has been identified in the literature as one of the most relevant variables for the
quality of the final product [213].

To extend the study to different conditions, several configurations have been
generated changing two parameters of the simulations: the injection speed (v) of
the plastic into the mould and the value of the packing pressure (PP ), as shown
in Table 5.1. These parameters have been modified around their nominal working
values vref and PP ref . The result are 15 configurations representing the condi-
tions of a real-environment. The simulations last in the range of 40 to 50min per
configuration.

The output of the simulations is the evolution of the cavity pressure exerted by
the melted plastic in the nine points where the virtual sensors are located. Initially,
the sampling time in Moldex3D® for the pressure data is different for each sim-
ulated configuration. In order to homogenize them, we apply a resampling each
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(a) (b)

Figure 5.2: Sketch of the cap form different perspectives. The melted plastic enters
through the blue runner. The red dots are the sensed points and the numbers are
used to identify the different pressure sensors.

Table 5.1: Values of the packing pressure (PP ) and the injection speed (v) for the
15 generated configurations. The marked configurations (*) are used for testing.

Configuration PP (MPa) v (mm/s) Configuration PP (MPa) v (mm/s)

conf 1 PPref + 0.1PPref vref conf 9 PPref vref − 6

conf 2* PPref + 0.2PPref vref conf 10 PPref vref − 4

conf 3 PPref + 0.3PPref vref conf 11* PPref vref − 2

conf 4 PPref − 0.1PPref vref conf 12 PPref vref + 2

conf 5* PPref − 0.2PPref vref conf 13 PPref vref + 4

conf 6 PPref − 0.3PPref vref conf 14* PPref vref + 6

conf 7 PPref vref conf 15 PPref vref + 8

conf 8 PPref vref − 8

(a) (b)

Figure 5.3: Pressure evolution in the simulation of the process for all the configu-
rations in (a) SN5 and (b) SN8.
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0.01 s to homogenize all the configurations, obtaining 750 samples per configura-
tion. In Figure 5.3, the pressure evolution behavior is shown for all the different
configurations in two of the sensed points. It is worth noting the heterogeneity of
the results for different sensors and configurations.

5.1.2.2 Experimental Setup and Methodology

In the following, we present the experimental set-up that aims to understand up to
which extend simulation nodes can be replaced with ML predictions. To this end,
two experiments are carried out: An individual assessment of each sensor and a
global assessment for the complete set of sensors. In this practical application, we
adopt a methodology that systematically replaces simulated sensors by predicted
ones by means of a backward search. In particular, the sensors selected for testing
purposes are such that they define the worst case scenario, ensuring that any other
choice would achieve better scores.

Experimental Setup From the nine different simulated sensors, three of them
will be used for assessing the quality of the prediction system. The three selected
target pressure sensors will be predicted using the remaining simulated sensors
data. Additionally, to ensure the generalization of the algorithm on independent
test data, the set of 15 configurations is split in 11 configurations for training and
a 4 configurations for testing (see values in Table 5.1 marked with a star). The
test configurations have been chosen to be intermediate values of the simulation
parameters (injection speed and packing pressure).

To select the target testing sensors, we use the concept of similarity between
the samples of the time series of the pressure sensors. Then, we compute the mean
similarity [226] between the pressure curves of the sensors tsim(X, Y ) as follows,

tsim(X, Y ) =
1

n

n∑
i=1

numSim(xi, yi) (5.1)

where X = x1, ..., xn and Y = y1, ..., y2 are time series of two pressure sen-
sors and numSim(xi, yi) = 1 − |xi−yi|

|xi|+|yi| is the similarity between two samples in the
same instant of time. The operation range of tsim(X, Y ) lies in the interval [0, 1].
tsim(X, Y ) = 1 refers to two identical pressure curves.

Figure 5.4 is the result of computing the mean similarity between the different
sensors averaging for the 4 test configurations. This result drives the selection of
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Figure 5.4: Mean Similarity Matrix averaged over the 4 test configurations. The
spatial regions of the cap can be differentiated in this matrix. The first 5 sensors
are in the superior part of the cap and the last 4 in the lateral.

the less similar sensors for the prediction, with the intention to use non-trivial cases
to validate the presented methodology.

Comparing Figure 5.4 with the localization of the sensors in the cap (Figure 5.2),
we can observe the symmetry relations displayed in the Mean Similarity Matrix
between the sensors SN3 and SN4 and the sensors SN6 and SN7. These sensors
will be discarded for prediction because they will not suppose a difficulty for the
algorithm, that will use the corresponding symmetric sensor to obtain a very good
prediction. The remaining sensors are not symmetric due to the position of the
runner. The three sensors with less similarity are SN5, SN8 and SN9. Due to the
central position of SN5 in the cap, we are interested in the real value of the cavity
pressure in that point. We prefer not to include SN5 in the set of target sensors and
replace it with SN2, which has no symmetries in the cap geometry. Summarizing,
in a first approach, a SMod that predicts the sensors SN2, SN8 and SN9 using the
values of the rest of pressure sensors will be developed. As mentioned, this defines
a worst case scenario.

Backward Selection Methodology Previously, we have defined a set of three tar-
get sensors that will be predicted using the data from the six remaining sensors.
This means that in future simulations six points will still have to be sensed. In
order to minimize the number of sensed points for future simulations and explore
to which extend these can be replaced by ML predictions we propose to use a
methodology based on the technique of backward selection [227].

The technique consists in the elimination of the input features of a ML algo-
rithm, using a metric that allows to decide which feature is the best to drop in a
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greedy manner. Starting from a set of k = 1, ...,M input features and i = 1, ..., L

test configurations, the elimination of features is carried out through the following
iterative process:

1. Use the current number of features M to predict the target.

2. Compute the error metric for each of the test configurations, the Mean Squared
Error (MSE) in our case.

3. For all the k = 1, ...,M current features:

(a) Predict the target without using the feature k.

(b) Compute the error metric for all the test configurations.

(c) Calculate diffM−1,M
i (k), the error difference with and without feature k

for each test configuration as follows,

diffM−1,M
i (k) = MSEM−1

i (k)−MSEM
i (5.2)

(d) Perform the weighted average tMconf (k) described in the following Equa-
tion 5.3 of the differences over the test configurations for the eliminated
feature k.

tMconf (k) =
L∑
i=1

ci(k) diff
M−1,M
i (k) (5.3)

where ci(k) =
MSEM

i∑L
j=1 MSEM

j

4. Select the smaller value of tMconf (k) and drop the corresponding feature k.

5. Repeat the process with the new set of features of size M = M − 1.

The process ends when the number of desired features is reached or when the
error overcomes a given threshold. Observe that the value of diffM−1,M

i (k) may
be negative if the elimination of the feature k improves the prediction algorithm
performance. The proposed methodology takes into account the value of error
metric for each test configuration to decide which is the best feature to drop, since
it is preferable to optimize the predictions of the configurations that have a higher
error.
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(a) (b) (c)

Figure 5.5: Average Mean Squared Error (MSE) of a 10-Fold CV for algorithm com-
parison between LR, KNN, RF and GradBoost. Target predicted sensor: (a) SN2.
(b) SN8. (c) SN9.

5.1.2.3 Results and Discussion

Baseline Prediction Results The reduction of the sensed points is realized with
a ML-based SMod which is based on regression algorithm that uses as input data
coming from a few locations to predict the rest of the points. Before that, we per-
form an algorithm comparison in order to know the prediction capability of some
regression algorithms to all the available data. Therefore, we will randomly merge
the data from all the configurations, obtaining a dataset composed by 750 × 15

samples and 9 features. Selecting a target sensor to predict and using all the others
for training, we will implement a 10-Fold Cross-Validation (CV) [195] to choose a
candidate algorithm.

Figure 5.5, shows the error performance comparison of four different regression
techniques applied to the complete dataset. RF [228] achieves a lower error rate
and will be used for the rest of the experiments as the regression algorithm of the
SMod.

Individual Sensor Reduction Assessment The purpose of this study is to demon-
strate the feasibility of achieving an important reduction of the number of sensed
points without having a high impact in the prediction error. As explained in the ex-
perimental setup section, we will reduce the number input sensors used to predict
the set of three target sensors, by applying the backward selection methodology
presented in Section 5.1.2.2.

The different steps of the backward selection process are displayed in Figure
5.6, where the MSE for each test configuration is represented when we eliminate
the input sensors. The curve of reference MSE does not suffer a relevant variation
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(a) (b)

(c) (d)

Figure 5.6: MSE in test configurations for target SN9. The black curve indicates the
reference MSE from the previous step of the elimination process and the colored
curves indicate the MSE with the drop of one of the sensors. (a) 5 sensor selection.
(b) 4 sensor selection. (c) 3 sensor selection. (d) 2 sensor selection.

during the stages of the process, meaning that the prediction capability of the algo-
rithm remains despite the discarded sensors. It refers to the MSE computed with
M sensed points and it is used to evaluate the predictions with M−1 sensed points
through the use of Equation 5.3.

Figure 5.7 shows the result of the selection process for each one of the target
sensors. The evolution of the mean MSE of the 4 test configurations allows to
identify a threshold in three input sensors. Below this threshold, the use of less
input sensors induces the error metric to start having a relevant increase. By in-
specting these values, Table 5.2 shows the three best input sensors for individually
predicting each target sensor.

Table 5.2: Best input sensors for the corresponding target sensors.

Target sensor SN2 SN8 SN9

Best input sensors SN1, SN3, SN6 SN6, SN1, SN5 SN6, SN4, SN1
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(a) (b) (c)

Figure 5.7: Evolution of the mean and the standard deviation over configurations
with the number of input sensors used in the prediction. (a) SN2. (b) SN8. (c) SN9.

Global Sensor Reduction Assessment The last results open the possibility of re-
ducing the number of sensed points, showing that each individual sensor can be
predicted using 3 sensed points without a relevant effect in the error. However,
the results show that different nodes require of different sensors for a good perfor-
mance. In this subsection we consider whether a small common set of sensors may
suffice for predicting all targets.

In order to do so, we will select the most repeated input sensors to predict all
the target sensors. With the information of Table 5.2, we can identify that SN1 and
SN6 are important for the prediction of the 3 target sensors. Additionally, we will
choose the SN5, since it has a central position in the cap geometry (Figure 5.2).
Accordingly, the final set of input sensors is formed by SN1, SN5 and SN6.

The defined final set of input sensors is used to predict the pressure of the tar-
get sensors. In Figure 5.8, the error metric MSE is compared when the prediction is
done with 6 or 3 input sensors. If we use the individual set of 3 sensors of Table 5.2,
we achieve a decrease of the error in most of the cases. Elseways, the use of the
common set of sensors leads to a higher prediction error, but it allows to reduce
the number of sensed points in the simulations. Moreover, the common set of sen-
sors is not only able to predict the target sensors but also it yield good predictions
for all the remaining sensors that the methodology has discarded. Figure 5.8d
shows these results and it demonstrates the generalization capability of the pro-
posed methodology. This remarks that, in the framework of industrial problems,
it can be useful to include expertise knowledge combined with AI tools to help the
global system performance, as shown including SN5 in the common set of input
sensors.

As a final result, Figure 5.9 shows simulated and predicted pressure curves of
the target sensors for a certain configuration. As observed in Figure 5.8, the vari-
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(a) (b)

(c) (d)

Figure 5.8: MSE comparison using 6 input sensors, the final set of 3 input sensors
or the best 3 selected sensors for each individual target sensor. Target sensor: (a)
SN2. (b) SN8. (c) SN9. (d) MSE of the prediction of the sensors SN3, SN4 and SN7
as target with the selected set of 3 input sensors.
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(a) (b) (c)

Figure 5.9: Comparison example between the simulated and the predicted tempo-
ral evolution of the pressure using the 3 selected input sensors. (a) Target SN2,
conf 14. (b) Target SN8, conf 2. (c) Target SN9, conf 5.

ability of the accuracy of the prediction is highly dependent on the target sensor
and the test configuration. Figure 5.9c shows the worst case prediction. Regardless
of not being a perfect prediction, some relevant features of the injection moulding
process such as the maximum value of the curve or the duration of the different
stages are correctly characterized [213]. This result is of high importance as in
manufacturing processes, the control a few relevant process variables is enough to
determine the global performance of the system.

5.1.2.4 Insights from Node Reduction Surrogate Model in Plastic Injection Mould-
ing

This application case investigated the potential of integrating simulations with
ML predictions through a SMod, specifically implemented in the plastic injection
molding process. The primary objective was to enhance efficiency in the simu-
lation process by strategically reducing the number of sensor nodes required to
generate accurate predictions.

The key takeaway from this investigation is the successful demonstration that
sensor nodes can be effectively replaced by predicted values using a minimal set
of real simulated data. This approach proves robust even when process parame-
ters deviate from those used in the training dataset, highlighting the generalization
capability of the SMod. While reducing sensed nodes might occasionally lead to
less accurate predictions in specific configurations, the critical process variable val-
ues such as maximum pressure and timing of process stages remain reliably pre-
served. This is crucial because these values heavily influence the overall system
performance.

Our findings strongly suggest that ML-based SMods, particularly through the
node reduction method, can significantly streamline data acquisition and analysis
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in manufacturing processes. Moreover, they can provide insightful recommenda-
tions on the sensorization of real processes. This aligns with the broader theme
of this thesis, which emphasizes the value of SMods in Industry 4.0 settings. By
reducing the reliance on extensive simulations and physical sensors, node reduc-
tion offers a pathway to more efficient and cost-effective process optimization and
control.

This real-world application showcased several significant advantages of the
node reduction approach. The investigation successfully reduced the number of
simulated sensors required, highlighting the potential for significant cost savings
in real-world manufacturing processes by minimizing the number of physical sen-
sors needed. The method also allowed for the generation of accurate predictions
with a reduced number of nodes, leading to faster data acquisition and analysis,
which can improve the overall efficiency of manufacturing processes by decreasing
simulation times through the use of coarser meshes. Finally, despite using fewer
sensor nodes, the SMod created using the node reduction method maintained the
accuracy of critical process variable predictions, ensuring reliable process monitor-
ing and control.

The node reduction method is a promising approach for improving the effi-
ciency and accuracy of manufacturing processes. The method has the potential to
be applied to a wide range of industrial scenarios.
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5.2 Mesh Upscaling

5.2.1 Description of the Method

The mesh upscaling method is based on the implementation of SMod to enhance
the accuracy of simulations performed on coarse meshes. In many engineering
and scientific applications, simulations involving complex geometries or intricate
physical phenomena necessitate the use of fine meshes to achieve accurate results.
However, there is a direct relation between the number of mesh elements and the
computational resources and time required for the simulation. Mesh upscaling ad-
dresses this challenge by utilizing SMods to bridge the gap between coarse and
fine mesh simulations, enabling accurate predictions while reducing the computa-
tional burden.

The fundamental idea of the method involves training a SMod on data gener-
ated from both coarse and fine mesh simulations, employing the same configura-
tions and parameters but changing the mesh. Then, the SMod is able to learn the
inner relationship between the quantities of interest obtained from the two mesh
resolutions. Afterwards, once trained, the aim of the SMod is to predict the fine
mesh solution based on the coarse mesh simulation results, effectively "upscaling"
the coarse mesh solution to the desired accuracy. Hence, the main benefit of the
proposed surrogate modeling approach is that permits to obtain high accuracy re-
sults through low-cost coarse mesh simulations, directly contributing to the thesis
objective of accelerating data generation in industrial environments. An illustra-
tive pipeline of the mesh upscaling method is shown in Figure 5.10.

The general pipeline of the mesh upscaling method is comprised in these dif-
ferent stages:

1. Multi-resolution data acquisition: At the first stage, simulations on both coarse
and fine meshes are conducted for a set of configurations. In general, it exists
a gap between the coarse and mesh results and a huge difference in compu-
tational efficiency. The fine mesh simulations serve as the ground truth for
the SMod.

2. Data preparation: Extraction of the relevant quantities of interest from both
coarse and fine mesh simulation results. These quantities could include phys-
ical measurements, derived quantities or any other relevant output variables.
After, organize the data into a training dataset, where the input features are
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(a)

(b)

Figure 5.10: Schematic description of the mesh upscaling method pipeline. (a)
SMod training stage. (b) SMod prediction and validation stage.

the quantities of interest obtained from the coarse mesh simulations and the
output targets are the corresponding quantities from the fine mesh simula-
tions.

3. SMod training: The constructed dataset is utilized to train a ML-based SMod
that learns the mapping between the coarse and fine mesh simulations.

4. Prediction and validation of the SMod: To assess the accuracy of the trained
SMod, test data containing an unseen configurations is selected. Then, simu-
lations using the coarse mesh for these unseen configurations are performed.
Next, the created SMod is utilized to predict the fine mesh solution based on
the coarse mesh simulation results and the predictions are compared with
the ground truth full-scale fine mesh simulations.

The posterior application of the resulting SMod supposes an important boost
of the simulation time, the design phase and the fast analysis of a manufacturing
process, since it permits to obtain fast accurate predictions for new configurations
without the need of computationally expensive fine mesh simulations and opti-
mize the exploration of design parameters using upscaled coarse mesh solutions.
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Due to the wide range of processes that use meshes in their simulation mod-
els, the mesh upscaling method is a very versatile option for building SMods of
different industrial applications. The method fulfills the aim reducing the compu-
tational burden in the simulation of complex manufacturing processes, achieved
thanks to a significant reduction of full-scale fine mesh simulations. Instead, using
less precise but faster simulations as a baseline, SMods are able to predict accu-
rately the values of interest of the system for new scenarios. Actually, the apported
benefits are similar than the node reduction method (see Section 5.1.1), but facing
the problem from a different angle. These advantages include more efficient data
generation, exploration and the diminish of the computational and time impact of
the simulations. The current approach is more centered to be applied directly to
simulation models, while the node reduction method can also be implemented in
real-world scenarios.
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5.2.2 Practical Application

Following the introduction of the mesh upscaling method in the previous section,
we now explore its practical potential through an implementation in the HPDC
process (described in Section 4.2). In particular, we test the method developing
a ML-based SMod for HPDC simulations. The objective is to leverage a simpli-
fied and more efficient simulation model as a baseline for exploring the HPDC
system, thereby significantly reducing computational costs and accelerating anal-
ysis. A ML-based SMod of HPDC simulations is created to correct the results of
this low-fidelity simulation model, bringing the outputs closer to the ground truth
obtained from high-fidelity simulations. This translates to a substantial acceler-
ation in simulation time, enabling faster analysis and exploration of the HPDC
process compared to the computationally expensive, high-fidelity model. In fact,
this study has been realized with the final goal that the resulting ML-based SMod
can support a DT of the HPDC process, boosting the response of the virtual part of
the DT, as explained in [5].

5.2.2.1 High Pressure Die Casting Simulation

Characterization The current use case focus on reducing the temporal impact of
the high-fidelity HPDC simulations. A numerical simulation model has been built
using Altair® InspireTM Cast [229], a specific software to simulate metal injection
processes in liquid phase. It allows to obtain results during all the stages of the
HPDC process: the prefill, the filling process of the die and the posterior metal
solidification to get the profile of the final part.

The studied part is a tray of the AlSi10MgMn alloy, which geometry is displayed
in Figure 5.11. The principal process parameters considered in the current simula-
tion model are:

• Initial temperature of the die (Tdie): It is the temperature of the die when the
process starts.

• Initial temperature of the metal (Tmetal): It refers to the temperature of the
liquid metal at the start of the process.

• 1st phase velocity (v1): Plunger initial speed until the metal starts to fill the
die cavity.
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• 2nd phase velocity (v2): Plunger second speed, which is sharply increased
with respect to v1 when the metal starts to fill the die cavity.

Besides, the output of the simulation model and our quantity of interest is the
temperature in the geometry of the part. Concretely, in the simulation model, we
created 678 virtual sensors distributed in the geometry of the part and the die.
Therefore, the simulation reproduces the temperature in these virtual sensors dur-
ing the filling and solidification phases. The nomenclature used for the output
temperatures is Ti, where i = 1, ..., 678.

Figure 5.11: Geometry of the simulated part. The cooling channels, the mould
and the entrance of the metal are indicated along with the most relevant process
parameters (Tdie, Tmetal, v1 and v2.)

Finally, the simulations are separated in two phases: the filling phase, which
includes the 1st (prefill) and 2nd (filling) stages explained in Section 4.2; and the
solidification phase, which comprises the 3rd (consolidation) stage.

Study of the Mesh Sensitivity Numerical simulation models require designing
the system to be characterized, as well as defining all its properties and the calcula-
tion mesh using appropriate simulation software. The mesh size is a determining
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parameter in the final quality of the result and in the computation time. The finer
the mesh, the higher the accuracy, but also the longer the computation time.

To quantify this tradeoff between simulation time (or mesh density) and ac-
curacy, a mesh sensitivity study has been carried out. The results presented in
Figure 5.12, show that for this system the element size plays a fundamental role in
the computation time and also in the accuracy of the results obtained. on the upper
side, a comparison between the different meshes can be observed, where the lack
of precision of the coarser meshes with respect to the fine one is reflected in the
value of the temperatures of the part and the mold at specific instants of time. In
the lower part of the figure, we can see the remarkable time reduction that using
a coarser mesh implies. Moreover, an important difference is noticed in the evolu-
tion of the temperature of a given virtual sensor depending on the mesh used, as
highlighted in Figure 5.13.

Figure 5.12: Study of the mesh sensivity.
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Figure 5.13: Temperature evolution evaluated in a given point T33 of the part for the
differents mesh densities shown in Figure 5.12. (a) Filling phase. (b) Solidification
phase.

5.2.2.2 Construction of the ML-based SMod

Methodology As observed in Figure 5.12, the size and number of elements used
in numerical simulations have a significant impact on the time and accuracy of
the simulations. Consequently, there is a trade-off between simulation speed and
accuracy.

As mentioned, the final goal of this practical application is to integrate the fi-
nal ML-based SMod into a DT of the HPDC process. Hence, regarding DTs, it is
essential for the model response to be fast in order to know the current behavior
in real-time, or at least, in the shortest possible time. In addition, a fast response
favors the exploration of different scenarios through simulations in order to apply
corrective measures if necessary. Unfortunately, we have checked that the simula-
tion model offering the fastest calculation speed is the least accurate.

The simulation model reproduces the temperature and pressure values at 678
points in the mold geometry during the filling and solidification processes, and as
shown in Figure 5.13, there are significant differences in the accuracy of the results
between the fine mesh (the most accurate) and the medium and coarse meshes (the
least accurate) in both filling and solidification phases.

To solve this problem, a ML-based SMod is proposed, with the aim of improv-
ing the accuracy provided by the simulation model while giving a fast response.

The SMod is based on several SL models, specifically regressors, which are ca-
pable of predicting the temperatures curves at the 678 points of the geometry with



5.2. MESH UPSCALING 77

an accuracy similar to that of the fine mesh, using as inputs the values obtained
with the simulations made with the coarse mesh.

In this way, ML models are trained using a dataset consisting of simulation data
within a defined range of parameters. These simulations are performed using the
coarse mesh as input data and the fine mesh as data to be predicted for each of the
parameter configurations.

In Figure 5.14 we can see how the training of the ML models that form the SMod
works in order to predict the evolution of temperature over time, as desired. For
each of the 678 virtual sensors displayed in the geometry, the models use the speed
configuration, time and temperature of same point in the coarse mesh simulation
as input. The target variable to be predicted is the temperature given by the fine
mesh simulation. In this way, the SMod comprises 678 regressors to predict the
temperature of each virtual sensor.

Figure 5.14: Schematic representation of the training process of the SMod to predict
Ti.

Dataset Generation The simulations that form the training dataset have been
chosen with the objective that the models can interpolate and predict results for
unseen parameter configurations. The parameters that are modified are the 1st
phase speed and the 2nd phase speed, since both time and temperature are results
of the simulation itself. On the one hand, Table 5.3 displays the ranges of the
velocities in the considered HPDC process, which have been defined based on
the limitations of a real HPDC machine. On the other hand, Tdie and Tmetal are
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considered constant in this study. Additionally, a test dataset has been used to
evaluate the models on new configurations.

The configurations used in the simulations that form these datasets are pre-
sented in Table 5.3 and Table 5.4. It is expected that the variability of v1 and v2

in the training set is enough to enable the SMod to cover the entire configuration
domain.

Table 5.3: Range of values of the velocities in the simulations.

Experiments

v1 (m/s) 0.3− 0.5
v2 (m/s) 1.5− 2.5

Table 5.4: Values of the velocities in the 15 configurations comprising the training
dataset

Sim. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v1

(m/s)
0.3 0.35 0.4 0.45 0.5 0.3 0.35 0.4 0.45 0.5 0.3 0.35 0.4 0.45 0.5

v2

(m/s)
1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5

Table 5.5: Range of values of the velocities in the simulations.

Sim. 1 2

v1 (m/s) 0.37 0.42
v2 (m/s) 2.3 1.8

Generating these two datasets required approximately 8 days of simulation
time, ≈ (650 min + 11 min) ×17 simulations.

5.2.2.3 Results and Discussion

Model Choice To decide which type of regressor will be used for the ML learning
models that compose the SMod, we have performed 5-Fold Cross-Validation [195],
which allows us to evaluate the performance of several regression algorithms us-
ing data from the training set.

In Figure 5.15, the negative MAE (Mean Absolute Error) values of the different
regression algorithms after the 5-Fold Cross Validation are represented. The MAE
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Figure 5.15: 5-Fold CV to evaluate 4 different regressions for the prediction of Ti.

is used as a metric to choose which is the best model. As a conclusion, the RF is
established as the regression algorithm that will be used, since it is the one that has
obtained the best metric.

Surrogate Model Performance Once the ML models are trained using the train-
ing dataset, the performance of the SMod is evaluated on the test dataset. The
results exposed in Figure 5.16 prove that the implementation of the SMod sup-
posed a decrease of the error done by the coarse mesh simulations. Concretely,
the computation of the average of the MAE along the 678 virtual sensors results
in MAESMod = 1.01 K and MAECoarse = 3.82 K. Therefore, the SMod reduces a
factor of 3.7 the MAE of the coarse mesh simulations. This improvement can also
be observed in Figure 5.17, where the comparison between the SMod prediction of
a temperature curve for a specific point T33 and the simulated curve using the fine
and the coarse mesh.

The fine mesh simulations for the test dataset required approximately 1300 min
to run, while the SMod generated results in approximately 5.5 min. Including the
22 min required for the coarse mesh simulations, which serve as input to the SMod,
the total time is approximately 27.5 min. This demonstrates that implementing a
ML-based SMod can significantly reduce the computational expense while main-
taining the accuracy of fine mesh simulations.
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Figure 5.16: Comparison of MAE of the SMod prediction on the test dataset against
the coarse mesh simulation results for all the 678 virtual sensors.
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Figure 5.17: Comparison of the predictions of the SMod and the simulations of the
coarse and fine mesh of the temperature evolution evaluated in a given point T33

of the part. The displayed case correspond to the test dataset (v1 = 0.37, v2 = 2.3).
(a) Filling phase. (b) Solidification phase.

5.2.2.4 Insights from Mesh Upscaling Surrogate Model in High Pressure Die
Casting

The current application case successfully demonstrated the effectiveness of the
mesh upscaling method in the context of the HPDC process. By leveraging a SMod
trained on data from both coarse and fine mesh simulations, the method enabled
accurate predictions of quantities of interest while significantly reducing compu-
tational time. This approach has the potential to boost simulation workflows in in-
dustrial settings, allowing for faster analysis, design optimization and exploration.

The key insights gained from applying the mesh upscaling method for sur-
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rogate modeling in this case study include improvements in computational effi-
ciency, accuracy, generalization and applicability. In particular, the method has
proven to be an effective approach to diminish the mesh density and the simu-
lation time while keeping the accuracy. The method generates a SMod able to
correct the results given by a coarse mesh into high-fidelity results provided by
fine mesh simulations. This is a crucial advantage in industrial scenarios, where
fast response times are essential for real-time decision-making and computational
resources are often limited. In this sense, the created SMod has shown the ability
to generalize to unseen configurations, indicating its potential applicability across
a range of scenarios within the HPDC process, enhancing then the exploration of
various operation conditions and design parameters.

The successful implementation of mesh upscaling in the HPDC process show-
cases its practical relevance and potential for adoption in real-world industrial set-
tings. This is aligned with the thesis goal of bridging the gap between theoretical
surrogate modeling techniques and their practical applications in manufacturing,
driven by the aim of accelerating data generation and analysis in manufacturing
processes.

Finally, as mentioned, the generated SMod have been used to support the im-
plementation of a DT for the HPDC process [5].
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5.3 Parameter Interpolation

5.3.1 Description of the Method

This section introduces a surrogate modeling technique called parameter interpo-
lation, which aims to construct SMods that efficiently predict simulation results
across a wide range of parameter values. In many engineering and scientific appli-
cations, exploring the impact of different parameters on a system behavior often
requires numerous simulations which, added to the curse of dimensionality prob-
lem, can be computationally expensive and time-consuming. Parameter interpo-
lation addresses this challenge by utilizing SMods to approximate the relationship
between parameter values and simulation outputs, enabling rapid and efficient
exploration of the parameter space.

The parameter interpolation is based on the concept of training a SMod on a
limited set of simulation data generated at specific parameter values within the
domain of interest. The SMod learns the underlying relationship between the
input parameters and the corresponding simulation outputs. Once trained, the
SMod can predict the simulation results for any combination of parameter values
within the domain, effectively interpolating the system behavior across the param-
eter space. A descriptive representation of the parameter interpolation method is
depicted in Figure 5.18.

The generation of SMods through parameter interpolation relies on the follow-
ing steps:

1. Data acquisition: A set of representative configurations within the domain of
interest are selected. The idea is that the input parameters of the simulation
form a domain of configurations limited by their ranges of values. After-
wards, the selected configurations are simulated through numerical models
and the output quantities of interest are obtained.

2. Data preparation: The data acquired from the simulations is processed and
organized to feed the posterior SMod training. The input features are the
parameter values such as initial conditions, material properties, process time,
among others, and the outputs are the simulation results, like temperatures,
pressures, deformations, etc.



5.3. PARAMETER INTERPOLATION 83

Figure 5.18: Descriptive flowchart of the parameter interpolation method for sur-
rogate modeling.

3. SMod training: The processed data is used to train a ML-based SMod that
learns to map the input parameters to the outputs of interest from the simu-
lation results.

4. Prediction an validation of the SMod: A set of unseen parameter values
within the domain are chosen. Then, the trained SMod is employed to predict
the outputs of these unseen configurations and the performance of the SMod
is assessed comparing the predicted values with the simulation results.

The generated SMod can be utilized to efficiently explore the parameter space,
predicting the system behavior for the whole domain of configurations without the
need of computationally expensive simulations. This addresses a very important
problem of manufacturing processes, which is the difficulty to generate data in a
fast and sustainable way. By enabling rapid exploration of the parameter space,
the method accelerates the process of gathering knowledge of the process and the
impact of the parameter variations, opening the possibility of design optimization,
process control and sensitivity analysis of the different parameters.
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Again, the advantages of the method are analogous than the other presented
methods and they follow the main objectives of this thesis dissertation, such as ac-
celerated data generation, efficient and rapid prediction capabilities and reduction
of the time and computational resources. However, it is important to highlight
the fast response capability of the parameter interpolation method once the SMod
model is trained. Unlike the previous methods, which might require additional
data like geometry information or coarse mesh simulation results, parameter in-
terpolation relies solely on the input parameter values. This independence democ-
ratize its application, making it a generic approach particularly well-suited for a
wide of applications.
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5.3.2 Practical Application

The digitalization of manufacturing processes offers great potential in quality con-
trol, traceability and the planning and setup of production. In this regard, process
simulation is a well known technology and a key step in the design of manufac-
turing processes. However, process simulations are computationally and time-
expensive, typically beyond the manufacturing-cycle time, severely limiting their
usefulness in real-time process control. ML-based SMods can overcome these
drawbacks, and offer the possibility to achieve a soft real-time response, which
can be potentially developed into full close-loop manufacturing systems, at a com-
putational cost that can be realistically implemented in an industrial setting. In
this application case we explore the parameter interpolation method to build a
SMod to analyze the case of the hot stamping of a steel sheet of 22MnB5. This hot
sheet metal forming process involves a crucial heat treatment step, directly related
to the final part quality. Given its common use in high-responsibility automobile
parts, this process is an interesting candidate for digitalization in order to ensure
production quality and traceability. We present a comparison of different data and
model training strategies. We perform FE simulations for a transient heat transfer
analysis with ABAQUS software [230] and we use them for the training data gener-
ation to effectively implement a ML-based SMod capable of predicting key process
outputs for entire batch productions. The resulting final surrogate predicts the be-
havior and evolution of the most important temperature variables of the process
in a wide range of scenarios, with a mean absolute error around 3 ◦C, but reduc-
ing the time four orders of magnitude with respect to the simulations. Moreover,
the methodology presented is not only relevant for manufacturing purposes, but
can be a technology enabler for advanced systems, such as DTs and autonomous
process control with RL.

This practical application of the parameter interpolation method is presented
on the work in [2].

5.3.2.1 Introduction

As previously discussed during this thesis the generation and accessibility of pro-
cess data and its posterior treatment are crucial for gathering knowledge, optimiz-
ing and develop more advanced solutions in manufacturing processes. The possi-
bility of performing real experiments of the processes to acquire data is often un-
feasible, since they are costly and imply the waste of raw materials. In this context,
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manufacturing simulations, mainly finite element modeling, are the main source
of data and knowledge without perturbing the real manufacturing system [26].
Simulations enable the exploration of new scenarios and configurations, as well as
the modification of the experimental conditions.

In the specific case of press hardening, or hot stamping, FE modeling is a ma-
ture technology, commonly used in this type of industrial process. The applica-
tion of FE modeling in hot stamping has been in widespread use since the early
2000s [231], and has steadily evolved to capture complex aspects such as thermal
and mechanical interactions [231], plastic flows at different temperatures [232] and
eventually phase transformations and the behavior of different microconstituents [233].
Currently, the simulation of hot stamping can be readily performed with commer-
cial software [234] with industrially relevant results. However, despite their obvi-
ous advantage in front of real-world experiments, simulations are still a complex
and time-intensive tool that cannot be realistically run in real time or used to gen-
erate very large libraries of data. In the previous Chapter 2 and 3 the problem
of this inefficient data generation have been highlighted along with the limitation
that it suppose for the development of technologies such as DTs or RL in industrial
settings.

To overcome the mentioned limitations of the manufacturing simulations, it is
possible to combine simulations and ML in a hybrid approach to build a highly
efficient model which acts as a SMod of the simulations. Despite the simplicity
of the model, the response is helpful for the understanding and the optimization
of the process. Usually, in manufacturing, with a few relevant variables, it is pos-
sible to evaluate the performance of the manufacturing system through the key
performance indicators (KPIs).

The possibility of implementing ML to process control in hot stamping has
been proposed in the literature and specialized fora, with different approaches
being considered [235–237]. The basic common ground tends to heavily lean into
monitoring process temperature at different points, thus ensuring that the heat
treatment and final part properties are controlled. Differently, the current appli-
cation presents a novel approach to built a data-driven SMod of the hot stamping
process of the UHSS 22MnB5. The aim is to demonstrate the model validity to pre-
dict the performance of a simplified hot stamping process reproduced in a finite
element modeling environment, offering a much faster response than in the simu-
lations. The model analyses a problem where an austenitized piece of sheet steel
is quenched using water-cooled steel dies, reproducing the experimental setup of
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a real industrial plant described in reference [238]. The SMod focuses on the pre-
diction of the most relevant target variables for the process, which determine the
quality of the obtained sheet and the state of the hot stamping die.

The model consists of a supervised ML algorithm, which establishes relation-
ships between the input variables of the process and the target variables. The train-
ing of the model is performed with a series of FE simulations performed inside
a pre-defined parameter space. Concretely, two training methodologies are pro-
posed: one built with simulations inside the typical operation framework and the
other covering non-standard cases. Another purpose of the use case is to propose
an efficient method to train the SMod in order to achieve the maximum general-
ization capability in the validation process. The validation scenarios are defined
by adjusting the parameters to the facilities of the real industrial plants, but also
with the capability to explore new operation possibilities towards dynamic process
optimization. The results show that the SMod trained with non-standard cases is
more suitable for the prediction in all the evaluated scenarios and it can be opti-
mized with the objective to reduce the number of FE simulations required in the
training phase. The key advantages of the SModing of the hot stamping process is
that it provides a soft real-time response of the target variables of the process and
enables the creation of time- and cost-efficient virtual environments for knowl-
edge collection, overcoming the time and computational limitations of traditional
FE simulations.

5.3.2.2 Simulations and Surrogate Modeling Methods

Hot Stamping Process In this use case, a simplified hot stamping process is ana-
lyzed by finite element modeling (FEM) using the ABAQUS software [230], based
on the experimental layout discussed in reference [238]. The reproduced setup
consists of a flat water-cooled die made out of steel DIN 1.2344 (roughly corre-
sponding to AISI H13) tempered at 48 ± 1 HRC, with water channels 10 mm in
diameter and located at 20 mm depth from the surface, with a separation of 50 mm
between centers. On these tools, an austenitized 22MnB5 sheet 1.7 mm in thickness
is introduced, and the dies are closed, resulting in the component being quenched.
The chemical composition of the two materials is presented in Table 5.6.

Simulation 2D models have been created with a focus on economy of calcula-
tion, as the main aim of the study is to generate a very large amount of simulations
to train and demonstrate the SMods capabilities. Transient heat transfer analysis
is realized with a model meshed with four-node linear quadrilateral elements and
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Table 5.6: Typical chemical composition in % of 22MnB5 sheet steel and 1.2344
tool steel.

Element C Si Mn Cr B Mo V

22MnB5 0.20–0.25 0.15–0.35 1.1–1.4 0.15–0.30 0.002–0.004
1.2344 0.39 1.00 5.40 1.35 1.00

using a slightly higher mesh density in contact boundary regions. Quadrilateral-
shaped elements have been used instead of triangular to reduce the number of
nodes involved in the model, consequently reducing the computational cost. A to-
tal of 783 elements and 995 nodes has been used to represent a transversal cut of the
sheet and the die during the process, using the system symmetry to further sim-
plify geometry, as shown in Figure 5.19. Plastic deformation and phase changes are
not considered, reducing the scenario to a heat transfer problem representative of
a local analysis of quenching of a press-hardened component. For the same reason,
strategies to increase precision of results such as local mesh refinement are not em-
ployed, instead performing the whole batch of simulations using the basic-defined
mesh.

For this model, the main material properties simulated have been density, es-
timated at 7800 kg/m3 for both steels and heat conductivity, where values of 23
W/m·K for 22MnB5 steel and 27 W/m·K for 1.2344 have been used in accordance
to references [232, 239]. Thermal contact conductance between dies and sheet
metal has been set at 3000 W/m2·K, as used in reference [220]. A boundary film
condition has been applied on inner surfaces of die cooling channels. A 12000
W/m2·K heat transfer coefficient and 25 ◦C of sink temperature were used regard-
ing the turbulent flow of a water-cooled system, created with drilled channels.

Using this model, a series of heat transfer transient simulations are run sequen-
tially. Then, the die temperature changes along the cycles. The initial die tempera-
ture is set to to 25 ◦C; from that point, each cycle uses the temperature distribution
on the die resulting from the previous simulation. In this manner, die heating
is reproduced in the simulation model as it is observed in the physical system.
On each cycle, a new sheet is considered, with an initial temperature of 800 ◦C,
a reasonable estimation of an industrial hot stamping process. A cycle simulation
comprises two phases:

1. Forming phase: It represents the stage when the die is closed and there is a
heat transfer between the hot sheet and the cold die: this phase is governed
by the forming time;
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2. Cooling phase: The sheet has already been extracted. It includes the recovery
of the die after the forming phase and the transfer of the next metal sheet in
the die. This phase is governed by the cooling time.

(a) (b)

Figure 5.19: Representation of the mesh temperature profile in ABAQUS. Both the
sensor of the sheet and the one of the die are highlighted in yellow. (a) Initial state.
The hot sheet is displayed in red and the cold die in blue. (b) State after a forming
phase. The temperature in the superior region of the mesh is similar between the
sheet and the mesh and this makes difficult to differentiate the two parts.

Despite Figure 5.19, where the distribution of all the node temperatures is dis-
played, two nodes are taken as a reference for the sheet and die temperatures dur-
ing the process. In Figure 5.20a, the location of these nodes in the mesh is indicated
and it corresponds to the position of real sensors. As a result, the simulations al-
low to control the temperature of the sheet and the die of the hot stamping process
from a similar point of view to the industrial plant. The behavior of the reference
nodes in an example simulation cycle is shown in Figure 5.20b.

The hot stamping simulations demand some input values that are restricted to
the conditions of the real industrial plant. The most relevant input variables are
the following:

• Initial distribution of the sheet temperature. We focus on the temperature at
the reference node T S

ini. It is the temperature of the sheet at the start of the
forming phase. It is assumed to be 800 ◦C in this study;

• Initial distribution of the die temperature. We focus on the temperature at the
reference node TD

ini. It is the temperature of the die at the start of the forming
phase. It is assumed to be 25 ◦C in the initial cycle, but it keeps changing
when sequential cycles are simulated. It represents the actual state of the hot
stamping system at the start of the cycle;
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Figure 5.20: (a) Location of the reference nodes in the mesh. The upper red point is
the sheet reference node (S) and the lower red point is the die reference node (D).
(b) Evolution of the reference points’ temperatures during a complete hot stamp-
ing simulation cycle.

• Forming time tform. It refers to the duration of the forming phase. To ensure
the quality of the sheet, the forming time has a minimum value of tform = 10 s
in the industrial plant;

• Cooling time tcool. It refers to the duration of the cooling phase. The transfer
cannot be immediate and a cooling of the die is required. Then, tcool ranges
from [10 to 20] s in the current industrial plant;

• Cycle time tcycle. It is the total duration of a simulation cycle. tcycle = tform +

tcool. The real plant restricts this variable in the interval of [30, 40] s. In this
plant, the sheets go through the furnace in a belt and cycle time depends on
the furnace providing the next hot sheet. In more advanced industrial plants,
the cycle time range is wider, because they use several furnaces at the desired
temperature, and the hot sheet is available anytime.

At the end of a simulation cycle, there are three output variables which provide
crucial information about the realized hot stamping cycle. These target variables
determine the state of the system, and the quality and the good performance of the
hot stamping process:

• Final distribution of the die temperature. We focus on the temperature at the
reference node TD

fin. It is the temperature of the die at the end of the cycle
after the forming and cooling phases. In a sequential simulation of cycles it
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keeps evolving and it is the value for the TD
ini of the next cycle. Therefore, it

represents the actual state of the hot stamping system at the end of the cycle;

• Final distribution of the sheet temperature. We focus on the temperature at
the reference node T S

fin. It is the temperature of the sheet at the end of the
forming phase when the sheet is extracted. This variable controls the quality
of the final product. If it exceeds a threshold temperature, the sheet has not
been able to acquire the martensitic microstructure due to a slow cooling;

• Distribution of the maximum die temperature. We focus on the temperature
at the reference node TD

max. It is the maximum temperature achieved in a cy-
cle. This variable makes sure that die capacities are not exceeded and ensures
that it is able to support the process.

In general, in industrial plants, the execution of only a single cycle of hot stamp-
ing is not the usual way of operation. The demand requires the production of
batches of more than one product, which implies carrying out several cycles. In the
current study, 50 sequential cycles are equivalent to a batch. Therefore, to build the
SMod, we generate batch simulations of 50 hot stamping cycles to mimic a possible
real-demand case.

Although the industrial plant characteristics limit the cycle time to a range of
values, the SMod aims to generate an environment to look for the optimization of
this feature and the product quality in the batches. The modification of forming
and cooling times could lead to a change in the cycle time, but also could imply
the manufacturing of a defective sheet. Hence, there is a trade-off between the
reduction of the total cycle time in the batches and the final quality of the metal
sheets. Since the transference of the sheet from the furnace into the die is usually
performed by an automated system, in the study we focus on the creation of a
SMod able to reproduce scenarios where the cooling time is set constant, according
to the possibilities of real industrial plants. Then, the forming time is modified,
affecting the total cycle time. The forming time can be changed in a real plant,
controlling the duration of the die closure. In Figure 5.20b, it is shown how a
change of the forming time influences in the T S

fin and the TD
fin. Summarizing, in this

use case, the SMod opens the door to explore a possible real-operation scenario
where we try to optimize the time and the quality of the metal forming process,
modifying the forming time of the cycles while keeping the cooling time constant.
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Surrogate Modeling of the Process This study proposes a methodology for the
development of a data-driven SMod, consisting of a supervised machine learning
regression algorithm. The SMod is built using simulations from the high-fidelity
FE simulations described in Section 5.3.2.2. The simulations consist of different
batches of 50 cycles. Ideally, the SMod should be able to reproduce batches in the
whole region of the parameter space. To achieve this generalization capability, we
have generated two candidate training sets under different simulation conditions
in order to evaluate which provides the most general surrogate model.

• Training Set A: The parameters of the simulations agree with real-operation
conditions. Each cycle lasts randomly within tcycle = [30, 40] s, with a dis-
cretization of the interval each 0.5 s. The cooling time is set constant along
the batches according to the scenario that we want to reproduce in this study.
Therefore, the training set contains 90 batches of tcool = 10 s, 15 s, and 20 s,
respectively. The forming time oscillates depending on the random value
of tcycle, fulfilling the restriction of tcycle = tform + tcool. This training set A
it is used to feed the Surrogate Model A (SModA). Figure 5.21a shows the
evolution of TD

ini of the simulations of the Training Set A;

• Training Set B: The simulations do not correspond to normal operation con-
ditions. In this case, the cycle time also has a random value within tcycle =

[30, 40] s, discretized each 0.5 s. Moreover, the cooling time has a random val-
ues for each cycle ranged in the interval tcool = [0, 40] s, with a discretization
of 0.5 s. The forming time is the result of the condition tcycle = tform + tcool.
This dataset is formed by 270 batches and it is used to train the Surrogate
Model B (SModB). Figure 5.21b shows the evolution of TD

ini of the simulations
of the Training Set B.

Both SMods are based on supervised regression ML algorithms. In Section 5.3.2.2,
we have determined the most important input variables of the process and the
most relevant output variables. To mimic the simulation, the SMods have the
same inputs and outputs. The inputs are T S

ini, TD
ini, tform, and tcool and the target

variables are TD
fin, T S

fin, and TD
max. However, there exist a slight difference between

the SModA and SModB. The SModA also adds in its inputs a temporal window
with the 3 previous values of the variables TD

ini, because, in Figure 5.21a, the sim-
ulations are shown to have a temporal dependence. Several supervised regres-
sion algorithms are implemented using the Scikit-learn [240] and the XGBoost [93]
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Figure 5.21: Representation of the evolution of TD
ini for the simulated batches in the

training sets (a) A and (b) B.

Python libraries. Concretely, 4 candidate algorithm are explored: KNN, based on
Euclidean distance as similarity metric; SVM regressor (SVR), which works with
hyperplanes in the dimensio Knal space defined by the input data; and XGBoost
and RF, which are ensemble techniques. These candidate algorithms cover some of
the most-used types of supervised ML algorithms. A 5-fold CV [195] is applied to
check the performance of the algorithms in both training sets in order to determine
the best one.

As observed, there is a big difference when comparing Figure 5.21a, whose sim-
ulations are performed under standard operation conditions, with Figure 5.21b.
In Training Set B, the simulations do not cover standard cases, but they explore a
wider region of possible states of the system. The SMods are validated with sim-
ulations that are analogous rather than the ones forming Training Set A, with dis-
tinct parameter values according to the facilities of our industrial plant. The FE
simulations act as our ground truth. Finally, we identify which is the better option
to built a SMod capable to generalize unseen simulation data.

5.3.2.3 Results and Discussion

Below, we evaluate the SMods created with the different methodologies proposed
in previous sections, presenting the results of the accuracy of the models in the
prediction of the target variables. In addition, we try to optimize the simulations
that are required to feed the SMod, to achieve a reduction of the simulation time
without having a significant impact in the quality of the models.

As emphasized in Section 5.3.2.2, the state of the system after a hot stamping
process is determined by the final die temperature, TD

fin. Consequently, the evolu-
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tion of this variable governs the evolution of the whole system. Since it is used as
input for the SMod, a poor prediction of this variable affects the next cycles predic-
tion of the other target variables, which establish the metal sheet quality and the
smooth operation of the system. For that reason, we give numerical results for all
the target variables, but, as an insight, we display figures only for the temperature
of the die. The figures for the rest of target variables are presented in Appendix A.

Baseline Prediction Results Both SMods are based on regression algorithms that
predict the state of the system and the most relevant process variables after a com-
plete cycle of hot stamping. To choose an algorithm we implement the technique
of 5-Fold CV [195] to check the performance of various candidate algorithms on
both training sets. The metric for algorithm evaluation used in this study is the
mean absolute error [49]:

MAE =

∑N
i=1 |xi − x̂i|

N
(5.4)

where xi are the actual values, x̂i are the predicted values, and N is the number
of samples.

As shown in Table 5.7, the best algorithms are able to obtain very good results
for all the target variables. The values of MAE are less than 0.5 for Training Set A
and less than 2 for Training Set B, without a relevant SD. Therefore, the XGBoost
algorithm acts as the basis of the SMod during the rest of the study. The results
of the five-fold CV of this regression algorithm in both training sets represent a
baseline for the creation of a SMod. The next step is the evaluation of the SMod
in validation sets corresponding to the real-plant framework, with the objective
of generating a general SMod capable to predict the target variables in the all the
regions of the parameter space.

Exploration of Validation Scenarios The validation of the SMods is performed
according to different situations that may be encountered in a real industrial plant.
Then, we have several validation scenarios to compare the performance of the two
SMods and determine which is the best model able to generalize in various regions
within the range of the parameter space. It must be noticed that some of the valida-
tion scenarios are built using the same simulation conditions, rather than Training
Set A or B. In these cases, it is unfair to compare the SModA performing in a vali-
dation set with the conditions of Training Set A, and the same happens for SModB
and Training Set B conditions. However, this issue has been introduced with the
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Table 5.7: MAE and standard deviation (SD) results from the 5-Fold CV for the
different target variables and the four candidate regression algorithms: KNN, XG-
Boost, SVR and RF.

SMod Target
Variable

KNN XGBoost SVR RF

TD
fin 0.261(0.009) 0.161(0.006) 1.002(0.010) 0.184(0.006)

A T S
fin 0.797(0.012) 0.157(0.004) 2.287(0.074) 0.203(0.006)

TD
max 0.205(0.005) 0.045(0.002) 0.127(0.026) 0.055(0.002)

TD
fin 2.075(0.013) 1.674(0.021) 2.615(0.026) 1.853(0.015)

B T S
fin 8.703(0.421) 1.433(0.035) 34.993(1.148) 1.769(0.022)

TD
max 1.796(0.064) 0.768(0.023) 5.141839(0.202) 0.871(0.029)

purpose of validating the SModA in the training conditions of the SModB and vice
versa. In this way, the generalization capability of a SMod in the prediction of
unseen scenarios compared with an unfair prediction is remarked upon.

Single-Cycle Prediction

The final metal sheet quality and the die state are the most significant features after
a hot stamping process. The resulting temperatures of the sheet T S

fin and the die
TD
fin provide this information. Additionally„ the control of the maximum temper-

ature of the die TD
max during the process ensures that the die has not exceeded its

operational window. The simulation of a single cycle of a forming process pro-
vides these target variables as outputs. Hence, we expect the SMod to accurately
predict the same target variables after a process without the need of the simula-
tion, under different input conditions. Each of the three validation sets consists of
500 samples, which gives a total ratio of ∼1:8 with respect to the training sets.

Validation Scenario 1: tcool = 10 s, 15 s and 20 s.

The validation set is formed by 500 randomly input samples obtained from
simulations under the conditions of Training Set A. We do not include samples
from the first three cycles in the set, since the SMod fed with Training Set A requires
information about the three previous cycles to work. In this scenario, the initial die
temperature varies between 80 and 150 ◦C, the cooling time have values of tcool =
10 s, 15 s, and 20 s, and the forming times have a random value with the restriction
of the cycle time tcycle = tform + tcool = [30, 40] s.

Figure 5.22 presents the SMods’ prediction values for the TD
fin versus the simu-

lated values obtained from the simulation using the same inputs. The axis of the
plot are divided into 50 bins to build a histogram of the distribution of TD

fin for both
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the predicted and simulated values, which act as our ground truth. This divides
the space in the cells that are colored according the relative density of the samples
compared to the cell with the maximum number of samples. For instance, 100% of
relative density in a cell means that there are the same number of samples, rather
than in the cell with the maximum number of samples. The figure additionally
shows the empirical distributions of the simulated values (at the top of the fig-
ure) and the predicted ones (at the right side of the figure). In the ideal case, both
distributions should be the same.

In Figure 5.22a, we appreciate a narrow line following the diagonal of the plot,
implying an almost perfect prediction from the SModA. Observing the empirical
distributions, we see that the zones with more density correspond to the values of
the TD

fin in the stationary regime for the cases tcool = 10 s, 15 s, and 20 s, as can be
seen in Figure 5.21a. The high prediction capability of the SModA in this validation
scenario was expected, as training and validation sets share the same tcool values.
On the other hand, despite the randomness in its training, the SModB is able to
approach the diagonal line and also correctly captures the zones with more density,
as it is shown in Figure 5.22b. Nevertheless, the dispersion of the points indicates
that the predictive power is lower than in the other case.
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Figure 5.22: Validation Scenario 1: Predicted values as function of the simulated
output values of the TD

fin. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.

These features are repeated for the other target variables T S
fin and TD

max. The re-
spective figures of these variables are displayed in the Appendix A. The results
are condensed in Table 5.8, where it is evidenced how the SModA outperforms the
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SModB in this particular validation case for all the target variables, although the
SModB does not show very high values of the MAE. An error of about 2 ◦C is not
unfeasible in experimental conditions, and can be often present due to systematic
errors or calibration issues.

Table 5.8: MAE and SD results for the different target variables and the two SMods
in the next cycle prediction for Validation Scenario 1.

Target Variable SModA SModB

TD
fin 0.172(0.200) 1.781(1.475)

T S
fin 0.193(0.246) 1.893(1.417)

TD
max 0.054(0.069) 1.055(0.778)

Validation Scenario 2: tcool = Intermediate values.

In this case, the validation set contains 500 randomly selected input points from
simulations with intermediate values of tcool, rather than the ones in Training Set
A. The same as before, we do not add points from the first three cycles in the set,
taking into account the limitation of the SMod trained on Training Set A. Then,
the initial die temperature ranges between 85 and 145 ◦C, the forming times have
values of tcool = 11 s, 12 s, 13 s, 14 s, 16 s, 17 s, 18 s, and 19 s, and the forming time has
a random value with the restriction of the cycle time tcycle = tform + tcool = [30, 40]

s.
In the current validation scenario, the SModA does not perform as well as in

the previous case. The intermediate values of tcool force the model to make an
interpolation. In Figure 5.23a, the points are distributed around the diagonal, al-
though they form a line with a significant width, meaning more prediction error
and SD. The SModB presents a narrower line around the diagonal, as it can be ob-
served in Figure 5.23b. We notice that the intermediate values of tcool cause a more
uniform density distribution along the range of temperatures.

Table 5.9 shows the commented results of the SModB for the variable TD
fin. It

must be noted that for the rest of the target variables, SModA has a lower MAE.
Nonetheless, also taking into account Figure 5.23, we consider that SModB is better
in the prediction of the TD

fin of a next cycle than SModA in this parameter interpo-
lation case, but observing the SD of both models, we observe that the overlap in
the results makes it difficult to establish a clear option.
Validation Scenario 3: tcool = Random.
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Figure 5.23: Validation Scenario 2: Predicted values as function of the simulated
output values of the TD

fin under. The histograms and the color map represent the
relative counts as function of the temperature. (a) SModA and (b) SModB.

Table 5.9: MAE and SD results for the different target variables and the two SMods
in the single-cycle prediction for Validation Scenario 2.

Target Variable SModA SModB

TD
fin 3.190(1.607) 1.939(1.559)

T S
fin 1.179(0.912) 2.308(1.521)

TD
max 0.506(0.376) 1.160(0.728)

The validation set consists of 500 randomly sampled input points obtained
from simulations under the conditions of Training Set B. Again, for the same rea-
son as before, the first three cycles are not included in the set. In this case, the initial
die temperature of the samples ranges between 50 and 165 ◦C, while the forming
and cooling times range between tform and tcool = [0, 40] s, with the restriction of
the cycle time tcycle = tform + tcool = [30, 40] s.

In Figure 5.24a, we see that in a random scenario the SModA performs poorly
due to its lack of information about some regions of the parameter space. We
observe a high dispersion of the points and the diagonal has nearly disappeared.
Otherwise, as expected, Figure 5.24b shows that the SModB maintains its good
performance. With a few exceptions, almost all the points are condensed around
the diagonal, meaning that the predictions are very close to the simulation values.
The training under random conditions results in a high adaptability to any value
of the input variables. Checking the other target variables in Table 5.10, we confirm
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that SModB outperforms SModA in this more general scenario.
Summarizing, we identify that the SModA is able to carry out good predictions

of the next cycle target variables in the exactly same training regimes, specifically,
cases when tcool = [10, 20] s. However, the SModB achieves reasonably good perfor-
mances in all the validation scenarios, showing a constant and controlled behavior.
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Figure 5.24: Validation Scenario 3: Predicted values as function of the simulated
output values of the TD

fin. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.

Table 5.10: MAE and SD results for the different target variables and the two
SMods in the single-cycle prediction for Validation Scenario 3.

Target Variable SModA SModB

TD
fin 12.536 (10.429) 2.153 (3.274)

T S
fin 60.157 (117.197) 2.665 (13.875)

TD
max 8.023 (17.931) 2.078 (9.802)

Batch Prediction

Usually, in industrial manufacturing, the demand requires several hot stamping
processes to obtain a batch consisting of a specific number of parts. The simulation
of this sequence of cycles is even more time demanding. Therefore, we evaluate
the SMods in the prediction of the target variables for all the cycles in a batch.
Since the objective is to effectively substitute the simulations, the SMod performs
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a sequence where the prediction of the next cycle is performed by taking as input
the previous predictions.

For the reasons explained in Section 5.3.2.2, the validation sets have tcool =

ctant along the whole batch, corresponding to real experimental cases where the
transference of the sheet into the die is automatized and the forming time can be
changed within the range of values given by the total cycle time. The validation
sets consist of 14 batches for each one of the values of tcool, which gives a total ratio
of ∼1:2 with respect to the training sets.

Validation Scenario 4: Batches of tcool = 10 s, 15 s, and 20 s.

The validation set consists of batches of 50 cycles, where the cooling time is
kept constant within the entire batch and it has values of tcool = 10 s, 15 s, and 20
s, the same ones as Training Set A. The forming time has a random value for each
cycle, with the restriction of the cycle time tcycle = tform + tcool = [30, 40] s. For each
value of tcool, we have 14 batches for validation.

In Figure 5.25, we compare how both SMods predict the target variables TD
fin,

which defines the state of our system. The diagonal line acts as a reference of the
perfect prediction. We can also observe the distribution of the simulated values
and the predicted values in the histograms. Moreover, since we are evaluating
batches of 50 cycles, the colors indicate the cycle of the prediction. Notice that the
SModA is able to have a very good performance in this scenario. The reason is that
it has been trained and finely tuned to those particular settings. The SModB pre-
dictions are shifted to higher values of TD

fin than our ground truth simulations, al-
though the histograms are similar. The deviation from the diagonal becomes more
evident in higher temperatures. In both Figure 5.25a and Figure 5.25b, the batches
with different values of tcool can be identified, as higher values of tcool imply lower
values of TD

fin. Quantitatively, the MAE between the predictions and the simulated
values for all the data of this validation scenario is presented Table 5.11, where the
rest of target variables also have a very low value of MAE with the SModA.

Table 5.11: MAE and SD results for the different target variables and the two
SMods in the batch prediction for the Validation Scenario 4 data.

Target Variable SModA SModB

TD
fin 0.359(0.492) 5.484(3.886)

T S
fin 0.391(0.518) 6.335(4.470)

TD
max 0.293(0.412) 5.362(3.586)
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Figure 5.25: Validation Scenario 4: Predicted values as function of the simulated
output values of the TD

fin. The histograms represent the relative counts as func-
tion of the temperature and the color map indicates the cycle. (a) SModA and (b)
SModB.

Figure 5.26 represents the MAE and the cumulative MAE of the predictions
of TD

fin for each cycle within the batches in the validation set. We observe how
the SModA has a nearly perfect prediction for the previously commented reasons.
Furthermore, the error of SModB is accumulated in the first cycles and after that
it remains constant or even decreases. Additionally, we confirm that this model
works better for higher values of tcool, i.e., for lower temperatures. The explana-
tion can be found in the training sets. In Figure 5.21a (where the parameters are
the same as in the current validation set), the stationary region of the curves of tcool
= 10 s is not reached until cycle 15, in which the stationary region achieves tem-
peratures around 140 ◦C. Figure 5.26 shows the important accumulation of error
in the transient region for the SModB, and when tcool = 10 s, the transient region
lasts more cycles. Besides, looking at Training Set B, the interval of temperatures
around 140 ◦C in Figure 5.21b is not very populated. These are the main causes
of the loss in the predictive power of the SModB for low values of tcool. Summa-
rizing, the transient region is the main source of error for the SModB, since the
mean absolute error increases in the first cycles, while in the stationary region it is
kept constant.

Validation Scenario 5: Batches of tcool = Intermediate.

In this case, the validation set is formed by batches of 50 cycles that have in-
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Figure 5.26: Validation Scenario 4: Mean absolute error (MAE) of the model pre-
diction of TD

fin evaluated for batches with tcool = (a) 10 s, (b) 15 s, and (c) 20 s.
The inner plot shows the evolution of the cumulative mean absolute error.

termediate values of tcool = 11 s, 12 s, 13 s, 14 s, 16 s, 17 s, 18 s, and 19 s, and that
are kept constant along the cycles. Therefore, the SModA is not trained with the
same values of cooling time. The forming time has a random value for each cycle,
but it is restricted by tcycle = tform+ tcool = [30, 40] s. For each value of tcool, we have
14 batches.

In this scenario, Figure 5.27a evidences the lack of generalization of the SModA.
We notice that the distribution of the predictions displayed in the vertical his-
togram has peaks in the same ranges of temperatures as the ones of Figure 5.25a.
These ranges correspond to the stationary region of when tcool = 10 s, 15 s, and
20 s, implying that the SModA is not able to interpolate for intermediate values.
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In opposition, the predictions of the SModB present a similar temperature distri-
bution to the simulated values. Additionally, comparing with Figure 5.25b of the
previous validation scenario, we found an analogous behavior of the SModB in
this case, as shown in the distribution of the points of Figure 5.27b. Focusing on
Table 5.12, the comparison of the two SMods shows the lower values of MAE of
the SModB with respect to the SModA for all the target variables for the interme-
diate values of tcool. We notice that the values of MAE for the SModB are close
to the ones in Table 5.11, which implies a comparable performance in both vali-
dation scenarios. Then, despite the small shift with respect to the diagonal line
and the dispersion observed in high temperatures, the SModB is more convenient
if we are seeking a model capable of generalizing within the defined range of the
operational parameters.
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Figure 5.27: Validation Scenario 5: Predicted values as functions of the simulated
output values of the TD

fin. The histograms and the color map represent the relative
counts as functions of the temperature. (a) SModA and (b) SModB.

Table 5.12: MAE and SD results for the different target variables and the two
SMods in the batch prediction for the Validation Scenario 5 data.

Target Variable SModA SModB

TD
fin 7.598(3.515) 5.605(4.760)

T S
fin 8.434(2.961) 6.796(5.051)

TD
max 7.044(2.909) 5.554(4.309)
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The better performance of the SModB and its generalization potential are ver-
ified in Figure 5.28. Although the error increases in the first cycles, coinciding
with the transient region, the SModB approaches the simulated values after that.
On the contrary, the SModA error in the transient zone remains during the rest
of the batch. As discussed, notice how the SModB works better for higher values
of tcool. After the evaluation of the model performance in the different scenarios,
we choose the SModB over the SModA because it has shown to be a more gen-
eral model. In spite of the remarkable generalization capability of the SModB,
the model is far from being perfect, especially if we focus on Figure 5.28a. In the
next section, we try to optimize the model performance and to reduce the compu-
tational time spent in the generation of the training set.
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Figure 5.28: Validation Scenario 5: Mean absolute error (MAE) of the model predic-
tions of TD

fin evaluated for the batches in the validation set with tcool = (a) 13 s and
(b) 17 s. The inner plot shows the evolution of the cumulative mean absolute error.

Model Optimization Taking the SModB as the current baseline, in this section
we aim to optimize this model, which has demonstrated a higher generalization
capability than the SModA. However, the model has not been accurate enough in
the prediction at high temperatures, i.e., low values of tcool. Moreover, the current
model is fed with the simulation of 270 batches of 50 cycles, which implies a lot of
computational time. Therefore, there is a need to tune the model in order to reduce
the computational time spent in the creation of the training set without a significant
impact on the model accuracy. The performance of the model optimization criteria
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is evaluated in Validation Scenario 5, since it is the most adequate scenario for
evaluating generalization in the batch prediction case.

Number of Cycles in Training

A reduction of the number of cycles of the batches of Training Set B implies train-
ing the SMod with less simulations. Table 5.13 shows that, in fact, this reduction
not only decreases the time needed to create the training set but also it results
in a better MAE. The SMod trained with only the first 10 cycles of the batches is
the one that achieves the best MAE for all the target variables. This is verified in
Figure 5.29, where for two arbitrary values of tcool, the curves of MAE and the cu-
mulative MAE of the model trained with batches of 10 cycles are displayed below
the curves of the other models.

Looking at Figure 5.21b, we detect that once we reach the stationary region
(around the 10th–15th cycle), the values of the temperatures are limited within
an interval. Therefore, we have a biased training set with a lot of data inside the
interval of temperatures of the stationary region. This bias leads to an overspe-
cialization in the training phase, preventing good results in the transient state.
Because errors at the transient state weigh a lot and are cumulative, the models
trained with 10 or 15 cycles have better performances. In those training regimes,
the model is fed with a better balance of both transient- and steady-state samples.

Table 5.13: MAE and SD results of the model predictions of TD
fin for the different

target variables in the batch prediction for the Validation Scenario 5 data as we
decrease the number of cycles of the batches of Training Set B.

Target
Variable

Surr. Model B (50 Cycles) 20 Cycles 15 Cycles 10 Cycles 5 Cycles

TD
fin 5.605(4.760) 5.395(5.377) 3.398(2.983) 3.058(2.291) 5.316(4.324)

T S
fin 6.796(5.051) 6.045(5.962) 4.360(3.592) 3.402(2.457) 4.686(3.781)

TD
max 5.554(4.309) 4.855(5.084) 3.305(2.894) 2.903(2.013) 3.983(3.207)

Number of Simulated Batches in Training

Once the use of the first 10 cycles to train the SMod is determined , we focus on the
number of simulated batches that form the training set. By reducing the number
of batches in the training set, less simulations are required, saving a lot of compu-
tational time for the creation of the training set. In Figure 5.30, we explore how the
number of batches affects the model accuracy. Concretely, a threshold is found at
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Figure 5.29: Validation Scenario 5: Mean absolute error (MAE) of the SModB and
the models trained with less cycles. The predictions are evaluated for the batches
in the validation set with tcool = (a) 13 s and (b) 17 s. The inner plot shows the
evolution of the cumulative mean absolute error.

around 220 batches in the training. As we decrease the number of batches down to
this threshold, the MAE keeps increasing because the model does not have enough
information to work properly.
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Figure 5.30: Evolution of the MAE for the three target variables evaluated in Vali-
dation Scenario 5 as we reduce the number of batches in the training set.

In addition, an increase of the simulated batches in the training set does not
imply a better accuracy. The reason is that as we increase the number of data,
the training set becomes more biased in the range of temperatures of the stationary
region and the model is not able to capture the behavior well outside this range of
temperatures. The effect of the bias is shown in Figure 5.31, where models trained
with different numbers of batches perform a single-cycle prediction of different
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random cycles extracted from Validation Scenario 5. We define three intervals that
classify the samples depending on the input TD

ini: TD
ini < 80 ◦C, TD

ini = [80, 130] ◦C,
and TD

ini > 130 ◦C, and each interval has 20 samples. We notice how the models
with 220 and 270 batches have similar behaviors, although the MAE is lower for
the one trained with 220 batches. The model trained with more samples struggles
in the intervals of low and high temperatures and it has a lower MAE in the inter-
mediate interval than the other models. This verifies the existence of a bias in the
training set that affects the predictions when the number of batches is too large.
Then, as it happens when we evaluated the number of training cycles, the model
suffers from overfitting, reducing its generalization capability.
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Figure 5.31: MAE for single predictions of TD
fin of samples of models trained with

different numbers of batches. The sample parameters have the conditions deter-
mined in Validation Scenario 5 and they are classified depending on the input tem-
perature of the die TD

ini.

Final Surrogate Model

From the previous results regarding the number of cycles and batches in training,
we have obtained an optimized SMod that is trained with less simulations and it
has a better performance than the baseline SModB. This final SMod is trained with
220 batches of 10 cycles under the same conditions as Training Set B: the cooling
time has a random value for each cycle within the range tcool = [0, 40] and the
cycle time also has a random value between tcycle = [30, 40]. The forming time is
restricted by the condition of tcycle = tform+tcool. The randomness of the input vari-
ables is the main cause for the generalization power of the final surrogate model.

In Figure 5.32, we have compared several curves of TD
fin from different simu-

lated batches against the predictions of the model. The batches correspond to the
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case where tcool = ctant, identified as a very interesting case to explore new pos-
sibilities in real industrial scenarios, as remarked in Section 5.3.2.2. We notice that
the curves are very close and that the model is able to reproduce the simulation
inside the whole range of tcool = [10, 20].
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Figure 5.32: Comparison between the simulated curves and the predicted curves
for the final SMod of TD

fin evaluated for batches with tcool = (a) 11 s, (b) 13 s, (c) 15
s and (d) 17 s.

Furthermore, the optimization of the baseline SMod to this final SMod has sup-
posed a gain in the simulation time required to generate the training set. As men-
tioned, the CPU simulation time for a cycle is about 40 s. Initially, our baseline
SMod was trained with 270 batches of 50 cycles, which are generated in approxi-
mately 150 h of CPU time. The training of the optimized model is performed with
270 of 10 cycles, decreasing the CPU time spent in simulation to ∼ 30 h. In ad-
dition, the 270 batches of 10 cycles have been reduced to 220 batches of 10 cycles
for the training of the final SMod. Hence, we need less simulations to feed the
model. This implies a reduction of almost ∼6 h in simulations, resulting in ∼24 h
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of CPU time spent in simulation. We have achieved a total reduction of ∼84% of
the CPU time.

Despite the time spent in the simulations for the training, the major benefit of
the final SMod is that it can generate a cycle or a batch four orders of magnitude
faster than the simulations, as it is displayed in Table 5.14. It must be noticed that
the geometry in this study is a metal sheet, and that a more complex geometry
will enhance the need of surrogate modeling due to the increasing difficulty in FE
simulations. Therefore, this creates a powerful tool to explore new operation sce-
narios, with a low computational and temporal cost. The aim of this exploration
is to optimize the batch production with a direct effect in the improvement of the
KPIs of the process. For instance, OEE could be improved by defining the opti-
mal forming time for each cycle, reducing then the total cycle time and preventing
the defects in the products, which leads to a better scrap rate. Moreover, this en-
vironment is very efficient to train promising data-driven technologies, such as
digital twins or reinforcement learning agents, because it allows to reproduce a
lot of batches under different parameter conditions. The remarkable soft real-time
response that the SMod provides could be used by digital twins to predict the opti-
mal operational configuration of the systems. In addition, reinforcement learning
agents could be trained inside this efficient environment that mimics the real man-
ufacturing system, and afterwards they could act in the real scenario, applying the
learned policies and optimizing the process in the industrial plant. To sum up,
the SMod opens the possibility to the introduction of self-autonomous systems in
the hot stamping process in industrial plants.

Table 5.14: Comparison between the simulation times and the final SMod times in
cycle and batch generation.

Method Cycle Time Batch Time

Simulation ∼40 s ∼2000 s
Final SMod ∼3 × 10−3 s ∼1.5 × 10−1 s

5.3.2.4 Insights from Parameter Interpolation Surrogate Model in Hot Stamp-
ing

The wide range of applications of the hot stamping process in the automotive in-
dustry and the extensive use of 22MnB5 in safety-related components highlight
the importance of the process and the interest in ensuring the quality of the final



5.3. PARAMETER INTERPOLATION 110

products and a good manufacturing performance. In the actual paradigm of In-
dustry 4.0, in this use case we propose a novel ML-based SMod to predict the most
relevant results of the hot stamping process of 22MnB5. We have validated the
model in several scenarios and it is capable to provide a much faster response than
simulation models. This enables the possibility to explore the parameter space and
configurations in an efficient environment without the time limitations of the sim-
ulations. Hence, we have proven that the parameter interpolation approach for
surrogate modeling is a compelling solution in this manufacturing use case. More-
over, the current approach is innovative, since in previous works the applications
of ML in the hot stamping process have been based on the process monitoring and
control at different points.

The model is trained with FE simulations and it is based on the XGBoost re-
gression algorithm, which establishes relations between the input variables of the
simulations with the most relevant process variables. The validation is performed
in various feasible operational scenarios of a real plant, consisting in series of sim-
ulated batches of 50 cycles. In terms of the generalization of the SMod, it has been
demonstrated that the training with batches with non-standard parameter condi-
tions, which cover more regions of the parameter space, outperforms the training
with batches with the standard parameter conditions.

Furthermore, the SMod has been optimized, decreasing the number of FE sim-
ulations required for its training. First, the number of cycles of the training batches
has been reduced from 50 to 10 cycles. Remarkably, the SMod trained with batches
with less cycles is able to reproduce larger batches more accurately in the valida-
tion scenarios. Next, the number of batches that feed the SMod has been decreased,
and we have found a threshold of 220 batches before the accuracy starts to fall. This
optimization has supposed an important decrease of 84% of the CPU time and has
minimized the computational resources spent in the simulations needed to create
the surrogate model.

Finally, the final optimized SMod is able to reproduce reasonably well the sim-
ulations inside the whole range of parameters of the real industrial plant. In fact,
the models have the ability predict the target variables in the validation scenarios
with a MAE of around 3 ◦C from the simulations, which is considered an accept-
able error in an experimental context. The key advantage of the SMod is that it is
four orders of magnitude faster than the simulations, triggering the exploration of
new operation scenarios in an efficient environment. This opens the door to the
setting of the optimal parameter values of the hot stamping process, improving
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the KPIs of the batch production of the process. In addition, the SMod provides
a soft real-time response, which is crucial for the development of tools such as
DTs or RL agents. Actually, the current model has been employed in [6, 8] as a
fast environment to train a RL agent that controls the hot stamping process with
the objective of decreasing the batch process time while keeping the quality of
the stamped parts. To recap, the SMod methodology proposed in the study en-
ables the self-autonomous system’s presence in the hot stamping process indus-
trial plants, with the possibility to be expanded to other manufacturing conditions
or processes.

5.4 Lessons Learned

• In the context of I4.0, the development of ML-based SMod in real-world in-
dustrial scenarios is an instrumental way to accelerate data generation and
analysis for manufacturing processes. The application of surrogate modeling
methods in the use cases demonstrates their practical relevance and potential
for adoption in real-world industrial settings. This aligns with the thesis goal
of bridging the gap between theoretical surrogate modeling techniques and
their practical applications in manufacturing.

• The implementation of ML-based SMods in real-world manufacturing chal-
lenges highly depends on the type of process and problem. However, we pro-
posed three distinct ML-based SMods methods applied to real-world man-
ufacturing challenges which can be extended to other manufacturing pro-
cesses. The methods include node reduction in injection molding, mesh up-
scaling in HPDC and parameter interpolation in hot stamping.

• The node reduction method generated a ML-based SMod that can effectively
reduce the number of sensor nodes required to generate accurate predictions
in the plastic injection molding process. This leads to cost savings and sim-
plified system design in real-world manufacturing processes by minimizing
the number of physical sensors needed.

• The mesh upscaling method leaded to a ML-based SMod that can accurately
predict fine mesh simulation results using coarse mesh simulations in the
(HPDC) process. This significantly reduces computational time and enables
faster analysis and exploration of complex manufacturing processes.
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• The parameter interpolation method resulted in a ML-based SMod that can
efficiently predict simulation results across a wide range of parameter values
in the hot stamping process in soft real time. This addresses the challenge of
generating data in a fast and sustainable way and enables the exploration of
new operation scenarios.



Chapter 6

Extension of the Hot Stamping Case -
Importance of Sampling

In this chapter we showcase another practical application of surrogate modeling
in the hot stamping process. However, in the current use case we explore an ex-
tension of the parameter interpolation approach presented in 5.3.2. Concretely, we
focus on investigating the influence the significant impact of different sampling
methods on SMod performance, taking the parameter interpolation as the frame
of reference to build baseline ML-based SMods. We compare the accuracy and time
efficiency of various sampling methods, providing valuable insights into their ef-
fectiveness for constructing SMods in hot stamping applications.

Despite the similarity of both cases, the hot stamping scenario is distinct, which
allows us to prove the validity of the parameter interpolation approach in other
situations. In particular, the geometry of the hot stamping part and the considered
input variables and output variables are not the same. This allows to cover a wider
range of knowledge within the hot stamping process in the thesis.

The findings of this investigation complement the previous study in surrogate
modeling in hot stamping in two directions: Firstly, they contribute to a deeper un-
derstanding of the role of sampling in surrogate modeling and its implications for
optimizing hot stamping processes. Additionally, they also provide an improved
version of the ML-based SMod, which is capable to predict two critical process
variables in several regions of a hat-shaped geometry.

As mentioned, the role of simulation in the sensitivity analysis studies is cru-
cial due to the need of exploring the parameter space without perturbing the real
manufacturing system. In the particular case of hot stamping, the initial condi-
tions, the setup parameters and the materials properties form a wide domain. The
configurations within the domain have a direct impact in the thermomechanical

113
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phenomena and the material phase transformations occurring during hot stamp-
ing. Therefore, many simulations are required for extensive sensitivity analysis
and optimization studies during the design stage to ensure the desired mechanical
properties in the final parts. However, the elevated cost in time and computational
resources of these simulations and the high dimensionality of the domain is an
important limitation.

The aim of this chapter is to present a pipeline to overcome this drawback,
with a ML-based SMod of the simulation of the hot stamping of a hat-shaped part
of boron steel. Concretely, we specially focus on the importance of the sampling
methods to build the training set of the surrogate model. Therefore, a compari-
son between Latin Hypercube Sampling and Forward Selection method is imple-
mented for this purpose. The proposed methodology provides a pipeline to use
a reduced number of simulations to generate a trustworthy SMod that is an en-
abler to boost the sensitivity analysis and optimization procedures, due to the fast
response of its estimations. The proof-of-concept results show high potential in
the soft-real time prediction of unseen configurations within the domain, focusing
on important variables regarding the mechanical properties and the quality of the
final part, such as the temperature and the martensite content.

The methods and results displayed in this chapter are presented on the work
in [3].

6.1 Introduction

Simulations in hot stamping play a fundamental role in the design stage and pro-
totype testing, where they offer an effective way for the product development,
decreasing the waste of materials, the wear of the tools and the overall costs. Com-
monly, FE method has been employed to model the mechanical, thermal and mi-
crostructural phase transformation phenomena taking place during the hot stamp-
ing process [232]. Despite the increase in computing resources, the high-fidelity
simulation models have also increased their complexity. This still supposes a high
time expense, being unfeasible to apply these models during the real-time produc-
tion.

In this use case, we define a general pipeline for the creation of a ML-based
SMod of the hot stamping process of a hat-shaped part from LS-Dyna® simula-
tions. Our approach consists in a ML-based SMod that not only predicts the fi-
nal temperature, but also the martensite content in different regions of the final
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hat-shaped stamped part geometry inside a domain of configurations. Therefore,
it extends the approach presented in Section 5.3.2 [2]. Once trained, it removes
the need of simulations to perform the predictions and it uses input parameters
measurable in a hot stamping plant, differing from [241]. Two different sampling
strategies to build the training datasets of the SMod are implemented, Latin Hy-
percube Sampling and Forward Selection.Their impact in the development time
and performance of the SMod is evaluated and compared. Concretely, the use
case highlights the reduction the number of required simulations to create a reli-
able SMod thanks to the selection of a proper sampling strategy. a complete low-
cost pipeline is presented, with a resulting SMod which predicts variables that act
as important indicators of the process related to the quality and the mechanical
properties of the final part. It provides a soft real-time framework to enhance the
sensitivity analysis and the optimization procedures, and it eases the autonomous
control and monitoring of the hot stamping plants through tools like DTs.

Summarizing, the objectives of the study of this chapter are three-fold:

1. Creation of a ML-based SMod that predicts in soft-real time the final temper-
ature and the martensite content in the hot stamping process of a hat-shaped
part.

2. Study the effect of the sampling in the performance of the SMod and propose
the best sampling strategy to reduce the time and resources for the imple-
mentation of the SMod and increase its accuracy.

3. Provide a comprehensive guide for the development of SMods of hot stamp-
ing simulations procuring a complete pipeline of the surrogate modeling pro-
cess.

6.2 Methodology

6.2.1 Description of the baseline pipeline

The creation of the SMod is done through the training of DNNs with LS-Dyna® hot
stamping simulations of a hat-shaped part. The aim of the SMod is a temporal re-
duction in the exploration of the domain of configurations in sensitivity analysis or
optimization studies. The proposed baseline pipeline is shown in Figure 6.1. In the
first place, we define a configuration domain formed by the variables that will be
included in a sensitivity analysis study. Generally, the variables implicated should



6.2. METHODOLOGY 116

be easily modifiable in real experiments and their range of values should be consis-
tent with the possible values in a hypothetical hot stamping plant. The LS-Dyna®

software has been used to create a simulation model that acts as a benchmark. A
sampling strategy is used to select configurations within the domain. Accordingly,
LS-Dyna® simulations are performed using as input the chosen configurations and
obtaining the desired outputs, the temperature and the martensite fraction in dif-
ferent points of the hat-shaped part. This leads to the generation of two sets of
data, a train set and a test set. The train set is employed to train the ML model that
will constitute the SMod. In our case, we use a DNN with fully connected layerd
architecture along with a 5-Fold CV method to tune the DNNs hyperparameters.
Finally, the performance of the SMod in the unseen configurations of the test set
shows the quality of the predictions of the SMod and its capability to be used in
sensitivity analysis studies.

Figure 6.1: Flowchart of the proposed baseline pipeline to create a SMod of the hot
stamping process from LS-Dyna® simulations.

6.2.2 Definition of the Configuration Domain

The considered domain consists in configurations of different values of 4 input
variables of the hot stamping process. The variables need to have certain impact
in the outputs for a posterior sensitivity analysis and being modifiable in the sim-
ulations and the real environment. In our scenario, the domain is formed by the
variables in Table 6.1.
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Table 6.1: Variables of the configuration domain and their corresponding ranges
and units.

Variable Range of values

Initial blank temperature (Ti) [1023− 1173] K
Heat transfer coefficient (h) [1000− 6000] W/m2 K

Carbon content (C) [0.20− 0.25]
Holding time (t) [5− 25] s

6.2.3 Simulation Model

The LS-Dyna® thermomechanical simulation model consists of a half model of a
punch, die and blank which represent hot stamping of a hat-profile section. The
punch and die are discretized with 2 mm 8-noded constant stress solid elements.
The 1 mm thick blank is discretized with 2 mm Belytschko-Tsay shell elements with
5 integrations points throughout the thickness. The material model used for the
punch and die are MAT_020_RIGID, and for the blank, MAT_244_UHS_STEEL.
Thermal material properties are defined using the thermal material card MAT_T10-
THERMAL_ISOTROPIC_TD_LC. A selection of the boundary conditions used are
convection sets between the blank and the tool surfaces, temperature sets to set
a fixed temperature on the punch and die external surfaces. The punch move-
ment is controlled with a prescribed motion. The model contact type is CON-
TACT_AUTOMATIC_SURFACE_TO_SURFACE_MORTAR.

The parameters are modified in the simulations within the ranges presented
in Table 6.1. 4 elements are chosen to represent different regions of the blank,
as described in Figure 6.2. The element histories of these elements are obtained
and final temperature (T k

f ) and final martensite fraction (Xk
m) in the last time step

are used as target outputs of the process, where k = A,B,C,D are the considered
elements. These variables are valuable indicators of the quality and the mechanical
properties of the final part.

6.2.4 Machine Learning-based Surrogate Model

The described simulation model is the source of data to develop the ML-SMod.
Building efficient SMods has become a fundamental tool to reduce computational
costs without sacrificing accuracy. They are simplified representations of a com-
putationally expensive simulation model. Its goal is to emulate the behavior of the
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Figure 6.2: Left: Initial state of the LS-Dyna simulation. Right: Deformed part at
the end of the simulation.

original model with sufficient fidelity to allow design space exploration, parameter
optimization or sensitivity analysis, among other tasks.

6.2.4.1 Sampling Strategies and Data

The efficiency of a SMod is closely linked to the number of sample points used
for its construction. A higher number of sample points generally yields higher ac-
curacy, but also higher computational cost in the construction phase. Therefore,
the viability of a SMod resides in the ability to find an optimal balance between
accuracy and cost. In other words, the total cost of building the SMod and using
it for the purpose of interest (optimization, reliability analysis, etc.) should be sig-
nificantly lower than the cost of performing the same analysis using the original
simulator. Therefore, selecting an adequate number of sample points is crucial. A
SMod with too few points may be inaccurate and lead to erroneous conclusions.
On the other hand, a SMod with too many points may result in excessive com-
putational cost, negating the advantages of its use. Ultimately, building efficient
SMods requires careful analysis of the accuracy requirements and computational
limitations of the problem at hand. The goal is to minimize the total cost of the
analysis, including building and operating the SMod, without compromising the
accuracy needed to obtain reliable results. In this context, the sampling stategies
come to play to select carefully the required simulations come to play. In this use
case, we have compared three different sampling strategies to build the SMod of
the hot stamping process:
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Latin Hypercube Sampling Latin Hypercube Sampling (LHS) [242] is a popular
technique for the design of experiments, which uniformly distributes the samples
within the domain. Its name comes from the assumption that each of the input
parameters of your system is a dimension of an hypercube. LHS distributes the
sampling points within this hypercube strategically, ensuring that they cover the
entire parameter space evenly. This is crucial when you have no prior knowledge
of how the parameters influence the outcome, as it allows you to explore the full
range of possibilities. For the sake of clarity, Figure 6.3 provides a visual example of
the LHS distribution of samples in a given domain of 2 input variables with values
inside a defined range [0,1]. In this case, the input variables form a 2D space (a
square) and 10 points must be sampled. Then, in each dimension of the space, a
10 uniform subdivisions are done. Afterwards, 10 random points are selected with
the condition that, taking into account all the dimensions, each subdivision must
contain a single point.
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Figure 6.3: Example of LHS method in 2D.

In addition to effectively covering the parameter space, LHS prevents the sam-
pling points from clustering in the same area. This is important because some
SMods can have numerical problems if the data are too close to each other. Hence,
LHS is a very useful technique thanks to its “space-filling” and “non-collapsing”
properties which allow to build accurate and reliable SMods.

In this use case, as a baseline, we use LHS to generate 3 sets of 25, 50 and 100
samples. The samples are formed by a vector of dimension 4, corresponding to
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the variables in the domain. Next, we have used these sets of input samples to
perform LS-Dyna simulations to get the temperature and the martensite fraction
in the pointed elements indicated in Figure 6.2. Adding the corresponding outputs
to the samples leads to the input-output datasets LHS_25, LHS_50 and LHS_100
detailed in Table 6.2.

Forward Selection Method The Forward Selection (FS) method [243] consists
in the stepwise addition of samples to train an empty model choosing the ones
that improve its performance. The process continues until a stopping criterion is
reached, which can be given by a maximum number of samples or a threshold in
the evaluation metrics. For FS method, we use the available samples of LHS_25,
LHS_50 and LHS_100. First, we randomly select 150 samples for training and 25
samples for validation. The 150 training samples are split in groups of 10 sam-
ples, i.e., we obtain 15 subsets of 10 samples. Then, we train 15 models with the
15 subsets of 10 samples and we evaluate them in the 25 validation samples. The
subset that has generated the best model is added in an empty training dataset.
In the following iteration, we do the same with the 14 remaining subsets, and the
best subset is included into the training dataset. This procedure is repeated until
the training dataset contains 100 samples. The resulting training dataset is called
FS_100 (Table 6.2).

Table 6.2: Datasets obtained from the LHS and LS-Dyna simulations and their pur-
pose.

Dataset Inputs Outputs Number of
samples

Purpose

LHS_25 25 Train
LHS_50 50 Train

LHS_100 T k
i , h, C, t T k

f , X
k
m 100 Train

LHS_25_test 25 Test
FS_100 100 Train

6.2.4.2 Model Details

The SMod is based on two DNNs with fully- connected layers. As a starting point,
both DNNs are formed by an input layer of 4 neurons corresponding to the 4 input
variables, 3 hidden layers and an output layer of 4 neurons and a linear activation
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function, trained with the Adam algorithm [193]. A hyperparameter tunning pro-
cess is used to determine the DNNs parameters. The DNNs aim to perform a
regression to predict the target outputs in the 4 points of the part geometry. Due
to the range difference of the outputs, the T k

f and the Xk
m are predicted separately

and each DNN focus on one output variable. The inputs are scaled according to
xs = x−xmin

xmax−xmin
, to ensure that their contribution is the same during the model fit-

ting.

6.2.4.3 Training and Hyperparameter Tunning

The training of the DNNs of the SMod is done with the LS-Dyna® simulations
datasets LHS_25, LHS_50 and LHS_100, obtaining 3 SMods. Also, the dataset
FS_100 is used to train 10 DNNs increasing the number of training samples by
10 in each DNN. A hyperparameter tunning process based on a 5-Fold Cross Val-
idation (CV) [195] is carried out in each case to select the best hyperparameters of
the DNNs, including the batch size, the epochs, the number of neurons and the
activation function of each hidden layer and the learning rate. The CV method
allows to use the training data for tunning the model. After the hyperparameter
selection, all samples are used to train the DNNs models.

6.2.4.4 Evaluation and Generalization Metrics

To evaluate the performance of the SMods and prove their generalization capabil-
ity in unseen configurations of the domain, we use the dataset of LHS_25_test as
test. The generalization metrics used in this use case are the Mean Absolute Error
for each k element, MAEk =

∑N
i=1 |xi−x̂i

N
, where k is the element, xi are the simu-

lation values, x̂i are the predicted values and N are the number of samples in the
test dataset. Besides, a global metric for all the elements predictions is calculated:
MAEglob =

∑
k MAEk

4
, where k = A,B,C,D.

6.3 Results and Discussion

6.3.1 Baseline Machine Learning-based Surrogate Model

The training and the hyperparameter tunning have been done using the datasets
generated with the LHS strategy, LHS_25, LHS_50, LHS_100, giving rise to 3 SMods.
The evaluation of the resulting SMods is done in the test set, LHS_25_test. The test
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set acts as an example on how the models perform in predicting unseen configura-
tions within the whole domain. The quality assessed in the predictions will prove
the validity of applying the SMod for a sensitivity analysis study.

Table 6.3: Metrics of the predictions of the SMods in the test dataset. The MAEk

is computed for both temperature and martensite fraction predictions for the k =
A,B,C,D elements considered.

Model TA
f

MAEA(K)
TB
f

MAEB(K)
TC
f

MAEC(K)
TD
f

MAED(K)
XA

m

MAEA

XB
m

MAEB

XC
m

MAEC

XD
m

MAED

SMod
LHS_25

4.652 8.024 6.295 8.613 0.054 0.048 0.042 0.034

SMod
LHS_50

4.253 4.386 4.187 6.605 0.030 0.019 0.022 0.023

SMod
LHS_100

1.671 4.536 1.828 3.277 0.010 0.018 0.017 0.014

Figure 6.4: Comparison between the predictions of the SMod_LHS_100 and the
simulation outputs. Left: Temperature. Right: Martensite fraction.

In Table 6.3, we present the metrics of the predictions of the SMods in the test
set. As we increase the number of training samples the SMods improve their pre-
dictions. The best model SMod_LHS_100 performance is represented in Figure 6.4,
comparing the predicted values with the simulation outputs. The SMod captures
the behavior of the hot stamping outputs for the configurations of the test set and
the DNNs identify the patterns in different regions of the part. For instance, focus-
ing on the region of the element A, the contact with the tool is good and, for that
reason, in almost all the configurations XA

m > 0.8 and TA
f < 400K. On the contrary,

the contact in the region of the element D is not optimal. The curvature produces a
higher gap between the part and the tools, achieving high temperatures for some
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configurations and XD
m < 0.7 for most of the cases. Moreover, the approximated

CPU time (varies with the inputs) of an Intel Core i7–10610 CPU using 4 processors
is:

• LS-Dyna® Simulations: ∼ 900 s (1 cycle) and ∼ 22000 s (LHS_25_test, 25
cycles).

• SMod_LHS_100: ∼ 0.02 s (1 cycle) and ∼ 0.50 s (LHS_25_test, 25 cycles)

These CPU times remark the soft-real time response of the SMod predictions
and the huge gain respect to the simulations. Then, the SMod accomplish the
objective to provide a soft-real time reliable response for sensitivity analysis or
optimization routines inside the configuration domain.

6.3.2 Forward Selection Strategy

The dataset generated with the FS method leads to 10 SMods. Each SMod has a
different number of training samples from N = 10, 20, . . . , 100, corresponding to
the iterations of the described FS method. The evaluation has been done in the
test set LHS_25_test. The results are shown in Figure 6.5. We observe that with 70
training samples, the SMod trained with the FS method achieves a lower MAEglob

compared to the SMod_LHS_100. Usually, the SMod benefits more from some re-
gions of the domain and the uniform distribution of LHS is not optimal. Also, a
higher number of samples does not always mean more accuracy, since problems
like overfitting may arise. This proves that a proper sampling strategy is crucial to
reduce the number of training samples of the SMod without impacting its perfor-
mance. Hence, in this case, the SMod keeps the accuracy decreasing the training
samples from 100 to 70, i.e., reducing the simulation time in the data generation
phase a 30 %.

The results show the succesful creation of a ML-based SMod to predict the tem-
perature and material properties of a complex part during a hot stamping process.
This model offers valuable insights and methods to improve the manufacturing
process. Because the model can predict in real-time, it can be used to fine-tune the
process and make it more efficient, leading to better control and monitoring of hot
stamping.
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Figure 6.5: MAEglob evolution as function of the number of training samples.
Right: Temperature. Left: Martensite fraction.

6.4 Ongoing work

The previous results have proven that a good sampling strategy can reduce the
size of the training dataset and, consequently, the simulation time of the overall
pipeline. The approach have shown how a proper selection of the data can re-
duce the number of necessary training data to achieve a trustworthy SMod. Based
on this idea, we aim to extend the study proposing an improved method where
only the optimal simulations for training the SMod are done. Namely, there is no
need to generate a prior dataset to construct the SMod. Then, the current section
presents a method that addresses this using an Adaptive Sampling (AS) method.
While the full implementation and analysis of this method are still in progress, this
thesis provides an descriptive overview of its development and some promising
results. The resulting work will focus on the full implementation of the method in
the current hot stamping scenario.

Adaptive Sampling (AdSam) is a technique used to efficiently construct accu-
rate SMod. Instead of relying on a predefined set of sample points, AdSam refines
the SMod iteratively. This method starts with an initial set of sample points, often
generated by LHS, which is used to evaluate the computationally expensive simu-
lation and build a preliminary SMod. Subsequently, an analysis of the initial SMod
is performed to identify the regions where the model presents greater uncertainty
or prediction error due to the scarcity of information.

Based on this uncertainty assessment, new sample points are strategically se-
lected in these regions. The expensive simulation is evaluated at these new points,
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and the SMod is updated accordingly. This iterative cycle of uncertainty assess-
ment, selection of new samples and updating the SMod continues until a prede-
fined stopping criterion is met, such as reaching a desired level of accuracy or
reaching the maximum number of samples.

The main advantage of AdSam lies in its ability to concentrate computational
resources on areas where the model requires further refinement. This strategic fo-
cus minimizes the number of costly simulations required to reach the desired level
of accuracy. Furthermore, the iterative nature of the process allows for flexibil-
ity and adaptation based on observed model behavior, resulting in more accurate
SMods. AdSam has proven its effectiveness in a wide range of applications, in-
cluding engineering design, environmental modeling and optimization of complex
systems thanks to its ability to generate accurate predictions with limited data.

To extend the previous study, an AdSam approach is proposed to create a SMod
of the hot stamping LS-Dyna® simulations of a hat-shaped geometry. This de-
mands a continuous interaction and a connection between the surrogate modeling
framework and the simulation model. In what follows, we describe the proposed
AdSam method, which is showcased in the flowchart displayed in Figure 6.6:

Initially, an initial set of samples of m = 10 is generated through the LHS strat-
egy, using the configuration domain conformed by the input variables defined in
Section 6.2.2. From this initial domain, LS-Dyna® is used to create a training set,
which will be updated in each iteration of the AdSam process. Each iteration con-
sists in:

1. Generation of a SMod with the current training set. The AdSam process ends
if the evaluation of the SMod fulfills the stopping criterion. In our case, the
stopping criteria are that the size of the training set is m ≤ 70.

2. If the stopping criteria is not fulfilled, the current training set is divided in
5 subsets, that are used construct 5 different SMods. Each subset is formed
by different samples. For instance, imagine that S1, S2, S3, S4 and S5 are the
subsets and each one contain the same number of samples. Then, the first
SMod1 is trained using S1, S2, S3 and S4. The second SMod2 uses S2, S3, S4
and S5. In this way, each of the generated SMods is built using different data.

3. 100 candidate samples from the domain are chosen ramdomly and predicted
by the 5 SMods. This means each candidate sample is a configuration of
the input variables. Then, the SMod1, SMod2, SMod3, SMod4 and SMod5
predict the outputs in each of the candidate samples.
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Figure 6.6: Flowchart of the AdSam method proposed in this study.

4. Afterwards, from the results of the predictions, a selection criteria is applied
to select the best samples to be added in the training set. In our case, the
variance between the predictions of each SMod is computed in each candi-
date sample for the temperature and the martensite fraction. Since we have
4 elements in the geometry to predict, actually we consider the variance σ2

T

(temperature) and σ2
X (martensite fraction) as the mean of the variances of

the predictions in each of the elements. Then, we define a global variance for
each candidate sample n:
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σ2(n) =
σ2
T (n)

max(σ2
T (n))

+
σ2
X(n)

max(σ2
X(n))

(6.1)

that considers equally both output variables, temperature and martensite
fraction, by normalizing each one of the terms in Eq. 6.1. The selection crite-
ria is based on selecting the p candidate samples with the highest value of σ2.
In the considered case p = 5. The hypothesis is that if the 5 SMods predic-
tions differ a lot between them, this means that there is a lack of information
about this area of the domain in the training set.

5. Once the best p = 5 candidate samples are selected to be added in the training
set, the corresponding LS-Dyna® simulations are performed. In this sense,
we obtain the outputs of these new 5 of the domain, and they can be included
in the updated training set. The process is repeated from 1 until the stopping
criterion is fulfilled.

6.4.0.1 Preliminary Results and Next steps

The implementation and evaluation of this AdSam method is still in progress. We
expect to compare the prediction metrics of the ML-based SMod created using the
AdSam with the benchmark SMods constructed through LHS and FS methods.

Figure 6.7: MAEglob evolution as function of the number of training samples com-
paring the FS method, the AdSam strategy and the benchmark SMod_LHS_100
results. Right: Temperature. Left: Martensite fraction.

The preliminary results are displayed in Figure 6.7, where we can observe the
evolution of the metrics of non-optimal SMods build with the AdSam procedure
up to 50 training samples. The tendency of the AdSam curve shows promising
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results, with still a lack of hyperparameter tunning of the models and the addition
of more training samples.

The effectiveness of the method will be demonstrated if the resulting ML-based
SMod generated with AdSam achieves lower metrics than the SMod generated
through the FS strategy using the same or less training samples, confirming our
hypothesis.

6.5 Lessons Learned

• An important consideration when building ML-based SMods is the signifi-
cant influence of sampling techniques on the accuracy and efficiency of sur-
rogate models (SMods).

• By building upon the parameter interpolation approach presented in Sec-
tion 5.3.2, this study provides a deeper understanding of how different sam-
pling methods can impact the performance of SMods in predicting critical
process variables in hot stamping simulations.

• The successful development of a ML-based SMod capable of predicting fi-
nal temperature and martensite content in different regions of a hot-stamped
hat-shaped part provides further valuable knowledge and methodologies in
the manufacturing process of hot stamping. The SMod soft real-time predic-
tion capability can enhance sensitivity analysis and optimization procedures,
leading to improved process control and monitoring in hot stamping appli-
cations.

• The investigation performs a comparative analysis of Latin Hypercube Sam-
pling and Forward Selection methods, highlighting the importance of the
sampling strategy in surrogate modeling. This finding is directly related to
the thesis objective of accelerating data generation and analysis in manufac-
turing processes. Ongoing work about the application of an Adaptive Sam-
pling to this use case indicated a strong interest to keep the investigation in
that direction and in the creation of an optimized sampling strategy for the
hot stamping process.



Chapter 7

Extension of the Hot Stamping Case -
Transfer Learning to Real Industrial
Plant

This chapter investigaties a SMod extension of the baseline SMod of the hot stamp-
ing process introduced in Section 5.3.2 is investigated. The study in this chapter
aims to transfer the ML-based SMod in a real industrial plant. While in the prac-
tical application of Section 5.3.2, all the data has been obtained from simulation
models, in the current study the process is tested in a real hot stamping plant.
Hence, we address the sim-to-real problem in surrogate modeling, focusing in a
highly efficient method based on Transfer Learning (TL) to leverage the knowledge
learned in the simulation environment into the real manufacturing environment.

Usually, data acquisition in real manufacturing plants is a very expensive task
and FE simulations are employed to train ML-based SMods. However, the approx-
imations of the FE models may induce a deviation from reality that is transferred to
the SMods. This chapter proposes a methodology to combine AI-based surrogate
modeling and Transfer Learning (TL) to create a trustworthy and efficient SMod of
a real manufacturing process, using a low-fidelity FE model as data source. In par-
ticular, the methodology has been demonstrated in a study involving hot stamping
of boron steel sheet in a pilot plant. Two DNNs have been trained with low-fidelity
ABAQUS simulations [230], forming a baseline SMod that predicts the key outputs
of the process. The use of few experimental real data of the process to perform TL
and adapt the original baseline SMod to the real environment shows remarkable
results, surpassing other Variable-Fidelity Modeling (VFM) approaches. The final
TL SMod provides fast and accurate predictions of the most relevant outputs of the
real process with little training, and it removes completely the calibration stage or

129
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the need of a high-fidelity simulation model. Additionally, the presented method-
ology can be a trigger for creating efficient virtual manufacturing environments
that can enable developing DTs or process optimization tools like RL.

The investigation performed in this chapter can be found in the article in [4].

7.1 Introduction

As it has been mentioned in Chapter 2, there are several limitations of both indus-
trial environments and simulations for the acquisition of manufacturing data. To
minimize the impact of the simulations drawbacks, the development of surrogate
models (SMods) has become a trend in the last few years [175–178]. The introduc-
tion of SMods is an enabling technology in manufacturing, since they are able to
enhance the data generation and the fast response, overcoming the high computa-
tional and time cost of FE simulations.

Regardless of the advantages of the ML-based SMods, their training usually
implies an important volume of simulation data and the number of samples have
a direct impact in the accuracy [172, 174, 244]. Also, the fidelity of the simulations
respect to the real process is affects the SMod performance [245]. Then, ideally,
high-fidelity simulation models should be used. Nevertheless, in addition to the
commented issues, working with high-fidelity manufacturing simulation models
requires:

• A continuous and intensive calibration of their parameters through experi-
mental validations in order to adjust the real process [246]. As commented,
the acquisition of real data has a very high temporal and economical cost.

• In the case of FE simulations, there exists a direct relationship between accu-
racy and time. As the mesh density increases so does the accuracy but the
simulation time also increases, and vice-versa. The dependence on the com-
plexity of the mesh to increment the precision and fidelity aggravates the
temporal limitations [168, 247].

Therefore, the construction of a SMod is also affected by the temporal con-
straints of the simulations and the training process must be time efficient to avoid
suffering the same problem that it aims to solve. For that reason, several approx-
imations are generally applied in the simulation models that reduce the time cost
but may affect the reliability [248, 249]. Although behaviors and patterns of the
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process can be correctly captured, some discrepancies between the simulation re-
sults and the real measurements of the process variables may arise, called sim-to-
real gap [250, 251]. Consequently, SMods trained on simulations inherit the same
prediction deviations present in those simulations. This limits their potential for
boosting the data generation in manufacturing process or the creation of DTs and
RL agents which intend to act directly on real-world environments [252, 253]. To
sum up, the scarcity of data from real industrial plants enhances the need of the
SMod being a reliable representation of the real manufacturing process.

VFM has emerged as a surrogate modeling technique to address the above
drawbacks of high-fidelity simulations in manufacturing and engineering. By
strategically employing numerous low-fidelity simulations, which are computa-
tionally less demanding, VFM enables the extraction of crucial patterns and in-
sights even when high-fidelity data is scarce. This approach significantly reduces
computational costs and time without impacting in the accuracy of the resulting
SMod [254–256]. VFM has been successfully implemented in various domains. For
instance, in aerodynamic design optimization, VFM has been used rapidly explor-
ing the design space with low-fidelity models, while relying on high-fidelity sim-
ulations to iteratively improve the SMod [257]. In the context of uncertainty quan-
tification, VFM has been employed to propagate uncertainties from low-fidelity
models to high-fidelity predictions, providing a more comprehensive understand-
ing of the system behaviour [258, 259].

In this chapter, we present a pipeline that introduces Transfer Learning (TL)
to construct a SMod of a real manufacturing plant, where the data acquisition is
a very costly process. TL is an established machine learning technique for trans-
ferring the knowledge of a model trained in a source domain to a target domain,
with the aim to reuse, adapt, and boost the model learning process in the new do-
main [260–262]. Accordingly, the presented methodology for building an AI-based
surrogate model of a real manufacturing environment uses a simple and fast FE
model as the main source of data. The methodology includes surrogate modeling
and the application of TL to leverage the knowledge from the low-fidelity simula-
tions to the real environment and to solve the sim-to-real gap. In the considered
case, a reduced amount of high-fidelity data is obtained from a real environment
while the low-fidelity data comes from a simplified FE simulation model. Con-
cretely, the methodology has been implemented in the use case of a hot stamping
pilot plant. Initially, we perform a random exploration of the entire configuration
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domain within the feasible range of variables, as defined by the pilot hot stamp-
ing plant. This exploration is conducted using simplified low-fidelity FE simula-
tions of the hot stamping process. Next, the high amount of data generated from
the simulations is used to train two Deep Neural Networks (DNNs) that predict
the most important temperatures of the hot stamping process. The DNNs form
a baseline surrogate model (SModBase) of the FE simulations. Finally, we apply
TL to fine-tune the DNNs of the baseline SMod with a very reduced quantity of
data from the real industrial plant. The final TL-SMod shows very accurate results
in the prediction of the relevant variables of the hot stamping process in the real
plant, outperforming a surrogate model trained only with experimental data and
the standard VFM approach that merges low-fidelity and high-fidelity data.

Summarizing, the main contributions of this chapter are highlighted in the fol-
lowing points:

1. The use of the transfer learning (TL) method to solve both VFM problem and
the sim-to-real gap problem at the same time generates an efficient and effec-
tive surrogate model of a real hot stamping plant. Contrary to current liter-
ature, as far as we know, our methodology addresses two steps at the same
time: First, the correction of low-fidelity simulations to high-fidelity models,
which is commonly addressed in engineering through VFM techniques. Sec-
ond, the adjustment of the sim-to-real gap from the simulation environment
to the real environment. Instead of solving the problems separately, the pro-
posed approach uses TL to merge both problems and it shortcuts and boosts
the process to create a SMod of the real environment.

2. We thoroughly explore the influence of different TL options and relevant
parameters as well as analyze the methodology robustness in terms of the
amount of real data required for a successful application of the technique.
Also, the effect of the simulation data fidelity level is studied.

3. The resulting TL-SMod is applied and showcased in a real hot stamping plant
showing the viability and effectivity of the method and allowing for quick
exploration of critical parameters of the manufacturing process.

7.2 Methodology

In this section, we introduce the general overview of the proposed SMod-TL ap-
proach and we provide a comprehensive explanation of the applied methods, VFM
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and TL.

7.2.1 Overview of the Surrogate Modeling-Transfer Learning Pro-

cess

As previously mentioned, in the specific case of hot stamping, FE modeling is a
mature, well-established technique when used for the design and analysis of pro-
duction processes [263]. The main reason for the use of this technique is that exper-
imental tests imply an important waste of materials, wear of the tools and the mis-
spend of resources. The fidelity of these simulations is directly proportional to the
complexity of the used FE model. Thus, a large computational time and resources
are needed in order to perform a well-grounded analysis. Then, it is usual to as-
sume approximations and simplifications assumed the FE models which may lead
to deviations between the real hot stamping process and the simulations. This use
case presents a methodology to efficiently obtain accurate data of the hot stamping
process without perturbing the real manufacturing system by means of combining
FE simulations, real experiments and ML techniques.

Figure 7.1: Flowchart of the pipeline to build a SMod using FE simulations and TL
to predict the target variables in the hot stamping pilot plant.

Figure 7.1 shows an schematic description of the proposed SMod-TL process.
First, we create a baseline surrogate model, SModBase, using two DNNs that are
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trained with low-fidelity FE simulations adjusted to the process parameters of the
target hot stamping environment with the goal of predicting the two relevant vari-
ables of the process, the temperature of the die and the sheet, respectively. From
the real environment, high-fidelity data from the actual hot stamping process are
collected by means of two pyrometers and a thermocouple. To reduce the discrep-
ancy between the prediction and the real process, TL is applied. This allows to
fine-tune the SModBase with the reduced data from the real manufacturing plant.
As a result, an efficient and accurate predictor of the real environment key vari-
ables is produced.

7.2.2 Variable-Fidelity Modeling and Transfer Learning

Variable-Fidelity Modeling (VFM), also known as multi-fidelity modeling, is un-
derstood as the construction of surrogate models using data from different fidelity
levels of the same process [254]. The idea is to employ the low-fidelity models
to perform a cheaper and faster analysis of the parameter space overcoming the
curse of dimensionality, obtaining an approximate representation of the system
dynamics and reducing the volume of high-fidelity data required to build a SMod.
However, the accuracy of a SMod build only with low-fidelity data is not desirable.
Hence, the high-fidelity model is still fundamental to obtain a precise response in a
few points of the parameter space. The resulting data from distinct sources and fi-
delity is combined leading to a variable-fidelity SMod (VFSM). The computational
efficiency, the time optimization and the accuracy in the design space exploration
of this strategy can even surpass the traditional surrogate modeling methods [264].
The main problem of the traditional approaches to build SMods is that the pre-
diction accuracy directly depends on the number and the confidence level of the
training samples. Therefore, the sample generation process and the SMod creation
can be very costly when working with single high-fidelity FE simulations. Other-
wise, VFSM can be used as a time and computationally efficient alternative of the
conventional surrogate modeling.

The most common approach in VFM is the bridge function method [256]. As-
suming a high-fidelity model (HFM) and a low-fidelity model (LFM), the corre-
sponding surrogate models are a high-fidelity surrogate model (HFSM) and a low-
fidelity surrogate model (LFSM), respectively. As commented, the development of
a HFSM only from the samples of HFM is very expensive. Therefore, the bridge
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function method consists in the introduction of an additive or multiplicative cor-
rection that link the different fidelity models to construct the variable-fidelity sur-
rogate model (VFSM). Depending on the relation considered between the two fi-
delity models, the VFSM approach is expressed in terms of Eq. 7.1 for the additive
case and Eq. 7.2 for the multiplicative case.

yVFSM(x) = yLFSM(x) + ε(x) (7.1)

yVFSM(x) = ρ(x)yLFSM(x) (7.2)

where ε(x) and ρ(x) are SMods obtained from the difference or the division
between the available HFM samples and the LFSM predictions of these samples.
A combination of the two approaches is the comprehensive bridge function ex-
pressed in Eq. 7.3.

yVFSM(x) = ρyLFSM(x) + ε(x) (7.3)

where ρ is a constant scaling function in this case and ε(x) is known as the dis-
crepancy function. The VFM approach with bridge functions have been success-
fully modeled in literature using popular ML techniques. For instance, in [264]
proposes an optimization framework applying a sampling strategy, a fuzzy clus-
tering algorithm to reduce the design space and a Gaussian Processes (GP) re-
gression to generate a VFSM from the multiplicative bridge function approach.
The resulting VFSM-based environment serves as a tool to find optimal solutions
very quickly with low computational cost. Also, in [265] a multi-fidelity DNN is
employed to overcome the curse of dimensionality in uncertainty quantification
methods.

Furthermore, an improvement of kriging called co-kriging has been very pop-
ular in modeling VFM problems. In [266], the method is explained in detail and
it is extended to multiple fidelity levels. To sum up, it assumes the relation of the
Eq. 7.3 between low and high-fidelity data and the correlation between data from
different fidelity levels is taken into account. The idea is to incorporate the co-
variance between data into the kriging equations, allowing the model to balance
the effect of both data sources. Thus, co-kriging has been applied in [267] to con-
struct fast SMods from variable-fidelity CFD simulations to help to accelerate the
optimization of aerodynamic surfaces. Another example is the use of co-kriging to
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overcome the curse of dimensionality in the surrogate modeling of electromagnetic
simulations in [268].

The problem addressed in this study can be understood as an analogy of VFM.
In our case, a hot stamping plant acts as a source of high-fidelity data, playing the
same role as the HFM. Moreover, the elevated cost of data acquisition in industrial
environments has already been mentioned, resulting in a very limited set of real
data. On the other side, FE simulations are the source of low-fidelity data, namely
LFM. This simulation environment allows to build SMods of the most relevant
variables of the hot stamping process within a domain of configuration param-
eters, as demonstrated in Section 5.3.2 [2]. Despite this analogy with VFM, the
proposed methodology differs from previous VFM works due to the introduction
of TL, which not only solves the problem of having two-fidelity data sources, but
also solves the called sim-to-real gap problem at the same time.

From its origins, Transfer Learning (TL) has proven to be a useful approach to
handle problems where the target domain has a size-limited data set [262]. TL is
a well-known learning framework based on the idea that a model trained to do a
specific task in a specific domain can be adapted to perform another related task, or
the same task but in another target domain of interest. This transfer of knowledge
will improve the generalization performance of the model without the need of
large amounts of data of the new task or the new domain [260, 261]. Therefore, TL
is highly beneficial in domains where the data is limited and the available training
data is insufficient or inaccurate. A more formal definition of TL is provided in
[261]:

Given a source domain DS and learning task TS , a target domain DT and learning task
TT , transfer learning aims to help improve the learning of the target predictive function
fT (·) in DT using the knowledge in DS and TS , where DS �= DT , or TS �= TT .

DNNs have been established as the most usual framework for the application
of TL, and several techniques have been implemented in this context, classified in
[269]. According to this classification, the current study adopts a Network-Based
Deep Transfer Learning method, detailed in Section 7.4.2.

TL has been widely used in fields like computer vision [270] and natural lan-
guage processing [271], due to the possibility to train general initial models in ac-
cessible huge data sets such as ImageNet [272] or WordNet [273], and afterwards
adapt them for specific tasks through TL. In the manufacturing context, the exper-
tise knowledge or AI-tools working on a process may not be effective when the
configuration parameters, the materials or the sensors are modified. To handle the
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data scarcity suffered due to the computational cost of new manufacturing sim-
ulations and the difficulty to acquire new data from industrial environments, TL
has been introduced and its capabiltiy to adapt to unseen scenarios only using few
data samples has shown promising results [274, 275].

Some recent works have used similar ideas of applying TL to face the VFM
problem. In [276], a demonstration of the TL effectiveness with respect to other
VFM methods is presented for the buckling prediction of variable-stiffness com-
posite shells. Further, an approach for aerodynamic shape optimization that uses
data from both LFM and HFM through a TL-CNN is proposed in [277]. Neverthe-
less, these studies do not focus on the real-world environment, and both the HFM
and LFM are derived from FE models with varying mesh densities.

In some cases, the problem is not the use of less accurate LFM, but the mis-
match between simulations and reality, called sim-to-real gap, even when using
HFM in simulation. In addition, the small amount of available of data from the
real processes is an important limitation for developing data-driven models. The
sim-to-real gap may cause bad performance of ML models or the creation of non-
representative SMods of the real scenarios. TL offers a solution to the sim-to-real
gap problem, because it can take advantage of the knowledge of a simulation
model which differs from reality (source domain) and transfer it to the real pro-
cess (target domain). For instance, in [251] it is shown how TL can correct the
discrepancy between simulation and real data and reduce significantly the sam-
ples of real data used to train a DNN for an accurate prediction the part weight in
injection moulding.

Our study focus on creating a SMod of a hot stamping industrial plant. The
methodology includes the VFM idea of employing a LFM as the main source of
data to explore the configuration domain at a low cost and create a baseline low-
fidelity SMod. Instead of a HFM, the high fidelity data comes from experiment
data from a hot stamping plant and a sim-to-real gap exists between simulation
(source) and real (target) data. The application of TL is the key point in the pro-
posed method, since it allows to solve both VFM and sim-to-real gap problems,
merging the ideas from the previously mentioned studies. The approach can achieve
an important reduction of the number of required experiments and a trustworthy
and efficient SMod that provides a very fast and accurate response can be gener-
ated.
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7.3 Use Case Description

In the current section, we present the hot stamping process, briefly describing the
pilot plant and identifying the process parameters and variables. The character-
istics of the real environment and the simulation environment are also presented,
along with the details regarding the collection data from both environments.

7.3.1 Hot stamping Process and Data Collection

The hot stamping process used in this chapter is identical than the one presented
in Section 5.3.2. However, in the current study, we have realized the hot stamping
process using both simulations and experiments in a real plant.

7.3.1.1 Pilot Plant Description

The data of the current study have been obtained reproducing a reduced-scale
hot stamping line pilot plant located in Eurecat Manresa, described in [278]. Fig-
ure 7.2a illustrates this plant. It comprises a 3 m long continuous roller-hearth
convection-radiation furnace and a set of water-cooled dies mounted on a hy-
draulic press system. All data have been collected within the standard operation
conditions of this plant and under its spatial limitations, temperature ranges, etc.

(a) (b)

Figure 7.2: (a) The pilot plant at Eurecat Manresa where the tests have been per-
formed. The furnace is located on the left-hand side of the image and the hydraulic
press that contains the die is on the right-hand side. (b) Cooling die with cooling
channels inside the hydraulic press. Localization of the three temperature sensors
in the setup. 1) S1. 2) S2. 3) S3. 4) Cooling channels. 5) Cooling die.
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The die is a flat water-cooled die made out of steel DIN 1.2344 (AISI H13) tem-
pered at 48 ± 1 HRC, with water channels 10 mm in diameter and located at 20
mm depth from the surface, with a separation of 50 mm between centers.

These tools are used to process 200 mm × 100 mm blanks of commercial AlSi-
coated 22MnB5 sheet, 1.7 mm in thickness. The corresponding chemical composi-
tions of the used materials are exhibited in Table 5.6. More details on the geometry
and materials can be found in Section 5.3.2 [2].

7.3.1.2 Process Parameters, Sensors and Variables

The process parameters of the tests performed in the pilot plant were given by the
standard operational conditions of the pilot plant:

• Furnace temperature: 900 - 930 ◦C

• Cooling water temperature: 14.5 - 23.5 ◦C. It is the temperature of the cooling
of the die.

• Cycle time (tcycle): (30 ± 10) s. As it is clarified in Figure 4.4, a cycle is un-
derstood as the time between the moment a sheet is introduced into the die
until the next one is transferred to the die. This time is determined by the
distance between the sheet steel blanks into the continuous furnace, which
has been done each 30 s. The human intervention to perform this action and
the transfer of the hot blank into the die, induces an uncertainty of ±10 s.

• Forming time (tform): 5 - 15 s. During this time, the die is closed and the
forming and quenching processes occur. In this case, the hydraulic press
configuration allows to fix the desired forming time. However, it exists an
minimum time required because below this threshold the forming and the
quenching of the steel sheet is not executed correctly. However, the supe-
rior limit is given by the minimum time that the operator requires to extract
the part from the die before the next steel sheet comes from the continuous
furnace.

• Cooling time (tcool): 5 - 35 s. It is the time when the die is not closed. Then,
according to Figure 4.4, it can be expressed as tcool = tcycle − tform. As can be
noticed, this interval includes the uncertainty of the cycle time, which implies
that in the worst case the operator only has 5 s to complete the cycle.
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In addition of the mentioned process parameters, we have monitored the pro-
cess through the deployment of temperature sensors in the simulation and real
environments. Three temperature sensors have been placed in the experimental
setup, as it is indicated in Figure 7.2b. We observe how the cooling die with the
cooling channels is mounted on the hydraulic press and the distribution of the sen-
sors. The sensors measure the temperatures of the steel sheet and the die, enabling
the acquisition of the temperature profiles during the hot stamping process of all
the cycles of a batch. The features of these sensors are presented in Table 7.1.

Table 7.1: Brief description of the three temperature sensors.

Sensor S1 S2 S3

Type Pyrometer Pyrometer Thermocouple
Temperature limits Yes > (148.9± 1)◦C Yes > (253.0± 1)◦C No

According to its characteristics and its location, each sensor has a specific mea-
surement role during a hot stamping cycle:

1. The pyrometer S1 is located above the die. It captures the radiation emit-
ted by the lower part of the die surface, thanks to a hole in the superior part
of the die. Since the temperature of the die itself is lower than the inferior
limit of 150◦C of the pyrometer, this sensor only reacts when the steel sheet is
present. Then, its role is to measure the evolution of the steel sheet tempera-
ture during the forming process and it also determines the instant when the
die opens.

2. The pyrometer S2 points also to the lower part of the die surface and it has
an inferior limit of 250◦C. Therefore, like S1, it only responds when the steel
sheet is in the die, but in this case its measurement drops when the die closes
since it is situated in an external spot. This enables to determine the moment
of the closure of the die.

3. Finally, the thermocouple S3 is directly in contact with the die. It is inserted
horizontally, measuring a spot in the center of the die and 8 mm under the
die surface. It measures the temperature evolution of the die during the all
the cycle steps of forming and cooling.

Therefore, using the sensor data, additionally to the process parameters, we
will define two important input variables at the start of a cycle:
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• Initial temperature of the die at the closure instant (TD
ini): The range goes from

the water temperature at the initial cycle up to a limit operation temperature
that depends on the die characteristics. Nevertheless, in the studied process
this variable is limited by the other process parameters and does not over-
come the threshold of 150◦ C. It refers to the starting temperature of the die
in the forming and quenching stage and its value is conditioned on the pre-
vious cycle parameters.

• Initial temperature of the sheet at the closure instant (T S
ini): ∼ 680 − 880◦C.

The range of values of this variable is highly dependent on the transfer of
the part from the furnace to the die. This variable is the starting temperature
of the posterior cooling of the sheet caused by the forming and quenching
stage.

Once a cycle ends, it is important to know the quality of the final part and to
understand the state of the setup to continue the batch production. As it has been
mentioned in Section 5.3.2 [2], there are some output variables that are crucial in
order to evaluate the hot stamping cycle. In this use case, we will focus on two of
these target variables:

• Final temperature of the die at the opening instant (TD
fin). It is the temperature

of the die after the forming and cooling phases and it represents the state of
the hot stamping setup after a cycle.

• Final temperature of the sheet at the opening instant (T S
fin). It is the temper-

ature of the final part and depending on its value ensures that the objective
martensitic microstructure has been achieved.

Summarizing, the input variables for each cycle of the hot stamping process
will be the forming time (tform), the cooling time (tcool), the initial temperature of
the die (TD

ini) and the initial temperature of the sheet (T S
ini). The other mentioned

parameters like the furnace temperature, the cooling water temperature and the
cycle time (tcycle) will remain within the established range during all the experi-
ments. They are not considered input variables themselves since they are related
on the real inputs and they are indirectly taken into account. For example, the
furnace temperature regulates T S

ini, the water temperature exerts influence on TD
ini

and tcycle is the sum of tform + tcool. The output target variables will be the final
temperature of the die (TD

fin) and the final temperature of the sheet (T S
fin).
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Figure 7.3: Temperature evolution measured by the three sensors. The moments
of opening and closure of the die are pointed out. Left-hand side: Evolution of the
sensor outputs for a whole batch of 20 cycles. Right-hand side: Zoom in of the first
cycles (upper figure) and the intermediate cycles (lower figure).

The described behaviors of the sensors can be observed in Figure 7.3, where
the evolution of the measured temperatures is shown for a whole batch and for
individual cycles. The lower temperature limits of each sensor are identified in
the first 200 s before the start of the first cycle. Once the first steel sheet emerges
from the furnace and it is transferred to the die, we notice a sudden increase of S1
and S2, which detect the hot sheet. The posterior sudden drop of S2 to its ground
temperature determines the closure of the die, and the values of S1 and S3 at this
instant are T S

ini and TD
ini, respectively. During the forming stage, the heat transfer

process between the die and the sheet induces a decrease of S1 and an increase in
S3 until the die opens. This is captured by a small spike in the sensor S1, due to
a change in the radiation received by the pyrometer in the opening process that
ends when the sheet is extracted. At that moment, the measures of S1 and S3
correspond to T S

fin and TD
fin, respectively. The difference between the opening time

and the closure time is the real forming time (tform) of the cycle. Finally, in the last
step S3 temperature decreases slowly and keeps cooling until the next cycle. It is
important to mention that the detection of the peaks and sudden changes has been
done with the derivatives of the sensor signals. Due to the difficulties caused by
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the temperature limit of the sensor S1, a procedure to measure T S
fin is detailed in B.
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Figure 7.4: Representation of the mean temperatures and the corresponding stan-
dard deviation of REALdata. (a) TD

ini. (b) T S
fin.

In the setup of the pilot plant environment, we have been able to perform 40 ex-
perimental batches of 10 - 20 cycles. The resulting high-fidelity data set, REALdata,
is described in Table 7.2. The temperature evolution of the targets TD

fin and T S
fin is

displayed in Figure 7.4. As noticed before, despite the variability along cycles, the
repetition of the process causes a continued augment of the die and sheet temper-
atures, until a stationary regime is achieved around the eighth or tenth cycle.

7.3.2 Simulation Environment and Data

The simulation environment used in this study is the same than the one presented
in Section 5.3.2.2, consisting in a 2D finite element model analysed by the ABAQUS
software [230]. As a difference, in accordance with the variability of the real hot
stamping plant, the sink temperature of the cooling channels was defined ran-
domly for each cycle within the water temperature range mentioned in Section 7.3.1.2.
Further details of the process can be found in Section 5.3.2 [2].

As commented in the previous Section 7.3.1.2, the input variables of the sim-
ulation model are tform, tcool, TD

ini and T S
ini within its given range of values. The

variables of tform, tcycle and T S
ini will take random values inside the established

ranges. Hence, tcool has also a randomness associated to tcycle and tform. Otherwise,
TD
ini has a initial value equal to the water temperature, but it evolves depending

on the batch dynamics. The two sensors specified in Figure 5.19 have been sit-
uated strategically to mimic the positions of the sensors in the real system and
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Table 7.2: Characteristics of the all the generated data sets in both environments.

Environment: Real Simulation Simulation

Batches 40 500 40
Cycles per batch 10-20 20 10-20

Total samples 628 10000 628
Input variables tform, tcool, TD

ini, T S
ini tform, tcool, TD

ini, T S
ini tform, tcool, TD

ini, T S
ini

Target variables TD
fin, T S

fin TD
fin, T S

fin TD
fin, T S

fin

Application Training and validation Training Validation
Abbreviation REALdata SIMdata SIMvalid

Fidelity High Low Low

they capture the temperature profiles of the sheet and the die, shown in Figure 7.5.
Depending on the input forming and cooling time, it is possible to determine the
closure and opening instants of the die. In these points, we can measure TD

ini, T S
ini,

and the process target variables TD
fin and T S

fin.
Figure 7.5 provides an insight about the dynamics of the simulated process.

When the die closes, a decrease of the sheet temperature is induced thanks to the
contact with the die of the forming and quenching phase, while the die tempera-
ture increases up due to the heat transfer between the two parts until the cooling
of the sheet temperature slows. The opening of the die allows the extraction of the
final steel sheet and the die enters into a cooling stage caused by the environment
temperature until the next cycle starts.
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Figure 7.5: Temperature evolution for a simulated batch measured by the two sen-
sors. The moments of opening and closure of the die are pointed out. Left-hand
side: Evolution of the sensor outputs for a whole batch of 20 cycles. Right-hand
side: Zoom in of the individual cycles of the batch.

The randomness in the input variables is used to avoid inductive biases when
building the ML-based SModBase that will try to reproduce the hot stamping pro-
cess at Eurecat pilot plant. In Section 5.3.2 [2], it has been demonstrated that a
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ML-based SMod of the hot stamping process generalizes better when it is trained
with a data set that explores the whole parameter space randomly than when it is
trained with standard operational conditions.

Under these conditions, we have simulated 500 batches of 20 cycles for the
training of the ML-based SMod, which form the low-fidelity SIMdata data set. The
most relevant aspects of this training data set are outlined in Table 7.2.

The outputs of the simulation data set TD
fin and T S

fin are presented in Figure 7.6,
where we can see the their evolution along the cycles. It can be noticed that de-
spite the randomness, both temperatures evolve in a increasing tendency until a
stationary region is reached. After cycle 10, the global trend is constant and the
temperatures keep oscillating inside a wide range of values. The reason of this be-
havior is that under the conditions given by the input variables, in that region the
output value of TD

fin is not too far from TD
ini. Since TD

fin will be used as input for the
next cycle, despite the values of the other input variables, the situation is repeated.
Considering that T S

fin is directly related with the input TD
ini, the periodic dynamic

of the input variable has the same effect on T S
fin.
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Figure 7.6: Representation of the mean temperatures and the corresponding stan-
dard deviation of SIMdata. (a) TD

fin. (b) T S
fin.

Additionally to the training data set, we have also simulated the 40 batches
produced in the real environment for comparison and validation purposes which
compose an extra low-fidelity data set, SIMvalid (see Table 7.2).
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7.4 Application of the Surrogate Model-Transfer Learn-

ing Pipeline

In this section, we describe the initial SModBase, the details of the DNNs, the train-
ing procedure, the used performance metrics and the validation in both environ-
ments. Afterwards, the proceeding of applying TL in the SModBase is reported.
The results of the validations lead to a discussion about the contributions and ad-
vantages of the employed methodology. Furthermore, we realize a study of the
effect of the simulation data fidelity level. Finally, we summarize the importance
of the modules of the pipeline with an ablation study.

7.4.1 Baseline Surrogate Model

The existence of a simulation environment opens the possibility of testing different
scenarios and the identification of potential issues in the process of hot stamping,
leading to the optimization of the process in the real industrial plant. Moreover,
the simulation environment can give an insight about the impact of the changes
in process parameters and variables, as well of the dynamics of the relevant target
temperatures during the production of a batch, as seen in Section 7.3.2.

Nonetheless, drawbacks of manufacturing simulations, such as slow response
times and high computational costs, can hinder data acquisition and exploitation
within the simulation environment. In addition, the exploration of various possi-
ble configurations inside the capabilities of the hot stamping industrial plant will
suppose a huge amount of simulations and time. To enhance the response of the
simulation environment and to allow a faster exploration of the parameter space,
a ML-based SMod of hot stamping simulations has been proposed in Section 5.3.2
[2].

The same idea is applied in this study, but in this case the simulation environ-
ment serves as a low-cost source of data that is used only to build a baseline SMod:
SModBase. The main advantage of training the SMod in a simulation environment
is the easiness to produce a huge amount of data of the process without perturb-
ing the real system. Moreover, if the simulation model complexity is reduced in
purpose, the cost of generating data is mitigated. Then, due to the model simpli-
fications of the real process, we do not expect a good performance of SModBase
in the prediction of the real plant. However, this initial SMod already has some
information of the process dynamics and it is the starting point of the proposed
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methodology. Different to Section 5.3.2 [2], where XGBoost was used to develop
the SMod, in this chapter we employ DNNs.

7.4.1.1 Deep Neural Networks Features

Preprocessing: Before the training, the inputs are normalized using Eq. 7.4 to the
range (0,1). This is known as Min Max Scaler and it ensures that the inputs con-
tribute equally to the model fitting:

xscaled =
x− xmin

xmax − xmin

(7.4)

Model details: This SModBase consists in two Deep Neural Networks (DNNs)
built with the Python package Tensorflow [279]. Each DNN will perform a regres-
sion to predict one of the target variables of the process, TD

fin or T S
fin. The employed

DNNs are composed by an input layer of 4 neurons corresponding to the 4 input
variables of Table 7.2, hidden layers to be determined in the hyperparameter tun-
ing process, and an output layer of a single neuron with linear activation function.
Experimental setup and parameters: The training of the SMod is done with the
data of SIMdata obtained from the simulation environment of the hot stamping pilot
plant, detailed in Table 7.2. First, the Keras Tuner API [280] is used to perform a 5-
Fold Cross-Validation (CV) [195] combined with Bayesian Optimization (BO) [281]
to select the best network architecture and hyperparameters. The networks have
been trained using the Adam algorithm [193] implemented with the Python Keras
package [282]. The results of the hyperparameter tuning are displayed in Table 7.3.
Both DNNs are 3-layer fully-connected neural networks, with different number of
neurons, activation functions ("SeLU"1 [283], "sigmoid" [284] and "tanh" [285]) and
batch size. For the sake of clarity, in this case, the batch size refers to the samples
used for training in each epoch.

The evaluation of the performance of the model is done in two sets of previ-
ously unseen data: SIMvalid and REALdata. As is it stated in Section 7.3.2, we have
generated an additional data set in the simulation environment for validation pur-
poses. This validation set of simulations SIMvalid consists in the simulation of the
40 batches produced in REALdata and its characteristics are indicated in Table 7.2.

1SeLU refers to Self-normalizing linear units. This unit implicitly controls internal covariate
shift improving convergence properties during the learning process while avoiding the necessity
of using tricks such as skip connections or batch normalization.
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Table 7.3: Results of the hyperparameter tunning process.

Hyperparameters Result TD
fin Result T S

fin

Number of hidden layers 2 2
Neurons 1st hidden layer 32 64
Neurons 2nd hidden layer 64 16
Act. Function 1st hidden layer SeLU SeLU
Act. Function 2nd hidden layer sigmoid tanh
Learning rate 0.001 0.001
Batch size 8 4
Epochs 200 200

Performance metrics: The metric used in this study is the Mean Absolute Error
(MAE) [49] for each cycle:

MAEk =

∑N
i=1|xi − x̂i|

N
(7.5)

where k is the evaluated cycle, xi are the actual values, x̂i are the predicted values,
and N is the number of samples corresponding to the cycle k. Additionally to the
MAE for single predictions, the considered global metric is the mean value of the
MAEk:

MAEglob =

∑Ncycles

k=1 MAEk

Ncycles

(7.6)

where MAEk is the MAE of the cycle k and Ncycles is the maximum number of
cycles per batch, namely 20.

7.4.1.2 Results

In this subsection the results of the SModBase are shown for the simulated data
created for validation purposes and for the real data.

Evaluation in simulated validation data.

The results of using the SModBase on the validation simulated data set are ex-
hibited in Figure 7.7. Visually, the model represents the validation data SIMvalid

successfully. In particular, Figure 7.7a shows how the predictions of both temper-
atures are close to the perfect prediction line, indicating that the model is able to
adequately achieve good prediction performance in the whole range of tempera-
tures of SIMvalid. Besides, we have calculated the MAEk for each cycle computing
the average absolute error over the samples of the cycle k in the batches. We obtain
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the results shown in Figure 7.7b. We observe that the MAEk is always lower than
5 ◦C.
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Figure 7.7: Validation of the baseline surrogate model SModBase on the data set
SIMvalid. (a) Comparison between all the predicted values and the corresponding
simulated values of SIMvalid. (b) MAEk metric evolution with the corresponding
standard deviation along cycles of the predictions of the batches of SIMvalid.

In this validation, MAEglob(T
D
fin) = 2.8526 ◦C and MAEglob(T

D
fin) = 3.3085 ◦C.

It is important to remark that SModBase does predictions using the value of TD
fin

predicted in the previous cycle, implying that a discrepancy of the model in the
past cycles affects the following predictions of the considered batch.

In Figure 7.8, the evolution of both target temperatures for a batch is closely
reproduced by the SModBase, highlighting the good performance of the SMod-
Base in the validation data set SIMvalid. This confirms that the usage of a data set
that randomly explores the domain of the input variables is a favorable training
strategy for the posterior generalization of the model to the standard operational
conditions within the limits of the domain. However, the SModBase in this case
is formed by two DNNs in comparison to the XGBoost approach presented in the
previous study in Section 5.3.2 [2]. The SModBase only acts as the starting point
for the generation of a SMod of the real environment.

Evaluation in real data

We will use the SModBase trained with SIMdata to try to reproduce the batches
of the real environment data set REALdata. Training a representative SMod of the
hot stamping pilot plant is difficult since the data originated from the real environ-
ment are usually scarce and only covers a limited part of the possible configuration
domain. This limitation is evidenced in the number of batches of REALdata and
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Figure 7.8: Example of the evolution of the target temperatures of a simulated
batch compared to the prediction given by the baseline surrogate model SMod-
Base. (a) TD

ini. (b) T S
fin.

the range of values that they enclose, shown in Figure 7.4. Data acquisition in a
real industrial plant environment is more demanding because it supposes a waste
of raw material, erosion of the tools, energy consumption, etc. Then, the idea is
that the previous training in the simulation environment has allowed to feed the
SModBase with a huge amount of simulated data which embrace an extensive set
of configurations of the parameters.

The behavior of SModBase in the prediction of REALdata is shown in Figure 7.9.
On the left-hand side, Figure 7.9a predictions are spread, indicating a lack of pre-
cision of the SModBase. The dispersion is amplified in the intermediate cycles
for TD

fin and for low first cycles for T S
fin, as displayed in the right-hand side Fig-

ure 7.9b. In the metrics we can observe an important deviation of the model from
the real curve along cycles, with MAEk along cycles greater than 5◦C for TD

fin and
10◦C in the case of T S

fin. The global metrics are MAEglob(T
D
fin) = 6.5216 ◦C and

MAEglob(T
S
fin) = 14.0385 ◦C.

Discussion of the results using surrogate models

In the light of the former results, we observe that the SModBase has a poor per-
formance in the real environment data obtained from the hot stamping pilot plant.
Figure 7.10 presents an example of a batch from the data set REALdata compared
to the analogous simulation from SIMvalid and the prediction from SModBase. We
identify a clear disagreement between the simulations and the SModBase respect
to the real temperature curves. Due to the difference between the low-fidelity sim-
ulations and the real data, the SModBase is not able to predict the real curve, al-
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Figure 7.9: Validation of the baseline surrogate model SModBase on the data set
REALdata. (a) Comparison between all the predicted values and the corresponding
values of REALdata. (b) MAEk metric evolution with the corresponding standard
deviation of the predictions of SModBase and the simulations of SIMvalid respect
to the batches of REALdata.

though it faithfully represents the simulations. This justifies the difference between
the simulations of SIMvalid and the real environment data from REALvalid which
are built under the same inputs and conditions. For that reason, the SModBase is
a very good representation of SIMvalid, but is not a reliable option to choose for the
prediction of hot stamping batches of the pilot plant of REALdata. Nonetheless, de-
veloping the SModBase from a low-fidelity simulation environment allows boost-
ing the exploration of the parameter space and gaining insights into the principal
behaviors occurring in the hot stamping plant. Additionally, SModBase already
produces a soft-real time response when trained and it is a good starting point to
keep improving the surrogate modeling of the real process.

7.4.2 Transfer Learning to Real Environment

As seen in the previous section, there exists a divergence between the simulation
environment data and the real environment data. The values of the relevant tem-
peratures of the process in the experiments performed in the real plant do not co-
incide with the simulations. Hence, the SModBase has been trained in a different
domain than the target domain. Therefore, this original baseline model SModBase
is no longer useful to generalize and perform predictions of the real environment.

Then, to obtain a accurate surrogate model of the real pilot plant, the data of
REALdata have to be used in the training. However, in most cases, data from real
environment are not enough to train a SMod. In this use case, although the 40
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Figure 7.10: Example of the evolution of the target temperatures of a real batch
compared to the prediction given by the baseline surrogate model SModBase and
the corresponding simulation. (a) TD

ini. (b) T S
fin.

batches of REALdata may provide enough information to the SMod, this is not the
typical situation. The data sets generated in industrial plants are usually small and
some data have low variability, since in production the exploration of the input
variables is limited and the processes work under similar configurations. To solve
this problem, we propose a methodology to create a representative SMod of the
real environment, enhancing the precision of a model trained in the simulation
environment.

7.4.2.1 Transfer Learning Surrogate Model

The starting point is the low-fidelity SModBase. In Figure 7.10, we can identify
that regardless of the divergence between the SModBase and simulation curves
and the real temperature curves, some of the patterns are correctly captured, such
as the peaks. This implies that SModBase has learned behaviors present in the real
environment from the huge simulation data set SIMdata.

To overcome these differences between the SModBase and reality, we propose
the application of TL to adapt the SModBase to the domain of the real environ-
ment, creating a new transfer learning surrogate model (TLSMod). The SModBase
is a model specialized in prediction of the hot stamping temperatures in the sim-
ulation environment, as demonstrated in Section 7.4.1. When used to the real en-
vironment, the task of the model is the same and the domain is different, but still
similar to the SModBase training domain. The result is the lost in performance of
SModBase in the real environment shown in Figure 7.9. Thus, our TL strategy will
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be a Network-Based Deep Transfer Learning, which is based on using part of the
data from REALdata to fine-tune the SModBase and obtain a new TLSMod.

The preprocessing, model details, performance metrics, and the hyperparam-
eters of the DNNs used for the TL are the same as described in the previous Sec-
tion 7.4.1. The main reason of not performing hyperparameter tunning in the net-
work fine-tuning is the limited amount of data in REALdata. However, different
fine-tuning strategies to apply TL are explored.

Experimental setup and training parameters

From the initial two DNNs of SModBase, we will introduce the batches of
REALvalid to a new training (or fine-tuning) stage, where the networks will mod-
ify the weights of some of the layers, whilst the remaining layers will be frozen
during this retraining. With this approach, we conserve the layers of SModBase
which contribute to the modelization of the process dynamics of the hot stamping
process, learned in the first training in the simulation environment. Additionally,
the other layers are able to adapt their weights to learn the particular features of
the real environment.

The presented methodology is used on both 3-layer fully connected neural net-
works that form the SModBase. The training is performed with the same condi-
tions than in the first training of SModBase commented in Section 7.4.1, excepting
the batch size, which is 16. Note that the combination of frozen and retrained
layers will impact on the resulting final TLSMod. All the possible combinations
and their the corresponding models developed from this application of TL in the
original DNNs of SModBase will be analysed and they are reported in Table 7.4.
The models are named using three digits that encode with a 1 the specific layer
that is unfrozen for fine-tuning. Notice that the TLSMod 000 is equivalent to the
SModBase, since all layers parameters are frozen.

As discussed, the fine-tuning of SModBase requires data from the real environ-
ment. However, the evaluation of the performance of the developed TLSMod also
needs data from REALdata. While in the previous sections we have in disposition
a whole set to validate the surrogate model, in this case the data from training
and validation come from the same data set. Hence, we have implemented a CV
method to train and test the new TLSMod. The cross-validation consists in the di-
vision of the data into folds. Some folds are used for the training and the others for
model testing of the models. This is repeated a number of iterations equal to the
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Table 7.4: Possible combinations in the transfer learning retraining of the DNNs of
SModBase to generate the final TLSMod.

TLSMod: Hidden Layer 1 Hidden Layer 2 Output Layer

000 Frozen Frozen Frozen
100 Retrained Frozen Frozen
010 Frozen Retrained Frozen
001 Frozen Frozen Retrained
110 Retrained Retrained Frozen
101 Retrained Frozen Retrained
011 Frozen Retrained Retrained
111 Retrained Retrained Retrained

number of folds changing the training and test folds, to diminish the dependence
of the metrics on the chosen folds, before computing an average of the metrics.

We have used a 5-Fold CV applied to REALdata to train and evaluate the TLSMod
models. Two different scenarios have been explored:

1. Firstly, 80% of data has been used in training and 20% in testing, with a high
percentage of the data of REALdata employed in the the TL fine-tuning.

2. Afterwards, on the contrary, the 20% of data has been used in training and
80% in testing, reducing the number of batches utilized in the TL fine-tuning.

Benchmarks

With the purpose of comparing the effectiveness of the TL approach, two addi-
tional surrogate models are considered:

• A SMod have been generated with the architecture of the DNNs of SMod-
Base, without any predefined weight, abbreviated as SModExp. This model
is trained from scratch using only data of REALdata. As commented before
and following the same criteria than when we apply TL, due to the scarcity
of data from REALdata it is not possible to do a hyperparameter tunning pro-
cess. The SModExp will provide a benchmark about how a SMod can per-
form with the few available data from the real pilot plant, highlighting the
need of alternative surrogate modeling strategies such as the application of
TL.
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• As stated in Section 7.2.2, the current problem of data sources of different
fidelity levels is known as VFM. In order to check the viability of the TL
method for VFM problems, a co-kriging technique based on the work in
[286] has been implemented and compared to TL performance, leading to
the SMod VFM.

7.4.2.2 Results and discussion

The results of the two introduced scenarios are shown in Figures 7.11 and 7.12,
respectively, where the metrics shown are the results of averaging the MAEk over
the folds of the 5-Fold CV for the target temperatures TD

fin and T S
fin. The different

curves are the evaluated models: The SModBase trained only with the simulations
of SIMdata, the SModExp trained only with real data of REALdata, the VFM co-
kriging SMod and the other TLSMod models that are built using the presented TL
methodology. In fact, the SModBase performance in this data set has been already
checked in the previous section 7.4.1, and its representation is used to remark the
improvement provided by the other methods.
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Figure 7.11: MAEk metric evolution and its corresponding standard deviation
along cycles averaged over all the folds in a 5-Fold CV using 80% of the data of
REALdata in training and 20% in testing. The different models evaluated are indi-
cated in the legend. (a) TD

ini. (b) T S
fin.

In the first scenario of Figure 7.11, we observe that the TLSMod models enhance
the prediction quality of the SModBase. In spite of this improvement, there in no
difference between some TLSMod and SModExp results in Figure 7.11a, while in
Figure 7.11b the transfer learning-based models achieve lower metrics than SMod-
Exp. Also, most of the TLSMod overcome the SMod VFM, that is only able to
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Figure 7.12: MAEk metric evolution and its corresponding standard deviation alon
cycles averaged over all the folds in a 5-Fold CV using 20% of the data of REALdata

in training and 80% in testing. The different models evaluated are indicated in the
legend. (a) TD

ini. (b) T S
fin.

achieve better metrics than SModExp in Figure 7.12b. The second scenario high-
lights the success of data fusion methodologies in both temperatures, where both
the SMod VFM and most of the TLSMod reach values of MAE much better than
SModExp and SModBase. Therefore, we can observe how the size of the train-
ing set affects differently the surrogate models. The curves of SModExp suffer
an important penalty in the metrics passing from the partition of 80% − 20% in
the training-test to the 20% − 80% one. Otherwise, both SMod VFM and TLSMod
curves are similar in both scenarios, implying that they are less influenced by the
reduction of the training size. Nevertheless, the TLSMod method shows better
metrics than SMod VFM.

Accordingly, we can justify that the SModExp is a model trained from scratch
with batches from REALdata and decreasing the number of training batches induces
a more limited learning. Contrarily, the SMod VFM and the TLSMods have been
already trained from the simulation data set and even the scarcity of the training
data from REALdata, they are able to adapt to the real environment. Moreover, the
TL method based on the fine-tuning is better than SMod VFM based on co-kriging
proving to be an effective tool for problems with data sources of different fidelity.
Moreover, to extend the obtained result, we have computed the global metrics
of several scenarios of with distinct train-test splits in CV, varying the number of
batches of REALdata in the retraining stage of the TLSMods models and in the train-
ing of SModExp and VFM SMod. The studied scenarios are described in Table 7.5
as well as the global metrics calculations.



7.4. APPLICATION OF THE SURROGATE MODEL-TRANSFER LEARNING
PIPELINE 157

Table 7.5: Description of the different cross-validations realized to evaluate the
surrogate models and the corresponding MAEglob results of TD

fin and TD
fin.

C
V

Train-test split 90%− 10% 80%− 20% 60%− 40% 40%− 60% 20%− 80% 10%− 90%

CV Folds 10 5 5 5 5 10
Batches per fold 4 8 8 8 8 4
Training batches 36 32 24 16 8 4

Test batches 4 8 16 24 32 36

M
A

E g
lo
b
(T

D f
in
)

Simulation 7.3270 7.4303 7.2582 7.3736 7.3697 7.3671
SModBase 7.1617 7.4303 7.0354 7.1053 7.0780 7.0793
SModExp 3.3932 2.9753 3.2122 3.7309 6.9865 9.3725

TLSMod 100 3.2643 2.8976 3.2585 3.2345 3.3612 3.3913
TLSMod 010 3.2778 3.1654 3.3439 3.3920 3.5011 4.5375
TLSMod 001 6.4932 6.4375 6.5991 6.9129 7.4210 7.8484
TLSMod 110 3.1343 2.9383 3.2230 3.3543 3.3354 3.4807
TLSMod 101 3.2820 2.9057 3.2148 3.2811 3.2500 3.4108
TLSMod 011 3.3861 3.0296 3.3837 3.4321 3.4183 4.2957
TLSMod 111 3.3845 3.0024 3.2718 3.6478 3.4145 3.4586
SMod VFM 3.9598 4.5464 4.7923 4.6843 4.9794 5.8048

M
A

E g
lo
b
(T

S f
in
)

Simulation 12.6159 12.4692 13.3642 13.4238 13.5250 13.5495
SModBase 12.6369 13.0032 13.2716 13.2877 13.3699 13.3969
SModExp 8.8591 9.6649 11.3117 12.4649 20.3060 24.4823

TLSMod 100 5.3115 5.6259 6.1936 6.5476 7.4420 8.2511
TLSMod 010 6.6413 7.0307 7.2565 7.7305 7.7661 7.8394
TLSMod 001 7.4552 8.3713 7.8648 7.7315 7.6860 7.6919
TLSMod 110 5.5665 5.7821 5.9125 6.6962 7.2718 7.7769
TLSMod 101 5.4262 5.8742 6.1414 6.7656 7.4176 8.0002
TLSMod 011 6.7208 6.7432 7.3625 7.8431 7.7837 7.7780
TLSMod 111 5.5713 5.3997 6.2233 6.9624 7.2002 7.8153
SMod VFM 6.9547 7.5939 7.6607 7.7986 9.0622 11.0996
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The metrics of the surrogate models performance on the several train-test splits
scenarios considered in Table 7.5 have been calculated using either a 5-Fold CV or
a 10-Fold CV, which are the most common types of cross-validation. The number
of batches in training and test sets determines if a 5-Fold CV or the 10-Fold CV
is implemented. The decision is taken ensuring that all the batches participate in
the training or test at least once. For instance, a 10-Fold CV for the 90% − 10%

and 10%−90% splits allows that the each distinct fold of 4 batches is present in the
testing or training, respectively, of each iteration. For the remaining splits, we have
applied a 5-Fold CV. In the case of 80% − 20% and 20% − 80% partitions, we have
the same situation than before but with folds of 8 batches, and we have reduced
the number of folds to avoid the repetition of the testing or training batches in
the different iterations. Finally, for the intermediate divisions of 60% − 40% and
40% − 60%, we also have used a 5-Fold CV because it is enough to guarantee that
all the folds are at least once in the test or training set.

The global metrics values show that, in general, all the surrogate models have
a lower MAE in the prediction of TD

fin than in the case of T S
fin. The reason is that in

both simulation and real environments, the temperature of the sheet has a wider
range of values and it reaches higher temperatures respect to the temperature of
the die, as shown in Sections 7.3.1.2 and 7.3.2. Since we address the variables
separately it is not necessary to use a relative metric.

The variation of the number of training batches in the fine-tuning stage has
relevant consequences in the metrics of the different surrogate models. The re-
sults of MAEglob in Table 7.5 have been represented in Figure 7.13 for the sake
of clarity, where we can see the dependence of the global metrics of the studied
surrogate models on the training split, i.e, on the number of training batches of
REALdata used in the fine-tuning. The curves manifest the benefits of using the
proposed transfer learning methodology, given that the lowest values of MAEglob

are achieved for the some of the TLSMods.
As expected, MAEglob of SModBase do not change with the training split, since

we do not apply the retraining stage to this model in cross-validation and we
only evaluate its performance in the test split. The stationary values of MAEglob

of SModBase are in agreement with the ones found in Figure 7.9b. In opposi-
tion, the SModExp faces a significant penalization when the training data is scarce,
as we have already noticed in Figures 7.11 and 7.12. The increase of the num-
ber of batches in training supposes an improvement of the MAEglob. This model
is completely dependent on the number of batches of REALdata for its training
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Figure 7.13: MAEglob of all the studied surrogate models as function of the training
split, i.e., the number of training batches of REALdata in the fine-tuning. (a) TD

ini.
(b) T S

fin.

stage, which is translated into this behavior. The SMod VFM does not suffer an
important change in the metrics with the training set size. This method over-
comes the SModExp performance in T S

f in and in the TD
fin only when training data

is scarce. Remarkably, despite the modification of the training split, the MAEglob

of the TLSMods is neither relevantly affected, only suffering a soft decrease with
the increment of the number of training batches. In addition, the TLSMods dis-
play the lowest values of the global metrics, enhancing the prediction capability
of the SModExp trained only with REALdata and other VFM techniques such as
co-kriging.

Concretely, in Figure 7.13, we can observe that SModExp has a poor perfor-
mance for small training splits. This surrogate model is fed only with experimen-
tal data of REALdata and it loses predictive power as we decrease the size of its
training set. SModExp can accomplish the same MAEglob than the TLSMods as the
training set size increases, i.e, it requires a lot of experimental batches to have a
decent performance. Also, SMod VFM metrics are the same under different train-
ing sizes, showing to be resilient when only few data is available. Although their
performance is closer to the TLSMods than SModExp, they are not able to reach
the performance of the TLSMods.

In opposition, Figure 7.13 also show that models built with the surrogate model-
TL methodology generally have the lowest metrics, with the exception of TLSMod
001 which fails in the prediction of TD

fin in Figure 7.13a. Nevertheless, despite some
observed differences between the TL strategies, such as TLSMod 010 and TLSMod
011 presenting a higher MAEglob for the 10% training split, the TLSMods are evi-
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denced to be the best option to predict TD
fin. The same result is applicable to the

prediction of T S
fin. In this case, Figure 7.13b shows that the SModExp cannot reach

the values of MAEglob given by the TLSMods even when the training data increase.
The TLSMods have a more noticeable decrease as we increase the number of train-
ing batches, with the TLSMod 100, TLSMod 110, TLSMod 101 and TLSMod 111
achieving the lowest global metrics in this situation.

Remarkably, we can say that, in general, the surrogate models generated using
the TL methodology outperform the other surrogate models, trained either with
simulation or real data, respectively. Further, they have shown to be an effective
alternative to the VFM approaches. Based on the obtained global metrics, we have
selected the TLSMod 110 as the surrogate model to represent the real environment,
because it has low MAEglob and small variation along the train-test split scenarios.
The presented results demonstrate the gains that the application of the transfer
learning methodology can provide for the generation of a surrogate model of a
real environment. Impressively, even when substantially decreasing the size of the
real environment training data set REALvalid, with the proposed transfer learning-
based technique we are able to still develop a reliable surrogate model of the real
environment. In Figure 7.14, analogously to the previous sections, we have com-
pared the prediction of a batch of the real environment using the 10% of the data for
retraining the surrogate models. This implies that only 4 batches from REALvalid

have been used in the fine-tuning process. The TLSMod 110 outperforms the rest
of the surrogate models and it captures very well the temperature evolution of TD

fin

and T S
fin.
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Figure 7.14: Example of the evolution of the target temperatures of a real batch and
the corresponding simulation compared to the prediction given by the SModBase,
SModExp and TLSMod 110. (a) TD

ini. (b) T S
fin.
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7.4.3 Study of Simulation Data Fidelity Level

The low-cost source of data of the simulation environment defined in Section 7.3.2
boosts the low-fidelity training data generation process to develop the SModBase.
Despite we have proven the effectiveness of this strategy, depending on the fi-
delity level of the low-fidelity simulation data SIMdata, the performance of the re-
sulting SModBase is affected and, consequently, it can have an impact to the sur-
rogate models developed with the proposed TL methodology. For that reason, we
perform an study to analyse the effect of the fidelity level of SIMdata on the final
TLSMod.

Concretely, the SIMdata previously used to create the SModBase has been mod-
ified including an additive term of Gaussian White Noise [287] to the simulation
results. Hence, we have added the noise term, η, to TD

fin and T S
fin values from the

SIMdata, where η follows the Gaussian distribution with mean μ = 0 and standard
deviation, σ, that determines the noise strength, i.e., the variation of the noise sig-
nal.

Therefore, we assume that as as we increase the noise level by modifying σ, we
reduce the fidelity of the simulation data. In fact, the use of Gaussian White Noise
perturbs data introducing instantaneous deviations while keeping the statistical
expected behavior of the system.
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Figure 7.15: MAEglob depending on the noise strength (fidelity level) of the SIMdata,
using TLSMod 110 as a benchmark and evaluated in a 5-Fold CV using a 20%−80%
train-test split. (a) TD

ini. (b) T S
fin.



7.4. APPLICATION OF THE SURROGATE MODEL-TRANSFER LEARNING
PIPELINE 162

To assess the effect of diminishing the fidelity of SIMdata in the TL methodology,
we have used different values of σ to modify SIMdata. Afterwards, for each σ, we
have applied the proposed TL pipeline to build a surrogate model of the real plant.
Based on the previous section results, the architecture of the employed DNNs for
the SModBase and the posterior TL process is equal to the TLSMod 110 and the
metrics are computed through a 5-Fold CV using a 20%− 80% train-test split.

In Figure 7.15, we display how the increase of σ impacts the MAEglob of the
surrogate models built with the proposed approach. The benchmark TLSMod 110
exhibit the lowest value of MAEglob and as σ augments the MAEglob values worsen.
This means that the fidelity level of the initial source of data to create the SModBase
determines the prediction accuracy of the final TLSMods. However, it is important
to notice the resilience that TLSMods show under the decrease of fidelity of the
SIMdata, thanks to the TL pipeline and introducing few real data. Until an elevated
noise level, the changes in MAEglob are not very significant because SModBase is
still transferring knowledge, learning low-fidelity data patterns and TL handles
to adapt the model to real environment with scarce data. Once the noise is too
high, despite the TL implementation, the TLSMod for σ = 150 converges to similar
metrics to SModExp in Figure 7.13 for the 20%− 80% partition.

7.4.4 Summarizing System Ablation Results

The TL-surrogate modeling pipeline utilized in the use case consists in several
modules represented in Figure 7.1. To sum up the different steps comprised in
the approach and to wrap up the results obtained in previous sections, we present
them in the format of ablation study with the objective of highlighting the contri-
bution of each module of the pipeline.

The TLSMod 110 is used to perform the ablation study and the evaluation is
done with the 5-Fold CV using a 20%− 80% train-test split. A schematic represen-
tation of the steps and the modules included in the creation of this TLSMod using
the proposed methodology is shown in Figure 7.16.

Due to the specific dependencies between the modules, the ablation study con-
sists in the sequential walk across the modules in Figure 7.16 as follows:

1. First, we consider Module 1, removing Module 2A, Module 2B and Module
3. Module 1A and Module 1B correspond to the Simulation Model and the
Real Plant, respectively. In this first stage, we have the primary data sources:
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Figure 7.16: Schematic representation of the modules for the process to build the
TLSMod 110 with the TL-surrogate model method.

Table 7.6: Summarized results of the ablation study.

Features Module 1 Module 2 Module 3

Module
1A:

Simulation
Model

Module
1B:

Real
Plant

Module
2A:

SModBase

Module
2B:

SModExp

MAEglob

(TD
fin)

7.3697 - 7.0780 6.9865 3.3354

MAEglob

(T S
fin)

13.5250 - 13.3699 20.3060 7.2718

Response Simulation
Time

Process
Time

∼ Real
Time

∼ Real
Time

∼ Real
Time

Costs Temporal
Computation

Temporal
Human
Material
Energy

Low Low Low

• Simulation Model: To evaluate the simulation model, we perform the
simulations of in the test split of the 5-Fold CV. The metrics results are
displayed in Table 7.5, MAEglob(T

D
fin) = 7.3697 and MAEglob(T

S
fin) =

13.5250. Moreover, the evaluation implied running the simulations of
the test set, which is costly in terms of time and computational resources,
as noted in Section 7.1. The response time of the simulations is far from
being real-time.

• Real Plant: In this case, since the real plant is our target environment,
the evaluation of the metrics makes no sense. Nevertheless, acquiring
the results of the experiments of the test set supposes an expense in time,
human resources, raw material, energy, etc, as remarked in Section 7.1.
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Also, the response of the manufacturing process is the process time.

2. Next, we focus on Module 2, without taking into account Module 3. In this
scenario, we skip the TL fine-tuning phase. Module 2A is the SModBase
trained with data from the Simulation Model. Module 2B is the SModExp
trained with data from the Real Plant.

• SModBase: This ML-SMod provides a boost in the response time to soft-
real time. However, the training with the Simulation Model leads to a
deviation from the target environment, the Real Plant. In fact, the met-
rics exhibit in Table 7.5 are MAEglob(T

D
fin) = 7.0780 and MAEglob(T

S
fin) =

13.3699, which are very similar to the ones of the Simulation Model.

• SModExp: This ML-SMod also offers a soft-real time response. How-
ever, though the training data comes from the target environment, the
utilization of a small amount harms the metrics and the SMod is not able
to generalize. The metrics are MAEglob(T

D
fin) = 6.9865 and MAEglob(T

S
fin) =

20.3060, as shown in Table 7.5. We have seen in Figure 7.13 how the ad-
dition of more training data improves the performance of this SMod, but
this supposes the penalization of realizing expensive experiments in the
Real Plant.

3. Finally, we include all the pipeline modules when building Module 3. This
module is the TLSMod 110 generated using the whole TL-surrogate model-
ing methodology of the study. The outcome is a soft-real time response SMod
that performs very well using only few data from the Real Plant to train. In
Table 7.5, we can observe the resulting metrics: MAEglob(T

D
fin) = 3.3354 and

MAEglob(T
S
fin) = 7.2718.

A summarized version of the above results of the ablation study is presented
in Table 7.6.

7.5 Lessons Learned

• Given the difficulties of data acquisition in manufacturing environment, this
chapter demonstrates the feasibility and effectiveness of using TL to develop
accurate SMods for real industrial hot stamping processes with limited exper-
imental data. The study aligns with the broader thesis objective of accelerat-
ing data generation and analysis in manufacturing processes by providing a
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general practical and efficient approach for constructing accurate SMods in
real-world industrial settings.

• The proposed method is based on leveraging low-fidelity simulation data
and applying TL, addressing the variable-fidelity and sim-to-real gap prob-
lems at once, enabling the creation of a SMod that accurately predicts key
process variables in a real hot stamping plant. The TL approach offers signif-
icant advantages over traditional surrogate modeling methods, particularly
in scenarios where acquiring extensive real-world data is expensive or time-
consuming.

• The presented investigation of the implementation of a TL-SMod method
showcases the importance of careful consideration of TL strategies and pa-
rameters, as well as the robustness of the methodology in terms of the amount
of real data required for successful implementation.

• The hot stamping process surrogate modeling pipeline has been extended in
the current chapter, complementing the previous studies of Section 5.3.2 and
Chapter 6. This enhances the upgrade done during this thesis in the surro-
gate modeling tools applied to hot stamping, which may lead to the efficient
exploration of critical parameters and new production scenarios in this pro-
cess, contributing to process optimization and the development of advanced
data-driven tools. In fact the models developed in this chapter have been
used in [7], where it has been used to develop RL agents that optimize the
batch time and quality in the hot stamping plant presented in 7.3.1.1.
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Chapter 8

Conclusions

This dissertation is the final output of an industrial doctoral thesis. Therefore,
its main topics are tackled from a point of view that is in the intersection between
academy and industry. The aim is to offer theoretical and practical solutions which
can be transferred to the corresponding stakeholders and that arise as fruitful so-
lutions for specific industrial needs as well.

In the actual I4.0 paradigm, the efficient development and deployment of ad-
vanced data-driven tools and AI-based solutions is hindered by the limited data
availability and high computational costs associated with traditional simulations
and experimental testing in manufacturing. the lack of a low-cost and efficient
method to generate data suppose a limitation in the development and deployment
of optimization methods and other advanced solutions like RL or DTs that rely on
process data. Moreover, these tools could directly act on the manufacturing lines,
leading to a more efficient, productive, autonomous and sustainable manufactur-
ing.

In this thesis, we aim to address this challenge of enhancing the data generation
phase in manufacturing scenarios by providing theoretical methods based on ML
to build efficient and reliable SMods under different conditions. For this purpose,
we provide both a general framework for the practitioners that want to implement
these solutions as a fast-modeling alternative for their manufacturing processes
and we delve in the use and combination of different well-known techniques prac-
tical with the goal of building SMods in several practical manufacturing use cases,
such as plastic injection molding, high pressure die casting and hot stamping.

The main contributions of the thesis from the respective academic and indus-
trial perspectives are highlighted in the two following sections. The last section
focus on the potential research directions that could be explored from the outputs
and ideas of this work.
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8.1 Academic Contributions

We have formalized the surrogate modeling concept in manufacturing, provid-
ing a comprehensive definition of SMods in the industrial field, highlighting ML-
based SMods as the most relevant trend and identifying the potential advantages
of implementing SMods in manufacturing problems. Further, we have presented
general frameworks to create baseline ML-based SMods in industrial environments.
The main body of this dissertation have consisted in the validation of these theoret-
ical frameworks in practice. The practical applications have highlighted the gains
achieved through SMods for each particular manufacturing process. Despite the
used methods are based on known ML-related techniques, the novelty resides in
their adaptation to the current needs of the considered manufacturing scenarios.
The methods and their contributions include:

• Node reduction: A method to effectively reduce the number of sensor nodes
required in a geometry to generate accurate predictions, leading to cost sav-
ings and simplified system design.

• Mesh upscaling: A method to accurately predict fine mesh simulation re-
sults using coarse mesh simulations, significantly reducing computational
time and enabling faster analysis and exploration of complex manufacturing
processes.

• Parameter interpolation: A method to efficiently predict simulation results
across a wide range of parameter values, addressing the challenge of gener-
ating data in a fast and sustainable way and enabling the exploration of new
operation scenarios.

• Extension and improvement of SMod techniques: Potential improvements
that enhance the capabilities of the baseline ML-based SMods are introduced,
with the goal to build an improved general procedure for surrogate modeling
in manufacturing. The validation of these improvements is done in the hot
stamping process. These improvements comprise:

– Importance of sampling: A study of the influence of different sampling
techniques on the accuracy and efficiency of ML-based SMods in the hot
stamping process.
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– TL for real plant modeling: A transfer learning-based methodology for
constructing accurate and efficient SMods in real industrial hot stamp-
ing plants, effectively addressing the sim-to-real gap and focusing on
the reduction of the required experimental tests to build the SMods of
the real industrial plant.

8.2 Industrial Contributions

We have demonstrated the potential of SMods to accelerate data generation and
analysis in manufacturing processes, enabling faster design cycles, more efficient
analysis and improved productivity. In fact, the practical application in manufac-
turing use cases have showcased how SMods can lead to significant cost reduc-
tions and efficiency improvements in manufacturing by minimizing the need for
extensive physical testing or time-consuming simulations. Moreover, the practical
examples of implementing SMods in various manufacturing processes, including
plastic injection molding, high pressure die casting and hot stamping, have proved
their versatility and applicability across different industrial use cases. Neverthe-
less, this research extracts valuable knowledge about the considered processes,
particularly the hot stamping process, providing insights that can benefit both
industry practitioners and researchers. Actually, we expect that the generated
knowledge about possible surrogate modeling tools in the hot stamping process
may serve for industries and experts in this process.

Additionally, we have provided useful methods that can be deployed in real
industrial plants. In this line, we have addressed the sim-to-real gap challenge
by developing and validating SMods in real-world industrial settings. Also, some
of the thesis results have been used in works centered in the development of RL
agents or DTs that effectively monitor and control manufacturing processes [5–8],
thanks to the benefits of the presented SMods. Overall, this thesis contributes to
the advancement of data-driven manufacturing by providing practical and effi-
cient solutions in the direction of enhancing the performance and sustainability of
manufacturing processes.

8.3 Future Research

Building upon the foundation laid by this thesis, we see several promising avenues
for future research. In the first place, one can explore the applicability of the de-
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veloped SMods methods and techniques to other manufacturing processes beyond
the use cases considered in this thesis, further validating their generalization and
potential impact.

Furthermore, we would like to focus on the development of other algorithms
and techniques to be applied in surrogate modeling. The most immediate action
will be to implement the AdSam technique that we already presented as ongoing
work in the thesis. Additionally, the popularizaiton of generative models may be
useful to introduce deviations and stochasticity in the SMods, which mimics the
non-controlled parameters effects in real industrial plants.

Moreover, additional mechanisms should be devised with the objective of im-
proving the explainability and interpretability of the models. In this sense, the
flow of knowledge can be bidirectional, from experts to data-driven modeling tech-
niques and from the results of data-driven models to experts. The understanding
of the phenomena occurring during manufacturing processes is the key to address
the objectives of I4.0 and I5.0, leading to a more sustainable, resilient, efficient and
human-centered manufacturing that will improve the life standard of the whole
society.

Despite some of the potential in using SMods combined with other advanced
AI tools has been already unveiled in this dissertation, further investigation about
integration of SMods these tools, such as DTs and RL agents, may enhance their
capabilities and enable more sophisticated applications in manufacturing.

Also, an important improvement can be the industrialization of the proposed
solutions, with the automatization of the surrogate modeling step in the industrial
field. By integrating general surrogate modeling frameworks in simulation soft-
wares or offering surrogate modeling as a SaaS solution can be a very interesting
way to simplify the use of the proposed methods in industry. Finally, we think that
the emergence of cutting-edge technologies like Large Language Models (LLMs),
Retrieval-Augmented Generation (RAG) and Generative Pre-trained Transformer
(GPT) models, can help to the generation of friendly-user APIs that include real
data managment, simulation softwares and surrogate modeling capabilities in the
back-end. Both the industrialization of the SMods and the creation of user-friendly
APIs can facilitate the use of these technologies in the factories, with a consequent
democratization of the access to this type of AI solutions for manufacturing.
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Practical Application of Parameter
Interpolation in Hot Stamping:
Supplementary Material

In this part, additional figures of the study presented in Section 5.3.2 predictions of
the SMod of the target variables of the hot stamping process T S

fin and TD
max are dis-

played.
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Figure A.1: Validation scenario 1: Predicted values as function of the simulated
output values of the T S

fin. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.2: Validation scenario 1: Predicted values as function of the simulated
output values of the TD

max. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.3: Validation scenario 2: Predicted values as function of the simulated
output values of the T S

fin under. The histograms and the color map represent the
relative counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.4: Validation scenario 2: Predicted values as function of the simulated
output values of the TD

max under. The histograms and the color map represent the
relative counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.5: Validation scenario 3: Predicted values as function of the simulated
output values of the T S

fin. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.6: Validation scenario 3: Predicted values as function of the simulated
output values of the TD

max. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.7: Validation scenario 4: Predicted values as function of the simulated
output values of the T S

fin. The histograms represent the relative counts as func-
tion of the temperature and the color map indicates the cycle. (a) SModA and (b)
SModB.
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Figure A.8: Validation scenario 4: Predicted values as function of the simulated
output values of the TD

max. The histograms represent the relative counts as func-
tion of the temperature and the color map indicates the cycle. (a) SModA and (b)
SModB.
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Figure A.9: Validation scenario 5: Predicted values as function of the simulated
output values of the T S

fin. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.10: Validation scenario 5: Predicted values as function of the simulated
output values of the TD

max. The histograms and the color map represent the relative
counts as function of the temperature. (a) SModA and (b) SModB.
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Figure A.11: Comparison between the simulated curves and the predicted curves
for the final SMod of T S

fin evaluated for batches with tcool = (a) 11 s, (b) 13 s, (c) 15
s, and (d) 17 s.
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Figure A.12: Comparison between the simulated curves and the predicted curves
for the final SMod of TD

max evaluated for batches with tcool = (a) 11 s, (b) 13 s, (c) 15
s, and (d) 17 s.



Appendix B

Extension of the Hot Stamping Case -
Transfer Learning to Real Industrial
Plant: Supplementary Material

In this part, complementary explanations about the measurement of S1 data from
the study in Chapter 7 is presented.

Despite the monitoring of the process with the sensors, some drawbacks have
been present in the measurement of T S

fin. Comparing the first cycles and the in-
termediate cycles in the right-hand side of Figure 7.3, we notice that in the upper
figure the opening point S1 has already reached its inferior limit and we cannot ob-
tain the real temperature. On the other hand, the output of S1 in the intermediate
cycles is higher than the threshold and we can measure T S

fin. Hence, depending on
the process parameters and the input variables, in some cases we will not be able
to acquire directly the value of T S

fin.
To overcome this problem, we have assumed that the temperature in the sheet

during the forming stage decreases exponentially following an expression of the
form

T (t) = ae−bt + c (B.1)

The idea is to fit this expression adapting the parameters a, b and c to each
cycle of the experiments. Then, although the inferior limit is reached, it will be
possible to extrapolate the value of T S

fin in opening instant. In fact, there is an
accepted good estimation of the behavior of the temperature of the part during the
press hardening process [221] based on the Newton’s cooling law, which fulfils the
analytical expression of Eq. B.2:

T (t) = (T0 − T∞)e(−h(A/cpρV )t) + T∞ (B.2)
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Figure B.1: The data of S1 have been downsampled for fitting since the sensor
repeated the same measure during 4 acquisitions. (a) Procedure to obtain the coef-
ficient b for a given cycle. In this cycle the temperature decrease of S1 during the
forming is completely captured, since our target variable T S

fin is higher than the
sensor limit indicated in black. Then, we can use all the data to fit the Eq. B.1. The
fit is displayed in blue and we get the fit parameters. The value of R2 is nearly 1,
implying that the fit is good and we pick up the value of b = 0.17, which will be
used in the computation of b̄. (b) Procedure to obtain the value of T S

fin in the open-
ing point for a cycle where it cannot be acquired due to the temperature threshold.
The fit is performed with data higher than the inferior limit of S1. The fit with the b
fixed gives us a reasonable result and the fit parameters are indicated. Otherwise,
the fit without a fixed value of b leads to an extrapolation without any physical
meaning (TD

fin > T S
fin).

where A is the contact surface, cp is the heat capacity, h is the heat transfer co-
efficient, V is the volume, t is the time, T0 is the initial temperature, T∞ is the
environment temperature and ρ is the density.

Consequently, we can relate the coefficients of Eq. B.1 with Eq. B.2. It can be
noticed that, theoretically, the b coefficient is constant along the cycles, since it only
depends on geometrical parameters and physical constants associated to the ma-
terials properties. To compute this parameter, we will gather all the cycles where
T S
fin is above the inferior limit of S1 and we will fit Eq. B.1 in order to acquire a

value for the coefficient b, as it is explained in Figure B.1a. We use only these cycles
because the temperature of S1 is not interrupted by the threshold of the sensor and
all data can be employed to do the fit. Afterwards, we perform the average over
all the studied cycles and a mean reference value of the coefficient b is obtained:
b̄ = 0.16.

The estimation method of T S
fin in the cycles where it cannot be directly mea-

sured is shown in Figure B.1b: The available data above the temperature limit of
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S1 are used to carry out the fit of Eq. B.1 with the fixed value of b = b̄ = 0.16. Once
the fit parameters are calculated, we can extrapolate the exponential decrease un-
til the instant when the die opens, obtaining the value of T S

fin of the current cycle.
The previous determination of the specific value b̄ = 0.16 for all the cycles prevents
non-physical scenarios in extrapolation like having TD

fin > T S
fin, as it happens in the

case of Figure B.1b when we fit Eq. B.1 without a fixed b parameter.
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