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Summary

This thesis fits within the field of Complex Dynamics, which deals with the study of discrete
dynamical systems generated by the iteration of holomorphic maps.

More precisely, let f : C → Ĉ be a transcendental function, either entire or meromorphic, and
consider the sequence of iterates {fn(z)}n, for all z ∈ C. Then, the complex plane is divided
into two totally invariant sets: the Fatou set F(f), the set of points z ∈ C such that {fn}n∈N
is well-defined and forms a normal family in some neighbourhood of z; and the Julia set J (f),
its complement, where the dynamics is chaotic. The Fatou set is open and consists in general
of infinitely many components, which are called Fatou components, and are either periodic,
preperiodic or wandering.

One of the basic results of this field, already established by Fatou and Julia for rational maps,
is that

J (f) = {repelling periodic points of f}.

This was generalized by Baker [Bak68, Thm. 1] for entire maps, and by Baker, Kotus and Lü
[BKL91, Thm. 1], for meromorphic transcendental functions.

Observe that, if U is a p-periodic Fatou component, then {fn(∂U)}p−1
n=0 is a closed invariant

subset of the Julia set. Hence, one shall ask the following question.

Question. Let f : C → Ĉ be a meromorphic function, and let U be a periodic Fatou component.
Are periodic points dense on ∂U?

Note that although periodic points are dense in the Julia set, a priori they could accumulate
on ∂U from the complement of U , without being in ∂U . For instance, if U is a rotation domain
with locally connected boundary, then there are no periodic points in ∂U at all. Nevertheless, F.
Przytycki and A. Zdunik showed that, for rational maps, rotation domains (i.e. Siegel disks and
Herman rings) are the only possible exception for which periodic boundary points are not dense.
Namely, they gave a positive answer to the question above for basins (attracting or parabolic)
of rational maps.

Theorem. (Przytycki-Zdunik, [PZ94]) Let f : Ĉ → Ĉ be a rational map, and let U be an
attracting or parabolic basin for f . Then, periodic points are dense on ∂U .

The seminal work of F. Przytycki and A. Zdunik [PZ94] unveils that the answer to the
previous elementary question is far from being straightforward. Indeed, it requires a deep
understanding of the boundaries of such Fatou components (which may be not even locally
connected), combining tools from dynamics, measure theory and conformal analysis. In the
particular case of simply connected attracting basins, the proof relies strongly on the measure-
theoretical properties of f |∂U and Lyapunov exponents, previously developed in [Prz85, Prz86,
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Prz93], as well as precise estimates on the distortion of Riemann maps and finite Blaschke
products on the unit circle, and conformal Pesin theory.

For unbounded Fatou components of transcendental maps, the situation is even more delicate,
due to the presence of the essential singularity, and most of the previous techniques do not apply.
In fact, due to the lack of compactness of ∂U , the following is also an open question.

Question. Let f : C → Ĉ be a meromorphic function, and let U be an unbounded periodic Fatou
component. Does ∂U contain at least one periodic point?

In view of the previous questions, and the work developed in [DG87, BW91, BD99, BF01,
Bar08, BK07, BFJK17, RS18, BFJK19] to understand the boundaries of transcendental Fatou
components, the following conjecture arises, which is a major open problem in transcendental
dynamics.

Conjecture. Let f : C → Ĉ be a meromorphic function, and let U be a p-periodic simply
connected Fatou component, such that fp|U is not univalent. Then,

(a) there exists a periodic point on ∂U .

(b) Morever, if U is an attracting or parabolic basin, or a doubly parabolic Baker domain,
then periodic points are dense on ∂U .

This thesis has to be understood as significant progress towards the proof of the previous
conjecture. Indeed, we prove existence and density of periodic boundary points under mild
assumptions on the postsingular set, together with additional results on boundary dynamics,
concerning escaping points and accessibility. To this end, we develope new techniques, such as
distortion estimates for inner functions and Pesin theory for transcendental maps.

The work presented in this thesis corresponds to the following articles and preprints (each of
them corresponding to a chapter, numbered accordingly), preceded by a chapter devoted to the
main tool in understanding simply connected Fatou components: the associated inner functions.

1. N. Fagella and A. Jové, A model for boundary dynamics of Baker domains, Math. Z. 303
(2023), n. 4, Paper n. 95, 36.

2. A. Jové and N. Fagella, Boundary dynamics in unbounded Fatou components, Trans.
Amer. Math. Soc. 378 (2025), 2321-2362.

3. A. Jové, Periodic boundary points for simply connected Fatou components of
transcendental maps, Math. Ann. (2025). Published online.

4. A. Jové, Pesin theory for transcendental maps and applications, Preprint (2024), available
at arxiv:2410.19703. Submitted.

5. A. Jové, Boundaries of hyperbolic and simply parabolic Baker domains, Preprint (2024),
available at arxiv:2410.19726. Submitted.
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Resum

Aquesta tesi s’emmarca en el camp de la Dinàmica Complexa, que estudia els sistemes dinàmics
discrets generats per la iteració de funcions holomorfes.

De manera més precisa, sigui f : C → Ĉ una funció transcendent, entera o meromorfa, i
considerem la successió d’iterats {fn(z)}n, per tot z ∈ C. Llavors el pla complex es divideix
en dos conjunts totalment invariants: el conjunt de Fatou F(f), el conjunt de punts z ∈ C tals
que {fn}n∈N està ben definit i forma una família normal en algun entorn de z; i el conjunt de
Julia J (f), el seu complement, on la dinàmica és caòtica. El conjunt de Fatou és obert i en
general té infinites components connexes, anomenades components de Fatou, i són periòdiques,
pre-periòdiques, o errants.

Un dels resultats bàsics en Dinàmica Complexa (demostrat per Fatou i Julia per a funcions
racionals) és que

J (f) = {punts periòdics repulsors de f}.

Aquest resultat va ser generalitzat per Baker [Bak68, Thm. 1] per funcions enteres, i per Baker,
Kotus i Lü [BKL91, Thm. 1], per funcions meromorfes transcendents.

Observem que, si U és una component de Fatou p-periòdica, llavors {fn(∂U)}p−1
n=0 és un

subconjunt tancat invariant del conjunt de Julia. Aleshores, la següent pregunta apareix de
manera natural.

Pregunta. Sigui f : C → Ĉ una funció meromorfa, i sigui U una component de Fatou periòdica.
Els punts periòdics són densos a ∂U?

Notem que, tot i que els punts periòdics són densos al conjunt de Julia, a priori es podrien
acumular a ∂U des del complement de U , sense estar a ∂U . Per exemple, si U és un domini de
rotació amb frontera localment connexa, llavors no hi ha cap punt periòdic a ∂U . Tot i això,
F. Przytycki i A. Zdunik van demostrar que, per funcions racionals, els dominis de rotació (i.e.
discs de Siegel i anells de Herman) són les úniques excepcions per les quals els punts periòdics no
són densos a la frontera. En particular, van donar una resposta positiva a la pregunta anterior
per conques d’atracció o parabòliques de funcions racionals.

Teorem. (Przytycki-Zdunik, [PZ94]) Sigui f : Ĉ → Ĉ una funció racional, i sigui U una
conca atractora o parabòlica per f . Aleshores els punts periòdics són densos a ∂U .

El treball de F. Przytycki and A. Zdunik [PZ94] ja ens mostra que la resposta a una
pregunta tan elemental és lluny de ser senzilla. En efecte, és necessari un estudi exhaustiu de
les fronteres de tals components de Fatou (que poden no ser localment connexes), combinant
eines de dinàmica, teoria de la mesura i anàlisi conforme. En el cas particular de conques

v



d’atracció simplement connexes, la demostració es basa en les propietats de f |∂U des del punt
de vista de la teoria de la mesura i els exponents de Lyapunov, desenvolupada prèviament a
[Prz85, Prz86, Prz93], així com estimacions precises de la distorsió de l’aplicació de Riemann i
els productes de Blaschke finits al cercle unitat, i teoria de Pesin conforme.

Per a components de Fatou no acotades de funcions transcendents, la situació és encara més
delicada, degut a la presència de la singularitat essencial, i la majoria de les tècniques anteriors
no es poden aplicar. A més a més, com que ∂U no és compacta, la següent també és una
pregunta oberta.

Pregunta. Sigui f : C → Ĉ una funció meromorfa, sigui U una component de Fatou invariant
no acotada. Hi ha algun punt periòdic a ∂U?

En vista de les preguntes anteriors, i el treball previ desenvolupat a [DG87, BW91, BD99,
BF01, Bar08, BK07, BFJK17, RS18, BFJK19] per entendre les fronteres de components de
Fatou transcendents, sorgeix de manera natural la següent conjectura, que és un gran problema
obert en dinàmica transcendent.

Conjectura. Sigui f : C → Ĉ una funció meromorfa, i sigui U una component de Fatou p-
periòdica simplement connexa, tal que fp|U no és univalent. Aleshores,

(a) existeix un punt periòdic a ∂U .

(b) A més a més, si U és una conca atractora o parabòlica, or un domini de Baker doblement
parabòlic, llavors els punts periòdics són densos a ∂U .

Aquesta tesi s’ha d’entendre com a un progrés significatiu en la demostració de la conjectura
anterior. En efecte, demostrem l’existència i densitat de punts periòdics a la frontera de
components de Fatou sota hipòtesis molt febles en el conjunt postsingular, juntament amb
resultats addicionals en relació a la dinàmica a la frontera, punts d’escapament i accessibilitat.
Durant la tesi s’han demostrat noves tècniques, tals com estimacions en la distorsió de funcions
internes i teoria de Pesin per a funcions transcendents.
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Introduction

Consider a transcendental function f : C → C (entire or meromorphic), and denote by
{fn}n∈N its iterates, which generate a discrete dynamical system in C. Then, the
complex plane is divided into two totally invariant sets: the Fatou set F(f), defined to
be the set of points z ∈ C such that {fn}n∈N is well-defined and forms a normal family
in some neighbourhood of z; and the Julia set J (f), its complement. Another
dynamically relevant set is the escaping set I(f), where points converge to infinity, the
essential singularity of the function. For background on the iteration of entire and
meromorphic functions see e.g. [Ber93].

On the one hand, the Fatou set is open and consists typically of infinitely many
connected components, called Fatou components. Due to the invariance of the Fatou and
the Julia sets under f , Fatou components map among themselves and hence are
periodic, preperiodic or wandering. On the other hand, periodic points are dense in the
Julia set, and the map f : J (f) → J (f) is chaotic in the sense of Devaney [Dev89].
Even though dynamics in Fatou components are well-understood, the dynamics of f |J (f)

is much more intricate, specially in the case of transcendental functions, for which the
essential singularity plays a significant role and adds complexity to the system.

In this thesis we focus on boundaries of Fatou components of transcendental maps,
regarded as subsets of the Julia set for which the dynamics is more understandable (at
least a priori it should be somehow related with the well-understood interior dynamics
of the Fatou component). More precisely, let U be an invariant Fatou component (i.e.
f(U) ⊂ U). Then, ∂U is a forward invariant subset of the Julia set. Thus, our goal
is to understand the function f : ∂U → ∂U , and to discuss existence (and density) of
periodic points for such map. As we will see, such questions are intimately related with
the topology of such boundaries, becoming a matter of interest throughout the thesis.

The case of rational maps (and polynomials) is better understood. Indeed, for
polynomials, the boundary of any bounded periodic Fatou component which is not a
Siegel disk is locally connected [RY08, RY22]. Hence, f |∂U is topologically conjugate to
z 7→ zd on the unit circle ∂D, providing a good description for the boundary dynamics.
In particular, this implies that periodic points are dense of the boundary of such Fatou
components.

For rational maps, periodic points are also dense on the boundary of attracting and
parabolic basins [PZ94]. For transcendental maps, even though local connectivity is
proven for certain Fatou components [BFJK25], the situation is wilder and less
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understood, and complicated boundaries arise naturally. In fact, for a large class of
unbounded Fatou components of transcendental entire maps, their boundary is always
non-locally connected [BW91, BD99, Bar08]. However, successful results have been
obtained in some cases, in which it is possible to relate the boundary dynamics with the
internal dynamics in the Fatou component.

Let us restrict to simply connected invariant Fatou components, so that the Riemann
map can be used as a uniformization for the internal dynamics. More precisely, let U be
a invariant Fatou component of f and let φ : D → U be a Riemann map. Then,

g : D −→ D, g := φ−1 ◦ f ◦ φ

is an analytic self-map of D, and f |U and g|D are conformally conjugate by φ.
The study of holomorphic self-maps of D is a good approach to analyze the dynamics of

f |U . Indeed, the Denjoy-Wolff Theorem asserts that, whenever a holomorphic self-map g
of D is not conjugate to a rotation, all orbits converge to the same point p ∈ D (the Denjoy-
Wolff point of g). From this celebrated result, the classification theorem of invariant Fatou
components of entire maps can be deduced, which was proved earlier by Fatou [Fat20]
using different techniques. More precisely, a simply connected invariant Fatou component
is either a Siegel disk (when it is conjugate to an irrational rotation), an attracting basin
(when all orbits converge to the same point in U) or a parabolic basin or a Baker domain
(when all orbits converge to the same point in ∂U). The difference between the last two
possibilities comes from the nature of the convergence point: for Baker domains it is the
essential singularity, so f is not defined at it; whereas for parabolic basins, it is a fixed
point of multiplier 1.

One may ask if the previous conjugacy with a holomorphic self-map of D can be used to
describe the dynamics of f in the boundary of U . First, from the fact that f(∂U) ⊂ ∂U ,
it can be deduced that g is an inner function, i.e. an analytic self-map of ∂D such that
the radial limits belong to ∂D for almost every point in ∂D. Hence, a boundary extension

g∗ : ∂D −→ ∂D

can be defined using radial limits almost everywhere with respect to the Lebesgue measure,
and it induces a dynamical system defined almost everywhere on ∂D. One may expect
a priori that f |∂U and g∗|∂D share dynamical properties. Nevertheless, this cannot be
assumed, since the Riemann map may not extend continuously to the boundary. In fact,
this is the usual case for unbounded Fatou components of transcendental entire functions
[BW91, BD99, Bar08]. Therefore, φ may not be a conjugacy on ∂D and properties of
g∗|∂D do not transfer to f |∂U in general, although some connections can be established,
as we show next.

First, Devaney and Goldberg studied the exponential family λez with 0 < λ < 1
e
,

[DG87], whose Fatou set is connected and consists of a totally invariant attracting basin
U . From the explicit computation of the inner function, accesses to infinity were
characterized, and the boundary of U , which is precisely the Julia set, was shown to be
organized in curves of escaping points and their endpoints, the latter being the only
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accessible points from U . Such results were generalized to a larger family of functions
having a totally invariant attracting basin [Bar07, BK07].

On the basis of this successful example, inner functions have been used systematically
to understand the dynamics on the boundary of Fatou components. On the one hand,
results of [BW91, BD99, Bar08, BFJK17] describe the topology of the boundary of
unbounded Fatou components of entire functions and their accesses to infinity. On the
other hand, the revealing work in [DM91], further developed in [RS18, BFJK19],
describe their ergodic properties. However, many questions are still unanswered. For
instance, concerning periodic points, it is not known whether there exists a single
periodic point on the boundary of an unbounded Fatou component of a transcendental
map, and under which conditions these periodic points are dense. Interesting questions
also arise concerning the accessibility of boundary points and their dynamics.

One precise type of periodic Fatou components, exclusive of transcendental functions,
is of special interest: Baker domains. Baker domains are (invariant) Fatou components in
which iterates converge locally uniformly to infinity, the essential singularity of the map.
Maps possessing Baker domains are not hyperbolic, nor of bounded type (i.e. the set of
singularities of the inverse branches of the function is unbounded [EL92]). In contrast
with the other periodic Fatou components, in which the dynamics around the convergence
point can be conjugate to some predetermined normal form, three different asymptotics
are possible for Baker domains (see Thm. II.3.5). This leads to a further classification
according to their internal dynamics into doubly parabolic, hyperbolic and simply parabolic
Baker domains, which also present different boundary properties.

Even though all orbits in a Baker domain tend to infinity, it is still unknown whether a
single escaping point always exists in ∂U . For hyperbolic and simply parabolic univalent
Baker domains this question was answered affirmatively by Rippon and Stallard [RS18],
who showed that the set of boundary escaping points has full harmonic measure with
respect to the Baker domain. This result was generalized to finite degree Baker domains
[BFJK19, Thm. A]. On the contrary, for doubly parabolic Baker domains of finite degree
the set of escaping boundary points is known to have zero harmonic measure [BFJK19,
Thm. B]. The question is still unanswered in the general case.

Hence, the following conjecture is an open problem in transcendental dynamics, which
is supported by the previously mentioned works.

Conjecture. Let f : C → Ĉ be a meromorphic function, and let U be an invariant simply
connected Fatou component, such that f |U is not univalent. Then,

(a) there exists an escaping point on ∂U .

(b) there exists a periodic point on ∂U .

(c) Morever, if U is an attracting or parabolic basin, or a doubly parabolic Baker domain,
then periodic points are dense on ∂U .

The goal of this thesis is to make progress towards the proof of the previous conjecture,
specially the statements concerning periodic boundary points. Let us note that the nature
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of the problem is different from the ones considered previously, and hence new tools and
ideas should be provided. On the one hand, the topological tools used in [BW91, BD99,
Bar08] are not sufficient to tackle dynamical questions. On the other hand, the measure-
theoretical approach developed in [DM91, RS18, BFJK19] is rather crude to deal with the
qualitative (and measure-zero) sets described in the conjecture. However, a combination
of both approaches, together with a deeper understanding on the associated inner function
and the boundary behaviour of the Riemann map is what leads us to the results presented
in this thesis.

Next we summarize our main results, together with the tools and techniques we use to
prove them.

A model for boundary dynamics of Baker domains

One first approach to tackle the previous conjecture is to study an explicit example,
which serves as a toy model to understand the boundary dynamics of Baker domains.
Indeed, we present a detailed analysis of the dynamics of the transcendental entire function
f(z) = z+e−z, which possesses countably many doubly parabolic Baker domains of degree
two. A good understanding of this model throws some light about the correspondence
between the inner function and the boundary map, in the explicit way we pursue. In
our work, other interesting properties of both the inner function and the boundary of the
Baker domain arise, which hold for a wider family of functions, as we discuss later on.

The function we consider, f(z) = z + e−z, is one of the few known explicit examples
having doubly parabolic Baker domains of finite degree, and was studied previously in
[BD99, FH06, BFJK19]. However, many aspects concerning boundary dynamics are still
unexplored, and are the object of our study.

R + πi

R − πi

• ×
0 1

Figure 1: Dynamical plane for f(z) = z + e−z. In red, the Julia set of f . In beige, the Baker domain
contained in the strip {−π < Im z < π}. In black, the rest of the Fatou set of f . The only critical point
on the strip (0) is also marked, as well as the corresponding critical value (1).
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First, Baker and Domínguez [BD99, Thm. 5.1] and Fagella and Henriksen [FH06,
Example 3] proved, using different arguments, the existence of a doubly parabolic Baker
domain Uk of degree two in each strip Sk := {(2k − 1)π ≤ Im z ≤ (2k + 1)π}, for all
k ∈ Z. Since the dynamics in all of them are the same, we consider only the Baker
domain U := U0 in the strip S := S0 = {−π ≤ Im z ≤ π} (see Figure 1). In [BD99, Thm.
5.2], the associated inner function is computed explicitly.

The topology of ∂U is addressed in [BD99, Section 6], where it is deduced that ∂U is
non-locally connected and preimages of infinity by the Riemann map φ : D → U (in the
sense of radial limits) are dense in the unit circle. Going one step further, they proved
that the impression of the prime end corresponding to 1 is precisely ∂S∪{∞}. Using this,
accesses to infinity from U were explicitly characterized in terms of the inner function.

Finally, in [BFJK19, Example 1.2], they describe some dynamical sets in ∂U in terms of
measure, as an application of a general theorem [BFJK19, Thm. B]. More precisely, they
show that almost every point with respect to the harmonic measure has a dense orbit
in ∂U . Therefore, the escaping points in ∂U have zero harmonic measure. Moreover,
they conjectured that all escaping points in ∂U are non-accessible from U and accessible
repelling periodic points are dense in ∂U . We prove both conjectures, and additional
results concerning boundary dynamics.

Theorem 1. Let f : C → C, f(z) = z+ e−z, and let U be an invariant Baker domain for
f . Then, the following holds.

1.A (The boundary of U) Every escaping point in ∂U can be connected to ∞ by a unique
curve of escaping points in ∂U (a dynamic ray). Moreover, ∂U is the closure of such
dynamic rays.

1.B (Landing and non-landing dynamic rays) There exist uncountably many dynamic
rays which land at a finite endpoint, and there exists uncountably many dynamic
rays which do not land. The accumulation set (on the Riemann sphere) of such a
non-landing ray is an indecomposable continuum which contains the ray itself.

1.C (Accessible points) Escaping points on ∂U are non-accessible from U , while points
on ∂U having a bounded orbit are all accessible from U .

1.D (Periodic points) Periodic points are dense on ∂U .

Boundary dynamics in unbounded Fatou components of entire maps

Once the previous example is understood, one should ask which of the previous properties
rely on specific features of the map considered, and which are susceptible to be generalized
for a larger class of Fatou components. At this moment, it is important to note that we
analyze the dynamics in a semilocal way (i.e. restricted to a Fatou component and its
boundary), so we only need to control the function in some neighbourhood of the Fatou
component we consider.
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On the one hand, note that the crucial step in the proof of Theorem 1 is to give an
accurate topological description of the boundary of U in terms of dynamic rays. This
topological structure is used as a foundation to prove the remaining statements. In this
sense, for transcedental entire maps, one should observe that a similar structure can be
deduced from [BW91, BD99, Bar08] in terms of accesses to infinity. This is true not
only for doubly parabolic Baker domains but for all Fatou components for which f |∂U

is ergodic with respect to the harmonic measure ωU (i.e. Siegel disks, attracting and
parabolic basins, and doubly parabolic Baker domains, see Thm. II.5.4). It is worth
noting the interplay between the ergodic properties of f |∂U and the topological properties
of ∂U , as established in Theorem 2, as well as the connections with the set of singularities
of the associated inner function.

On the other hand, consider the set SV (f) of singular values of f (i.e. the singularities
of f−1: critical and asymptotic values and accumulation thereof, see Sect. I.4), and the
postsingular set of f , defined as

P (f) :=
⋃

s∈SV (f)

⋃
n≥0

fn(s).

It is a transversal argument in complex dynamics (rational and transcendental) that
orbits of singular values govern the dynamics. In particular, singular values not lying
on the Julia set translate to tamer dynamics (as happens for f(z) = z + e−z, whose
singular values are all critical values and lie inside the Baker domains, allowing an accurate
study of the boundary dynamics). However, standard assumptions on the singular or the
postsingular set, such as bounded type or hyperbolicity, are too restrictive to deal with
Baker domains. As we will see, here and in the sequel, we require certain control on P (f)
in a neighbourhood of ∂U – assumptions which are weak enough to allow the existence of
Baker domains, but sufficient to prove the results concerning boundary dynamics we are
interested in.

Theorem 2. Let f be a transcendental entire function, and let U be an invariant Fatou
component, such that ∞ is accessible from U . Let φ : D → U be a Riemann map, and let
g = φ ◦ f ◦ φ−1 be the associated inner function.

2.A (The boundary of U) If f |∂U is ergodic, ∂U is the disjoint union of cluster sets
Cl(φ, ·) of φ in C, i.e.

∂U =
⊔

ξ∈∂D
Cl(φ, ξ) ∩ C,

where

Cl(φ, ξ) :=
{
w ∈ Ĉ : there exists {zn}n ⊂ D with zn → ξ and φ(zn) → w

}
.

Moreover, either Cl(φ, ξ) ∩ C is empty, or has at most two connected components.
If Cl(φ, ξ) ∩ C is disconnected, then φ∗(ξ) = ∞.

2.B (Periodic points in Siegel disks) If U is a Siegel disk, there are no periodic points
on ∂U .
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Moreover, assume there exists a simply connected domain Ω and a domain V such that
V ⊂ U , U ⊂ Ω, and P (f) ∩ Ω ⊂ V .

2.C (Singularities of the associated inner functions) The set of singularities of g (points
at which g cannot be extended analytically) has zero Lebesgue measure in ∂D.
Moreover, if ξ ∈ ∂D is a singularity of g, then φ∗(ξ) = ∞.

2.D (Boundary dynamics) Periodic points in ∂U are accessible from U . Moreover, if
f |∂U is recurrent, then both periodic and escaping points are dense on ∂U .

U

Vφ

D

Figure 2: Schematic representation of the assumption in Theorem 2 concerning the postsingular set.
The Fatou component of the right is a Baker domain of z + e−z.

Periodic boundary points through recurrence

From now on, let us focus on the particular question of density of periodic boundary
points. For rational maps, F. Przytycki and A. Zdunik [PZ94] showed that periodic
points are dense on the boundaries of attracting and parabolic basins; for transcendental
maps this question is essentially unexplored. Recall that although periodic points are
dense in the Julia set, a priori they could accumulate on ∂U only from the complement
of U , without being in ∂U .

First note that, unlike the other properties addressed in Theorem 1 and Theorem 2,
which are of topological nature, density of periodic boundary points depends essentially
on the recurrence of the boundary map.

Indeed, the basic idea to find periodic boundary points is to find an inverse branch of
fn which sends a disk D(x, r), x ∈ ∂U , inside itself, and hence having a fixed point, which
is periodic for f . The difficulty of the proof is showing that this point is actually on ∂U

(note that inverse branches may not leave the Fatou component invariant). In [PZ94],
this is solved by analyzing carefully the inner function, which is always a centered finite
Blaschke product. Then, if the boundary map is recurrent, this argument can be applied
densely along the boundary (as long as inverse branches are well-defined, and one can
control that the resulting periodic point is in ∂U), showing that periodic boundary points
are dense.
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Therefore, to study density of periodic boundary points, there is no need to restrict
to unbounded Fatou components of transcendental entire maps, and one shall work with
periodic Fatou components of meromorphic functions, under the assumption that they
are simply connected and the boundary map is recurrent.

Following the approach of F. Przytycki and A. Zdunik [PZ94] for basins of rationals
maps, we prove the following. (Recall that, given a simply connected domain U , C ⊂ U

is a crosscut if C is a Jordan arc such that C = C ∪ {a, b}, with a, b ∈ ∂U , a ̸= b; any of
the two connected components of U ∖ C is a crosscut neighbourhood.)

Theorem 3. Let f : C → Ĉ be a meromorphic function, and let U be a periodic simply
connected Fatou component for f . Assume the following conditions are satisfied.

• U is either an attracting basin, a parabolic basin, or a doubly parabolic Baker domain,
with f |∂U recurrent with respect to the harmonic measure ωU .

• There exists x ∈ ∂U and r > 0 such that P (f) ∩D(x, r) = ∅.

• There exists a crosscut neighbourhood N ⊂ U with P (f) ∩N = ∅.

Then, periodic points are dense on ∂U .

Observe that, although the boundary map of a Siegel disk U is recurrent, it always
holds ∂U ⊂ P (f), so they never satisfy the assumptions of Theorem 3.

As we will see in Chapter 3, the proof of this theorem is inspired in [PZ94], but the
extension of the arguments to transcendental maps is far from being straightforward.
Indeed, their proof, which combines tools from dynamics, measure theory and conformal
analysis, relies strongly on the measure-theoretical properties of f |∂U and Lyapunov
exponents, previously developed in [Prz85, Prz86, Prz93], as well as precise estimates on
the distortion of Riemann maps and finite Blaschke products on the unit circle, and
conformal Pesin theory. In the transcendental case, most of these tools fail to be
applicable, fundamentally due to the lack of compactness of the phase space.

In Chapter 3 we will see how these difficulties are overcome (essentially, by a more
careful study of the dynamics, a clever use of hyperbolic metric, and a deeper study of
the associated inner function), and we will justify the hypotheses we need in Theorem 3.

Finally, note that Theorem 3 holds for doubly parabolic Baker domains, as long as f |∂U

is recurrent (see Thm. II.5.4 for criteria to determine when it is the case). As mentioned
before, it turns out that boundary dynamics depends essentially on the ergodic properties
of the boundary map, more than on the particular type of Fatou component we are dealing
with. Hence, a proof meant for attracting or parabolic basins should also work for doubly
parabolic Baker domains.

Pesin theory for transcendental maps

One can argue that the hypothesis of Theorem 3 on the postsingular set P (f) is quite
strong (in particular, P (f) is assumed to be nowhere dense on ∂U). Observe that F.
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Przytycki and A. Zdunik [PZ94] showed density of periodic points on ∂U even if ∂U ⊂
P (f). Even though rational maps are simpler than transcendental maps (for instance,
rational maps have only finitely many critical values, while transcendental maps may
have uncountably many singular values), their result indicates that, under some control
on singular values (but not on their orbit– the postsingular set), it should be possible to
prove density of periodic boundary points.

First of all, let us point out that the seminal paper of F. Przytycki and A. Zdunik [PZ94]
should be viewed as the culmination of a deep study of the measure-theoretical properties
of f |∂U and Lyapunov exponents, done in [Prz85, Prz86, Prz93] for a rational basin U .
In particular, a conformal version of Pesin theory (originally created in the context of
smooth dynamical systems generated by diffeomorphisms) is developed in order to prove
the existence of certain well-defined iterated inverse branches around almost every point
on ∂U , which is the basis to construct periodic boundary points.

The hypothesis in Theorem 3 of the existence of x ∈ ∂U and r > 0 such that P (f) ∩
D(x, r) = ∅ implies that all iterated inverse branches are well-defined (and conformal) in
D(x, r). As one deduces from the proof of [PZ94] and Theorem 3, such a strong control
is not required: one only needs that certain iterated inverse branches are well-defined in
D(x, r), the ones used to construct the periodic boundary points. The role of conformal
Pesin theory is to guarantee that these iterated inverse branches are well-defined, for
boundaries of attracting basins of rational maps.

Note that the cornerstones from which the rational Pesin theory is built (namely,
compact phase space, finitely many critical values, and existence of ergodic invariant
probability measures) no longer hold in general for boundary maps of transcendental
Fatou components. However, taking advantage of the invariant measures on the
boundaries of Fatou components given by Doering and Mañé [DM91], and under some
mild assumptions on the geometric distribution of singular values and the order of
growth of the function, we are able to overcome the difficulties arising from the lack of
compactness, the infinite degree and the presence of infinitely many singular values. Our
techniques include refined estimates on harmonic measure and the construction of an
appropriate conformal metric. In this manner, we can develop Pesin theory on the
boundary of some transcendental Fatou components in a quite successful way.

One of our results (in a very simplified version) reads as follows.

Theorem 4. Let f : C → Ĉ be a meromorphic function, and let U be a simply connected
attracting basin for f , with attracting fixed point p ∈ U . Let ωU be the harmonic measure
in ∂U with base point p. Assume log |f ′| ∈ L1(ωU) with

∫
∂U log |f ′| dωU > 0. Let us

suppose also that there are finitely many singular values on ∂U .
Then, for every countable collection of measurable sets {Ak}k ⊂ ∂U with ωU(Ak) > 0,
k ∈ N, and for ωU -almost every x0 ∈ ∂U , there exists a backward orbit {xn}n ⊂ ∂U and
r > 0 such that

• there exists a sequence nk → ∞ such that xnk
∈ Ak;

• the inverse branch Fn sending x0 to xn is well-defined in D(x0, r);
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• diam Fn(D(x0, r)) → 0, as n → ∞.

In Chapter 4, one finds variations of the previous theorem in order to deal with
related situations (attracting basins with infinitely many singular values on their
boundary, parabolic basins and doubly parabolic Baker domains, and centered inner
functions, among others). We also show that hypotheses of Theorem 4 are enough to
show density of periodic boundary points. Conditions which imply the integrability of
log |f ′| are also provided.

Boundaries of hyperbolic and simply parabolic Baker domains

At this point, one shall ask which of the previous properties hold for hyperbolic and simply
parabolic Baker domains, or, more in general, what can be said about the boundaries of
such Baker domains.

Let us note that the previous techniques do not apply (since they essentially rely on
ergodic properties of g∗|∂D which are no longer satisfied here). As a consequence, such
Baker domains remain somehow unexplored, except for the results in [RS18] and [BFJK19,
Thm. A] (see Thm. II.5.4), which establish the measure of the escaping set in ∂U ,
under certain conditions on the associated inner function. Additionally, several particular
examples have been studied in the literature, which we analyze next.

Some of the well-known examples of such Baker domains confirm that hyperbolic and
simply parabolic Baker domains may exhibit a completely different boundary behaviour
than doubly parabolic Baker domains (see Fig. 3).

f(z) = 2 − log 2 + 2z − ez

U

f(z) = z + 2πiα + ez

Figure 3: Examples of univalent Baker domains of hyperbolic and simply parabolic type, respectively (in
both cases, the Baker domain is the Fatou component which contains a left half-plane, and its boundary
is a Jordan curve in Ĉ). Compare with Section II.5.4.
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For instance, for the simply parabolic Baker domain of the function

f(z) = z + 2πiα + ez,

for appropriate α ∈ [0, 1]∖Q, studied in [BW91, Thm. 4] (see also Ex. II.5.12), all points
in the boundary, which is a Jordan curve, converge to infinity under iteration.

Similarly, the hyperbolic Baker domain of the function

f(z) = 2 − log 2 + 2z − ez

has a unique fixed point in the boundary, and any other point is escaping [Ber93] (see
also Ex. II.5.13). See Figure 3.

One may argue that the ‘pathologies’ observed in the previous Baker domains are not
attributable to the fact they are hyperbolic or simply parabolic, but to univalency. Indeed,
the associated inner function is a Möbius transformation, which has either none or a single
periodic point (which is fixed).

When looking into examples of non-univalent hyperbolic or simply parabolic Baker
domains [Rip06, Bar08, BZ12], one notices that the situation is completely opposite:
there are plenty of periodic points for the associated inner function, and periodic points
may even happen to be dense on ∂U , as for the Baker domain of the function

f(z) = 2z − 3 + ez,

studied in [Bar08, Ex. 3.6] (in this case, the fact that periodic points are dense on ∂U is
deduced straightaway from the equalities F(f) = U and J (f) = ∂U).

1−1

g
f(z) = 2z − 3 + ez

φ

D

U

Figure 4: Dynamical plane of f(z) = 2z−3+ez, with the hyperbolic Baker domain U (yellow) of infinite
degree [Bar08, Ex. 3.6]. The Riemann map φ : D → U is depicted, together with the inner function.
Note that −1 is the Denjoy-Wolff point. Since J (f) = ∂U , periodic points are dense on ∂U .

With this in mind we prove the following.

Theorem 5. Let f : C → Ĉ be a meromorphic function, and let U be a simply connected
Baker domain, of hyperbolic or simply parabolic type. Let φ : D → U be a Riemann map,
and let g = φ ◦ f ◦ φ−1 be the associated inner function. Then, the following holds.
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5.A (Ergodic properties of f |∂U) f |∂U is non-ergodic and non-recurrent with respect to
the harmonic measure ωU .

5.B (Density of periodic points) Assume f is entire, f |U is not univalent and J (g) ̸= ∂D.
Then, periodic points are not dense on ∂U .

5.C (Existence of periodic points) Assume f |U is not univalent. Then, there exists a
crosscut neighbourhood Nξ of ξ ∈ J (g) such that φ(Nξ) ∩ P (f) = ∅. Then, there
exist infinitely many periodic points on ∂U , of arbitrarily large period.

We note that the techniques and tools used and developed up to now become obsolete
in this new context, since they rely on the ergodicity and recurrence of the boundary
map, which no longer hold. Instead, the main tool now is the ‘topological recurrence’ on
certain subsets of ∂D for the radial extension of the inner function. Let us note that the
complexity of the proofs increases substantially.

Selected tools and final remarks

As noted above, the study of boundary dynamics (and, more precisely, the construction
of periodic boundary points) is based on the interplay of different techniques coming
from topology, ergodic theory, and conformal mapping, among others. However, in some
cases, the existent tools are not enough to tackle our problems, and new ideas should
be provided. In particular, we developed two tools, presented next and used intensively
in this thesis, which are of independent interest, and which we believe to be potentially
useful when dealing with other boundary problems. These are a control of the distortion
of iterated inverse branches of inner functions at points on the unit circle (Theorem A),
and the Carathéodory set (Definition B). Both concepts rely on the notion of crosscut
neighbourhood and the Carathéodory’s compactification of a simply connected domain,
for which we refer to Section II.4.

First observe that one of the difficulties of working in the transcendental setting is the
emergence of inner functions of infinite degree, and dealing with such a map on the unit
circle (which may not extend continuously at any point). In contrast, in the case of a
rational attracting basin considered in [PZ94], g is a finite Blaschke product, which can
be chosen to satisfy g(0) = 0. We shall view g as a rational map g : Ĉ → Ĉ, extended
by Schwarz reflection. Then, its critical values (which are finitely many) are compactly
contained in D (and, by reflection, in Ĉ ∖D) and their orbits converge uniformly to 0 (or
to ∞), which are attracting fixed points. Hence, inverse branches of g are well-defined for
all points in ∂D. Moreover, precise estimates on the behaviour of such inverse branches
are given in [PZ94, Lemma 2].

In the general situation we consider (including Baker domains of infinite degree), g is
no longer a finite Blaschke product, and may not have an attracting fixed point in D.
However, having some mild control on the postsingular values of g allows us to control
inverse branches for the associated inner function g at λ-almost every point in D, even if
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g has infinite degree. Indeed, we consider the maximal meromorphic extension of g:

g : Ĉ ∖ E(g) → Ĉ,

where E(g) ⊂ ∂D denotes the set of singularities of g. In this situation, we prove the
following result concerning inner functions (not necessarily associated with Fatou
components), which is of independent interest.

Theorem A. (Iterated inverse branches at boundary points) Let g : D → D be
an inner function, such that g∗|∂D is recurrent. Assume that there exists a crosscut
neighbourhood N ⊂ D without postsingular values. Then, for λ-almost every ξ ∈ ∂D,
there exists ρ0 := ρ0(ξ) > 0 such that all branches Gn of g−n are well-defined in D(ξ, ρ0).
In particular, the set E(g) of singularities of g has λ-measure zero.
In addition, for all 0 < α < π

2 , there exists ρ1 < ρ0 such that, for all n ≥ 0, all branches
Gn of g−n are well-defined in D(ξ, ρ1) and, if Rξ denotes the radial segment at ξ, then the
curve Gn(Rξ) tends to Gn(ξ) non-tangetially with angle at most α.

Note that α does not depend on n, nor on the chosen inverse branch. Apart from
giving a precise characterization of inverse branches, Theorem A also describes measure-
theoretically the set of singularities, improving the results in [EFJS19, ERS20]. Compare
also with the situation for one component inner functions (a more restrictive class of inner
functions) described in [IU23, Part III], as well with the results in [IU24].

Moreover, in order to study the boundary dynamics on Baker domains, one needs
a way to characterise whether or not points on the boundary have the same dynamic
behaviour as points in the interior of the Baker domain. One possible approach, following
the ideas in [BEF+24] to describe the boundary dynamics of wandering domains, is to
define the Denjoy-Wolff set of f |U as the set of points x ∈ ∂U such that fn(x) → ∞ (i.e.
distĈ(fn(x),∞) → 0, see [BEF+24, Sect. 9]).

However, the main limitation of the Denjoy-Wolff set is that it does not capture in
which direction boundary orbits converge to infinity. Indeed, for points inside the Baker
domain, the convergence takes place through the same access to infinity (known as the
dynamical access, see [BFJK17]). Thus, we introduce the notion of Carathéodory set as
the set of points in ∂U which converge to the image under φ∗ of the Denjoy-Wolff point
with respect to the Carathéodory topology of ∂U (or, morally, the points on ∂U which
converge to ∞ through the dynamical access).

Definition B. (Carathéodory set) Let f ∈ K, and let U be an invariant simply
connected Baker domain. Let φ : D → U be a Riemann map, and let g = φ−1 ◦ f ◦ φ be
the inner function associated with (f, U) by φ. We say that x ∈ ∂U is in the Carathéodory
set if, for any crosscut neighbourhood N ⊂ D at the Denjoy-Wolff point p ∈ ∂D, there
exists k0 ≥ 0 such that, for all k ≥ k0,

fk(x) ∈ φ(N).

Several properties of this set are explored throughout the thesis.
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Remarks. At this point, we shall make some additional remarks, in order to clarify
and contextualize our results. First, one should observe that the class of (transcendental)
meromorphic functions is not closed under composition: iterates fn of a transcendental
meromorphic function f have, in general, countably many essential singularities, so they
are no longer meromorphic functions of the plane. Hence, we consider functions in class K,
the smallest class of functions which includes transcendental meromorphic functions and
which is closed under composition. Formally, f ∈ K if there exists a compact countable
set E(f) ⊂ Ĉ such that

f : Ĉ ∖ E(f) → Ĉ

is meromorphic in Ĉ∖E(f) but in no larger set. The theory of Fatou and Julia of iteration
of rational maps was extended to class K by Bolsch, and Baker, Domínguez and Herring
[Bol96, Bol97, Bol99, BDH01, BDH04, Dom10]. Although more sophisticated tools are
needed for the proofs, the main features of iteration theory extend successfully to class K
(see Sect. II.1). In particular, if f ∈ K, then for any k ≥ 1, fk ∈ K and F(f) = F(fk).
This allows us to reduce the study of k-periodic Fatou components to the study of the
invariant ones, just replacing f by fk.

Second, we deal with periodic Fatou components which are simply connected. Recall
that periodic Fatou components of entire maps are always simply connected [Bak84]. It is
well-known that Fatou components of meromorphic functions (and for functions in class
K) are either simply connected, doubly connected or infinitely connected. However, there
are plenty of examples of functions and classes of functions whose Fatou components are
simply connected. For example, if f is an entire function, then its Newton’s method

Nf : C → Ĉ, Nf (z) := z − f(z)
f ′(z)

is a meromorphic function, whose Fatou components are simply connected [FJT08, FJT11,
BFJK14, BFJK18].

Third, in this introduction, theorems are presented in a simplified and incomplete form,
but hopefully more readable, for convenience of the reader. Theorems in their complete
form can be found in the corresponding chapters inside the thesis.

Structure of the thesis. The first chapter is devoted to some preliminary definitions
and results, which are used intensively later on. This includes abstract ergodic theory,
planar topology, and distortion estimates for conformal maps, among others. In the
second chapter, we deal with Fatou components and associated inner functions, in a quite
extensive way, summarizing the state-of-the-art in this area, and providing some new
results and tools (namely Theorem A and Definition B).

The remaining chapters, numbered with arabic numbers, correspond each to one of the
papers or preprints on which this thesis is based (as indicated in page vi), including the
complete statement and proof of the corresponding theorem (the one numbered with the
same number).
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Chapter I
Basic background and tools

Before diving in the flied of complex dynamics, we discuss here some wide-ranging topics
which arise as valuable tools in our proofs. This includes ergodic theory, planar topology,
and distortion estimates for conformal maps, among others.

I.1 Abstract Ergodic Theory

Ergodic Theory is the branch of dynamical systems devoted to study measurable
transformations. In contrast with holomorphic dynamics, where a large degree of
regularity of the function is assumed, the theory presented here applies to
transformations which are only assumed to be measurable. As anticipated in the
introduction, we will deal often with measurable transformations, which are only
approachable with the tools given by Ergodic Theory.

We note that, although many books and monographs on Ergodic Theory restrict
themselves to measure-preserving transformations on probability spaces, the theory
presented here applies to general transformations on infinite-measure spaces, unless
otherwise specified. Several of the measures considered later on are not probability
measures, so we certainly need a theory that applies in this more general context.

I.1.1 Background on Measure Theory

In the sequel, let (X,A) be a measurable space, and let (X,A, µ) be a measure space (i.e.
a measurable space endowed with a measure). If µ(X) = 1, we say that (X,A, µ) is a
probability space. Note that any measure space with finite measure (i.e. µ(X) < ∞) can
be turned into a probability space by reescaling the measure. We say that the measure µ
is σ-finite if there exists a countable collection of measurable sets {An}n ⊂ A such that
X = ⋃

n An and µ(An) < ∞.
Recall that, given (X1,A1) and (X2,A2) measurable spaces, we say that T : X1 → X2

is measurable if T−1(A) ∈ A1, for every A ∈ A2.

Definition I.1.1. (Properties of measurable maps) Let (X1,A1, µ1) and (X2,A2, µ2)
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be measure spaces, and let T : X1 → X2 be measurable. Then, T is:

• non-singular, if, for every A ∈ A2, it holds µ1(T−1(A)) = 0 if and only if µ2(A) = 0;

• measure-preserving, if, for every A ∈ A2, it holds µ1(T−1(A)) = µ2(A).

Mostly, we will use the measure space (∂D,B(∂D), λ), where B(∂D) denotes the Borel
σ-algebra of ∂D, and λ, its normalized Lebesgue measure.

Definition I.1.2. (Lebesgue density) Given a Borel set A ∈ B(∂D), the Lebesgue
density of A at ξ ∈ ∂D is defined as

dξ(A) := lim
ρ→0

λ(A ∩D(ξ, ρ))
λ(D(ξ, ρ)) .

A point ξ ∈ ∂D is called a Lebesgue density point for A if dξ(A) = 1.

Proposition I.1.3. (Almost every point is a Lebesgue density point, [Rud87, p.
138]) Given a Borel set A ∈ B(∂D), with λ(A) > 0, then λ-almost every point in A is a
Lebesgue density point for A.

We will make use of the following well-known results.

Lemma I.1.4. (First Borel-Cantelli lemma, [Bog07, 1.12.89]) Let (X,A, µ) be a
probability space, let {An}n ⊂ A, and let

B := {x ∈ X : x ∈ An for infinitely many n’s} =
∞⋂

k=1

∞⋃
n=k

An.

Then, if ∑∞
n=1 µ(An) < ∞, it holds µ(B) = 0.

I.1.2 Basic notions of Ergodic Theory

Now, let us turn to the case when only one measure space (X,A, µ) is considered, and
T is a measurable transformation mapping X into itself: the setting of Ergodic Theory.
We present here the basic concepts used to describe these measure-theoretical dynamical
systems, as well as fundamental results on the area, such as the Poincaré Recurrence
Theorem, or the Birkhoff Ergodic Theorem. For more details, see e.g. [Aar97, PU10,
Haw21].

Definition I.1.5. (Ergodic properties of measurable maps) Let (X,A, µ) be a
measure space, and let T : X → X be measurable. Then, T is:

• µ is T - invariant if T is measure-preserving;

• recurrent, if for every A ∈ A and µ-almost every x ∈ A, there exists a sequence
nk → ∞ such that T nk(x) ∈ A;

• ergodic, if T is non-singular and for every A ∈ A with T−1(A) = A, it holds µ(A) = 0
or µ(X ∖ A) = 0.
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Clearly, invariance implies non-singularity. Moreover, the following holds true.

Theorem I.1.6. (Poincaré Recurrence Theorem, [Haw21, Thm. 2.12]) Let (X,A, µ)
be a measure space, and let T : X → X be a measurable transformation. Assume µ(X) <
∞, and T is µ-preserving. Then, T is recurrent with respect to µ.

Theorem I.1.7. (Almost every orbit is dense, [Aar97, Prop. 1.2.2]) Let (X,A, µ) be
a measure space, and let T : X → X be non-singular. Then, the following are equivalent.

(a) T is ergodic and recurrent.

(b) For every A ∈ A with µ(A) > 0, we have that for µ-almost every x ∈ X, there exists
a sequence nk → ∞ such that T nk(x) ∈ A.

Note that, if the space X is endowed with a topology whose open sets are measurable
and have positive measure, then statement (b) implies that µ-almost every orbit is dense
in X.

In holomorphic dynamics, it is possible to replace the function by an iterate of it, since
the dynamics remain essentially the same. Thus, we are interested in knowing which
ergodic properties remain under taking iterates of the function.

Lemma I.1.8. (Ergodic properties for T k) Let (X,A, µ) be a measure space, and let
T : X → X be non-singular. Let k be a positive integer. Then,

(a) T is recurrent if and only if T k is recurrent.

(b) If T k is ergodic, so is T . The converse is not true in general.

Proof. (a) It is clear that T k recurrent implies T recurrent. We shall see the converse.
To do so, consider A ∈ A with µ(A) > 0. Since T is assumed to be recurrent, for
µ-almost every x ∈ A there exists a sequence nj → ∞ such that T nj (x) ∈ A. For
such x, consider the following subsequences{

T kn(x)
}

n
,
{
T kn+1(x)

}
n
, . . . ,

{
T 2kn−1(x)

}
n
.

At least one of them, say
{
T kn+l(x)

}
n
, contains infinitely many T nj (x)’s. Choose n

and k so that
y := T kn+l(x) ∈ A.

Then, y is a point in A whose orbit returns to A infinitely many times under T k.
We claim that such points have full measure in A. Assume that, on the contrary,
there exists B ⊂ A with µ(B) > 0 such that, for all x ∈ B, T nk(x) ∈ A, only for
finitely many n’s. Applying the same procedure as before to B we can find a point
in B whose orbit returns to B, and hence to A, infinitely many times under T k,
which is a contradiction. Hence, T k is recurrent.
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(b) Let A ∈ A be such that T−1(A) = A. Then, T−k(A) = A, and, since T k is assumed
to be ergodic, either µ(A) = 0 or µ(X ∖ A) = 0. Thus, T is ergodic.

To see that the converse is not true in general, consider the space Z endowed with
the counting measure µ, i.e. given X ⊂ Z, µ(X) is the number of elements of
X. Then, the translation T := x 7→ x + 1 is ergodic, since there are no proper
T -invariant subsets of X. However, T 2 = x 7→ x + 2 is not ergodic, since 2Z is
invariant, and µ(2Z) > 0 and µ(Z ∖ 2Z) > 0.

Finally, we state Birkhoff Ergodic Theorem, for measure-preserving transformations in
probability spaces.

Theorem I.1.9. (Birkhoff Ergodic Theorem, [KH95, Sect. 4.1]) Let (X,A, µ) be a
probability space together with a measure-preserving transformation T : X → X, and let
φ ∈ L1(µ). Then,

lim
n

1
n

n−1∑
k=0

φ(T k(x))

exists for µ-almost every x ∈ X. If T is an automorphism, the equality

lim
n

1
n

n−1∑
k=0

φ(T k(x)) = lim
n

1
n

n−1∑
k=0

φ(T−k(x))

holds µ-almost everywhere.
Finally, if T is ergodic with respect to µ, then for µ-almost every x ∈ X it holds

lim
n

1
n

n−1∑
k=0

φ(T k(x)) =
∫

X
φdµ.

I.2 Basic planar topology

We provide now some standard notions and results of planar topology.
By a simple arc, or a Jordan arc, we mean a set homeomorphic to the closed interval

[0, 1]. By a closed simple curve, or a Jordan curve, we mean a set homeomorphic to a
circle. Recall the well-known Jordan Curve Theorem.

Theorem I.2.1. (Jordan Curve Theorem) Let γ be a simple closed curve in Ĉ. Then,
γ separates Ĉ into precisely two connected components.

By a domain U ⊂ C, we mean a connected open set. A domain U is simply connected if
every closed curve in U is homotopic to a point in U . We shall use the following criterion
to characterize when a domain is simply connected.

Theorem I.2.2. (Criterion for simple connectivity, [Bea91, Prop. 5.1.3]) Let U be
a domain in Ĉ. Then, U is simply connected if, and only if, Ĉ ∖ U is connected.
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Given a domain U ⊂ C, one shall be interested in studying which points in ∂U which
can be reached from U by curves; the so-called accessible points. To define them, we need
the following preliminary definition.

Definition I.2.3. (Landing set of a curve) Given a curve γ : [0, 1) → Ĉ, we consider
its landing set

L(γ) :=
{
v ∈ Ĉ : there exists {tn}n ⊂ [0, 1) , tn → 1 such that γ(tn) → v

}
.

By definition, L(γ) is a connected, compact subset of Ĉ. We say that γ lands at v ∈ Ĉ
if L(γ) = {v}, or, equivalently, if

lim
t→1−

γ(t) = v.

Accessible points are defined as follows.

Definition I.2.4. (Accessible point) Given a domain U ⊂ C, a point p ∈ ∂̂U is
accessible from U if there exists a curve γ ⊂ U landing at p.

There may exist different curves landing at the same boundary point which are not
(homotopically) equivalent. This leads to the following definition.

Definition I.2.5. (Access) Let U ⊂ Ĉ be a simply connected domain. Given z0 ∈ U

and p ∈ ∂̂U , a homotopy class (with fixed endpoints) of curves γ : [0, 1] → Ĉ such that
γ([0, 1)) ⊂ U , γ(0) = z0 and γ(1) = p is called an access from U to p.

I.3 Distortion estimates for conformal maps

The following results provide explicit bounds for the distortion of conformal maps.

Theorem I.3.1. (De Branges, [dB85]) Let φ : D → C be univalent, with φ(0) = 0 and
φ′(0) = 1. Then,

φ(z) = z +
∑
n≥2

anz
n,

with |an| ≤ n, for n ≥ 2.

Corollary I.3.2. (Distortion estimates for univalent maps) Let φ : D(z0, r0) → C
be univalent, and let r ∈ (0, r0). Then, there exists C := C(r, r0), with C(r, r0) → 0 as
r
r0

→ 0, such that, for all z ∈ D(z0, r),

|φ(z) − L(z)| ≤ C |φ′(z0)| |z − z0| ,

where L stands for the liner map L(z) := φ(z0) + φ′(z0)(z − z0).
In particular, if φ additionally satisfies φ(0) = 0 and φ′(0) = 1. Then, for all r ∈ (0, 1),
there exists C := C(r), with C(r) → 0 as r → 0, for all z ∈ D(0, r),∣∣∣∣∣φ(z)

z
− 1

∣∣∣∣∣ ≤ C.
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Note that, in both cases, C does not depend on the univalent map considered.

Proof. Let us start by proving the particular case of φ : D → C, satisfying φ(0) = 0 and
φ′(0) = 1. Then, by Theorem I.3.1, for all z ∈ D, it holds

φ(z)
z

= 1 +
∑
n≥2

anz
n−1,

with |an| ≤ n, for n ≥ 2. Hence, for r ∈ (0, 1) and z ∈ D(0, r), it holds

∣∣∣∣∣φ(z)
z

− 1
∣∣∣∣∣ =

∣∣∣∣∣∣
∑
n≥2

anz
n−1

∣∣∣∣∣∣ ≤
∑
n≥2

|an| rn−1 ≤
∑
n≥2

nrn−1 =: C(r).

Note that the last power series converges for r < 1, and C(r) → 0 as r → 0, as desired.
Now, consider any univalent map φ : D → C, and let ψ : D → C be defined as

ψ(w) := φ(z0 + r0w) − φ(z0)
r0φ′(z0)

.

Note that ψ is univalent, and satisfies ψ(0) = 0 and ψ′(0) = 1. Let r < r0 and ρ := r
r0
< 1.

Hence, there exists C := C(ρ), such that, for w ∈ D(0, ρ),
∣∣∣∣∣ψ(w)
w

− 1
∣∣∣∣∣ ≤ C.

Letting z = z0 + r0w, we get that, for z ∈ D(z0, r),

|φ(z) − (φ(z0) + φ′(z0)(z − z0))|
|z − z0| |φ′(z0)|

≤ C,

as desired.

Theorem I.3.3. (Koebe’s distortion estimates, [BFJK20, p. 639]) Let z ∈ C, r > 0,
and let φ : D(z, r) → C be a univalent map. Then,

D
(
φ(z), 1

4 · |φ′(z)| · r
)

⊂ φ(D(z, r)).

Moreover, for all λ ∈ (0, 1) and z ∈ D(x, λr), it holds

|φ′(x)| · 1 − λ

(1 + λ)3 ≤ |φ′(z)| ≤ |φ′(x)| · 1 + λ

(1 − λ)3 ,

φ(D(x, λr)) ⊂ D

(
φ(x), r · |φ′(x)| · 1 + λ

(1 − λ)3

)
.
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I.4 Regular and singular values for holomorphic maps

It is well-known that singular values play a central role in holomorphic dynamics (see e.g.
[Ber93, Sect. 4.3] and references therein). Hence, as expected, throughout the thesis we
will make an extensive use of the concepts of regular and singular values. Although these
definitions are quite standard in the context of entire or meromorphic maps (i.e. with one
single essential singularity), we believe it is useful to give definitions in the rather general
context of functions of class K or inner functions, which is the setting we are going to
work in.

We consider the following class of meromorphic functions, denoted by M, consisting of
functions

f : Ĉ ∖ E(f) −→ Ĉ,

where Ω(f) := Ĉ ∖E(f) is the largest set where f is meromorphic, and, for all z ∈ E(f),
the cluster set Cl(f, z) of f at z is Ĉ, that is

Cl(f, z) =
{
w ∈ Ĉ : there exists {zn}n ⊂ Ω(f), zn → z, f(zn) → w

}
= Ĉ.

If E(f) = ∅, then f is rational and we make the further assumption that f is non-
constant. Note that Ω(f) is open, and E(f) has empty interior. Indeed, if z is an interior
point for E, there does not exist any sequence in Ω(f) converging to z, and hence Cl(f, z)
is empty, a contradiction.

In this general setting, regular and singular values, and critical and asymptotic values,
are defined as follows. Appropriate charts have to be used when dealing with ∞.

Definition I.4.1. (Regular and singular values) Given a value v ∈ Ĉ, we say that
v is a regular value for f if there exists r := r(v) > 0 such that all branches F1 of f−1

are well-defined (and, hence, conformal) in D(v, r). Otherwise we say that v is a singular
value for f .

The set of singular values of f is denoted by SV (f). Note that SV (f) is closed by
definition, and it is the smallest set for which

f : Ĉ ∖ (E(f) ∪ f−1(SV (f))) −→ Ĉ ∖ SV (f)

is a covering map.

Definition I.4.2. (Critical and asymptotic values) Given a value v ∈ Ĉ, we say that
v is a critical value if there exists z ∈ Ω such that f ′(z) = 0 and f(z) = v. We say that z
is a critical point.
We say that v is an asymptotic value if there exists a curve γ : [0, 1) → Ω such that
γ(t) → ∂Ω and f(γ(t)) → v, as t → 1. We say that the curve γ is an asymptotic path.

The set of critical values of f is denoted by CV (f), while AV (f) stands for the set of
asymptotic values. Note that we do not assume, in general, that γ(t) lands at a definite
point ∂Ω as t → 1. However, this is the case for both inner functions and functions in
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class K (Lemma II.3.13). We say that v is an asymptotic value corresponding to x ∈ ∂Ω if
v = lim

t→1
f(γ(t)), where γ is a curve such that γ(t) → x as t → 1. Note that an asymptotic

value may correspond to more than one point in ∂Ω.
The following lemma makes explicit the relation between regular and singular values,

and critical and asymptotic values, in the sense of Iversen [Ive14, BE95]. We refer to
[BE95] for a proof of it (although the proof in [BE95] is done for meromorphic functions,
the argument is local, and hence works for f ∈ M as well).

Lemma I.4.3. (Characterization of singular values) Let f ∈ M. Then,

SV (f) = CV (f) ∪ AV (f).
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Chapter II
Fatou components and associated inner

functions

This chapter is devoted to study the main tool when dealing with invariant Fatou
components: the associated inner function.

As anticipated in the introduction, for simply connected invariant Fatou components,
the Riemann map can be used as a uniformization. Indeed, let U be a invariant Fatou
component of f and let φ be a Riemann map from the open unit disk D onto U . Then,

g : D −→ D, g := φ−1 ◦ f ◦ φ

is an analytic self-map of D, and f |U and g|D are conformally conjugate by φ. Therefore,
the study of holomorphic self-maps of D is a good approach to analyze the dynamics of
f |U and, as we will see, to describe f |∂U , even though neither φ nor g extend continuously
to D in general.

We will make this precise next (Sect. II.1), together with the description of the dynamics
of inner functions (in the unit disk and on the boundary, Sect. II.3), the boundary
behaviour of the Riemann map (Sect. II.4), and its transference to the dynamical plane
(Sect. II.5).

Most of the results presented in this section are well-known (or are not difficult
consequences of well-known statements, whose proofs we include for completeness).
However, the set of tools used in the literature when working with inner functions is
far-reaching, and includes several rather different topics (conformal mapping and
Riemann maps, harmonic measure and estimates, prime ends and accessibility, among
others), spread out among several references. Hence, for convenience of the reader, this
chapter of the thesis aims to be an up-to-date and self-contained explanation of the
method of associating inner functions with Fatou components.

As mentioned in the introduction, two new tools have been developed, used
systematically in this thesis, and with the potentiality of being useful to deal with other
boundary problems. First, we study when inverse branches are well-defined around
points in the unit circle, and we estimate how the radius is distorted under such inverse
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branches (Theorem A). Second, for Baker domains, we introduce the notion of
Carathéodory set as the set of points in the boundary with the same asymptotic
behaviour as points in the interior of the Baker domain, with respect to the
Carathéodory topology of ∂U (Definition B). Morally,it is the set of points on ∂U which
converge to the essential singularity through the dynamical access and, as we will see,
plays an important role in the boundary dynamics.

II.1 Iteration in class K and associated inner functions

Consider f ∈ K, i.e.
f : Ĉ ∖ E(f) → Ĉ,

where Ω(f) := Ĉ ∖E(f) is the largest set where f is meromorphic and E(f) is the set of
singularities of f , which is assumed to be closed and countable. Note that Ω(f) is open.

Notation. Having fixed a function f ∈ K, we denote Ω(f) and E(f) simply by Ω and
E, respectively. Given a domain U ⊂ Ω, we denote by ∂U the boundary of U in Ω, and
we keep the notation ∂̂U for the boundary with respect to Ĉ.

The dynamics of such functions has been studied in [Bol96, Bol97, Bol99, BDH01,
BDH04, Dom10, DMdOS22]. The standard theory of Fatou and Julia for rational or
entire functions extends successfully to this more general setting. The Fatou set F(f) is
defined as the largest open set in which {fn}n is well defined and normal, and the Julia
set J (f), as its complement in Ĉ. We need the following properties.

Theorem II.1.1. (Properties of Fatou and Julia sets, [BDH01, Thm. A]) Let
f ∈ K. Then,

(a) F(f) is completely invariant in the sense that z ∈ F(f) if and only if f(z) ∈ F(f);

(b) for every positive integer k, fk ∈ K, F(fk) = F(f) and J (fk) = J (f);

(c) J (f) is perfect;

(d) repelling periodic points are dense in J (f).

By (a), Fatou components (i.e. connected components of F(f)) are mapped among
themselves, and hence classified into periodic, preperiodic or wandering. By (b), the
study of periodic Fatou components reduces to the invariant ones, i.e. those for which
f(U) ⊂ U . Those Fatou components are classified into attracting basins, parabolic basins,
Siegel disks, Herman rings and Baker domains [BDH01, Thm. C]. A Baker domain is, by
definition, a periodic Fatou component U of period k ≥ 1 for which there exists z0 ∈ ∂̂U

such that fnk(z) → z0, for all z ∈ U as n → ∞, but fk is not meromorphic at z0. In such
case, z0 is accessible from U [BDH01, p. 658].

Theorem II.1.2. (Connectivity of Fatou components, [Bol99]) Let f ∈ K, and let
U be a periodic Fatou component of f . Then, the connectivity of U is 1, 2, or ∞.
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In the sequel, we focus on simply connected periodic Fatou components, which we
assume to be invariant. There are plenty of examples of functions and classes of functions
whose Fatou components are simply connected. For instance, periodic Fatou components
of entire maps are always simply connected [Bak84]. Moreover, if f is an entire function,
then its Newton’s method

Nf : C → Ĉ, Nf (z) := z − f(z)
f ′(z)

is a meromorphic function, whose Fatou components are simply connected [FJT08, FJT11,
BFJK14, BFJK18].

The main tool when working with a simply connected invariant Fatou component is
the Riemann map, and the conjugacy that it induces between the original function in
the Fatou component and an inner function of the unit disk D. Before proceeding, let us
recall the definition of inner function.

Definition II.1.3. (Inner function) A holomorphic self-map of the unit disk g : D → D
is an inner function if, for λ-almost every point ξ ∈ ∂D,

g∗(ξ) := lim
t→1−

g(tξ) ∈ ∂D.

If, in addition, g(0) = 0, we say that g is a centered inner function.

Then, let f ∈ K and let U be a simply connected invariant Fatou component for f ,
which we assume to be simply connected. Consider φ : D → U to be a Riemann map.
Then, f : U → U is conjugate by φ to a holomorphic map g : D → D, such that the
diagram

U U

D D

f

g

φ φ

commutes.
For entire or meromorphic functions, where the unique essential singularity lies at ∞,

it is well-known that g is an inner function (see e.g. [EFJS19, Sect. 2.3], or [ERS20, Prop.
1.1]). The same holds for functions in class K (see Prop. II.5.3). We say that g is an
inner function associated with (f, U). Note that two inner functions associated with the
same (f, U) are conformally conjugate and hence have the same dynamical behaviour.

Since U is unbounded, f |U need not be a proper self-map of U , and thus f |U has infinite
degree. In this case, the associated inner function g has also infinite degree, and must
have at least one singularity on the boundary of the unit disk.

Definition II.1.4. (Singularity of an inner function) Let g be an inner function.
A point ξ ∈ ∂D is called a singularity of g if g cannot be continued analytically to a
neighbourhood of ξ. Denote the set of all singularities of g by E(g).
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Throughout this paper we assume that an inner function g is always continued to Ĉ∖D
by the reflection principle, and to ∂D∖E(g) by analytic continuation. In other words, g
is considered as a meromorphic function

g : Ĉ ∖ E(g) −→ Ĉ.

φ φ

g

f

U

D

U

D

p p

Figure II.1: This diagram shows the construction of the inner function. Here, we have the dynamical
plane of f(z) = z + e−z, with one of its invariant Baker domains U (in white), compare with Chapter
1. In the Baker domain, iterates converge to ∞ under iteration, while in the unit disk, they converge to
the Denjoy-Wolff point p ∈ ∂D. The inner function associated with this particular domain was computed
explicitly in [BD99, Thm. 5.2]: g(z) = z2+3

1+3z2 .

II.2 Boundary extension of meromorphic maps h : D → Ĉ

Throughout the thesis, we shall make an intensive use of the following concepts, which
describe ways one may approach a boundary point ξ ∈ ∂D.

In the sequel, we denote the (Euclidean) disk of radius ρ > 0 centered at ξ ∈ ∂D by
D(ξ, ρ). We also consider the radial segment at ξ of length ρ > 0,

Rρ(ξ) := {rξ : r ∈ (1 − ρ, 1)} .

Definition II.2.1. (Crosscut neighbourhoods and Stolz angles) Let ξ ∈ ∂D.

• A crosscut C is an open Jordan arc C ⊂ D such that C = C∪{a, b}, with a, b ∈ ∂D.
If a = b, we say that C is degenerate; otherwise it is non-degenerate.

• A crosscut neighbourhood of ξ ∈ ∂D is an open set N ⊂ D such that ξ ∈ ∂N ,
and C := ∂N ∩ D is a non-degenerate crosscut. We usually write Nξ or NC , to
stress the dependence on the point ξ or on the crosscut C. Note that for a crosscut
neighbourhood N , ∂D ∩N is a non-trivial arc.
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• Given ξ ∈ ∂D, a Stolz angle1 at ξ is a set of the form

∆α,ρ = {z ∈ D : |Arg ξ − Arg (ξ − z)| < α, |z| > 1 − ρ} .

• We say that γ lands non-tangentially at ξ ∈ ∂D if γ lands at ξ, and there exists a
Stolz angle ∆α,ρ at ξ with γ ⊂ ∆α,ρ.

ξ

Radial segment

ξ

(Euclidean) disk

ξ

Degenerate crosscut

ξ

(Non-degenerate)
crosscut

ξ

Crosscut
neighbourhood

ξ

Stolz angle
text

Figure II.2: Different sets related to ξ ∈ ∂D.

Some times it is more convenient to work in the upper half-plane H rather than in
the unit disk D. The previous concepts can be defined analogously for points in ∂H. In
particular, the specific formulas for both the radial segment and Stolz angles at a point
x ∈ R are

RH
ρ (x) := {z ∈ H : Im w < ρ,Re w = x} ;

∆H
α,ρ(x) :=

{
z ∈ H : Im w < ρ,

|Re w − x|
Im w

< tanα
}
.

A more flexible notion of radial segment and Stolz angle will be needed for our purposes.
1Note that the usual defintion of Stolz angle is

∆ = {z ∈ D : |Arg ξ − Arg (ξ − z)| < α, |ξ − z| < ρ} .

However, both definitions are equivalent for our purposes, and the stated one is slightly more convenient
in our setting.
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Definition II.2.2. (Generalized radial arc and Stolz angle) Let p ∈ D and let
ξ ∈ ∂D, ξ ̸= p. Let ρ > 0 and 0 < α < π/2.

• If p ∈ D, consider the Möbius transformation M : D → D, M(z) = p− z

1 − pz
. Then,

the (generalized) radial segment Rρ(ξ, p) of length ρ at ξ is defined as the preimage
under M of the radial segment Rρ(M(ξ)). Analogously, the (generalized) Stolz
angle ∆α,ρ(ξ, p) of angle α and length ρ is the preimage under M of the Stolz angle
∆α,ρ(M(ξ)). That is,

Rρ(ξ, p) := M−1(Rρ(M(ξ))),

∆α,ρ(ξ, p) := M−1(∆α,ρ(M(ξ))).

• If p ∈ ∂D, consider the Möbius transformation M : D → H, M(z) = i
p+ z

p− z
. Then,

the (generalized) radial segment and Stolz angle at ξ are defined as the preimages of
the corresponding radial segment and Stolz angle at M(ξ) ∈ R. That is,

Rρ(ξ, p) := M−1(RH
ρ (M(ξ)))

∆α,ρ(ξ, p) := M−1(∆H
α,ρ(M(ξ))).

See Figures II.3 and II.4.
Observe that Rρ(ξ) = Rρ(ξ, 0), and ∆α,ρ(ξ) = ∆α,ρ(ξ, 0). Note also that Rρ(ξ, p) is a

curve landing non-tangentially at ξ ∈ ∂D, while ∆α,ρ(ξ, p) is an angular neighbourhood
of ξ, since Möbius transformations are conformal, and hence angle-preserving.

M

p

0

ξ1

ξ2

M(ξ1)M(ξ2)

D D

∆α,ρ(ξ1, p)

Rρ(ξ2, p)

∆α,ρ(M(ξ1))

Rρ(M(ξ2))

ρ

α

Figure II.3: Radial arc and angular neighbourhood with respect to p ∈ ∂D.

We are interested in the boundary behaviour of meromorphic maps h : D → Ĉ. Since
h may not extend continuously to ∂D, the concepts of radial and angular limit are a
keystone on studying the boundary behavior of h.

Definition II.2.3. (Radial and angular limit) Let h : D → Ĉ be a meromorphic map,
and let ξ ∈ ∂D. We say that h has radial limit at ξ if the limit

h∗(ξ) := lim
t→1−

h(tξ)
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M

p

ξ1
∆α,ρ(ξ1, p)

Rρ(ξ2, p)

∆H
α,ρ(M(ξ1))RH

ρ (M(ξ2))

ξ2

M(ξ1)M(ξ2)
D

H

ρi

α

Figure II.4: Radial arc and angular neighbourhood with respect to p ∈ ∂D.

exists. We say that h has angular limit at ξ if, for any Stolz angle ∆ at ξ, the limit

lim
z→ξ,z∈∆

h(z)

exists.

Note that, whenever we write h∗(ξ) = p we are assuming implicitly that the radial limit
exists, and equals p. The map

h∗ : ∂D → Ĉ

is called the radial extension of h (defined wherever the radial limit exists).

Theorem II.2.4. (Radial extensions are measurable, [Pom92, Prop. 6.5]) Let
h : D → Ĉ be continuous. Then, the points ξ ∈ ∂D where the radial limit h∗ exists form
a Borel set, and if A ⊂ Ĉ is a Borel set, then

(h∗)−1(A) := {ξ ∈ ∂D : h∗(ξ) ∈ A} ⊂ ∂D

is also a Borel set.

For maps h : D → Ĉ omitting three values in Ĉ, the following well-known theorem of
Lehto and Virtanen relates radial and angular limits.

Theorem II.2.5. (Lehto-Virtanen, [Pom92, Sect. 4.1]) Let h : D → Ĉ be a
meromorphic map omitting three values in Ĉ. Let γ be a curve in D landing at ξ ∈ ∂D.
If h(γ) lands at a point p ∈ C, then h has angular limit at ξ equal to p. In particular,
radial and angular limits are the same.

Remark II.2.6. (Limit on generalized radial arcs and Stolz angles) Note that,
in particular, the Lehto-Virtanen Theorem justifies that, for meromorphic maps omitting
three values, it is equivalent to take the limit along the radial segment, than along any
generalized radial arc. Likewise, the angular limit can be computed along generalized
Stolz angles.
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II.3 Dynamics of inner functions

This section contains the fundamental results concerning iteration of inner functions both
in the unit disk D and on the unit circle ∂D, as well as the proof of Theorem A.

II.3.1 Internal dynamics of self-maps of the unit disk

The asymptotic behaviour of the iterates of a holomorphic self-map of the unit disk is
essentially determined by the Denjoy-Wolff theorem. Moreover, results by Schwarz, Wolff
and Cowen give a more precise description of the dynamics. We collect their work in this
section are valid, which is valid for any holomorphic self-map of D, not necessarily an
inner function.

Theorem II.3.1. (Denjoy-Wolff, [Mil06, Thm. 5.2]) Let g : D → D be holomorphic,
which is not the identity nor an elliptic Möbius transformation. Then, there exists a point
p ∈ D, the Denjoy-Wolff point of g, such that for all z ∈ D, gn(z) → p.

Hence, holomorphic self-maps of D are classified into two types: the elliptic ones, for
which p ∈ D, and the non-elliptic ones, with p ∈ ∂D. In the first case, the Schwarz lemma
describes the dynamics precisely.

Theorem II.3.2. (Schwarz lemma, [Mil06, Lemma 1.2]) Let g : D → D be holomorphic,
with g(0) = 0. Then, for all z ∈ D, |g(z)| ≤ |z|, and |g′(0)| ≤ 1.

An analogous result was obtained by Wolff for non-elliptic self-maps of D.

Theorem II.3.3. (Wolff lemma, [Wol26]) Let g : D → D be holomorphic, with Denjoy-
Wolff point p ∈ ∂D. Let D ⊂ D be an open disk tangent to ∂D at p. Then, g(D) ⊂ D. In
particular, g∗(p) = p.

Another equivalent way of stating Wolff lemma is that, for any holomorphic function
h : H → H with Denjoy-Wolff point ∞ and any upper half-plane H, h(H) ⊂ H (see also
[Bar08, Lemma 2.33]).

Note that, in the elliptic case, g is holomorphic in a neighbourhood of the Denjoy-Wolff
point p ∈ D, which is fixed and it is either attracting (if |g′(p)| ∈ (0, 1)) or superattracting
(if g′(p) = 0). In the former case, g is conjugate to z 7→ |g′(p)| z in a neighourhood of p
(by Koenigs Theorem, see e.g. [Mil06, Chap. 8]). In the latter case, the dynamics are
conjugate to those of z 7→ zd, where d stands for the local degree of g at p (by Böttcher
Theorem, see e.g. [Mil06, Chap. 9]).

An analogous result for the non-elliptic case is given by the following result of Cowen,
which leads to a classification of non-elliptic self-maps of D in terms of the dynamics near
the Denjoy-Wolff point.

Definition II.3.4. (Absorbing domains and fundamental sets) Let U be a domain
in C and let f : U → U be a holomorphic map. A domain V ⊂ U is said to be an absorbing
domain for f in U if f(V ) ⊂ V and for every compact set K ⊂ U there exists n ≥ 0 such
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that fn(K) ⊂ V . If, additionally, V is simply connected and f |V is univalent, V is said
to be a fundamental set for f in U .

Theorem II.3.5. (Cowen’s classification of self-maps of D, [Cow81]) Let g be a
holomorphic self-map of D with Denjoy-Wolff point p ∈ ∂D. Then, there exists a
fundamental set V for g in D.
Moreover, given a fundamental set V , there exists a domain Ω equal to C or
H = {Im z > 0}, a holomorphic map ψ : D → Ω, and a Möbius transformation
T : Ω → Ω, such that:

(a) ψ(V ) is a fundamental set for T in Ω,

(b) ψ ◦ g = T ◦ ψ in D,

(c) ψ is univalent in V .

Moreover, T and Ω depend only on the map g, not on the fundamental set V . In fact
(up to a conjugacy of T by a Möbius transformation preserving Ω), one of the following
cases holds:

• Ω = C, T = idC + 1 (doubly parabolic type),

• Ω = H, T = λidH, for some λ > 1 (hyperbolic type),

• Ω = H, T = idH ± 1 (simply parabolic type).

(a) Elliptic (b) Doubly parabolic (c) Hyperbolic (d) Simply parabolic

Figure II.5: The different types of convergence to the Denjoy-Wolff point.

Finally, note that if g is a self-map of D, so is gk, for all k ≥ 1. The type in Cowen’s
classification is preserved by taking iterates.

Lemma II.3.6. (Cowen’s classification for gk) Let g : D → D holomorphic, and let
k be a positive integer. Then, g is elliptic (resp. doubly parabolic, hyperbolic, simply
parabolic) if and only if so is gk.

31



Proof. It is clear that g is of elliptic type if and only if so is gk. Now, assume that p ∈ ∂D
is the Denjoy-Wolff point of g, and choose a fundamental set V for g in D. Then, V is a
fundamental set for gk in D. It follows that g|V is conformally conjugate to T1 : Ω1 → Ω1,
and gk|V is conformally conjugate to T2 : Ω2 → Ω2. Hence, T1 : Ω1 → Ω1 and T2 : Ω2 → Ω2

are conformally conjugate. Since T and Ω are unique up to conformal conjugacy, and do
not depend on the choice of the fundamental set, it follows that g and gk are of the same
type in Cowen’s classification.

II.3.2 Dynamics of inner functions on the unit circle

Once the dynamics of inner functions inside the unit disk are well-understood, let us
examine the dynamics induced by such functions on the unit circle. Note that inner
functions may not extend continuously to any point on ∂D, so it is a priori unclear how
to proceed.

We find two different approaches in the literature. On the one hand, Aaronson [Aar78]
and Doering and Mañé [DM91] studied the measure-theoretical dynamical system given
by the radial extension g∗ : ∂D → ∂D, from an ergodic point of view. On the other hand,
Baker and Domínguez [BD99] and Bargmann [Bar08] define and study Fatou and Julia
sets of inner functions, with a more topological point of view. We present both theories
next, which together provide a detailed description of the dynamics.

The measure-theoretical approach of Aaronson, Doering and Mañé

Let g : D → D be an inner function, and consider the dynamical system induced by its
the radial extension

g∗ : ∂D → ∂D.

Recall that if g is an inner function, so is gk [BD99, Lemma 4], so the equality

(gn)∗(ξ) = (g∗)n(ξ)

holds for all n ≥ 0 λ-almost everywhere. Moreover, the radial extension g∗ is measurable
(Thm. II.2.4), and hence analyzable from the point of view of ergodic theory. The
following is a recollection of ergodic properties of g∗, with precise references.

Theorem II.3.7. (Ergodic properties of g∗) Let g : D → D be an inner function with
Denjoy-Wolff point p ∈ D. The following holds.

(a) g∗ is non-singular. In particular, for λ-almost every ξ ∈ ∂D, its infinite orbit under
g∗, {(gn)∗(ξ)}n, is well-defined.

(b) g∗ is ergodic if and only if g is elliptic or doubly parabolic.

(c) If g∗ is recurrent, then it is ergodic. In this case, for every A ∈ B(D) with λ(A) > 0,
we have that for λ-almost every ξ ∈ ∂D, there exists a sequence nk → ∞ such that
(gnk)∗(ξ) ∈ A. In particular, λ-almost every ξ ∈ ∂D, {(gn)∗(ξ)}n is dense in ∂D.
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(d) If g is an elliptic inner function, then g∗ is recurrent.

(e) The radial extension of a doubly parabolic inner function is not recurrent in general.
However, if g is doubly parabolic and the Denjoy-Wolff point p is not a singularity
for g, then g∗ is recurrent. Moreover, if g is doubly parabolic and there exists z ∈ D
and r > 1 such that

distD(gn+1(z), gn(z)) ≤ 1
n

+O
( 1
nr

)
,

as n → ∞, then g∗ is recurrent.

(f) If g is hyperbolic or simply parabolic, then g∗ is non-ergodic and non-recurrent.
Moreover, λ-almost every ξ ∈ ∂D converges to the Denjoy-Wolff point under the
iteration of g∗.

(g) Let k be a positive integer. Then, gk is an inner function. Moreover, g∗ is ergodic
(resp. recurrent) if and only if (gk)∗ is ergodic (resp. recurrent).

Proof. (a) The proof that g∗ is non-singular can be found in [Aar97, Prop. 6.1.1]. We
claim that this already implies that, for λ-almost every ξ ∈ ∂D, its infinite orbit
{(gn)∗(ξ)}n is well-defined. We shall prove it by induction. First, it is clear that the
set

{ξ ∈ ∂D : g∗(ξ) is well-defined}

has full measure, and, since g∗ is non-singular, g∗(∂D) = 1. Now, assume that the
set {

ξ ∈ ∂D : {(gn)∗(ξ)}k−1
n=0 is well-defined

}
has full measure, and λ((gk−1)∗(∂D)) = 1. Then, the set

(gk−1)∗(∂D) ∩ {ξ ∈ ∂D : (gn)∗(ξ) is well-defined}

has also full measure, proving that the orbit {g∗(ξ)}k
n=0 is well-defined for λ-almost

every ξ ∈ ∂D, as desired.

(b) It follows from combining [DM91, Thm. G] with [Bon97, Thm. 1.4].

(c) See [DM91, Thm. E, F], as well as [Aar97, Thm. 6.1.7].

(d) The first statement is [DM91, Corol. 1] (see also [Aar97, Thm. 6.1.8]). The second
statement follows from applying Theorem I.1.7, and applying that open sets in ∂D
have positive measure. See also [BEF+24, Sect. 8.3].

(e) An example of a doubly parabolic inner function whose boundary map is not
recurrent is given in [BFJK19, Example 1.3]. Conditions which imply recurrence
are found in [BFJK19, Thm. B] and [BFJK19, Thm. E], respectively.

(f) See [DM91, Thm. 3.1, Thm. 4.1, Corol. 4.3], combined with [Bar08, Lemma 2.6].
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(g) Finally, the proof that gk is an inner function can be found in [BD99, Lemma 4].
Since ergodicity depends only on the type in Cowen’s classification II.3.5, which is
invariant under talking iterates (Lemma II.3.6), g∗ is ergodic if and only if (gk)∗ is
ergodic. Recurrence is always preserved under taking iterates (see Lemma I.1.8).

The next theorem deals with the existence of invariant measures.

Theorem II.3.8. (Invariant measures for g∗|∂D, [DM91, Thm. A, C]) Let g : D → D
be an inner function.

(i) If g is elliptic, assume 0 is the Denjoy-Wolff point of g. Then, the Lebesgue measure
λ is invariant under g∗.

(ii) If g is doubly parabolic, assume 1 is the Denjoy-Wolff point of g. Then, the σ-finite
measure

λR(A) :=
∫

A

1
|w − 1|2

dλ(w), A ∈ B(∂D),

is invariant under g∗.

Note that the measure λR is the push-forward of the Lebesgue measure on R (up to
multiplication by a constant) under any Möbius map transforming the upper half plane
to the unit disk, and sending ∞ to 1.

We need the following result, which is extracted from the proof of [DM91, Thm. 3.1].

Theorem II.3.9. Let g : D → D be a hyperbolic or simply parabolic inner function. Then,
there exists h : D → D and a Möbius transformation T : D → D such that h ◦ g = T ◦ h.
Moreover, h = limn h

n, where hn = Tn ◦ gn, Tn : D → D Möbius, and hn(0) = 0 for all n.

It follows from [Fer23] that h is inner (and h(0) = 0, and hence preserves the Lebesgue
measure on ∂D); moreover, h is a Möbius transformation if and only if g is univalent,
and otherwise h has infinite degree. Note that T cannot have fixed points, and thus is
hyperbolic or simply parabolic (doubly parabolic inner functions are never univalent).

Applying the Lehto-Virtanen Theorem II.2.5, one deduces that h∗ and h∗ ◦ g∗ exists
λ-almost everywhere, and

h∗ ◦ g∗ = T ◦ h∗,

where defined.

The topological approach of Baker, Domínguez and Bargmann

Another approach to describe the dynamics of inner functions in ∂D is developed in
[BD99, Bar08], where instead of considering the induced measure-theoretical dynamical
system as in [Aar78, DM91] it is considered the holomorphic dynamical system given by
the maximal meromorphic extension of g, and the normality of the sequences of iterates
is studied.
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More precisely, assume g is not a Möbius transformation. Then, the Fatou set F(g) is
the set of all points z ∈ Ĉ for which there exists an open neighbourhood U ⊂ Ĉ of z such
that {gn|U}n is well-defined and normal. The Julia set J (g) is the complement of F(g)
in Ĉ. In view of the Denjoy-Wolff Theorem, it is clear that the Fatou set is precisely the
set of points for which iterates converge locally uniformly to the Denjoy-Wolff point.

It follows from Montel’s theorem that J (g) ⊂ ∂D. Note also that, if g has finite degree,
then it is a Blaschke product, and thus a rational map. In this case, the definition of
the Fatou and Julia sets agrees with the usual one for rational functions. Moreover, the
following holds.

Lemma II.3.10. (Properties of Fatou and Julia sets of inner functions, [BD99,
Lemma 8], [Bar08, Thm. 2.34] ) Let g : D → D be an inner function. Then,

(a) g(F(g)) ⊂ F(g);

(b) if g is non-Möbius, then J (g) is a perfect set;

(c) if g is non-rational, then J (g) = ⋃
n E(gn).

It is well-known that, if g is elliptic or doubly parabolic, then J (g) = ∂D [Bar08, Thm.
2.24]. For non-Möbius hyperbolic and simply parabolic inner functions, it may happen
J (g) = ∂D, as well as J (g) ̸= ∂D, see [Bar08, Sect. 2.5] (both situations can happen
also for inner functions associated with non-univalent Baker domains of entire function;
see [Bar08, Ex. 3.6], where J (g) = ∂D; and [BZ12], where J (g) ̸= ∂D).

We need the following additional properties.

Lemma II.3.11. (Characterization of singularities of inner functions) Let g : D →
D be an inner function. Then, ξ ∈ E(g) if and only if, for any crosscut neighbourhood Nξ

of ξ,
g(Nξ) = D.

Moreover, for every η ∈ ∂D and every neighbourhood U of ξ, there exists ζ ∈ U ∩∂D such
that g∗(ζ) = η.

Proof. The first statement can be found in [Gar07, Thm. II.6.6], while the second is
proven in [BD99, Lemma 5 and Corollary].

Lemma II.3.12. (Iterated preimages are dense in the Julia set) Let g : D → D be
a non-Möbius inner function, and let ζ ∈ ∂D. Then,⋃

n≥0
{ξ ∈ ∂D : (gn)∗(ξ) = ζ} ⊃ J (g).

Proof. In the case when g has finite degree, it follows from the standard theory of Fatou
and Julia sets. In the case when g has infinite degree, there exists at least one singularity
of g, and

J (g) =
⋃

n≥0
E(gn),

by Lemma II.3.10(c). By Lemma II.3.11, each singularity is approximated by radial
preimages of every point in ∂D, and the lemma follows.
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II.3.3 Iterated inverse branches on ∂D and distortion

Finally, we study iteration on ∂D from a different point of view: iterating backwards.
Indeed, we analyze when iterated inverse branches are well-defined (and hence, conformal),
and the quantify the distortion exercised on the radial segment, as stated in Theorem A.
To do so, we study carefully the singular values for inner functions, as indicated in Section
I.4, and combine this results with estimates of conformal maps, given in Section I.3.

Singular values for inner functions

Let g : D → D be an inner function, considered as its maximal meromorphic extension

g : Ĉ ∖ E(g) → Ĉ,

as before. We shall consider regular and singular values for g as introduced in Section I.4.
We observe that for any inner function g and any z ∈ E(g), the cluster set (as defined
in Section I.4) is Ĉ. Indeed, if z ∈ E(g), then Lemma II.3.11 and Schwarz reflection
imply that Cl(g, z) = Ĉ (compare also with [BD99]). Thus, g ∈ M, and all the previous
description of singular values applies.

Note that, since D and Ĉ ∖ D are totally invariant, there cannot be critical points nor
critical values in ∂D. Moreover, by symmetry, if v ∈ D is regular (resp. singular), then
so is 1/v. Hence, we consider

SV (g,D) =
{
v ∈ D : v is singular

}
.

We start by proving that asymptotic paths actually land at points in E(g).

Lemma II.3.13. (Asymptotic paths land) Let v ∈ D be an asymptotic value for g,
and let γ : [0, 1) → Ĉ∖E(g) be an asymptotic path for v. Then, there exists a singularity
ξ ∈ E(g) ⊂ ∂D such that γ(t) → ξ, as t → 1.

Proof. Assume, on the contrary, that the landing set L(γ) of the asymptotic path γ is a
continuum in E(g). Then, L(γ) is a closed non-degenerate interval in the unit circle.

On the one hand, for λ-almost every point ξ in L(γ), the radial limit g∗(ξ) exists. Let
us denote the radial segment at ξ by Rξ.

On the other hand, without loss of generality, we can assume γ : [0, 1) → D ∖ E(g).
Then, since L(γ) ⊂ E(g) and γ ⊂ D ∖ E(g), for every point ξ ∈ L(γ) (except at the
endpoints), there exists a sequence {ξn} ⊂ γ ∩ Rξ with ξn → ξ. Then, g(ξn) → v,
implying that the radial limit g∗(ξ) equals v. This contradicts the fact that radial limits
are different almost everywhere (Thm. 4.8.4).

Next we prove that singular values in ∂D correspond to accumulation points of singular
values in D.

Proposition II.3.14. (Singular values on ∂D) Let g : D → D be an inner function,
and let ξ ∈ ∂D. The following are equivalent.
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(a) There exists a crosscut C, with crosscut neighbourhood NC and ξ ∈ ∂NC such that
SV (g) ∩NC = ∅.

(b) v is regular, i.e. there exists ρ := ρ(ξ) > 0 such that all inverse branches G1 of g
are well-defined in D(ξ, ρ).

Proof. The implication (b)⇒(a) is trivial. Let us prove (a)⇒(b). Without loss of
generality, we can assume that there are no singular values in ∂D ∩ NC . Moreover, note
that (a) implies that all inverse branches G1 are well-defined (and conformal) in NC .
The assumption that there are no singular values in ∂D ∩ NC implies that G1 is
holomorphic in NC ∩ D. We shall show that G1 can be extended across ∂D by Schwarz
reflection (see Fig. II.6).

To this end, let φ : D → NC be a Riemann map. Note that it extends homeomorphically
to ∂NC ; we shall denote this extension again by φ. Then,

G1 ◦ φ : D → G1(NC)

is a Riemann map for the simply connected domain G1(NC), where G1 is any branch of
g−1.

Consider the radial extension

G∗
1 : ∂NC → ∂G1(NC),

defined as
G∗

1(x) = (G1 ◦ φ)∗(φ−1(x)),

for x ∈ ∂NC . Note that, since G1|NC
is bounded, the radial extension is well-defined

almost everywhere in ∂NC . Since we assume that G1 is holomorphic in NC ∩D, it follows
that G1(NC ∩D) ⊂ D. Indeed, assume z ∈ NC ∩D and G1(z) ∈ ∂D. Since G1 is conformal,
it would map points in D to points in Ĉ ∖ D, a contradiction.

Moreover, modifying slightly the crosscut if needed, we can assume that, for the two
endpoints {ξ1, ξ2} = ∂NC ∩ ∂D, the limit

G∗
1(ξi) = lim

z→ξi,z∈NC∩D
G1(z)

exists, for i = 1, 2. This is possible since the radial extension is well-defined almost
everywhere. Note that, since g is assumed to be an inner function, G∗

1(ξi) ∈ ∂D (otherwise,
there would exist a point in D mapped by g to ∂D, a contradiction). Hence, G1(∂NC ∩D)
is a crosscut in D; we shall denote this crosscut by C ′. On the other hand, note that, for
x ∈ ∂NC ∩ ∂D, it holds

Cl(G1, x) :=
{
w ∈ D : there exists {xn}n ⊂ NC with xn → x and G1(xn) → w

}
⊂ ∂D,

since g(D) ⊂ D. Hence,
∂G1(NC) ⊂ C ′ ∪ ∂D.
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Therefore, ∂G1(NC) is locally connected (and, in fact, a Jordan curve), so G1 extends
homeomorphically to ∂NC , and G1(∂NC ∩ ∂D) ⊂ ∂D.

Thus, by Schwarz reflection, we can extend holomorphically G1 to

NC ∪ (∂NC ∩ ∂D) ∪
{
z ∈ Ĉ : 1

z
∈ NC

}
,

(see Fig. II.6). In particular, there exists ρ := ρ(ξ) > 0 such that all inverse branches of
g are well-defined in D(ξ, ρ), as desired.

G1

ρ
G1(ξ)

D

ξ

Figure II.6: Whenever an inverse branch G1 is well-defined in a crosscut neighbourhood, it can be
extended across the unit circle by Schwarz reflection.

It follows from Proposition II.3.14 that a value v ∈ ∂D is singular for g if and only if
it is accumulated by singular values in D, i.e. v ∈ SV (g) ∩ D. Clearly, for finite Blaschke
products, all values v ∈ ∂D are regular, and the same is true if SV (g) ∩ D is compactly
contained in D. Moreover,

Corollary II.3.15. (Non-singular Denjoy-Wolff point) Let g : D → D be an inner
function with Denjoy-Wolff point p ∈ ∂D. If p /∈ SV (g), then p is not a singularity for g.

Proof. If p /∈ SV (g), then there exists a crosscut neighbourhood Np such that p ∈ ∂Np

and SV (g) ∩ Np = ∅. Since the Denjoy-Wolff point is radially fixed (Thm. II.3.3), there
exists a curve γ ⊂ Np landing at p, such that g(γ) ⊂ Np also lands at p. Consider G1 the
inverse branch of g−1 defined in Np such that G1(g(γ)) = γ. By Proposition II.3.14, G1

extends conformally to D(p, ρ) for some ρ > 0, and G1(p) = p. Then, D1 := G1(D(p, ρ))
is a negihbourhood of p, and

g : D1 → D(p, ρ)

conformally. Therefore, by Lemma II.3.11, p is not a singularity for g, as desired.

Remark II.3.16. (At most one asymptotic value per singularity) By the Lehto-
Virtanen Theorem II.2.5, given a singularity ξ ∈ E(g), there exists at most one asymptotic
value v ∈ D corresponding to ξ. Indeed, if v is an asymptotic value corresponding to the
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singularity ξ, there exists a curve landing at ξ whose image lands at v. By Lehto-Virtanen
Theorem, g∗(ξ) = v. Since radial limits, if they exist, are unique, there cannot be more
asymptotic values corresponding to ξ. Hence,

#E(g) ≥ #AV (g) ∩ D.

This differs from when a meromorphic function f : C → Ĉ is considered, where the
essential singularity (infinity) can have infinitely many asymptotic values corresponding
to it.

Distortion of inverse branches

Next, we analyse the distortion induced by inverse branches near ∂D, and how we can
control the preimages of radial limits in terms of Stolz angles.

Proposition II.3.17. (Control of radial limits in terms of Stolz angles) Let
g : D → D be an inner function with Denjoy-Wolff point p ∈ D. Let ξ ∈ ∂D, ξ ̸= p.
Assume there exists ρ0 > 0 such that D(ξ, ρ0) ∩ SV (g) ̸= 0. Then, for all 0 < α < π

2 ,
there exists ρ1 := ρ1(α, ρ0) < ρ0 such that all branches G1 of g−1 are well-defined in
D(ξ, ρ1) and, for all ρ < ρ1,

G1(Rρ(ξ, p)) ⊂ ∆α,ρ(G1(ξ), p),

where Rρ(·, p) and ∆α,ρ(·, p) stand for the generalized radial segment and Stolz angle with
respect to p (Def. II.2.2).

G1

R

G1(ξ)

D

p = 0
ξ

Figure II.7: Whenever an inverse branch G1 is well-defined at a boundary point ξ ∈ ∂D, G1 sends
radial segments into angular neighbourhoods of a given openning. In the figure, p = 0 ∈ D.

Note that ρ1 depends only on ρ0 and α, but not on the point ξ ∈ ∂D, nor on the inverse
branch G1.

Proof. Note that, since D(ξ, ρ0) ∩ SV (g) ̸= ∅, all branches G1 of g−1 are well-defined in
D(ξ, ρ0). We shall distinguish two cases.
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• Assume first that g is elliptic, so p ∈ D. According to Definition II.2.2, it is enough
to consider g : D → D with g(0) = 0 and prove

G1(Rρ(ξ, 0)) ⊂ ∆α,ρ(G1(ξ), 0).

By Schwarz lemma II.3.2, |G1(z)| ≥ |z| for z ∈ D(ξ, ρ0) ∩ D. It is left to see that,
for z ∈ Rρ(ξ, 0),

|Arg G1(ξ) − Arg (G1(ξ) −G1(z))| < α.

To do so, consider the linear map

L1(z) := G1(ξ) +G′
1(ξ)(z − ξ).

Note that |L1(z) −G1(ξ)| = |G′
1(ξ)| |z − ξ|. Moreover, by Corollary I.3.2, there

exists ρ1 < ρ0 and a constant C(ρ1) > 0 such that

|G1(z) − L1(z)| ≤ C(ρ1) |z − ξ| |G′
1(ξ)| ,

for all z ∈ D(ξ, ρ1). That is, the point G1(z) belongs to the disk of center L1(z) and
radius C(ρ1) |z − ξ| |G′

1(ξ)| (see Fig. II.8).
Since C(ρ1) → 0 as ρ1 → 0, we have C(ρ1)

1−C(ρ1) → 0 as ρ1 → 0. Without loss of
generality, we assume C(ρ1) satisfies

C(ρ1)
1 − C(ρ1)

< tanα.

Let
β := |Arg G1(ξ) − Arg (G1(ξ) −G1(z))| .

We claim that, if z ∈ Rρ(ξ, 0), then Arg L1(z) = Arg (G1(ξ)). Indeed, L1 is the
affine map associated to G1, which is an inverse branch of g. The map G1 is
conformal in D(ξ, ρ0), and hence angle preserving, and G1(D(ξ, ρ0) ∩ ∂D) ⊂ ∂D.
From this, it follows that, if Arg z = Arg ξ, then Arg L1(z) = Arg (G1(ξ)), i.e. if z
lies on the radial segment at ξ, then L1(z) lies on the radial segment at G1(ξ).
Then, noting that G1(z) belongs to the disk of center L1(z) and radius
C(ρ1) |z − ξ| |G′

1(ξ)|, it follows

tan β ≤ C(ρ1) |G′
1(ξ)| |z − ξ|

(1 − C(ρ1)) |G′
1(ξ)| |z − ξ|

= C(ρ1)
1 − C(ρ1)

≤ tanα,

as desired. See also Figure II.8.

• Assume g is non-elliptic, so p ∈ ∂D. Note that G1(ξ) ̸= p, since p is the Denjoy-Wolff
point and, hence, it is radially fixed (Thm. II.3.3).

Now, consider h : H → H, h := M ◦ g ◦ M−1, where M : D → H, M(z) = i
p+ z

p− z
.

Then, there exists ρ̃0 such that D(M(ξ), ρ̃0) ∩ SV (h) = ∅, and consider H1 the
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ξ

G1(ξ)

0

z

L1(z)
G1(z)

∂D

(a)

G1(ξ)

β

L1(z)
C(ρ1)

∣∣G′
1(ξ)
∣∣ |z − ξ|

(1 − C(ρ1))
∣∣G′

1(ξ)
∣∣ |z − ξ|

G1(z)

(b)

Figure II.8: Image (a) shows how the inverse branch G1 acts near ξ, and (b) provides more detail on
it. Indeed, the point G1(z) lies on the disk D(L1(z), C(ρ1) |G′

1(ξ)| |z − ξ|). The angle β captures the
opening of the vector G1(z) − G1(ξ) with respect to the vector L1(z) − G1(ξ). Hence, tan β is bounded
above by the maximal distance between G1(z) and L1(z) divided by the minimal distance between G1(ξ)
and G1(z).

branch of h−1 corresponding to G1, well-defined in D(M(ξ), ρ̃0). It is enough to
prove that there exists ρ̃1 < ρ̃0 such that, for all ρ < ρ̃1,

H1(RH
ρ (M(ξ))) ⊂ ∆H

α,ρ(H1(M(ξ))).

First note that, by Wolff lemma II.3.3, if Im w < ρ, then Im H1(w) < ρ. Now,
consider the linear map

L1(w) := H1(M(ξ)) +H ′
1(M(ξ))(w −M(ξ)).

Note that |L1(w) −H1(ξ)| = |H ′
1(M(ξ))| |w −M(ξ)|. Moreover, by Corollary I.3.2,

there exists ρ̃1 < ρ̃0 and a constant C(ρ̃1) > 0 such that

|H1(w) − L1(w)| ≤ C(ρ̃1) |w −M(ξ)| |H ′
1(M(ξ))| ,

for all w ∈ D(ξ, ρ̃1). We assume, without loss of generality,
C(ρ̃1)

1 − C(ρ̃1)
< tanα.

Since h(H) ⊂ H, and H1 is a branch of h−1, conformal where defined, then if
w ∈ RH

ρ (M(ξ)), then Re L1(w) = H1(M(ξ)), i.e. if w lies on the radial segment at
M(ξ), then L1(w) lies on the radial segment at L1(M(ξ)).
We claim that, for w ∈ RH

ρ (M(ξ)), it holds

|Re H1(w) −H1(M(ξ))|
Im H1(w) < tanα.
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Indeed,

|Re H1(w) −H1(M(ξ))| = |Re H1(w) − Re L1(w)| ≤ C(ρ̃1) |w −M(ξ)| |H ′
1(M(ξ))| ,

Im H1(w) = Im (H1(w) −H1(M(ξ))) ≥ (1 − C(ρ̃1)) |H ′
1(M(ξ))| |w −M(ξ)| ,

as desired. See also Figure II.9.

w

M(ξ)H1(M(ξ))

L1(w)

H1(w)

C(ρ̃1)
∣∣H′

1(M(ξ))
∣∣ |w − M(ξ)|

(1 − C(ρ̃1))
∣∣H′

1(M(ξ))
∣∣ |w − M(ξ)|

Figure II.9: The point H1(w) lies on the disk D(L1(w), C(ρ̃1) |H ′
1(ξ)| |z − ξ|), and this gives the

estimates on its real and imaginary part.

Distortion of iterated inverse branches

Consider the postsingular set

P (g) :=
⋃

v∈SV (g)

⋃
n≥0

gn(v).

The following theorem is now straightforward (and it is the precise version of Theorem A
stated at the beginning of the section).

Theorem II.3.18. (Iterated inverse branches at boundary points I) Let g : D → D
be an inner function. Assume there exists ξ ∈ ∂D and a crosscut neighbourhood Nξ of ξ
such that P (g) ∩Nξ = ∅. Then, there exists ρ0 > 0 such that all branches Gn of g−n are
well-defined in D(ξ, ρ0), and, for all ρ < ρ0,

Gn(Rρ(ξ), p) ⊂ ∆α,ρ(Gn(ξ), p),

where Rρ(·, p) and ∆α,ρ(·, p) stand for the radial segment and the Stolz angle with respect
to p (Def. II.2.2).
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If, in addtion, g∗|∂D is recurrent, the existence of one crosscut neighbourhood without
postsingular values already implies that iterated inverse branches are well-defined λ-almost
everywhere, and singularities have zero λ-measure. This is the content of the following
theorem.

Theorem II.3.19. (Iterated inverse branches at boundary points II) Let g : D →
D be an inner function, such that g∗|∂D is recurrent. Assume there exists ζ ∈ ∂D and
a crosscut neighbourhood Nζ of ζ such that P (g) ∩ Nζ = ∅. Then, for λ-almost every
ξ ∈ ∂D, there exists ρ0 := ρ0(ξ) > 0 such that all branches Gn of g−n are well-defined in
D(ξ, ρ0). In particular, the set E(g) of singularities of g has λ-measure zero.
In addition, for all 0 < α < π

2 , there exists ρ1 < ρ0 such that, for all n ≥ 0, all branches
Gn of g−n are well-defined in D(ξ, ρ1) and, for all ρ < ρ1,

Gn(Rρ(ξ), p) ⊂ ∆α,ρ(Gn(ξ), p),

where Rρ(·, p) and ∆α,ρ(·, p) stand for the radial segment and the Stolz angle with respect
to p (Def. II.2.2).

Proof. By Proposition II.3.14, the existence of a crosscut neighbourhood Nζ of ζ ∈ ∂D
such that P (g) ∩Nζ = ∅, implies the existence of ρζ > 0 such that all branches Gn of g−n

are well-defined in D(ζ, ρζ).
We have to see that, for λ-almost every ξ ∈ ∂D, there exists ρξ > 0 such that all

branches Gn of g−n are well-defined in D(ξ, ρξ). Since we are assuming g∗ to be recurrent,
for λ-almost every ξ ∈ ∂D, {(gn)∗(ξ)}n is dense in ∂D (Thm. II.3.7(c)). Therefore, there
exists n0 := n0(ξ) such that (gn0)∗(ξ) ∈ D(ζ, ρζ). This already implies the existence of
ρξ > 0 such that all inverse branches Gn of g−n are well-defined in D(ξ, ρξ).

Next we prove that λ(E(g)) = 0. To do so, let

K :=
{
ξ ∈ ∂D : ∃ρ > 0 such that all branches Gn of g−n are well-defined in D(ξ, ρ)

}
.

Note that points in g−1(K) do not belong to E(g). Indeed, if ζ ∈ g−1(K), then there exists
a neighbourhood of ζ which is mapped conformally to D(g(ζ), ρ), and hence ζ cannot be
a singularity. Therefore, it is enough to prove that λ(g−1(K)) = 1. This follows from the
fact that λ(K) = 1 and that g∗ is non-singular (Thm. II.3.7(a)).

Finally, the control of the image of radial segments by inverse branches in terms of
angular neighbourhoods follows from Proposition II.3.17. Indeed, note that the estimates
obtained therein do not depend on the inverse branches considered, but only on the radius
of the disk where they are defined.

Remark II.3.20. Observe that a sufficient condition so that hypotheses of Theorem
II.3.18 are satisfied is that singular values are compactly contained in D. Indeed, it is
enough to show that, if singular values of g|D are compactly contained in D, then there
exists ζ ∈ ∂D and a crosscut neighbourhood Nζ of ζ such that P (g) ∩Nζ = ∅.

Assume first that g is elliptic, with Denjoy-Wolff point p ∈ D. After conjugating by
a Möbius transformation, we assume p = 0. Now, consider an Euclidean disk D(0, r),
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with r ∈ (0, 1) big enough so that SV (g) ⊂ D(0, r). By Schwarz Lemma II.3.2, D(0, r)
is forward invariant under g, so P (g) ⊂ D(0, r). This implies that, for all ζ ∈ ∂D, we can
find a crosscut neighbourhood of ζ disjoint from the postsingular set.

If g is doubly parabolic, the procedure is analogous, with the difference that we should
work with a holodisk tangent to the Denjoy-Wolff point instead of an Euclidean disk,
and we apply Wolff Lemma II.3.3 instead of Schwarz Lemma. Note that we can find a
crosscut neighbourhood disjoint from the postsingular set for any ζ ∈ ∂D, except for the
Denjoy-Wolff point.

II.4 Boundary behaviour of Riemann maps

In order to transfer the previous results on the iteration of inner functions on the unit
circle ∂D, we need a deep understanding of the Riemann map φ : D → U . We collect
here the results concerning the boundary behaviour of Riemann maps needed in this
thesis, and refer to [Pom92] for a wider exposition on the topic. In the sequel we assume
U ⊊ C; this can be achieved without loss of generality by postcomposing φ by a Möbius
transformation.

Let us start with a classical result by Beurling [Pom92, Thm. 9.19].

Theorem II.4.1. (Existence of radial limits) Let φ : D → U ⊊ C be a Riemann map.
Then, for all ξ ∈ ∂D apart from a set of logarithmic capacity zero, the radial limit φ∗

exists and its finite.

We shall not discuss here the concept of logarithmic capacity (for which we refer to
[Pom92, Chap. 9]), but keep in mind the following properties. First, the notion of
logarithmic capacity is usually defined for compact subsets of the plane, but the notion
extends to Borel sets [Pom92, Thm. 9.12]; in particular, a Borel set has logarithmic
capacity zero if it does not contain any compact set of positive capacity. Recall that
sets of logarithmic capacity zero are extremely thin: they cannot contain non-degenerate
continua, and its Hausdorff dimension is zero [Pom92, Thm. 10.1.3]. Moreover, the union
of countably many sets of capacity zero has capacity zero [Pom92, Corol. 9.13], and, if φ
is a Möbius transformation and E has capacity zero, then φ(E) has also capacity zero.

In particular, since sets of logarithmic capacity zero have Lebesgue measure zero, radial
limits exist and are different λ-almost everywhere – this is also known as the Fatou, Riesz
and Riesz Theorem (see e.g. [Mil06, Thm. 17.4]). Moreover, the following is true.

Theorem II.4.2. ([Pom92, Corol. 2.19]) Let φ : D → C be a homeomorphism. Then,
there are at most countably many points a ∈ Ĉ such that φ∗(ξj) = a for three distinct
points ξj ∈ ∂D.

II.4.1 Prime ends and cluster sets

The definition of cluster set and radial cluster set reads as follows.
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Definition II.4.3. (Cluster sets and radial cluster sets) Let φ : D → U be a Riemann
map and let ξ ∈ ∂D.

• The radial cluster set ClR(φ, ξ) of φ at ξ is defined as the set of values w ∈ Ĉ
for which there is an increasing sequence {tn}n ⊂ (0, 1) such that tn → 1 and
φ(tnξ) → w, as n → ∞.

• The cluster set Cl(φ, ξ) of φ at ξ is the set of values w ∈ Ĉ for which there is a
sequence {zn}n ⊂ D such that zn → ξ and φ(zn) → w, as n → ∞.

• If U is unbounded, we define the cluster set in C as

ClC(φ, ξ) := Cl(φ, ξ) ∩ C.

Observe that every point in ∂U must belong to the cluster set of some ξ ∈ ∂U . In
some sense, the previous concepts replace the notion of image under φ for points in ∂D,
and allow us to describe the topology of ∂U . Cluster sets (and radial cluster sets) are, by
definition, non-empty compact subsets of Ĉ. However, cluster sets in C may be empty.

Prime ends give a more geometrical approach to the same concepts, and are defined as
follows. Consider a simply connected domain U , and fix a basepoint z0 ∈ U . In the same
spirit as in Definition II.2.1, we say that C is a (non-degenerate)crosscut in U if C is an
open Jordan arc in U such that C = C ∪ {a, b}, with a, b ∈ ∂U ; we allow a = b. If C is a
crosscut of U and z0 /∈ C, then U ∖D has exactly one component which does not contain
z0; let us denote this component by NC . We say that NC is a crosscut neighbourhood in
U associated to C.

A null-chain in U is a sequence of crosscuts {Cn}n ⊂ U with disjoint closures, such
that the corresponding crosscut neighbourhoods are nested, i.e. NCn+1 ⊂ NCn for n ≥ 0;
and the spherical diameter of Cn tends to zero as n → ∞. We say that two null-chains
{Cn}n and {C ′

n}n are equivalent if, for every sufficiently large m, there exists n such that
NCn ⊂ NC′

m
and NC′

n
⊂ NCm . This defines an equivalence relation between null-chains.

The equivalence classes are called the prime ends of U . The impression of a prime end P
is defined as

I(P ) :=
⋂

n≥0
NCn ⊂ ∂U.

If U = D (or any set with locally connected boundary) the impression of every prime end
is a single point. In general, a Riemann map φ : D → U gives a bijection between points
in ∂D and prime ends of U (Carathéodory’s Theorem, [Pom92, Thm. 2.15]). We denote
by P (φ, ξ) the prime end in U corresponding to ξ ∈ ∂D.

Given a prime end P , we say that w ∈ ∂̂U is a principal point of P , if P can be
represented by a null-chain {Cn}n satisfying that, for all r > 0, there exists n0 such that
the crosscuts Cn are contained in the disk D(w, r) for n ≥ n0. Let Π(P ) denote the set
of all principal points of P .

The following theorem gives explicitly the relation between cluster sets and prime ends,
and between radial cluster sets and principal points.
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Theorem II.4.4. (Prime ends and cluster sets, [Pom92, Thm. 2.16]) Let φ : D → U

be a Riemann map, and let ξ ∈ ∂D. Then,

I(P (φ, ξ)) = Cl(φ, ξ), and Π(P (φ, ξ)) = ClR(φ, ξ).

II.4.2 Accessing the boundary of a simply connected domain

A classical result about Riemann maps is the following.

Theorem II.4.5. (Lindelöf Theorem, [CG93, Thm. I.2.2]) Let γ : [0, 1) → U be a
curve which lands at a point p ∈ ∂̂U . Then, the curve φ−1(γ) in D lands at some point
ξ ∈ ∂D. Moreover, φ has the radial limit at ξ equal to p. In particular, curves that land
at different points in ∂̂U correspond to curves which land at different points of ∂D.

Accessible points (and accesses) are in bijection with points in ∂D for which φ∗ exists,
as it is shown in the following well-known theorem [Pom92, p. 35, Ex. 5]. For a complete
proof, see [BFJK17].

Theorem II.4.6. (Correspondence Theorem) Let U ⊂ Ĉ be a simply connected
domain, φ : D → U a Riemann map, and let p ∈ ∂̂U . Then, there is a one-to-one
correspondence between accesses from U to p and the points ξ ∈ ∂D such that φ∗(ξ) = p.
The correspondence is given as follows.

(a) If A is an access to p ∈ ∂U , then there is a point ξ ∈ ∂D with φ∗(ξ) = p. Moreover,
different accesses correspond to different points in ∂D.

(b) If, at a point ξ ∈ ∂D, the radial limit φ∗ exists and it is equal to p ∈ ∂U , then there
exists an access A to p. Moreover, for every curve η ⊂ D landing at ξ, if φ(η) lands
at some point q ∈ Ĉ, then p = q and φ(η) ∈ A.

II.4.3 Separating the boundary of simply connected domains

Next, we state the following theorem, which exploits the possibility of separating sets in
∂U with arcs contained in U .

Theorem II.4.7. (Separation of simply connected domains, [CP02, Prop. 2]) Let
U ⊂ Ĉ be a simply connected domain, and let E ⊂ ∂̂U be a continuum. Let w1, w2 be
points in different connected components of ∂̂U ∖ E. Then, there exists a Jordan arc
γ ⊂ U with γ̂ ∖ γ ⊂ E such that γ ∪ E separates w1 and w2 in Ĉ.

As a consequence of the previous theorem, we describe under which conditions cluster
sets are disconnected when restricted to C. Indeed, the next proposition gives a precise
characterization of disconnected cluster sets. In particular, if a radial limit achieves a
finite value, the corresponding cluster set is connected in C.
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Proposition II.4.8. (Disconnected cluster sets) Let f be a transcendental entire
function and let U be an invariant Fatou component, such that ∞ is accessible from U .
Let φ : D → U be a Riemann map. Let ξ ∈ ∂D be such that ClC(φ, ξ) is contained in more
than one component of ∂U . Then, φ∗(ξ) = ∞, and ClC(φ, ξ) is contained in exactly two
components of ∂U .

Proof. Consider Σ1,Σ2 connected components of ∂U , such that both intersect ClC(φ, ξ).
Set w1 ∈ Σ1 ∩ClC(φ, ξ), w2 ∈ Σ2 ∩ClC(φ, ξ). Now, apply Theorem II.4.7, with E = {∞}
and w1, w2 chosen before, which lie on different connected components of ∂̂U∖{∞} = ∂U .
Hence, there exists a simple arc γ ⊂ U , such that γ̂ ∖ γ = {∞} and γ̂ separates w1 and
w2 in Ĉ.

It remains to see that φ−1(γ) has one endpoint at ξ, and then the Correspondence
Theorem II.4.6 would imply that φ∗(ξ) = ∞. See Figure II.10.

ξ

Σ1

γ

Σ2

Ω1

Ω2

z1
n

z2
n

UD

φ

Figure II.10: Diagram of the setup of the second part of the proof of Lemma II.4.8, when it is shown
that, if ClC(φ, ξ) is disconnected, then φ∗(ξ) = ∞.

Since γ̂ is a closed simple curve in Ĉ, by the Jordan Curve Theorem I.2.1, Ĉ ∖ γ̂ has
exactly two connected components, say Ω1 and Ω2, with Σi ⊂ Ωi ⊂ C, for i = 1, 2.
Moreover, since γ̂ ⊂ U ∪ {∞}, each Ui := Ωi ∩ U is non-empty and connected. Hence,
there exists a sequence of points {zi

n}n in Ui converging to wi. Since wi ∈ ClC(φ, ξ), we
can assume that the sequences {zi

n}n have been chosen so that {φ−1(zi
n)}n both converge

to ξ ∈ ∂D.
Now, consider a null-chain {Cn}n in D, giving the sequence of crosscuts neighbourhoods

{Nn}n converging to ξ, and such that {φ(Cn)}n gives a null-chain in U . For the existence
of such null-chain, we refer to [Mil06, Lemma 17.9]. For all n ≥ 0, there is mn such that
zi

mn
∈ φ(Nn), for i = 1, 2. Hence, for all n ≥ 0, there exists zn ∈ γ ∩ φ(Nn).

Observe that, by the Correspondence Theorem II.4.6, φ−1(γ) lands at two different
points ξ1, ξ2 ∈ ∂D. Hence, for every null-chain in D not corresponding to ξ1 nor ξ2,
φ−1(γ) intersects only a finite number of crosscut neighbourhoods of it. Since φ−1(γ)
intersects every Nn, it follows that either ξ1 = ξ, or ξ2 = ξ, so φ−1(γ) lands at ξ, as
desired.

Next, we shall prove that ClC(φ, ξ) is contained in exactly of two connected components
of ∂U . Assume, on the contrary, that there exists Σ1, Σ2 and Σ3 connected components of
∂U which intersect ClC(φ, ξ). By the previous argument, there exists a simple arc γ ⊂ U ,
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separating C into two connected components, Ω1 and Ω2, with Σi ⊂ Ωi, for i = 1, 2. Since
γ̂ ⊂ U ∪ {∞}, Σ3 is either contained in Ω1 or in Ω2. Without loss of generality, assume
Σ3 ⊂ Ω1. Now, let us consider U1 := U ∩ Ω1, which is connected, simply connected,
and Σ1 and Σ3 are different connected components of ∂U1. Hence, there exists γ′ ⊂ U1,
separating Σ1 and Σ3. Both curves γ and γ′ are disjoint, γ̂∪ γ̂′ = {∞}, and φ−1(γ(t)) → ξ

and φ−1(γ(t)) → ξ, as t → +∞. Hence, C∖ (γ ∪ γ′) consists precisely of three connected
components, each of them containing exactly one Σi. See Figure II.11.

Cn

φ(Cn)

ξ

Σ1γ′

γ

Σ2

Σ3

UD

φ

Figure II.11: Diagram of the setup of the second part of the proof of Lemma II.4.8, when it is shown
that ClC(φ, ξ) cannot have more that two connected components.

We want to see that γ and γ′ define different accesses to ∞ in U , leading to a
contradiction with the Correspondence Theorem II.4.6 (indeed, if γ and γ′ define
different accesses to ∞ in U , then φ−1(γ) and φ−1(γ′) cannot land at the same point
ξ ∈ ∂D).

To do so, we fix a crosscut φ(Cn) of the null-chain {φ(Cn)}n defined above. Since both
φ−1(γ(t)) and φ−1(γ′(t)) converge to ξ, as t → ∞, there exist tγ, tγ′ satisfying that

γ (tγ) , γ′ (tγ′) ∈ φ(Cn),

γ ([tγ,+∞)) ∪ γ′ ([tγ′ ,+∞)) ⊂ φ(Nn)

Denote by η the connected arc in φ(Nn) satisfying that

γ̃ := η ∪ γ ([tγ,+∞)) ∪ γ′ ([tγ′ ,+∞))

is a simple arc in U , and ̂̃γ is a closed simple curve in U ∪ {∞}. Moreover, since

γ̃,Σ1,Σ2,Σ3 ⊂ φ(Nn),

it follows that γ̃ separates exactly one Σi from the others. Hence, γ ([tγ,+∞)) and
γ′ ([tγ′ ,+∞)) define different accesses to ∞, although both φ−1(γ ([tγ,+∞))) and
φ−1(γ′ ([tγ′ ,+∞))) land at ξ, contradicting the Correspondence Theorem. This finishes
the proof of the proposition.
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II.4.4 Harmonic measure

Let U ⊂ Ĉ be a hyperbolic simply connected domain (i.e. U omits at least three points),
and let φ : D → U be a Riemann map. We are concerned with the extension of φ to the
unit circle ∂D given in terms of radial limits

φ∗(ξ) := lim
t→1−

φ(tξ),

which exist λ-almost everywhere. The radial extension of its Riemann map φ∗ : ∂D → ∂̂U

is used to define a measure in ∂̂U , the harmonic measure, in terms of the push-forward
of the normalized Lebesgue measure on the unit circle ∂D.

Definition II.4.9. (Harmonic measure) Let U ⊂ Ĉ be a hyperbolic simply connected
domain, z ∈ U , and let φ : D → U be a Riemann map, such that φ(0) = z ∈ U . Let
(∂D,B, λ) be the measure space on ∂D defined by B, the Borel σ-algebra of ∂D, and λ,
its normalized Lebesgue measure. Consider the measurable space (Ĉ,B(Ĉ)), where B(Ĉ)
is the Borel σ-algebra of Ĉ. Then, given B ∈ B(Ĉ), the harmonic measure at z relative
to U of the set B is defined as

ωU(z, B) := λ((φ∗)−1(B)).

We refer to [GM05, Pom92] for equivalent definitions and further properties of the
harmonic measure.

Let U ⊂ Ĉ be a hyperbolic simply connected domain. We need the following simple
facts.

• Let B ∈ B(Ĉ). If there exists z0 ∈ U such that ωU(z0, B) = 0 (resp. ωU(z0, B) = 1),
then ωU(z,B) = 0 (resp. ωU(z,B) = 1) for all z ∈ U . In this case, we say that the
set B has zero (resp. full) harmonic measure relative to U , and we write ωU(B) = 0
(resp. ωU(B) = 1).

• supp ωU = ∂̂U . That is, for all x ∈ ∂̂U and r > 0, ωU(D(x, r)) > 0.

II.5 Transference to the dynamical plane: dynamics of f |∂U

Let us see now how the previous results transfer to the dynamical plane. First, it is clear
that f |U is conformally conjugate to g|D. This implies that inner functions associated
with Siegel disks or attracting basins are elliptic (Möbius or non-Möbius, respectively),
while inner functions associated with parabolic basins or Baker domains are non-elliptic.
More precisely, dynamics inside a Baker domain can be eventually conjugate to idC + 1,
or to λidH, λ > 1, or to idH+1. (being all types possible, [Kö99]); whereas inner functions
associated with parabolic basins are always of doubly parabolic type (this can be shown
using Fatou coordinates,see e.g. [Mil06, Sect. 10]).

The transference of the boundary dynamics is much more intricate, and the topic of
this section. Before proceeding, note that, if U is an invariant Baker domain, then all

49



points in U escape to an essential singularity, say ∞, under iteration. Thus, U is clearly
unbounded in Ω(f) and infinity is accessible from it. Indeed, given any point z ∈ U and
a curve joining z and f(z) within U , then the curve γ := ⋃

n≥0 f
n(γ) is unbounded and

lands at infinity, defining an access which is called the dynamical access to infinity.

II.5.1 Singular values

As usual, singular values (defined in Sect. I.4) play a distinguished role in the dynamics.
It follows from [Bol97, Thm. 1.2] that Cl(f, z) = Ĉ, for every z ∈ E(f) (see also [BDH01,
p. 651]). Thus, K ⊂ M, and the discussion in Section I.4 applies.

The dynamics of f |U is controlled by the singular values in U , and

SV (g) ⊂ φ−1(SV (f) ∩ U), P (g) ⊂ φ−1(P (f) ∩ U).

It is well-known that SV (f) ∩U ̸= ∅ whenever U is an attracting or parabolic basin, or
a doubly parabolic Baker domain. If SV (f) is compactly contained in U , the behaviour
of the associated inner function g is well understood, in the following sense.

Proposition II.5.1. (Singular values compactly contained) Let f ∈ K, let U be an
invariant simply connected Fatou component for f , and g its associated inner function.
Assume SV (f) is compactly contained in U . Then, the following hold.

(a) If U is an attracting basin, then, for all ξ ∈ ∂D, there exists a crosscut neighbourhood
Nξ of ξ, such that Nξ ∩ P (g,D) = ∅.

(b) If U is either a parabolic basin or a Baker domain, then the Denjoy-Wolff point
p ∈ ∂D of g is not a singularity for g. Moreover, for all ξ ∈ ∂D, ξ ̸= p, there exists
a crosscut neighbourhood Nξ of ξ ∈ ∂D, such that Nξ ∩ P (g,D) = ∅.

Proof. (a) Let z0 ∈ U be the attracting fixed point, and consider g to be the inner
function associated by a Riemann map φ, with φ(0) = z0. Then, there exists
r ∈ (0, 1) big enough so that SV (g) ⊂ D(0, r). By Schwarz lemma II.3.2, D(0, r) is
forward invariant, so P (g,D) ⊂ D(0, r), and (a) follows trivially.

(b) By Corollary II.3.15, it is enough to find a crosscut neighbourhood Np of p such
that Np ∩ SV (g) = ∅, and this is immediate from the hypothesis. The second
statement follows for applying the same argument as in (a), using a tangent disk at
the Denjoy-Wolff point and Wolff Lemma II.3.3.

II.5.2 Ergodic properties of the boundary map f : ∂U → ∂U

Let φ : D → U be the Riemann map. Then, the radial extension

φ∗ : ∂D → ∂̂U
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is well-defined λ-almost everywhere, and ∂̂U admits a harmonic measure ωU , which stands
for the push-forward of the normalized Lebesgue measure λ of ∂D. The ergodic properties
of f |∂U will be derived from the ergodic properties of g∗|∂D, where g is the inner function
associated with (f, U).

We start by proving that g is actually an inner function. To that end, consider the
following subsets of ∂D.

ΘE := {ξ ∈ ∂D : φ∗(ξ) ∈ E(f)}

ΘΩ := {ξ ∈ ∂D : φ∗(ξ) ∈ Ω(f)}

Note that, since E(f) is countable, λ(ΘE) = 0, so λ(ΘΩ) = 1. Moreover, the conjugacy
f ◦ φ = φ ◦ g extends for the radial extensions wherever it makes sense, as it is shown in
the following lemma.

Lemma II.5.2. (Radial limits commute) Let ξ ∈ ΘΩ, then g∗(ξ) and φ∗(g∗(ξ)) are
well-defined, and

f(φ∗(ξ)) = φ∗(g∗(ξ)).

Proof. Let Rξ(t) = tξ, with t ∈ [0, 1). By assumption, φ(Rξ(t)) → φ∗(ξ) =: w ∈ ∂U , as
t → 1− (recall that ∂U denotes the boundary of U taken in Ω). Since f is continuous at
w and f ◦ φ = φ ◦ g, for all 0 < t < 1,

φ(g(Rξ(t))) = f(φ(Rξ(t))) → f(w) ∈ ∂̂U,

as t → 1−. We claim that this already implies that γ(t) := g(Rξ(t)) lands at some ζ ∈ ∂D.
Indeed, consider

Lγ,1 :=
{
z ∈ D : there exists tn → 1− such that γ(tn) → z

}
,

which is a non-empty, compact, connected set contained in ∂D, since points in D are
mapped to U by φ. If Lγ,1 is a non-degenerate arc I, with λ(I) > 0, for λ-almost every
ζ ∈ I, φ∗(ζ) = f(w), which is a contradiction with Theorem 4.8.4. Hence, Lγ,1 = ζ ∈ ∂D.

Finally, the Lehto-Virtanen Theorem II.2.5 implies that g∗(ξ) = ζ and φ∗(g∗(ξ)) =
f(w), as desired.

Proposition II.5.3. (g is inner) Let f ∈ K, and let U be an invariant simply connected
Fatou component of f . Then, the associated map g : D → D is an inner function.

Proof. Since g is a self-map of the unit disk, its radial extension g∗ is well-defined λ-almost
everywhere. We have to see that |g∗(ξ)| = 1, for λ-almost every ξ ∈ ∂D.

Assume, on the contrary, that there exists A ⊂ ∂D with λ(A) > 0 and |g∗(ξ)| < 1, for
all ξ ∈ A. We can assume, without loss of generality, that φ∗(ξ) ∈ ∂U ⊂ J (f), for all
ξ ∈ A. By Lemma II.5.2, for all ξ ∈ A, φ∗(ξ) ∈ J (f) ∖ E(f), and

f(φ∗(ξ)) = φ∗(g∗(ξ)) ∈ U ⊂ F(f)

which is a contradiction with the total invariance of the Fatou set.
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We note that, since ωU(E(f)) = 0, for every Borel set B ⊂ Ĉ and z ∈ U , we have

ωU(z,B) = ωU(z,B ∩ Ω(f)).

With these tools at hand, and those developed in the previous sections, we can now
prove ergodic properties like ergodicity and recurrence for the boundary map of Fatou
components of maps in class K, generalizing the results of Doering and Mañé [DM91] for
rational maps.

Theorem II.5.4. (Ergodic properties of the boundary map) Let f ∈ K, and let
U be an invariant simply connected Fatou component for f . Let g be an inner function
associated with (f, U). Then, the following are satisfied.

(i) If U is either an attracting basin, a parabolic basin, or a Siegel disk, then g∗|∂D is
ergodic and recurrent with respect to the Lebesgue measure λ.

(ii) If U is a doubly parabolic Baker domain, g∗|∂D is ergodic with respect to λ. In
addition, assume one of the following conditions is satisfied.

(a) f |U has finite degree.
(b) SV (f) ∩ U is compactly contained in U .
(c) The Denjoy-Wolff point of g is not a singularity for g.
(d) There exists z ∈ U and r > 1 such that

distU(fn+1(z), fn(z)) ≤ 1
n

+O
( 1
nr

)
,

as n → ∞, where distU denotes the hyperbolic distance in U .

Then, g∗|∂D is recurrent with respect to λ.

(iii) If g∗|∂D is ergodic (resp. recurrent) with respect to λ, so is f |∂U with respect to ωU .
If g∗|∂D is recurrent with respect to λ, then for ωU -almost every point x ∈ ∂U ,
{fn(x)}n is dense in ∂U . In particular, escaping points have zero harmonic measure.

(iv) If U is a hyperbolic or simply parabolic Baker domain of finite degree, then I(f)∩∂U
(the set of escaping points in ∂U) has full harmonic measure.

(v) Let k be a positive integer. Then, the inner function associated with (f, U) has the
same ergodic properties than the inner function associated with (fk, U).

Proof. (i) The associated inner function to these Fatou components is either elliptic or
doubly parabolic, so g∗ is ergodic (Thm. II.3.7(b)).
Recurrence for the inner function associated with a Siegel disk or an attracting basin
follows from the fact that these inner functions are always elliptic (Thm. II.3.7(d)).
Recurrence for parabolic basins follows from [DM91, Thm. 6.1] (although it is stated
for rational maps, the proof only uses the local behaviour around the parabolic fixed
point, so it is valid for f ∈ K).
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(ii) Ergodicity of doubly parabolic Fatou components follows from Theorem II.3.7(b).
For conditions (a)-(c) it is straightforward. To see that condition (d) implies
recurrence, note that

distU(fn+1(z), fn(z)) = distD(gn+1(φ−1(z)), gn(φ−1(z))),

and apply again Theorem II.3.7(e).

(iii) We start with ergodicity. Let A ⊂ ∂U be measurable. If A = f−1(A), then

(φ∗)−1(A) = (φ∗)−1(f−1(A)) = (g∗)−1((φ∗)−1(A)).

If g∗ is ergodic, then λ((φ∗)−1(A)) = 0 or λ((φ∗)−1(A)) = 1. Then, ωU(A) = 0 or
ωU(A) = 1, and f |∂U is ergodic.
For the recurrence, assume A ⊂ ∂U is measurable, and consider (φ∗)−1(A). Then,
for λ-almost every ξ ∈ (φ∗)−1(A), there exists nk → ∞ such that (gnk)∗(ξ) ∈
(φ∗)−1(A). Since A ⊂ ∂U ⊂ Ω, Lemma II.5.2 applies, and

φ∗((gnk)∗(ξ)) = fnk(φ∗(ξ)) ∈ A,

proving recurrence for f |∂U . Since supp ωU = ∂̂U , it follows from Theorem I.1.7
that ωU -almost every orbit is dense.

(iv) This is the content of [RS18], [BFJK19, Thm. A].

(v) It follows from Theorem II.3.7(g).

The following result concern the existence of invariant measures for f |∂U , built as the
push-forward measures of those invariants for the radial extension of the associated inner
function (Thm. II.3.8).

Corollary II.5.5. (Invariant measures for f |∂U) Let f ∈ K, and let U be an invariant
simply connected Fatou component for f .

(i) If U is an attracting basin or a Siegel disk with fixed point p ∈ U , the harmonic
measure ωU(p, ·) is invariant under f .

(ii) If U is a parabolic basin or a doubly parabolic Baker domain, with convergence point
p ∈ ∂̂U . Then, the push-forward of the measure

λR(A) =
∫

A

1
|w − 1|2

dλ(w), A ∈ B(∂D),

under the Riemann map φ : D → U , φ∗(1) = p, i.e.

µ := (φ∗)∗λR,

is invariant under f . The support of µ is ∂̂U .
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II.5.3 Entire functions and accesses to infinity

Next, we deal with the particular case that U is an invariant Fatou component of an
entire function f . In this setting, accesses to infinity play an important role in order to
describe the dynamics and the topology of boundaries of Fatou components, since infinity
is the unique essential singularity of the map, and has no finite preimage. This has been
already exploited in [BW91, BD99, Bar08] (see also [BFJK17]), as we show next.

We use the following notation.

Θ∞ = ΘE = {ξ ∈ ∂D : φ∗(ξ) = ∞}

∂D∖ Θ∞ = {ξ ∈ ∂D : ClR(φ, ξ) ̸= {∞}}

ΘC = ΘΩ = {ξ ∈ ∂D : φ∗(ξ) ∈ C}

The following holds.

Theorem II.5.6. (Boundaries of unbounded Fatou components) Let f be a
transcendental entire function, and let U be an unbounded invariant Fatou component.
Consider φ : D → U to be a Riemann map. The following holds.

(a) (All cluster sets contain infinity, [BW91]) If U is ergodic, then ∞ ∈ Cl(φ, ξ), for all
ξ ∈ ∂D.

(b) (Accesses to infinity are dense, [BD99, Bar08]) If U is ergodic and ∞ is accessible
from U , then Θ∞ is dense in ∂D.

(c) (Accesses to infinity and Julia sets, [BD99, Bar08]) If f |U is non-univalent and ∞
is accessible from U , then J (g) ⊂ Θ∞.

Theorem II.5.7. (Accesses to boundary points, [Bar08, Thm. 3.8]) Let f : C → C
be an entire function, and let U be a Baker domain. Let φ : D → U be a Riemann map.
Then, the map

ΘC → AP (U), ξ 7→ φ∗(ξ),

is a bijection.

Finally, we give a precise description of how radial limits and cluster sets are mapped
under f , which can be interpreted as a stronger version of Lemma II.5.2 in the case where
the iterated map is entire.

Lemma II.5.8. (Radial limits and cluster sets for the associated inner
function of entire functions) Let f be an entire function, and let U be an invariant
Fatou component for f . Consider φ : D → U a Riemann map, and g := φ−1 ◦ f ◦ φ an
associated inner function. Let ξ ∈ ∂D. Then, the following holds.

(a) (Radial limit for the associated inner function) If φ∗(ξ) is well-defined and not equal
to ∞, then g∗(ξ) and φ∗(g∗(ξ)) are well-defined and

f(φ∗(ξ)) = φ∗(g∗(ξ)).
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(b) (Action of f on cluster sets) If ξ ∈ ∂D is not a singularity for g, then

f(ClC(φ, ξ)) ⊂ ClC(φ, g(ξ)).

(c) (Action of f on radial cluster sets) Assume ξ ∈ ∂D ∖ Θ∞ and g∗(ξ) exists. Then,
g∗(ξ) belongs to ∂D∖ Θ∞, and

f(ClR(φ, ξ) ∩ C) ⊂ ClR(φ, g∗(ξ)) ∩ C.

(d) (Backwards invariance of Θ∞) If ξ ∈ Θ∞, then for all ζ ∈ ∂D with g∗(ζ) = ξ, it
holds ζ ∈ Θ∞.

Proof. (a) This is Lemma II.5.2 in this particular setting.

(b) Let z ∈ ClC(φ, ξ). Then, there exists a sequence {zn}n ⊂ D such that zn → ξ and
φ(zn) → z, as n → ∞. Since f is continuous at z, and f and g are conjugate by φ,
we have

φ(g(zn)) = f(φ(zn)) → f(z),

as n → ∞. Since ξ is not a singularity of g, the sequence {g(zn)}n ⊂ D approaches
g(ξ), as n → ∞. Hence, f(z) ∈ ClC(φ, g(ξ)), as desired.

(c) Let ξ ∈ ∂D ∖ Θ∞. Assume first φ∗(ξ) exists, so φ∗(ξ) = ClR(φ, ξ) ∈ C. Then, by
(a), g∗(ξ) and φ∗(g∗(ξ)) are well-defined and

f(ClR(φ, ξ)) = f(φ∗(ξ)) = φ∗(g∗(ξ)) = ClR(φ, g∗(ξ)) ∈ ∂U.

Hence, g∗(ξ) ∈ ∂D∖ Θ∞.
Assume now that ClR(φ, ξ) is a non-degenerate continuum in Ĉ. Since critical points
are discrete in C, we can find z ∈ ClR(φ, ξ) ∩C which is not a critical point. Hence,
there exists r > 0 small enough so that f |D(z,r) is a homeomorphism onto its image.
On the other hand, since z ∈ ClR(φ, ξ), it is a principal point (see Thm. II.4.4), so
we can find a null-chain {Cn}n ⊂ D(z, r).
We claim that {f(Cn)}n ⊂ f(D(z, r)) is a null-chain. We have to check that f(Cn)
is a crosscut for all n ≥ 0, that different crosscuts have disjoint closures, that the
corresponding crosscut neighbourhoods are nested, and that its spherical diameter
tends to zero as n → ∞.
First, it is clear that f(Cn) is a crosscut for all n ≥ 0, since f |D(z,r) is a
homeomorphism, and f(U) ⊂ U and f(∂U) ⊂ ∂U . From the fact that f |D(z,r) is a
homeomorphism and the original crosscuts {Cn}n have disjoint closures, one
deduces that the crosscuts {f(Cn)}n also have disjoint closures. It is also clear
that the diameter of the crosscuts {f(Cn)}n tends to zero.
We must still see that the crosscut neighbourhoods corresponding to the crosscuts
{f(Cn)}n are nested. To do so, consider Rξ to be the radial segment at ξ. Since g∗(ξ)
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exists, the curve g(Rξ) lands at g∗(ξ). This implies that, for any crosscut D at ξ, if
its image is again a crosscut (which it is, because f acts locally as a homeomorphism
in the dynamical plane), it is a crosscut at g∗(ξ). Therefore, {φ−1(f(Cn))}n is a
null-chain in D, corresponding to g∗(ξ) ∈ ∂D, and {f(Cn)}n is a null-chain in U .

∂U∂U

D(z, r) f(D(z, r))

g

f

φ φ

D D

ξ

g∗(ξ)

Figure II.12: Set-up of the proof of Lemma II.5.2(c). On the one hand, since f acts homeomorphically
on a neighbourhood of z, the image of a crosscut near z is a crosscut near f(z). On the other hand, the
fact that g∗(ξ) exists allows us to prove that the corresponding crosscut neighbourhoods are nested.

We claim that g∗(ξ) ∈ ∂D∖Θ∞. Indeed, f(z) is a principal point in the prime end of
g∗(ξ). Then, by Theorem II.4.4, f(z) ∈ ClR(φ, g∗(ξ)), and hence g∗(ξ) ∈ ∂D∖ Θ∞.
Finally, it is left to see that

f(ClR(φ, ξ) ∩ C) ⊂ ClR(φ, g∗(ξ)) ∩ C.

From the previous construction, we have that, for all z ∈ ClR(φ, ξ) ∩C which is not
a critical point,

f(z) ∈ ClR(φ, g∗(ξ)).

Since ClR(φ, ξ) is closed and critical points are discrete, if z ∈ ClR(φ, ξ) ∩ C is a
critical point, we can approximate it by a sequence {zn}n of non-critical points in
ClR(φ, ξ) ∩ C. Since f is continuous, f(zn) → f(z), and f(zn) ∈ ClR(φ, g∗(ξ)).
Then, f(z) ∈ ClR(φ, g∗(ξ)), because ClR(φ, g∗(ξ)) is closed. Thus,

f(ClR(φ, ξ) ∩ C) ⊂ ClR(φ, g∗(ξ)) ∩ C,

as desired.

(d) Let ζ ∈ ∂D such that g∗(ζ) = ξ, and assume, on the contrary, that eζ ∈ ∂D ∖ Θ∞.
Then, there exists z ∈ ClR(φ, ζ), z ̸= ∞. By (c), f(z) ∈ ClR(φ, g∗(ζ)) = ClR(φ, ξ),
f(z) ̸= ∞. Hence, ξ ∈ ∂D∖ Θ∞, a contradiction.
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Remark II.5.9. The statements in Lemma II.5.8 deserve a few comments.

• In (a), one has to assume that φ∗(ξ) ̸= ∞, otherwise f(φ∗(ξ)) is not defined.
Moreover, the existence of g∗(ξ) does not imply that φ∗(ξ) exists, as shown by
Baker domains of f(z) = z + e−z (compare with Chap. 1).

• In (b), the assumption of ξ not being a singularity for g is crucial. Indeed, if ξ is a
singularity for g, Cl(g, ξ) = D [Gar07, Thm. II.6.6].

We also note that, under the same assumptions, we cannot expect f(ClC(φ, ξ)) =
ClC(φ, g(ξ)), due to the possible existence of omitted values in ∂U . For the same
reason, one cannot expect, in general, equality in (c).

• Concerning (d), note that Θ∞ is not always forward invariant. Compare with the
example of the exponential basin considered in [DG87], where −1 ∈ Θ∞ but
g∗(−1) = 0 /∈ Θ∞. Even though, −1 is a singularity for g, Θ∞ is not always
forward invariant even at points which are not singularities. Indeed, the inner
function g associated to the parabolic basin of f(z) = ze−z is a Blaschke product
of degree 2, which can be chosen to have the Denjoy-Wolff point at 1 and
g(−1) = 1. Then, g satisfies −1 ∈ Θ∞ and 1 = g(−1) ∈ ∂D ∖ Θ∞ (compare
[BD99], also Chap. 1).

II.5.4 The Carathéodory set

Let U be an invariant Baker domain. Following the approach taken in [BEF+24] to
describe the boundary dynamics of wandering domains, one can define the Denjoy-Wolff
set of f |U as the set of points x ∈ ∂U such that fn(x) → ∞ (i.e. distĈ(fn(x),∞) → 0, see
[BEF+24, Sect. 9]). As stated in Theorem II.5.4, if U is a hyperbolic or simply parabolic
Baker domain such that the Denjoy-Wolff point of the associated inner function is not a
singularity (in particular, if f |U is univalent or has finite degree), then the Denjoy-Wolff
set has full harmonic measure. For doubly parabolic Baker domains such that the Denjoy-
Wolff point of the associated inner function is not a singularity (in particular, if f |U has
finite degree), the Denjoy-Wolff set has zero harmonic measure.

However, the main limitation of the Denjoy-Wolff set is that it does not capture in
which direction boundary orbits converge to infinity. Indeed, for points inside the Baker
domain, the convergence takes place through the same access to infinity (the dynamical
access). Thus, we introduce the notion of Carathéodory set as the set of points in ∂U

which converge to the image under φ∗ of the Denjoy-Wolff point with respect to the
Carathéodory topology of ∂U (or, morally, the points in ∂U which converge to ∞ through
the dynamical access).

Let us recall that the Carathéodory’s compactification of U endows U with a topology
such that φ : D → U extends to D as a homeomorphism, and a sequence {zn}n ⊂ U ,
zn → ∂U , is convergent if there exists ξ ∈ ∂D such that for every crosscut neighbourhood
N ⊂ D of ξ, there exists n0 such that for all n ≥ n0, zn ∈ φ(N).
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Definition B. (Carathéodory set) Let f ∈ K, and let U be an invariant simply
connected Baker domain. Let φ : D → U be a Riemann map, and let g = φ−1 ◦ f ◦ φ be
the inner function associated with (f, U) by φ. We say that x ∈ ∂U is in the Carathéodory
set if, for any crosscut neighbourhood N ⊂ D at the Denjoy-Wolff point p ∈ ∂D, there
exists k0 ≥ 0 such that, for all k ≥ k0,

fk(x) ∈ φ(N).

By Theorem II.3.7, the Carathéodory set has full harmonic measure (and, in particular,
it is dense in ∂U) for simply connected Baker domains, of hyperbolic or simply parabolic
type. Moreover the escaping points constructed in [RS18], [BFJK19, Thm. A] are also
in the Carathéodory set (and since they are escaping, they are also in the Denjoy-Wolff
set). However, points in the Carathéodory set may fail to converge to infinity in general,
if the cluster set of the Denjoy-Wolff point is non-degenerate.

Let us describe the Carathéodory set in some illustrative examples. Let us start with
doubly parabolic Baker domains of entire functions. Theorem 2 will give us that

∂U =
⊔

ξ∈∂D
Cl(φ, ξ) ∩ C.

In particular, this implies that the images under φ of disjoint crosscut neighbourhoods
in D have disjoint closures in U . Note that the topology of the boundary of a general
simply connected domain may be more complicated and the previous property need not
be satisfied. In particular, we have that the Carathéodory set of such Baker domains
consists precisely of points on ∂U which belong to Cl(φ, ξ), for ξ ∈ ∂D with (g∗)n(ξ) → p.
The results in [DM91, Thm. F], [BFJK19, Thm. C] imply that in many cases the
Carathéodory set has harmonic measure zero; we do next a deeper analysis.

Let us start with doubly parabolic Baker domains for which the Denjoy-Wolff point p
of the associated inner function g is not a singularity. In this case, p is a parabolic fixed
point with two petals, and it is (weakly) repelling when restricted to ∂D. The only points
on ∂D that converge to p under iteration are its (radial) iterated preimages. Thus, the
Carathéodory set is ⋃

n≥0

⋃
(g∗)n(ξ)=p

Cl(φ, ξ) ∩ C.

In the following example, we see that this is compatible with having a curve of escaping
points in the cluster set of every ξ ∈ ∂D (note that such points converge to ∞, but the
convergence does not take place through the dynamical access).

Example II.5.10. (Doubly parabolic Baker domain, finite degree, [BD99, Sect.
5, 6], [FH06, Ex. 3], Chapter 1) The function

f(z) = z + e−z

has a doubly parabolic Baker domain Uk of degree 2 in each strip
Sk := {(2k − 1)π ≤ Imz ≤ (2k + 1)π}. Due to the 2πi-periodicity of the function, it
suffices to study U0. It is easy to see that R ⊂ U0 and

L± := {z ∈ C : Im z = ±πi} ⊂ ∂U0.
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Fix the Riemann map φ : D → U0 (chosen as in [BD99], see also Chapter 1). Then, the
associated inner function can be computed explicitly as

g : D → D, g(z) = 3z2 + 1
3 + z2 .

Note that the Denjoy-Wolff point is 1, and one can prove that Cl(φ, 1) = L± ∪ {∞}.
Thus, the Carathéodory set of U0 is⋃

n≥0

⋃
gn(ξ)=1

Cl(φ, ξ) ∩ C =
⋃

n≥0
(f−n(L±)).

Note that all points in the Carathéodory set are non-accessible from U .
Moreover, one can show that, for every ξ ∈ ∂D, gn(ξ) ̸= 1 for all n ≥ 0, Cl(φ, ξ) ∩ C

consists of a curve of escaping points, landing at infinity from one end, and at a finite
endpoint in the plane from the other end, or accumulating along itself, giving rise to an
indecomposable countinua. In any case, this shows the existence of plenty of escaping
points which are not in the Carathéodory set. See Figure II.13.

1

g(z) = 3z2+1
3+z2 f(z) = z + e−z

φ

D
U0

00

Figure II.13: Dynamical plane of f(z) = z +e−z, with the doubly parabolic Baker domain U0 (orange).
The Riemann map φ : D → U0 is depicted, together with the inner function. Note that 1 is the Denjoy-
Wolff point, and it is repelling when restricted to ∂D. Crosscut neighbourhoods at the Denjoy-Wolff point
are indicated, as well as their image in the dynamical plane. By definition, the Carathéodory set consists
of those points on ∂U whose orbit eventually enters the image of every crosscut neighbourhood of 1. By
the dynamics of g, one deduces that the Carathéodory set is Cl(φ, 1) ∩ C and its iterated preimages.

Next we deal with doubly parabolic Baker domains for which the Denjoy-Wolff point p
of the associated inner function g is a singularity. In this case, the Carathéodory set may
be larger, as shown in the following example.

Example II.5.11. (Doubly parabolic Baker domain, infinite degree, [Evd16],
[BFJK19, Ex. 1.5]) The function

f(z) = z + 1 + e−z,
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known as Fatou’s function, has a completely invariant Baker domain U , which contains a
right half-plane, and J (f) = ∂U .

g(x) = x − cot x
2

y = x

g(z) = z − cot z
2

f(z) = z + 1 + e−z

φ

g|R

UH

0

i

Figure II.14: Dynamical plane of f(z) = z + 1 + e−z, with the doubly parabolic Baker domain U

(yellow), of infinite degree. The Riemann map φ : H → U is depicted, together with the inner function,
and the graphic of the inner function restricted to the real line, g|R. Note that ∞ is the Denjoy-Wolff
point, and it is a singularity of g. It is easy to see that there exists points in R (which are not poles or
prepoles) converging to ∞ under iteration; this points correspond to escaping endpoints in the dynamical
plane, and their hairs, and they form the Carathéodory set of U .

It follows from [BFJK19, Thm. D] that ωU -almost every point has a dense orbit,
however we claim that the Carathéodory set is non-empty, and in fact contains accessible
points. Indeed, it corresponds to the hairs whose endpoint (and thus the whole hair)
escapes to ∞. Such endpoints (which have harmonic measure zero) have been studied in
[Evd16].

Moreover, the associated inner function can be computed explicitly as

g : H → H, g(z) = z − cot z
2 ,

for a suitable Riemann map φ : H → U [ERS20, Thm. 1.9]. Escaping endpoints
correspond to points in R which converge to the Denjoy-Wolff point under iteration of g.
See Figure II.14.
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For hyperbolic and simply parabolic Baker domains, the situation is fundamentally
diferent. Indeed, when the Denjoy-Wolff point of g is not a singularity, it attracts points
in the unit circle (from both sides if g is hyperbolic, or from one side if g is simply
parabolic). Moreover, the Carathéodory set has always full measure (Thm. II.3.7).

If we restrict ourselves to univalent Baker domains, the situation is even more tamer.
The inner function (considered in the upper half-plane) is a Möbius transformation
M : H → H, and can be taken to be z 7→ λz, λ > 0 (hyperbolic), or z 7→ z ± 1 (simply
parabolic). Note that, in the first case, there is a single point in R which does not
converge to ∞ (0, which is fixed), and none in the second case. For univalent Baker
domains whose boundary is a Jordan curve, this implies that the Carathéodory set at
most omits one point on ∂U . We refer to the following examples.

Example II.5.12. (Univalent Baker domain, simply parabolic type, [Her85, p.
609], [BW91, Thm. 4], [BF01, Sect. 5.3]) The function

f(z) = z + 2πiα + ez,

for appropriate α ∈ [0, 1] ∖ Q, has a univalent Baker domain U , of simply parabolic
type, contained in a left half-plane. One can choose α so that ∂̂U is a Jordan curve. In
particular, the Carathéodory set is the whole boundary of the Baker domain.

Example II.5.13. (Univalent Baker domain, hyperbolic type, [Ber95a], [BF01,
Sect. 5.1]) The function

f(z) = 2 − log 2 + 2z − ez

has a univalent Baker domain U , of hyperbolic type, contained in a left half-plane, and ∂̂U
is a Jordan curve. Then, Carathéodory set is the whole boundary of the Baker domain,
except one point (the fixed point that corresponds to the repelling fixed point of the inner
function under the Riemann map).

Let us note that other examples of univalent Baker domains of hyperbolic type, such
as the ones considered in [BF01, Sect. 5.2] satisfy that the Carathéodory set is the whole
boundary, since the cluster set of the repelling fixed point of the inner function is {∞}.

Finally, we consider the following example of a non-univalent hyperbolic Baker domain,
due to Bargmann [Bar08, Ex. 3.6], which exhibits a richer boundary dynamics. Indeed,
although the Carathéodory set has full harmonic measure, periodic and bungee points are
dense on ∂U .

Example II.5.14. (Hyperbolic Baker domain, infinite degree, [Bar08, Ex. 3.6])
The function

f(z) = 2z − 3 + ez

has a completely invariant Baker domain U , and F(f) = U and J (f) = ∂U . Indeed,
exp ◦F = F ◦ exp, with

F (z) = z2ez−3.
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It is easy to see that this latter function has a completely invariant super-attracting
basin V with fixed point 0, and F(F ) = V . Thus, J (F ) = ∂V , and by a result of
Barański [Bar07], J (F ) consists of disjoint curves (hairs) of escaping points, landing at
infinity from one end and to a finite endpoint from the other end, which is the only point
in the hair accessible from V .

1−1

g
f(z) = 2z − 3 + ez

φ

D

U

Figure II.15: Dynamical plane of f(z) = 2z − 3 + ez, with the hyperbolic Baker domain U (yellow) of
infinite degree. The Riemann map φ : D → U is depicted, together with the inner function. Note that
−1 is the Denjoy-Wolff point. The boundary ∂U is a Cantor bouquet, and the Carathéodory set consists
of those endpoints whose orbit converges to ∞ with |Imfn(x)| → ∞ and the corresponding hairs. Such
endpoints have full harmonic measure.

This implies that J (f) = ∂U , and J (f) consists also of hairs of escaping points,
contained in the right half-plane. The Carathéodory set consists of those hairs whose
endpoint x (and thus the whole hair) converges to infinity with |Imfn(x)| → ∞. Note
that the set of such endpoints have full harmonic measure.

Thus, observe that the Carathéodory set is dense, but non-Carathéodory set is also
dense. Indeed, repelling periodic points are dense on ∂U (and accessible from U), as well
as points whose orbit is dense on ∂U . Note also the existence of escaping points which
are not in the Carathéodory set. We shall remark the poor regularity of the associated
inner function g: its Denjoy-Wolff point is a singularity (in fact, the only singularity of
g), and J (g) = ∂D.

Part of our work concerning the Carathéodory set will be to show that, under certain
conditions, the non-Carathéodory set of a hyperbolic or simply parabolic Baker domain is
non-empty (and in fact contains accessible points), despite having zero harmonic measure.
See Chapter 5.
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Chapter 1
A model for boundary dynamics of Baker

domains

We consider the transcendental entire function f(z) = z + e−z, which has a doubly
parabolic Baker domain U of degree two. It is known from general results that the
dynamics on the boundary is ergodic and recurrent and that the set of points in ∂U

whose orbit escapes to infinity has zero harmonic measure (Thm. II.5.4). Following the
approach of [BFJK19], we aim to give an explicit description of the sets of full and zero
harmonic measure which appear as a result of the general ergodic theorems.

R + πi

R − πi

• ×
0 1

Figure 1.1: Dynamical plane for f(z) = z + e−z. In red, the Julia set of f . In beige, the Baker domain
contained in the strip {−π < Im z < π}. In black, the rest of the Fatou set of f . The only critical point
on the strip (0) is also marked, as well as the corresponding critical value (1).

For this model we show that stronger results hold, namely that the escaping set is
non-empty, and it is organized in curves encoded by some symbolic dynamics, whose
closure is precisely ∂U . We also prove that nevertheless, all escaping points in ∂U are
non-accessible from U , as opposed to points in ∂U having a bounded orbit, which are all
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accessible. Moreover, repelling periodic points are shown to be dense in ∂U , answering
a question posted in [BFJK19]. None of these features are known to occur for a general
doubly parabolic Baker domain.

First we will describe the escaping set in ∂U . Recall that it is known to have zero
harmonic measure so, a priori, it is unknown whether it is non-empty. We prove that
escaping points do exist in ∂U and are organized in curves (known as dynamic rays or
hairs) encoded by some symbolic dynamics, as it is not uncommon for transcendental
entire functions. All escaping points are proved to belong to such curves, while non-
escaping points are in their accumulation sets. This leads to the following description of
the boundary of U .

Theorem 1.A. (The boundary of U) Every escaping point in ∂U can be connected
to ∞ by a unique curve of escaping points in ∂U . Moreover, ∂U is the closure of such
curves.

The existence of these dynamic rays follows from general results of [RRRS11] applied
to h(w) = we−w, semiconjugate to f by w = e−z. From these general results it is deduced
that h, and therefore f , are criniferous functions, i.e. that all points in the escaping set
can be connected to infinity by a curve of escaping points: the dynamic ray. Criniferous
functions were introduced in [BR20], and further studied in [PS22]. Nevertheless, in order
to have a better control on the geometry of the dynamic rays and their relation with the
boundary of U , we choose to prove Theorem 1.A with an explicit construction, which
gives us additionally a parametrization and certain continuity properties.

Other remarkable properties are observed, such as that all points in ∂U escape to
∞ in a different ‘direction’ than that of the dynamical access. This connects with the
fact that, for the inner function, there is no escaping point (in the sense that there are
no boundary orbits converging to the Denjoy-Wolff point, apart from the preimages of
itself). Moreover, escaping orbits in ∂U converge to ∞ exponentially fast, while points in
U do so in a slower fashion, being the map close to the identity.

Next, we study the landing properties of the dynamic rays mentioned above. More
precisely, we prove the following.

Theorem 1.B. (Landing and non-landing dynamic rays) There exist uncountably
many dynamic rays which land at a finite end-point, and there exists uncountably many
dynamic rays which do not land. The accumulation set (on the Riemann sphere) of such
a non-landing ray is an indecomposable continuum which contains the ray itself.

This contrasts with the exponential maps λez, with 0 < λ < 1
e
, where all dynamic rays

land, due to hyperbolicity.
On the other hand, indecomposable continua were shown to exist in the Julia set of

some non-hyperbolic exponential maps Eκ(z) = ez + κ, for some values of κ, first in
[Dev93] and later on [DJ02, DJR05], although not as the accumulation set of a dynamic
ray. It was shown by Rempe [Rem03, Rem07] that indecomposable continua appear
as the accumulation set of a dynamic ray in exponential maps Eκ, for some values of
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κ. More precisely, he proves that if the singular κ is on a dynamic ray, then there exist
uncountably many dynamic rays whose accumulation set is an indecomposable continuum.
However, for the exponential maps Eκ, if the singular value is on a dynamic ray, then
J (Eκ) = C or the Fatou set consists of Siegel disks and preimages of them (see e.g.
[Dev94]). Contrastingly, we find these indecomposable continua in the boundary of a
Baker domain (and in the boundary of the projected parabolic basin, see Sect. 1.1).

We also address the problem of relating the previous sets, of escaping and non-escaping
points, with the set of accessible boundary points from U . Again, symbolic dynamics
play an important role, in this case to connect the dynamics in the unit circle with the
behaviour in ∂U .

Theorem 1.C. (Accessible points) Escaping points in ∂U are non-accessible from U ,
while points in ∂U having a bounded orbit are all accessible from U .

Finally, we study periodic points in ∂U . We show that g|∂D is conjugate to the doubling
map (see Sect. 1.4), so periodic points for g are dense in ∂D. Moreover, Theorem 1.C
asserts that periodic points in ∂U , if they exist, are accessible. Both things suggest that
periodic points might be dense in ∂U , which is indeed proven in the following theorem.

Theorem 1.D. (Periodic points) Periodic points are dense in ∂U .

We observe that first statement in Theorem 1.C corresponds to the first part of the
conjecture in [BFJK19], while the second statement together with Theorem 1.D provide
a positive answer to the second part.

Structure of the chapter. In Section 1.1 one finds the auxiliary results about the
dynamics of f(z) = z + e−z, which are used recurrently in the following sections. For
completeness, a sketch of the general dynamics of f is included, summarizing the ideas of
[BD99] and [FH06]. Section 1.2 is devoted to studying the escaping set and its organization
in dynamic rays, proving Theorem 1.A. The landing properties of such rays are discussed
in Section 1.3. The remaining theorems are proved in Sections 1.4 and 1.5.

Notation. The horizontal strips of width 2π are denoted by

Sk := {(2k − 1)π ≤ Im z ≤ (2k + 1)π} .

We denote by Uk the unique Baker domain contained in the strip Sk. We shall denote by
S the central strip S0, and by U its Baker domain, just to lighten the notation.

1.1 Basic properties of the dynamics of f

In this section we gather some of the properties of the function f(z) = z+ e−z, as well as
its dynamics, which are used recurrently during the proofs of the main theorems. First,
we include a quick description of the general dynamics of f , summarizing the ideas of
[BD99, FH06]. From there, it will be deduced that only the study of f on the strip
S := {z ∈ C : |Im z| ≤ π} is needed.
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y = x

h(x) = xe−x

(a)

R
R + πi

R − πi

R − 2πi

R − 3πi

R + 2πi

R + 3πi

1

(b)

Figure 1.2: In the left, Figure 2.7a shows the plot of the real function h(x) = xe−x (green), together
with the diagonal y = x (grey dotted line). The point x = 0 is a parabolic fixed point. Points in R+
(red) are attracted to 0, so R+ ⊂ A0 ⊂ F(h), while points in R− (blue) converge to −∞ exponentially
fast and R− ⊂ J (h). In the right, Figure 2.7b shows in red the preimages of the positive real line R+;
and, in blue, the preimages of the negative real line R−. By the invariance of the Fatou and the Julia
sets, all red lines are contained in the Fatou set, while the blue ones are in the Julia set. One deduces
that the immediate parabolic basin A0 is contained in the region bounded by the two blue lines lying in
the strips {π < y < 2π} and {−2π < y < −π} respectively.

General dynamics of f

To give a first approach to the dynamics, one may consider the semiconjugacy w = e−z

between f(z) = z + e−z and h(w) = we−w. Observe that w = 0 is a fixed point of
multiplier 1, and h(w) = w − w2 + O(w3) near 0, implying that 0 is a parabolic fixed
point having one attracting and one repelling direction. From the fact that R is invariant
by h and from the action of h in R, it is deduced that the repelling direction is R−, which
belongs to the Julia set J (h), and the attracting direction is R+, which belongs to the
immediate parabolic basin of 0, and hence to the Fatou set F(h). See Figure 1.2. We
denote by A0 the immediate basin of 0.

We note that all preimages of R− are in the Julia set and, since 0 is an asymptotic
value, they separate the plane into infinitely many components. It follows that the Fatou
set F(h) has infinitely many connected components.

It is not hard to see that the only two singular values of h are 0 and e−1, the latter
being contained in the immediate parabolic basin A0. Therefore, the Fatou set F(h) is
precisely A0 and its preimages under h. Indeed, since h has only a finite number of singular
values, it cannot have Baker nor wandering domains [EL92, Sect. 5], and the presence
of any other invariant Fatou component (either a basin or a Siegel disk) would require
an additional singular value (see e.g. [Ber93, Thm. 7]). Since there are infinitely many
Fatou components for h, A0 has infinitely many preimages, separated by the preimages
of R−.
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We lift these results to the dynamical plane of f , using Bergweiler’s result [Ber95b],
which ensures that the Fatou and Julia sets of f and h are in correspondence under the
projection w = e−z. Preimages of R+ under e−z, which are precisely the forward invariant
horizontal lines {Im z = 2kπi}k∈Z, are in the Fatou set and their points escape to ∞ to
the right. Preimages of R− under the exponential projection are the forward invariant
horizontal lines {Im z = (2k + 1)πi}k∈Z, which are in the Julia set and whose points escape
to −∞ exponentially fast. The horizontal strips Sk := {(2k − 1)π ≤ Im z ≤ (2k + 1)π}
contain a preimage Uk of A0 which, in turn, contains a preimage of R+ under e−z, that
is {Im z = 2kπi}. Such horizontal line is forward invariant, so this implies that Uk is
forward invariant and iterates tend to ∞, so Uk is a Baker domain.

Moreover, we note that F(f) is precisely the union of these Baker domains Uk and
their preimages under f . Indeed, any Fatou component V of f must project by w = e−z

to a preimage of A0, implying that V is mapped to some Uk in a finite number of steps.
Hence, the presence of wandering domains is ruled out.

Finally, we note that the function f satisfies the relation f(z + 2kπi) = f(z) + 2kπi,
for all z ∈ C and k ∈ Z, so it is enough to study it in the central strip S := S0 and the
corresponding Baker domain U := U0. To do so, we consider the conformal branch of the
semiconjugacy w = e−z, defined on IntS, i.e.

E(z) := e−z : IntS −→ C∖ R−,

E−1(w) := −Log(w) : C∖ R− −→ IntS,

where Log: C∖R− → IntS denotes the principal branch of the logarithm. Since U ⊂ Int S
and A0 ⊂ C ∖ R−, this gives a conformal conjugacy between f|U and h|A0 . Hence, we
deduce that the Baker domain U is of doubly parabolic type and of degree two.
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y = -πy = -π

y = 0y = 0

y = 3πy = 3π

y = -3 πy = -3 π

w = e−z

h(w) = we−w

f(z) = z + e−z

S0

S1

S−1

Figure 1.3: Schematic representation of the dynamics of h and f and how the exponential projection
w = e−z relates both of them. In the left, R+ (in pink) is contained in the immediate parabolic basin
A0. Its preimages by w = e−z, the lines {Im z = 2kπi}k∈Z (also in pink), lie each of them in a Baker
domain Uk. In blue, in the left there is R− ⊂ J (h). Its preimages {Im z = (2k + 1)πi}k∈Z lie in J (f)
and separate the plane into the strips Sk.
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Remark 1.1.1. Although working with the function h may seem easier, for having a finite
number of singular values and being postsingularly bounded, the fact that one asymptotic
value lies in the Julia set reduces this advantage. In general, we shall work with f , its
logarithmic lift.

Action of f in the strip S

As seen before, it is enough to consider f in the strip S = {z ∈ C : |Im z| ≤ π}, delimited
by the horizontal lines L± := {z : Im z = ±π}. See Figure 1.4.

V

S

L+

L−

Figure 1.4: Schematic representation of how f acts on the strip S and of the absorbing domain V .

Observe that, to the left, f behaves like the exponential and, to the right, like the
identity. Moreover, if one writes f as

f(x, y) = (x+ e−x cos y, y − e−x sin y),

preimages of L± can be computed explicitly as the curves of the form
{y − e−x sin y = ±π}. In S they consist precisely of two bent curves converging to −∞
in both ends, being asymptotic to R and to L∓ (see Fig. 1.4). The region delimited by
these curves is mapped outside S in a one-to-one fashion. On the other hand, the map
f : f−1(S) ∩ S → S is a proper map of degree two, which can be deduced for instance by
computing the preimages of R in S.

Next, we define the set

Ŝ := {z ∈ S : fn(z) ∈ S, for all n} .

Clearly, U ⊂ Ŝ, since U is forward invariant under f . Moreover, since both f : f−1(S) ∩
S → S and f|U have degree 2, there cannot be preimages of U in S other than itself.
Therefore, F(f)∩ Ŝ = U . On the other hand, ∂U ⊂ J (f)∩ Ŝ. The other inclusion, which
is going to be proved in Proposition 1.2.4, cannot be claimed directly to be true, for the
possible existence of buried points in Ŝ, i.e. points in J (f) which are not eventually
mapped to the boundary of any Baker domain Uk.
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Absorbing domains and expansion of f

Let us define the following set

V :=
{
z ∈ S : Re z > −1, |Im z| < π

2

}
.

Lemma 1.1.2. The set V is an absorbing domain for f in U .

Proof. Clearly, V is open and connected. For the forward invariance, consider z = x+iy ∈
V , so x > −1 and |y| < π

2 , then

Re f(x+ iy) = x+ e−x cos y > x > −1,

|Im f(x+ iy)| <
∣∣∣∣π2 − e−x

∣∣∣∣ < π

2 .

Finally, the fact that V is absorbing, i.e. that all compact sets in U must eventually enter
in V , can be deduced from the dynamics on the conjugate parabolic basin A0. Indeed,
E(V ) is the following forward invariant set,

E(V ) =
{
w ∈ C : |w| < 1

e
, |arg w| < π

2

}
.

Observe that E(V ) is an circular sector of angle π
2 containing the real interval (0, e), which

is in the attracting direction of the parabolic point w = 0. Hence, E(V ) is a parabolic
petal, so all compact sets in A0 must eventually enter in E(V ). Hence, applying back the
conjugacy, we get that V is an absorbing domain for f in U .

Remark 1.1.3. Since it contains the critical point 0, V is not a fundamental set. It can be
turned into one making it smaller, for instance taking

{
z ∈ S : Re z > 0, |Im z| < π

2

}
. On

the other hand, fundamental sets, and absorbing domains, can be chosen bigger, although
we have no need to do that. In fact, using local theory around parabolic fixed points,
there exist fundamental sets which approach tangentially L±.

One of the advantages of choosing V as we have done is that the map is expanding
outside it (although not uniformly expanding). Indeed, a simple computation yields:

f ′(x+ iy) = 1 − e−x cos y + ie−x sin y,

|f ′(x+ iy)| =
√

1 + e−2x − 2e−x cos y.

Therefore, |f ′(x+ iy)| > 1 if and only if e−x − 2 cos y > 0. This last inequality is satisfied
if π

2 < |y| < π or if x < −1. Therefore, |f ′(z)| > 1 for all z ∈ S ∖ V .
Since S ∖ V is not convex, in order to apply the expansion of f as an augmenter of

the distance between points, we need to consider a more appropriate distance than the
Euclidean one. To this aim, we define the following metric.
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Definition 1.1.4. (ρ-distance in S∖V ) Given z, w ∈ S∖V , let us define its ρ-distance
as:

ρ(z, w) := inf l(γ),

where the infimum is taken over all paths γ ⊂ S ∖ V with endpoints z and w, and l

denotes the length of the path with respect to the Euclidean metric.
Given a set K ⊂ S∖ V , we denote by diamρ(K) the diameter of K with respect to the

ρ-distance, i.e.
diamρ(K) = sup

x,y∈K
ρ(x, y).

Observe that the Euclidean distance is always smaller than the ρ-distance, i.e.

|z − w| ≤ ρ(z, w), for all z, w ∈ S ∖ V ,

with equality if both z and w are contained in a convex subset of S ∖ V .
Notice also that the ρ-distance between two points can be arbitrarily large, although

the Euclidean distance between them remains bounded. However, we are going to restrict
the use of the ρ-distance to particular subsets of S∖V , where we do have an upper bound
for the ρ-distance in terms of the Euclidean one (see Lemma 1.1.10).

Remark 1.1.5. Let us observe that, instead of considering the dynamical system defined
by f in C, we can restrict to the one given by f in Ŝ. For it we have a similar situation
that the one for λez, 0 < λ < 1

e
, in [DG87], and the corresponding generalization in

[Bar07, BK07]: a unique Fatou component which contains the postsingular set. Mainly,
two things distinguish our situation from theirs. First, f in Ŝ has degree two, and the
functions they are dealing with have infinite degree. Second, they have uniform expansion
(at least in the logarithmic tracts), while our expansion is not uniform (compare with
Prop. 1.1.7). Hence, the results on next sections are meant to overcome this difficulty.

Itineraries in Ŝ and symbolic dynamics

Recall that f : f−1(S) ∩ S → S has degree two and the critical value is 1. Therefore, the
two branches of the inverse of f in S, say ϕ0 and ϕ1, are well-defined in S ∖ [1,+∞).
More precisely

ϕ0 : S ∖ [1,+∞) → Ω0 := S ∩ H+,

ϕ1 : S ∖ [1,+∞) → Ω1 := S ∩ H−,

where H+ and H− denote the upper and the lower half plane, respectively (see Fig. 1.5).
We claim that ϕ0 and ϕ1 do not increase the ρ-distance between points, as shown in

the following proposition.

Proposition 1.1.6. (Contraction and uniform contraction in S∖V ) The following
properties hold true.

(a) Let z, w ∈ S ∖ V . Then, for i ∈ {0, 1},

ρ(ϕi(z), ϕi(w)) ≤ ρ(z, w).
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Figure 1.5: Action of the inverses ϕ0 and ϕ1 on the strip S.

(b) Let k ∈ R and let Sk :=
{
z = x+ iy ∈ S ∖ V : x ≤ k

}
. Then, there exists λ :=

λ(k) < 1 such that, if z, w ∈ S ∖ V , then, for i ∈ {0, 1},

ρ(ϕi(z), ϕi(w)) ≤ λρ(z, w).

Moreover, if K ⊂ Sk is a compact set, then

diamρ(ϕi(K)) ≤ λdiamρ(K).

Proof. (a) As observed above, it holds |f ′(z)| > 1 for all z ∈ S ∖ V . Therefore, if
γ ⊂ S ∖ V is a geodesic (in S ∖ V ) joining z and w, then ϕi(γ) is a curve joining
ϕi(z) and ϕi(w), and

ρ(ϕi(z), ϕi(w)) ≤
∫

ϕi(γ)
ds =

∫
γ

|ϕ′
i(s)| ds <

∫
γ
ds = ρ(z, w),

as desired.

(b) We start by noticing that |f ′| is uniformly bounded in S ∖ V . Indeed, on the one
hand, for all z = x+ iy with x ≤ −1, it holds

|f ′(x+ iy)| =
√

1 + e−2x − 2e−x cos y ≥
√

1 + e2 − 2e > 1.

On the other hand, assuming k > −1 and −1 < x < k, necessarily π
2 ≤ |y| ≤ π, so

|f ′(x+ iy)| =
√

1 + e−2x − 2e−x cos y ≥
√

1 + e−2x ≥
√

1 + e−2k > 1.

Hence, there exists a constant λ, depending only on k, such that |f ′(z)| ≥ λ, for all
z ∈

{
z = x+ iy ∈ S ∖ V : x ≤ k

}
. Hence, the first statement follows applying the

same reasoning as in (a).
Finally, let K ⊂ Sk and denote by λ the constant of contraction in Sk. Then, for
all z, w ∈ ϕi(K), we have f(z), f(w) ∈ K, and

ρ(z, w) ≤ λρ(f(z), f(w)) ≤ λdiamρ(K).

Hence, diamρ(ϕi(K)) ≤ λdiamρ(K), as desired.
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Remark 1.1.7. (Expansion and uniform expansion in S ∖ V ) We note that, as a
direct consequence of Proposition 1.1.6 (a), if z, w ∈ Ωi and f(z), f(w) ∈ S ∖ V , then

ρ(z, w) ≤ ρ(f(z), f(w)).

Likewise, the expansion is uniform in any half-strip Sk. In particular, if K is a compact
set such that diamρ(K) > 0 and fn(K) ⊂ Sk ∩Ωin , in ∈ {0, 1}, then diamρ(fn(K)) → ∞,
as n → ∞.

Next, we use this subdivision of the strip in Ω0 and Ω1 to define the itinerary for points
in Ŝ, where Σ2 denotes the space of infinite sequences of two symbols, taken to be 0’s and
1’s.

Definition 1.1.8. (Itineraries in Ŝ) Let z ∈ Ŝ be such that fn(z) /∈ R, for all n ≥ 0.
The sequence I(z) = s = {sn}n ∈ Σ2 satisfying fn(z) ∈ Ωsn is called the itinerary of z.

Remark 1.1.9. For points in Ŝ which are eventually mapped to R, the itinerary is not
defined. However, this can be neglected because they are in the Baker domain and their
dynamics are already understood.

We will need a further subdivision of the strip. Let us define the regions

Ωij := ϕi(ϕj(S)) ∖ V .

For instance, the region Ω00 has to be seen as the set of points in Ω0 which remain in Ω0

after one iteration of the function, while points in Ω01 are the points which change to Ω1.
Clearly, if z ∈ Ŝ belongs to Ω00, its itinerary starts with 00; while if z ∈ Ω01, then I(z)
begins with 01. The absorbing domain V is removed from the regions for practical use:
this has no effect on the study of ∂U , since its points are never in V , but it allows us to
give better estimates on the function. See Figure 1.6.

Ω00

Ω11

V
Ω01

Ω10

Figure 1.6: Graphic representation of the regions Ωij , i, j ∈ {0, 1}.

Lemma 1.1.10. (Properties of the regions Ωij) The following properties hold true.

(a) Ω01,Ω10 ⊂ {z ∈ S : Re z < 0}. Therefore, if z ∈ S∖V with Re z > 0, either z ∈ Ω00

or z ∈ Ω11.
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(b) If z ∈ S ∖ V with −π
2 < Im z < π

2 and f(z) ∈ S, then either z ∈ Ω01 or z ∈ Ω10.

(c) For z ∈ Ωii, i ∈ {0, 1}, we have |Im z| > π
2 . In particular, Re f(z) < Re z and, if

z /∈ L±, |Im f(z)| < |Im z|.

(d) For z, w ∈ Ωij, i, j ∈ {0, 1}, it holds |z − w| ≤ ρ(z, w) ≤ |z − w| + π.

Proof. The proof is direct from the definition of the regions. See also Figure 1.6.

1.2 The escaping set in ∂U . Proof of Theorem 1.A

This section is devoted to the proof of Theorem 1.A, which asserts that escaping points
in ∂U are organized in curves, and ∂U is precisely the closure of these curves. To do so,
a detailed study of the escaping set is required, which is carried out in a several number
of steps. First, it is proven that all escaping points in ∂U are left-escaping (Lemma
1.2.1), and sufficiently to the left, curves of escaping points with the same itinerary are
constructed (Prop. 1.2.2). Afterwards, these curves are enlarged by the dynamics to
collect all points in S with the same itinerary (Thm. 1.2.3); and, finally, all this
construction is used to prove a characterization of ∂U (Prop. 1.2.4), which is of
independent interest. As indicated in the end of the section, Theorem 1.A will follow
from Theorem 1.2.3 (a) and Proposition 1.2.4 (b).

First, recall that ∂U ⊂ Ŝ, where Ŝ consists of all the points in S which never leave
S under iteration; and observe that in Ŝ there are three distinguished ways to escape to
infinity. Indeed, points can escape to infinity to the left, to the right, or oscillating from
left to right. This leads us to define the following sets:

I+
S :=

{
z ∈ I(f) ∩ Ŝ : Re fn(z) → +∞

}
,

I−
S :=

{
z ∈ I(f) ∩ Ŝ : Re fn(z) → −∞

}
.

By construction, these two sets are disjoint, but they may not contain all the escaping
points: points which escape to ∞ oscillating from left to right belong neither to I−

S

nor to I−
S . However, this possibility is excluded, as it is shown in the following lemma.

Intuitively, oscillations are not possible because, on the right, the map is close to the
identity.

Lemma 1.2.1. (No oscillating escaping points) There are no oscillating escaping
points, i.e.

I(f) ∩ Ŝ = I+
S ∪ I−

S .

Moreover, I+
S = U .

Proof. Assume z ∈ I(f) ∩ Ŝ. For any r > 0, there exists n0 such that, for all n ≥ n0,
fn(z) ∈ S and |fn(z)| > r. In particular, taking r >

√
π2 + 1, there exists R > 1 such

that Re fn(z) > R or Re fn(z) < −R, for all n ≥ n0. Assuming that Re z > R, we are
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going to see that it is not possible to have Re f(z) < −R, so oscillating escaping orbits
are not possible. Indeed,

Re f(x+ iy) = x+ e−x cos y ≥ x− e−x ≥ R − e−R.

Since R > 1, the right-hand side of the inequality is greater than 0, so it does not hold
Re f(z) < −R, proving the first statement.

To prove the second statement, first observe that U ⊂ I+
S . It is left to show that,

for z ∈ Ŝ ∖ U , it cannot hold Re fn(z) → +∞. Indeed, such a point never enters the
absorbing domain, so, when Re fn(z) > 0, either Im fn(z) > π

2 or Im fn(z) < −π
2 . In

both cases, Re fn+1(z) < Re fn(z), so it is impossible for a point which is not in U to
belong to I+

S .

Next we show that these left-escaping points are organized in curves, which eventually
contain all left-escaping points with the same itinerary. To do so, we adapt the proof of
[DG87, Prop. 3.2] for the exponential maps λez, 0 < λ < 1

e
, to our setting. Moreover, the

construction is made in such a way that a parametrization of the curves appears implicitly,
as the one introduced in [BDH+99] for the exponential family (see also [SZ03, Rem03,
Rem07]). The main attribute of this parametrization is to conjugate the dynamics on the
curve with the model of growth given by F (t) = t− e−t, t ∈ R. Observe that F : R → R
is an increasing homeomorphism of R without fixed points, where all iterates converge to
−∞ under iteration.

Proposition 1.2.2. (Escaping tails) For every sequence s = {sn}n ∈ Σ2 there exists
a curve of left-escaping points γs : (−∞,−2] → I−

S , whose points have itinerary s and
γs ⊂ ∂U . Such curve is called escaping tail. The following properties hold.

(a) (Asymptotics and dynamics) It holds that Re γs(t) → −∞ , as t → −∞, and
Re fn(γs(t)) → −∞, as n → ∞. Moreover, Re fn(γs(t)) ≤ −2 for all n ≥ 0.

(b) (Uniqueness) Escaping tails are unique, in the sense that if z ∈ I−
S , with I(z) = s,

and Re fn(z) ≤ −2 − π for all n ≥ 0, then z ∈ γs.

(c) (Internal dynamics) For t ≤ −2, it is satisfied

f(γs(t)) = γσ(s)(F (t)),

where σ denotes the shift map and F (t) = t− e−t.

It is worth mentioning that the existence of such curves of escaping points can be
deduced directly from [RRRS11, Thm. 1.2] for functions in class B of finite order, applied
to h(w) = we−w. Indeed, both functions f and h are semiconjugate by w = e−z, so
left-escaping points for f correspond to the escaping set of h. Then, if z ∈ I−

S , then
w = e−z ∈ I(h) and, by [RRRS11, Thm. 1.2], it is connected to ∞ by a curve Γ of
escaping points. An appropriate lift γ of Γ is a curve of left-escaping points connecting
z to infinity. It is easy to see that points in γ must have the same itinerary. Indeed, γ
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must be contained in either Ω0 or in Ω1, since it cannot intersect R (because it is in the
Fatou set) nor L± (since L± separate distinct preimages of the w-plane under w = e−z).
Moreover, this is also true for any iterated image of γ, implying that all points in γ must
have the same itinerary.

However, from this general result, it cannot be deduced which of these curves are in
∂U and it does not give a parametrization for the curves, which will be important in the
following sections. This is why we choose an alternative proof for Proposition 1.2.2, based
on the more constructive approach of [DG87]. On the other hand, we do apply [RRRS11,
Thm. 1.2] to deduce the uniqueness of the escaping tails.

Proof of Proposition 1.2.2. First, let us show that, to every t ≤ −2 and s ∈ Σ2, we can
find a left-escaping point zt,s, with itinerary s, associated to t. To do so, fix t ≤ −2 and
s ∈ Σ2, and let Dt,s

0 be the square of side length π located in Ωs0 and right-hand side at
t0 := t. We construct a sequence of squares {Dt,s

n }n, where Dt,s
n is a square of side length

π, located in Ωsn and right-hand side tn := F n(t), where F (t) = t − e−t. Observe that
tn → −∞, as n → ∞. Compare with Figure 1.7.

f

f D
t,s
0

D
t,s
1

D
t,s
2

{Re z = t}{Re z = F (t)}
{

Re z = F 2(t)
}

Figure 1.7: Schematic representation of the first three squares
{

D
t,s
n

}
n
, for a given t ≤ −2, showing

how they satisfy D
t,s
n ⊂ f(Dt,s

n−1).

Claim. The squares {Dt,s
n }n satisfy Dt,s

n ⊂ f(Dt,s
n−1), for all n ≥ 1.

Proof of the claim. It is enough to show that Dt,s
1 ⊂ f(Dt,s

0 ). Let us denote by ∂−D and
∂+D, the left and the right-hand sides of a square D, respectively.

First let us observe that, on the left, the map f acts on a similar way than the
exponential, sending vertical segments to circular curves, which start at L+, ends at L−

and have an auto-intersection in the negative real line. Compare with Figure 1.8.
Moreover, if Re z = t ≤ −2, we have the following inequality controlling the modulus

of the image:

|f(z)| =
∣∣∣z + e−z

∣∣∣ ≥
∣∣∣e−z

∣∣∣− |z| = e−Re z − |z| > 1
2e

−Re z = 1
2e

−t > −t.

To prove that Dt,s
1 ⊂ f(Dt,s

0 ), it is enough to show that ∂−D
t,s
1 and ∂+D

t,s
1 are contained

in f(Dt,s
0 ). In fact, we shall see that ∂−D

t,s
1 and ∂+D

t,s
1 are contained in f(Dt,s

0 ) ∩ S ∩
{Re z < 0}. Compare with Figure 1.8.
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t + πi

t − πi

F (t) + πi

F (t) − πi

Figure 1.8: Schematic representation of how f acts on the left-side on the strip.

First we see that ∂+D
t,s
1 is located more to the left than f(∂+D

t,s
0 ). Indeed, points in

∂+D
t,s
1 have real part t− e−t, while for z ∈ ∂+D

t,s
0 it is satisfied that Re f(z) ≥ t− e−t.

Finally, to see that ∂−D
t,s
1 is contained in f(Dt,s

0 ) ∩ S ∩ {Re z < 0}, we shall see that
∂−D

t,s
1 is located more to the right than f(∂−D

t,s
0 ) ∩ S ∩ {Re z < 0}. For z ∈ ∂−D

t,s
0 and

such that f(z) ∈ S ∩ {Re z < 0}, we have:

Re f(z) ≤ − |f(z)| + π < −1
2e

−Re z + π = −1
2e

−(t−π) + π.

A point z ∈ ∂−D
t,s
1 has real part t− e−t − π, which is easy to see that it is bigger than

our previous bound. Indeed, the real function h(x) = x− e−x + 1
2e

−(x−π) − 2π is positive,
when x < 0. Therefore, the claim is proved.

Now, let us define
Qt,s

n := ϕs0 ◦ · · · ◦ ϕsn(Dt,s
n+1),

zt,s :=
⋂

n≥0
Qt,s

n .

Notice that zt,s is a unique point. Indeed, {Qt,s
n }n is a sequence of nested compact sets

contained in Dt,s
0 . Its intersection is a connected compact set, and to prove that it consists

precisely of a unique point, we shall see that the diameter of Qt,s
n tends to 0, as n → ∞.

Indeed, since ϕsk
◦ · · · ◦ ϕsn(Dt,s

n+1) ⊂ {Re z < 0} for all n ≥ 0 and k ≤ n, each time we
apply either ϕ0 or ϕ1 we are applying a contraction of constant 1

λ
< 1 with respect to the

ρ-distance (see Prop. 1.1.6). Recall that, in the half-plane {Re z < −2}, the ρ-distance
and the Euclidean distance coincide. Hence,

diam Qt,s
n = diamρQ

t,s
n ≤ 1

λn+1

√
2π → 0, as n → ∞.

The point zt,s satisfies the required conditions. Indeed, zt,s follows the itinerary
prescribed by s and converges to −∞ under iteration. Moreover, we claim that
zt,s ∈ ∂U . Indeed, since f(Dt,s

n+1) intersects U , then D
t,s
n+1 contains points of U , and so

does Qt,s
n . Since the sets {Qt,s

n }n shrink to zt,s, this gives a sequence of points in U

approximating zt,s.
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Therefore, we associate to any t ≤ −2 and s ∈ Σ2 the point zt,s. Observe that the
resulting point zt,s depends continuously on t, since the entire construction depends
continuously on t. Hence, letting t → −∞, the points zs,t describing the required curve
γs of left-escaping points with itinerary s. This induces naturally a parametrization on
γs: we define γs : (−∞,−2] → C such that γs(t) := zt,s.

Finally, let us prove that, with this parametrization, the announced properties actually
hold.

(a) (Asymptotics and dynamics)
It is clear by the construction of the squares that γs(t) → −∞ , as t → −∞, and,
for every t ≤ −2, fn(γs(t)) → −∞, as n → ∞. Moreover, since the orbit of a point
is contained in the corresponding squares, we have Re fn(γs(t)) ≤ −2 for all n ≥ 0.

(b) (Uniqueness)
Uniqueness follows from the results in [RRRS11], which imply that every point in
I−

S can be connected to infinity by a curve of left-escaping points with the same
itinerary.
Assume, on the contrary, that there exists z0 ∈ I−

S , with I(z0) = s, and Re fn(z0) ≤
−2 − π for all n ≥ 0, but z0 /∈ γs. Then, there would exist another curve γ̃s of left-
escaping points with itinerary s connecting z0 to ∞. Consider an open set W placed
in the left-unbounded region delimited by γs, γ̃s and {z ∈ S : Re z = Re z0}.
We claim that fn(W ) ⊂ S ∩ {Re z < −2}, for all n ≥ 0. Indeed, note that γs, γ̃s ⊂{
|Im z| > π

2

}
. Then, W ⊂ S ∩

{
|Im z| > π

2

}
. Recall that, for z ∈ S ∩

{
|Im z| > π

2

}
,

Re f(z) < Re z. Hence, f(W ) ⊂ S ∩ {Re z < −2}, and, by continuity, f(W ) is the
left-unbounded region delimited by f(γs), f(γ̃s) and f({z ∈ S : Re z = Re z0}) ⊂
S∩{Re z < −2}. We can apply the same argument inductively to see that fn(W ) ⊂
S ∩ {Re z < −2}, for all n ≥ 0, as claimed.
Therefore, W is an open set which never enters the Baker domain, so W ⊂ J (f),
leading to a contradiction.

(c) (Internal dynamics)
We have to prove that, for t ≤ −2,

f(γs(t)) = γσ(s)(F (t)).

First observe that, since F is an increasing map, F (t) < −2 for t ≤ −2, so γσ(s)(F (t))
is defined.
To construct the point γσ(s)(F (t)) we use the sequence of squares

{
DF (t),σ(s)

n

}
n
.

Therefore, the n-th square has right-hand side located at {x = F n(F (t)) = F n+1(t)}
and it is in the half-strip Ωsn+1 . Hence, DF (t),σ(s)

n = D
t,s
n+1. Moreover,

QF (t),σ(s)
n = ϕs1 ◦ · · · ◦ ϕsn+1

(
D

F (t),σ(s)
n+1

)
= ϕs1 ◦ · · · ◦ ϕsn+1

(
D

t,s
n+2

)
= f(Qt,s

n+1).
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Then,

γσ(s)(F (t)) =
⋂

n≥0
QF (t),σ(s)

n =
⋂

n≥0
f(Qt,s

n+1) = f(
⋂

n≥0
Q

t,s
n+1) = f(γs(t)),

as desired.

Escaping tails are mapped among them following the symbolic dynamics given by its
itinerary: if σ denotes the shift map in Σ2 and s ∈ Σ2, we have f(γs) ⊂ γσ(s). Moreover, we
claim that, as a consequence of Proposition 1.2.2 (c), this last inclusion is strict. Indeed,
recall that, for all t0 ≤ −2, it holds F (t0) < t0. Hence, Proposition 1.2.2 (c) implies

f(γs({t : t ≤ t0})) = γσ(s)({t : t ≤ F (t0)}) ⊂ γσ(s)({t : t ≤ t0}),

where the last inclusion is strict.
Next, we define the dynamic rays as the natural extension of the escaping tails: we

enlarge a given escaping tail γs by adding to it all points in Ŝ which are eventually mapped
to γσn(s), for some n ≥ 0 (see Fig. 1.9). Next theorem includes the formal definition as
well as the corresponding extension of the dynamical properties of the escaping tails.
Moreover, a new property is proven, showing the continuity of the parametrization the
hairs with respect to the itinerary, analogously to [Rem07, Lemma 3.2].

Theorem 1.2.3. (Dynamic rays) Let s ∈ Σ2. Let us define the dynamic ray (or hair)
of sequence s as γ∞

s : (−∞,+∞) → I−
S such that, if n ≥ 0 with F n(t) < −2, then

γ∞
s (t) := ϕs0 ◦ · · · ◦ ϕsn−1(γσn(s)(F n(t))).

The following properties hold.

(a) (Well-defined) Dynamic rays are well-defined, in the sense that the definition does
not depend on n. Moreover, γ∞

s is actually a curve and contains all left-escaping
points with itinerary s.

(b) (Internal dynamics) For t ∈ R, it holds

f(γ∞
s (t)) = γ∞

σ(s)(F (t)),

where σ denotes the shift map and F (t) = t− e−t.

(c) (Continuity between rays) Let n0 ∈ N and s ∈ Σ2. Let us denote by Σ2(s, n0) the
set of all sequences s̃ ∈ Σ2 which agree with s in the first n0 + 1 entries. Then, for
all t0 ∈ R and ε > 0, there exists n0 such that∣∣∣γ∞

s (t) − γ∞
s̃ (t)

∣∣∣ < ε,

for all t ≤ t0 and s̃ ∈ Σ2(s, n0).

78



f

f

f

ϕs2
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γσ(s)

γσ2(s)

γσ3(s)

Figure 1.9: Construction of the hair γ∞
s from the escaping tail γs. Intuitively, the process is clear:

since the endpoint of the escaping tail is not mapped to the endpoint of the next escaping tail but to a
point further to the left, the remaining piece of escaping tail can be added to the previous one by pulling
back by the inverse. Repeating the process we get all the points in the ray.

Proof. (a) (Well-defined)
Fix s ∈ Σ2 and t > −2, and let m > n be such that Fm(t) < −2 and F n(t) < −2.
Put m = n+ l, with l > 0. We have to see that

ϕs0◦· · ·◦ϕsn−1◦ϕsn◦· · ·◦ϕsn+l−1

(
γσn+l(s)(F l(F n(t)))

)
= ϕs0◦· · ·◦ϕsn−1

(
γσn(s)(F n(t))

)
.

Since ϕi, i ∈ {0, 1}, are univalent, this is equivalent to

ϕn ◦ · · · ◦ ϕsn+l−1

(
γσn+l(s)(F l(F n(t)))

)
= γσn(s)(F n(t)),

and this last equality holds true by the internal dynamics of the escaping tail (Prop.
1.2.2(c)).
Finally, in view of Proposition 1.2.2, it is clear that dynamic rays are actually curves
and contain all left-escaping points with the same itinerary, proving statement (a).

(b) (Internal dynamics)
We shall assume that t > −2, otherwise the point γ∞

s (t) is in the escaping tail,
where we have already proven the statement. Let n be such that F n(t) ≤ −2.
Then, applying the known equality for the escaping tails, we have

f(γ∞
s (t)) = f(ϕs0 ◦ · · · ◦ ϕsn−1(γσn(s)(F n(t)))) =

= ϕs1 ◦ · · · ◦ ϕsn−1(γσn−1(σ(s))(F n−1(F (t)))) = γ∞
σ(s)(F (t)),

proving statement (b).

(c) (Continuity between rays)
Fix s ∈ Σ2 and t0 ∈ R. The goal is to determine n0 ∈ N such that if s̃ ∈ Σ2 which
agree with s in the first n0 + 1 entries and t ≤ t0, then∣∣∣γ∞

s (t) − γ∞
s̃ (t)

∣∣∣ < ε.
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To do so, first assume t0 ≤ −2 and fix ε > 0. Let λ > 1 be the factor of expansion
of f in S ∩ {Re z < 0} (see Rmk. 1.1.7). Let n0 be such that 1

λn0

√
2π < ε. We

claim that for s̃ ∈ Σ2(s, n0) and t ≤ t0 it holds∣∣∣γ∞
s (t) − γ∞

s̃ (t)
∣∣∣ < ε.

Indeed, by construction we have

γ∞
s (t), γ∞

s̃ (t) ∈
n0−1⋂
n=0

Qt,s
n = Q

t,s
n0−1 = ϕs0 ◦ · · · ◦ ϕsn0−1(Dt,s

n0 ).

Therefore,
diam Qt,s

n0 ≤ 1
λn0

diam D
t,s
n0 = 1

λn0

√
2π < ε,

implying that
∣∣∣γ∞

s (t) − γ∞
s̃

(t)
∣∣∣ < ε, as desired.

Now assume t0 > −2. Choose n1 such that F n1(t0) < −2 (and, hence,
F n1(t) < −2, for all t ≤ t0). By the previous reasoning, we can find n0 such that∣∣∣γ∞

σn1 (s)(t) − γ∞
s̃

(t)
∣∣∣ < ε, for s̃ ∈ Σ2(σn1(s), n0) and t ≤ −2. Take n := n0 + n1 and

let us check that the property of the lemma is satisfied.
Indeed, take s̃ ∈ Σ2(s, n). Then, σn1(s̃) ∈ Σ2(σn1(s), n0) and F n1(t) < −2, so∣∣∣γ∞

σn1 (s)(F n1(t)) − γ∞
σn1 (̃s)(F

n1(t))
∣∣∣ < ε.

Since applying the inverses ϕi, i ∈ {0, 1} does not increase the distance between
points, we get∣∣∣γ∞

s (t) − γ∞
s̃ (t)

∣∣∣ =
∣∣∣ϕs0 ◦ · · · ◦ ϕn1−1(γ∞

σn1 (s)(F n1(t))) − ϕs0 ◦ · · · ◦ ϕn1−1(γ∞
σn1 (̃s)(F

n1(t)))
∣∣∣ ≤

≤
∣∣∣γ∞

σn1 (s)(F n1(t)) − γ∞
σn1 (̃s)(F

n1(t))
∣∣∣ < ε,

ending the proof of statement (c).

Observe that, by uniqueness, we have L+ = γ∞
0 and L+ = γ∞

1 , implying, in particular,
that L± ⊂ ∂U . Next, we use it to prove new characterization of ∂U , which will be useful
in the sequel.

Proposition 1.2.4. (Characterizations of ∂U)

(a) The boundary of U consists precisely of the points in J (f) which never escape from
S, i.e.

∂U = Ŝ ∩ J (f).

(b) Every point in ∂U is in the closure of a dynamic ray, i.e.

∂U =
⋃

s∈Σ2

γ∞
s .
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Proof. (a) Let us start by proving statement (a). To do so, we show the following chain
of inclusions:

∂U ⊂ Ŝ ∩ J (f) ⊂
⋃

n≥0

⋃
s∈Σn

2

Φs(L±) ⊂ ∂U,

where Σn
2 denotes the space of finite sequences of two symbols, {0, 1}, of length

n+ 1; and if s ∈ Σn
2 , s = s0 . . . sn, then

Φs := ϕs0 ◦ · · · ◦ ϕsn .

The first inclusion comes straightforward from the definitions. To prove the second
inclusion, consider z ∈ Ŝ ∩ J (f) and let W be a neighborhood of z. Without loss
of generality, we can assume z /∈ L± and W ⊂ S. Since z ∈ J (f), by the blow-up
property, there exists n > 0 such that fn(W ) ̸⊂ S. But z ∈ Ŝ, so fn(z) ∈ S.
Therefore, fn(W ) intersects L±, and the result follows.

Finally, regarding the third inclusion, it is enough to prove that Φs(L±) ⊂ ∂U , for
all s ∈ Σn

2 and n ≥ 0. Hence, fix n ≥ 0 and s ∈ Σn
2 , and consider z ∈ Φs(L±).

Since fn(z) ∈ L± ⊂ ∂U , there exists a sequence of points {wn}n ⊂ U such that
wn → fn(z). Applying Φs to the sequence {wn}n, we have Φs(wn) → z with
Φs(wn) ∈ U , since f−1(U) ∩ S = U . Therefore, Φs(L±) ⊂ ∂U , as desired. See
Figure 1.10.

(b) To prove statement (b), it is enough to show that, given an itinerary s ∈ Σ2, all
points in Ŝ ∖ U having this itinerary are precisely the ones in γ∞

s .

Let us assume first, that s = 0 and there is z ∈ ∂U with this itinerary and z /∈ L+.
Then, Im z < π and, since

Im f(x+ iy) = y − e−x sin y,

it follows that there exists n ≥ 0 such that 0 < Im fn(z) < π
2 . Therefore, fn(z) ∈

Ω01, so I(z) cannot be constant. The analogous argument works for s = 1 and,
taking preimages, it also proves the statement for eventually constant sequences.

Now assume s is a non-eventually constant sequence and there is z ∈ Ŝ, with
I(z) = s and z /∈ γ∞

s . Since γ∞
s is closed in C, we have

ρ(z, γ∞
s ) := inf

w∈γ∞
s

ρ(z, w) > 0,

where ρ is the distance in S ∖ V defined in 1.1.4.

We note that, since f is expanding in S ∖ V with respect to ρ, and fn(z) ∈ S ∖ V ,
fn(γ∞

s ) ⊂ S ∖ V , for all n ≥ 0, it holds

ρ(fn+1(z), fn+1(γ∞
s )) > ρ(fn(z), fn(γ∞

s )).
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Moreover, if both fn(z) and fn(γ∞
s ) lie in {Re z < 0}, we have uniform expansion

by constant λ > 1 (see Rmk. 1.1.7), i.e.

ρ(fn+1(z), fn+1(γ∞
s )) ≥ λρ(fn(z), fn(γ∞

s )).

Since s is non-eventually constant, there exists an infite increasing sequence {nk}k

such that fnk(z), fnk(γ∞
s ) lie in Ω01, so in particular they lie in the left half-plane

{Re z < 0}, where f expands uniformly by factor λ > 1. Hence, since f is always
expanding and expands infinitely many times uniformly by factor λ > 1, we get
that

ρ(fn(z), fn(γ∞
s )) → ∞, as n → ∞.

Hence, we can choose N > 0 such that ρ(fn(z), fn(γ∞
s )) > 2 + π and fn(z) ∈ Ω01,

fn(γ∞
s ) ⊂ Ω01.

By construction, fN(γ∞
s ) contains the escaping tail γσN (s), which intersects the

vertical segment {z ∈ S : Re z = M}. Observe that there are no points in Ω01 at a
distance greater than 2 + π of γσN (s), so this leads to a contradiction.

Figure 1.10: This picture shows the Baker domain (in black) and the regions (in different colors) which
are eventually mapped outside S. The boundaries of these regions are precisely Φs(L±), s ∈ Σn

2 , for some
n ≥ 0. Proposition 1.2.4 tells that ∂U is precisely the accumulation of those curves.

We note that the previous proposition allow us to characterize the points in Ŝ. Indeed,
as noted in Section 1.1, U ∪ ∂U ⊂ Ŝ; and, from the fact that U has no more preimages
in S apart from itself, U ∩ F(f) = Ŝ. The previous proposition characterizes J (f) ∩ Ŝ,
implying the following corollary.

Corollary 1.2.5. (Characterization of Ŝ) It holds:

Ŝ = U = U ∪ ∂U.
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From the results of this section, we shall deduce Theorem 1.A.

Proof of Theorem 1.A. The first statement of Theorem 1.A is deduced from statement (a)
of Theorem 1.2.3, whereas the second statement of Theorem 1.A corresponds to statement
(b) in Proposition 1.2.4.

1.3 Landing and non-landing rays. Proof of Theorem 1.B

We shall discuss now the landing properties of the dynamic rays defined in the previous
section. More precisely, we devote the section to prove Theorem 1.B, which asserts that for
uncountably many sequences the dynamic ray land at some point; while for uncountable
many others the dynamic ray does not land and its accumulation set (in the Riemann
sphere) is an indecomposable continuum.

Let us recall first the the definition of indecomposable continuum and the following
result, which gives a sufficient condition for the accumulation set of a curve to be an
indecomposable continuum. Here, we shall understand simple curve as the continuous,
one-to-one image of the non-negative real numbers.

Definition 1.3.1. (Indecomposable continuum) We say that X ⊂ Ĉ is a continuum
if it is compact and connected. A continuum is indecomposable if it cannot be expressed
as the union of two proper subcontinua.

Theorem 1.3.2. (Curry, [Cur91, Thm. 8]) Let X be a one-dimensional non-separating
plane continuum which is the closure of a simple curve that limits upon itself. Then X is
indecomposable.

We proceed as follows. First of all, we define precisely what we mean for a ray to land,
introducing the notion of landing set. We also require the notion of non-escaping set to
relate the accumulation set of a dynamic ray with the non-escaping points having the
same itinerary. Afterwards, we classify the sequences s ∈ Σ2 according to the nature of
its landing set, resulting in the different landing behaviours claimed in Theorem 1.B.

Definition 1.3.3. (Landing set of a ray) Let s ∈ Σ2 and let γ∞
s be the dynamic ray

of sequence s. We define the landing set Ls of the ray γ∞
s as the set of values w ∈ Ĉ for

which there is a sequence {tn}n ⊂ R such that tn → +∞ and γ∞
s (tn) → w, as n → ∞. If

Ls = {w}, we say that the dynamic ray γ∞
s lands at w.

Observe that, by Proposition 1.2.4(b), γ∞
s ∪ Ls contains all the points in ∂U with

itinerary s, so
γ∞

s ∪ Ls = {z ∈ ∂U : I(z) = s} .

Therefore, all non-escaping points with itinerary s are in Ls, but a priori Ls may contain
escaping points. This leads us to define the following set.

Definition 1.3.4. (Non-escaping set) Let s ∈ Σ2. We define the non-escaping set Ws

as the set of points in Ŝ with itinerary s which do not escape to infinity.
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Clearly, Ws ⊂ Ls ∩ C. Since all escaping points are in a ray, we have Ws = γ∞
s ∖ γ∞

s .
Moreover, Ls is always non-empty, compact and connected, whereas Ws may be empty.

We start by describing Ls and Ws for eventually constant sequences.

Lemma 1.3.5. (Eventually constant sequences) Let s ∈ Σ2. Then, Ls = {∞} if,
and only if, s is eventually constant. In this case, Ws = ∅.

Proof. Recall that γ∞
0 = L+ and γ∞

1 = L−, so L0 = L1 = {∞}. Since preimages of curves
landing at ∞ are again curves landing at ∞ and hairs with eventually constant sequence
are the preimages of L±, one implication is proven.

Now, assume s is a non-eventually constant sequence, and γ∞
s lands at ∞. Then, γ∞

s

divides S into two regions: R1, R2. The absorbing domain V is contained in one of them,
say R1, so R1 ∩ U ̸= ∅. We claim that R2 ∩ U ̸= ∅. Indeed, R2 ∩ Ŝ ̸= ∅, because the
points that leave S after applying f are the ones enclosed by f−1(L±) ∩ S, and γ∞

s is not
a preimage of L± (see Fig. 1.4, 1.10). The fact that U = Int(Ŝ) (Corol. 1.2.5) gives that
R2 ∩ U ̸= ∅. This is a contradiction because U is connected.

The goal for the remaining part of the section is to describe the landing and the non-
escaping sets for non-eventually constant sequences. First, we deal with the dynamics of
the non-escaping points, whose orbit may be bounded or oscillating. It turns out that this
only depends on its itinerary. Moreover, for certain types of sequence, we have a great
control on the orbit of the ray and the non-escaping set, as the following results show.

Definition 1.3.6. (Types of sequences) Let s ∈ Σ2 be a non-eventually constant
sequence. We say that s is oscillating if it contains arbitrarily large sequences of 0’s or
1’s. Otherwise, we say that s is bounded.

Proposition 1.3.7. (Dynamics on the non-escaping sets) Let s ∈ Σ2 and let Ws

be its corresponding non-escaping set. Then,
{
fn(Ws)

}
n

is contained in a compact set if
and only if s is a bounded sequence. In this case, there exists R > 0 such that fn(γ∞

s ) ⊂
{Re z < R} and fn(Ws) ⊂ {|Re z| < R}.

Proof. Assume first that s ∈ Σ2 is a bounded sequence and z ∈ Ws. Then, there exists
N > 0 such that s does not contain more than N consecutive 0’s and N consecutive
1’s. Take R := F−N(0), where F (t) = t − e−t. We claim that Re fn(z) ≤ R for all n.
Indeed, if it is not the case, there must exist n0 such that Re fn0(z) > R. Then, since F
is increasing, we have

Re fn0+1(z) > Re fn0(z) − eRe fn0 (z) > R − e−R = F (R).

Repeating the argument inductively, we get

Re fn0+N(z) > Re fn0+N−1(z) − eRe fn0+N−1(z) > FN−1(R) − e−F N−1(R) = FN(R) = 0.

Therefore, by Lemma 1.1.10 (a), either
{
fn0+k(z)

}N

k=0
⊂ Ω0 or

{
fn0+k(z)

}N

k=0
⊂ Ω1, so

s has N + 1 consecutive 0’s. Therefore, Re fn(z) < R, for all n ≥ 0. We note that
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the constant R has been chosen to depend only on N (but not on the particular point
z ∈ Ws), hence it holds Re fn(z) < R, for all n ≥ 0 and z ∈ Ws.

We claim that, under the conditions described above, if R has been chosen large enough,
we also have Re fn(z) > −R for all n ≥ 0 and z ∈ Ws, and hence

{
fn(Ws)

}
n

is contained
in a compact set.

Without loss of generality, we can assume R > 3 and large enough so that if z ∈ ∂U and
Re z < −R, then |Im z| <

(
0, π

3

)
or 2π

3 < |Im z| < 1. We note that this is possible since
ϕ1(L+) is a curve landing at −∞ from both sides, approaching tangentially L− and R;
and ϕ0(L−) also at lands at −∞, but approaching L+ and R (see e.g. Fig. 1.4). Then, in
order to show that Re fn(z) > −R for all n ≥ 0 and z ∈ Ws, we proceed by contradiction:
let us assume that there exists z ∈ Ws and n0 ≥ 0 such that Re fn0(z) < −R. Then,
since z ∈ Ws, we can assume that Re fn0+1(z) > −R. Hence, 0 < |Im fn0(z)| < π

3 . Then,

Re fn0+1(z) = Re fn0(z) + e−Re fn0 (z) cos(Im fn0(z)) ≥

≥ Re fn0(z) + 1
2e

−Re fn0 (z) > −Re fn0(z) > R.

This contradicts the assumption that Re fn(z) < R, for all n ≥ 0 and z ∈ Ws, proving
one implication.

For the other implication, let us assume that z ∈ Ws has a bounded orbit, and let us
prove that then s is bounded. Let R > 0 be such that −R ≤ Re fn(z) ≤ R, for all n ≥ 0,
and let ε > 0 be such that dist (fn(z), V ) > ε, for all n ≥ 0. We note that, in this case,
if fn(z) ∈ Ω00 ∪ Ω01, |Im fn(z)| > π

2 + ε. Let M =
∣∣∣e−R cos(π

2 + ε)
∣∣∣, and let N be such

that R−NM < −R. We claim that s cannot have more than N consecutive 0’s. On the
contrary, assume {fn(z)}N

n=0 ⊂ Ω00. Then,

Re fn(z) = Re fn(z) + e−Re fn(z) cos(Im fn(z)) < Re z −M,

for 0 ≥ n ≥ N − 1, so
Re fN(z) < Re z −NM < −R.

Therefore, s cannot have more than N consecutive 0’s. A similar argument can be
used to prove that s cannot have more than N consecutive 1’s; and this proves the other
implication.

The existence of R > 0 such that fn(γ∞
s ) ⊂ {Re z < R} and fn(Ws) ⊂ {|Re z| < R}

is deduced from the previous reasoning, taking into account that escaping points with
bounded itinerary cannot go arbitrarily far to the right, since they have to be in Ω01 (or
Ω10) in a bounded number of steps.

Next, we use this control on the dynamic rays and the non-escaping sets for bounded
sequences to prove that the non-escaping set is actually a point where the dynamic ray
lands.

Proposition 1.3.8. (Rays with bounded sequence land) Let s ∈ Σ2 be a bounded
sequence. Then, there exists a point ws ∈ C such that

Ls = Ws =
{
ws

}
,
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i.e. the dynamic ray γ∞
s (t) lands at the point ws.

Proof. First, let us prove that Ws consists of a single point. By Proposition 1.3.7, Ws is
compact. Assume, on the contrary that Ws consists of more than one point, so
diamρ(Ws) > 0. Recall that f is uniformly expanding in any compact set K ⊂ S ∖ V

with respect to ρ (see Rmk. 1.1.7). Taking K to be Ws, we have diamρ(fn(Ws)) → ∞,
which contradicts the fact that

{
fn(Ws)

}
n

is contained in a compact set (Prop. 1.3.7).
Therefore, Ws must consist only of one point, so Ws = {ws}.

To end the proof, it is enough to show that Ls cannot contain any escaping point.
Indeed, this would imply, together with the previous lemma, that Ls ⊂

{
ws,∞

}
and,

since Ls is connected and it cannot be equal to ∞, necessarily Ls =
{
ws

}
.

By Proposition 1.3.7, fn(γ∞
s ) and fn(Ws) are contained in the half-plane {Re z < R}.

Assume the dynamic ray γ∞
s accumulates at an escaping point z. Since z is escaping and

has itinerary s, by Theorem 1.2.3(a), there exists n0 ≥ 0 such that fn0(z) ∈ γσn0 (s) and
Re fn0(z) < −R.

We note that σn0(s) is also a bounded sequence satisfying that
fn(γ∞

σn0 (s)) ⊂ {Re z < R}; and fn0(z) is escaping and fn0(z) ∈ Lσn0 (s). Therefore, there
exists an increasing sequence {tn}n ⊂ R and wn := γ∞

s (tn) → fn0(z), as n → ∞. Let us
choose some m such that tm ≥ −2, and hence wm ∈ γ∞

s ∖ γs, and Re wm < −R. Since
wm is not in the escaping tail, there exists M > 0 such that Re fM(wm) > −2 + π, M
being the minimal integer satisfying this property. Hence, Re fM−1(wm) < −R, so
Re fM(wm) > R (since |f(z)| > Re z, as shown in the proof of Prop. 1.2.2).

Therefore the property fn(γ∞
σn0 (s)) ⊂ {Re z < R} does not hold, leading to a

contradiction.

To end the section, we prove that rays with oscillating sequences do not always land. In
fact, we are going to prove that, for uncountably many sequences, Ls is an indecomposable
continuum which contains the ray γ∞

s . We follow the ideas of Rempe ([Rem03, Thm.
3.8.4], [Rem07, Thm. 1.2]).

Proposition 1.3.9. (Some rays do not land) There exist uncountably many dynamic
rays γ∞

s which do not land.

Proof. First, by Lemma 1.3.5, if we show that, for a non-eventually constant sequence
s, the landing set Ls contains ∞, then the ray γ∞

s do not land. Hence, our goal is to
construct a non-eventually constant sequence s with ∞ ∈ Ls.

Let us denote by 0n a block of n zeroes and by 0 an infinite block of zeroes. Then,
the itinerary s that we construct will be of the form s = 10n110n210n3 . . . for an infinite
sequence {nj}j. We choose the nj’s inductively among countably many choices in each
step, leading to uncountably many non-landing rays at the end.

Assume n1, . . . , nj−1 have been chosen, and consider the sequence sj = 10n1 . . . 10nj−110.
Then, γ∞

sj is a preimage of L+, so it lands at ∞ in both ends. Let us choose tj > −2 such
that

∣∣∣γsj (tj)
∣∣∣ > j. By Theorem 1.2.3 (c), there exists Nj ∈ N such that

∣∣∣γs(tj)
∣∣∣ ≥ j for all

s ∈ Σ2(sj, Nj). We choose nj ≥ Nj.
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Let s be the sequence constructed in this way. Then, s is clearly non-eventually
constant, and ∞ ∈ Ls, since γ∞

s (tj) → ∞, as j → ∞, proving that the ray γ∞
s does not

land. Evidently, by symmetry, the same construction interchanging 0’s by 1’s also gives
non-landing rays.

s1 = 10

s2 = 10n110

s3 = 10n110n210

1

Figure 1.11: Schematic representation of the construction of the non-landing ray γ∞
s , to give a geometric

intuition of the proof, showing the first three steps of the induction. The sequence on the right indicates
the itinerary of the ray. The first ray that is constructed is the one of sequence s1, which is a preimage
of L+. In red, it is marked the point γ∞

s1 (t1). In the next step of the induction, it is chosen s2 in such a
way that γ∞

s2 gets close to γ∞
s1 (t1), so γ∞

s2 wraps along γ∞
s1 . This wrapping is precisely what makes that,

in the limit, we get a non-landing ray.

Corollary 1.3.10. (Some landing sets are indecomposable continua) The landing
set Ls of the non-landing rays of Proposition 1.3.9 is an indecomposable continuum.

Proof. To prove that Ls is an indecomposable continuum, we shall invoke Curry’s Theorem
1.3.2, after checking that Ls does not separate the plane and that γ∞

s ⊂ Ls.
On the one hand, let us observe that effectively Ls cannot separate the plane. We follow

the same argument as in the proof of Lemma 1.3.5. Indeed, if Ls separates C, it should
also separate the strip S. Let R1 be the connected component of S ∖ Ls that contains
the absorbing domain V , so R1 ∩ U ̸= ∅. Let R2 be any other component of S ∖ Ls. We
claim that R2 ∩U ̸= ∅. Indeed, R2 ∩ Ŝ ̸= ∅, because the points that leave S after applying
f are the ones enclosed by f−1(L±) ∩ S, and Ls is not a preimage of L±. The fact that
U = Int(Ŝ) gives that R2 ∩ U ̸= ∅. This is a contradiction because U is connected. We
note that this argument not only proves that Ls cannot separate the plane, but also that
neither γ∞

s nor γ∞
s can separate the plane.

On the other hand, the proof that γ∞
s ⊂ Ls follows the idea of Rempe ([Rem07, Lemma

3.3]) based on the fact that dynamic rays accumulate among them. Indeed, Ls cannot
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intersect any dynamic ray different from γ∞
s . In particular, Ls does not intersect the

dynamic rays γ∞
rn , defined by

rn := s0s1 . . . sn−1rnsn+1sn+2 . . . ,

where rn = 0, if sn = 1, and rn = 1, if sn = 0. By Theorem 1.2.3 (c), it is clear that
γ∞

rn → γ∞
s , as n → ∞, uniformly on every interval (−∞, t0], t0 ∈ R. Moreover, from the

fact that s is not eventually constant and escaping tails are ordered vertically following
the (inverse) lexicographic order, it follows that

{
γ∞

rn

}
n

approximates γ∞
s from above and

from below. Therefore, we redefine the previous sequences as rn,+ := rm, if m ≤ n is the
maximal such that rm > s in the inverse lexicographic order; and rn,− := rm, if m ≤ n is
the maximal such that rm < s in the inverse lexicographic order. Hence, the sequence of
rays

{
γ∞

rn,+

}
n

approximates γ∞
s from above; and

{
γ∞

rn,−

}
n

from below.
Now, assume that γ∞

s ̸⊂ Ls, so we can find t0 such that ε := dist (γ∞
s (t0), Ls) > 0.

Since ∞ ∈ Ls and points in Ls must have itinerary s, it follows that Ls is contained in
the connected component Un of

C∖
(
D(γ∞

s (t0), ε) ∪ γ∞
rn,+ ∪ γ∞

rn,−

)
,

which contains γ∞
s (t), for all t ≤ t1, for some t1 < t0. Therefore,

Ls ⊂ ⋂
n
Un ⊂ γ∞

s ((−∞, t0]). In such a case, γ∞
s would separate the plane into (at least)

two different connected components, what we have proved before that it is not possible.
Therefore, γ∞

s ⊂ Ls, as desired.
Then, it follows from Curry’s Theorem 1.3.2 that Ls is an indecomposable continuum,

as desired.

Finally, we prove Theorem 1.B.

Proof of Theorem 1.B. The existence of uncountably many rays that land follows from
Proposition 1.3.8 (observe that there are uncountably many bounded sequences),
whereas the existence of uncountably many non-landing rays follows from Proposition
1.3.9. On Corollary 1.3.10, we prove that the accumulation set of such non-landing rays
is an indecomposable continuum.

1.4 Accessibility from U of points on ∂U . Proof of Theorem 1.C

This section is devoted to the proof of Theorem 1.C, which relates the accessibility from U

with the previously studied sets: the escaping set, the non-escaping sets and the landing
sets. In particular, Theorem 1.C asserts that all boundary points in the escaping set are
non-accessible, while points in ∂U having a bounded orbit are accessible.

First of all, let us choose as a Riemann map the function φ : D → U such that φ(0) = 0
and φ(R ∩ D) = R, as in [BD99]. With this choice, the associated inner function is

g(z) = 3z2 + 1
3 + z2 .
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It is easy to check that the Denjoy-Wolff point of g is 1. Moreover, since g is a Blaschke
product of degree 2 (and hence there are no critical points in the unit circle), g|∂D is a
2-to-1 covering of ∂D, being 1 the only fixed point. In particular, the preimages of 1 under
g are itself and −1, since φ(R ∩ D) = R and f(−∞) = +∞.

Let us consider the following subsets of the (closed) unit disk

D0 := D ∩ {Im z > 0} D1 := D ∩ {Im z < 0} ,

as shown in Figure 1.12. We define the itinerary for a point on ∂D in the following way.

Definition 1.4.1. (Itineraries on ∂D) Let ξ ∈ ∂D. If gn(ξ) ̸= 1, for all n ≥ 0, then the
itinerary of ξ is defined as the sequence S (ξ) = s = {sn}n ∈ Σ2 satisfying gn(ξ) ∈ Dsn .

If there exists n0 ≥ 0 such that gn0(ξ) = 1, then the itineraries of ξ, S (ξ), are defined
as the two sequences sj = {sj

n}n ∈ Σ2, j = 0, 1, satisfying gn(ξ) ∈ Dsn for n ≤ n0 − 2,
s0

n0−1 = 1, s1
n0−1 = 0 and sj

n = j, for n ≥ n0.

Hence, we have just defined a multivalued function

S : ∂D −→ Σ2.

We note that, since every point in ∂D has an itinerary, the domain of S is ∂D. Moreover,
we claim that S is injective, i.e. that two different points in the unit circle cannot have
the same itinerary. This is due to the expansiveness of the map g|∂D. Indeed,

g′(z) = −16z
(3z2 + 1)2 ,

and hence, for ξ ∈ ∂D, it holds

|g′(ξ)| = 16 |ξ|
|3ξ2 + 1|2

≥ 16
(3 |ξ2| + 1)2 ≥ 1.

We also shall consider its inverse

S −1 : Σ2 −→ ∂D,

which is a single-valued function. Moreover, S −1 is surjective, but not injective, and
commutes with the shift map σ in Σ2.

Since S is only multivalued when considering eventual preimages of 1, it follows that
S is a bijection if we restrict ourselves to non-eventually constant sequences in Σ2 and
points in ∂D which are not eventual preimages of 1.

The following proposition is the key result which relates itineraries in ∂D and in Ŝ, and
will clarify the choice of the itineraries in ∂D.

Proposition 1.4.2. (Correspondence between itineraries) Let ξ ∈ ∂D. If gn(ξ) ̸= 1,
for all n ≥ 0, and s = S (ξ) then Cl(φ, ξ) = γ∞

s . If there exists n0 ≥ 0 such that
gn0(ξ) = 1 and {s0, s1} = S (ξ), then Cl(φ, ξ) = γ∞

s0 ∪ γ∞
s1 .
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Proof. Observe that, according to the chosen Riemann map φ : D → U , it holds that
φ(Int D0) ⊂ Ω0 and φ(Int D1) ⊂ Ω1 (see Fig. 1.12). Moreover, φ((−1, 1)) = R ⊂ U .

Hence, if ξ ∈ ∂D and ξ /∈ {−1, 1}, then ξ ∈ Di, and so does a neighbourhood of ξ
in D. Hence, Cl(φ, ξ) ⊂ Ωi, for some i ∈ {0, 1}. By continuity of g, every sequence in
D converging to ξ maps under g to a sequence converging to g(ξ). If ξ ∈ ∂D is not a
preimage of 1, then g(ξ) /∈ {−1, 1}, so f(Cl(φ, ξ)∩C) ⊂ Ωj, for some j ∈ {0, 1}. Repeating
inductively the same argument, we get that the itinerary of ξ determines completely the
itinerary of points in Cl(φ, ξ), so

Cl(φ, ξ) ⊂ {z ∈ ∂U : I(z) = S (ξ)} ∪ {∞} ,

if ξ ∈ ∂D is not an eventual preimage of 1.
On the other hand, consider 1 ∈ ∂D, S (1) = {0, 1}. We note that, for any sequence of

points {wk}k ⊂ D0 converging to 1, and for all n ≥ 0, there exists k0 = k0(n) such that
{gn(wk)}k≥k0

⊂ D0; and we observe that 1 is the only point in ∂D with this property.
Similarly, if z ∈ ∂U and for any sequence {zk}k ⊂ Ω0 converging to z, for all n ≥ 0
there exists k0 such that {fn(zk)}k≥k0

⊂ Ω0, then z ∈ L+. Therefore, for any sequence
{wn}n ⊂ D0, wn → 1, any accumulation point of {φ(wn)}n must be in L+ ∪ {∞}. The
analogous argument works similarly with D1 and L−. Hence,

Cl(φ, ξ) ⊂ L+ ∪ L− ∪ {∞} = {z ∈ ∂U : I(z) ∈ {0, 1}} ∪ {∞} .

Therefore, if ξ is an eventual preimage of 1, and hence S (ξ) = {s0, s1}, it holds

Cl(φ, ξ) ⊂
{
z ∈ ∂U : I(z) ∈

{
s0, s1

}}
∪ {∞} .

We note that, given two different sequences r, s ∈ Σ2, the sets of points in ∂U having
these itineraries are disjoint, i.e.

{z ∈ ∂U : I(z) ∈ r} ∩ {z ∈ ∂U : I(z) ∈ s} = ∅,

since a point in ∂U has a unique itinerary. Moreover, any point z ∈ ∂U must belong to
at least one cluster set, hence the previous three inclusions are in fact equalities. The fact
that all points in ∂U are in the closure of a hair ends the proof of the proposition.

Let us observe that the previous proposition gives, in particular, a way to compute the
impression of the prime end at 1, alternative to the one in [BD99, Thm. 6.1].

Corollary 1.4.3. (Prime end at 1) The prime end of U which corresponds by the
Riemann map φ to 1 has the impression L+ ∪ L− ∪ {∞}. Equivalently, Cl(φ, 1) =
L+ ∪ L− ∪ {∞}.

The previous correspondence between itineraries and the fact that in each cluster set
Cl(φ, ξ) there is at most one accessible point, imply that there is at most one accessible
point per itinerary. In particular, in each hair and its landing set there is at most one
accessible point.

A first study on accessibility and radial limits was carried out by Baker and Domínguez,
characterizing the accesses to infinity.
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Figure 1.12: Representation of the Riemann map φ : D → U , which fixes the real axis. The regions
D0, D1, Ω0 and Ω1 are also represented, and it is clear that φ(D0) ⊂ Ω0 and φ(D1) ⊂ Ω1 implying the
correspondence between itineraries.

Theorem 1.4.4. (Accesses to infinity, [BD99]) Accesses from U to infinity are
characterized by the eventual preimages of 1, i.e.

{ξ : φ∗(ξ) = ∞} = {ξ : gn(ξ) = 1, for some n ≥ 0}.

Next, we prove Theorem 1.C, which asserts that escaping points are non-accessible
from U , while points in ∂U having a bounded orbit are all accessible from U . Using
the Correspondence Theorem II.4.6 between accesses and radial limits, we rewrite the
statement of Theorem 1.C as follows.

Theorem 1.C. (a) Let ξ ∈ ∂D such that the radial limit z := φ∗(ξ) exists. Then, z is
non-escaping.

(b) Let z ∈ ∂U be a point whose orbit is bounded. Then, there exists ξ ∈ ∂D such that
φ∗(ξ) = z, i.e. z is accessible from U .

Proof. (a) The proof is based on the one developed by Baker and Domínguez in [BD99,
Thm. 6.3].

Assume z := φ∗(ξ) is an escaping point and let us define the open set

W :=
{
z ∈ S : Re z < −2 and |Im z| > π

2

}
.

Iterating the function if needed, we can assume fn(z) ∈ W , for all n ≥ 0. Since the
radial segment

φθ := {φ(rξ) : r ∈ (0, 1)}

lands at z, one can choose r0 ∈ (0, 1) such that γ := {φ(rξ) : r ∈ (r0, 1)} ⊂ W . For
points in W we have Re f(z) < Re z. Hence, since γ is connected and fn(z) ∈ W

for n ≥ 0, we have fn(γ) ⊂ W , for all n ≥ 0. This is a contradiction because γ ⊂ U ,
so points in γ must converge to +∞.
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(b) First, we note that, by the the results in Section 1.3, the only points in Ŝ with
bounded orbit are endpoints ws for bounded sequences s ∈ Σ2. Therefore, the goal
is to prove that, if ξs ∈ ∂D has itinerary s ∈ Σ2, and s is a bounded sequence, then
φ∗(ξs) = ws. We note that the radial cluster set ClR(φ, ξs), which is connected, is
contained in the cluster set Cl(φ, ξs), and for a bounded sequence, it holds

Cl(φ, ξs) = γ∞
s = γ∞

s ∪
{
ws

}
∪ {∞} ,

by Propositions 1.3.8 and 1.4.2.

Hence, it is enough to show that, if s is a bounded sequence, then the radial cluster
set ClR(φ, ξs) cannot contain any escaping point.

Recall that g|∂D is conjugate to the doubling map. Moreover, since s contains at
most N consecutive 0’s and 1’s, there exist 0 < θ1 < θ2 < π such that θ1 and θ2 are
eventual preimages of 1 and gn(eiθs) ∈

(
eiθ1 , eiθ2

)
∪
(
e−iθ2 , e−iθ1

)
. Then, Rθ1 and Rθ2

are curves starting at 0 and landing at −∞ approaching L+. Since φ is a bijection,
fn(Rs) is contained in the region bounded by Rθ1 and Rθ2 and its reflection along
the real axis. Therefore, there exists R > 0 such that, if we consider the open set
W defined as before and

W ′ :=
{
z ∈ S : Re z < −R and |Im z| < π

2

}
,

then fn(Rs) ∩W ′ = ∅, for all n ≥ 0. Compare with Figure 1.13.

φ

g
f

L+

L−

eiθ0eiθ1

Rθ0

Rθ1

Figure 1.13: Schematic representation of the region bounded by Rθ1 and Rθ2 and its reflection along
the real axis, where fn(Rs) is contained, for all n ≥ 0.

Assume the radial cluster set contains an escaping point z. Iterating the function if
needed, we can assume Re fn(z) < −R, for all n ≥ 0, so z ∈ W . Then, there exists
a sequence of real numbers {tn}n such that tn → +∞ and zn := γ∞

s (tn) → z, as
n → ∞. Without loss of generality, since z ∈ W , we shall assume {zn}n ⊂ W . For
points in W we have Re f(z) < Re z, so they either belong to W or to W ′. But
W ′ has been defined so that fn(Rs) ∩ W ′ = ∅, so

{
fk(zn)

}
∈ W for all k ≥ 0: a

contradiction, since {zn}n ⊂ U , and points in U converge to +∞.
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Remark 1.4.5. Alternatively, Theorem 1.C can be seen as a consequence from the
results of [BR20]. Indeed, in [BR20, Sect. 6], it is proved that, for functions in class B
and bounded postsingular set, accessible points in the boundary of an invariant Fatou
component coincide with the endpoints of the hairs lying in its boundary (Remark 6.11).
Such result can be applied to h(w) = we−w, semiconjugate to f(z) = z + e−z (Sect. 1.1),
to deduce that points with bounded orbit are accessible from U , since they are the
endpoint of a hair in ∂U .

Nevertheless, although Theorem 1.C can be seen as a consequence of this more general
result, it relies strongly on the study of the landing sets of the dynamic rays, carried out
in the previous section, which has to be done specifically for our function. Moreover, our
construction shows explicitly the relation between the dynamics of the inner function in
∂D and the dynamics of f in ∂U , which was the main goal of the paper.

1.5 Periodic points in ∂U . Proof of Theorem 1.D

This last section of the paper is dedicated to prove Theorem 1.D, which asserts that
periodic points are dense in ∂U . Although it is known that periodic points are dense in
the Julia set, if we restrict ourselves to the boundary of a Baker domain, it is not known,
in general, the existence of a single periodic point.

The general argument used to prove that periodic points are dense in the Julia set (e.g.
[CG93, Thm. III.3.1]) cannot be used, since it gives no control about the resulting periodic
point. The proof we present allows us to find a periodic point in any neighborhood of any
point in ∂U , whose orbit is entirely contained in S, and hence implying that the periodic
point is in ∂U .

Theorem 1.D. Periodic points are dense in ∂U .

Proof. In view of Theorem II.5.4, it is enough to approximate z ∈ ∂U having a dense orbit
by periodic points in ∂U . Let us fix ε > 0 and consider the disk D(z, ε). Without loss
of generality, we can assume D(z, ε) ⊂ S and D(z, ε) ∩ V = ∅, where V is the absorbing
domain defined in Section 1.1. We also assume ε < 1.

Recall that f is expanding in S ∖ V and uniformly expanding in any left-half plane
intersected with it (see Rmk. 1.1.7). In particular, the map is uniformly expanding in
S ∩ {Re z < −2 + ε} with constant of expansion λ > 1.

Take n0 > 0 such that λn0 > 2. Since the orbit of z is assumed to be dense in ∂U , it
visits infinitely many times S ∩ {Rez < −2}. Let n1 be such that

# {n < n1 : Re fn(z) < −2} ≥ n0.

Since the orbit of z is dense, there exists n2 > n1 with zn2 := fn2(z) ∈ D(z, ε). Then,
ϕs0 ◦ · · · ◦ ϕsn2−1(zn2) = z, for a suitable choice of s0, . . . , sn2−1 ∈ {0, 1}.

We claim that ϕs0 ◦· · ·◦ϕsn2−1(D(z, ε)) ⊂ D(z, ε). Indeed, since D(z, ε)∩V = ∅, we have
D(z, ε) = Dρ(z, ε), for the ρ-distance defined in 1.1.4. The forward invariance of V gives
ϕs0 ◦ · · · ◦ ϕsn(D(z, ε)) ⊂ S ∖ V , for all n ≥ 0. Moreover, since inverses are contracting, if
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ϕs0 ◦· · ·◦ϕsn(z) ∈ S∩{Re z < −2}, we have ϕs0 ◦· · ·◦ϕsn(D(z, ε)) ⊂ S∩{Re z < −2 + ε}.
Hence, after applying n2 inverses, since the iterated preimages of D(z, ε) are contained in
{Re z < −2 + ε} at least n0 times, ρ-distances in D(z, ε) are contracted by a factor less
than 1

λn0 . Therefore we have:

ρ(ϕs0 ◦· · ·◦ϕsn2−1(z), z) = ρ(ϕs0 ◦· · ·◦ϕsn2−1(z), ϕs0 ◦· · ·◦ϕsn2−1(zn2)) ≤ 1
λn0

ρ(z, zn2) ≤ 1
2ε.

Now let w ∈ D(z, ε), then

ρ(ϕs0 ◦ · · · ◦ ϕsn2−1(w), ϕs0 ◦ · · · ◦ ϕsn2−1(z)) ≤ 1
λn0

ρ(w, z) ≤ 1
2ε.

Therefore, applying the triangle inequality, one deduces that ϕs0 ◦· · ·◦ϕsn2−1(w) ∈ D(z, ε),
for any w ∈ D(z, ε), as desired.

Finally, observe that ρ(ϕs0 ◦ · · · ◦ ϕsn2−1 is well-defined in D(z, ε), and

ϕs0 ◦ · · · ◦ ϕsn2−1(D(z, ε)) ⊂ D(z, ε).

Hence, Brouwer fixed-point theorem guarantees the existence of a fixed point z0 for ϕs0 ◦
· · ·◦ϕsn2−1 in D(z, ε). This point is periodic for f . Moreover, since its orbit is all contained
in S, we have z0 ∈ ∂U , by Proposition 1.2.4. This ends the proof of Theorem 1.D.
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Chapter 2
Boundary dynamics in unbounded Fatou

components of entire maps

In this chapter, we aim to generalize some of the results obtained in Chapter 1 for the
doubly parabolic Baker domain of f(z) = z+e−z to a wider class of Fatou components. As
mentioned in the introduction, the topological structure given by the accesses to infinity,
together with some control on the singular values, will be enough to deduce topological
and dynamical properties of the boundary of certain Fatou components.

The objectives of this chapter are threefold. First, we aim to give a topological
description of the boundary of U from the point of view of its Riemann map; second, we
wish to give analytical properties for the associated inner function g; and last, we wish
to explore the existence, density and accessibility of periodic points and escaping points
in ∂U , i.e. points that converge to ∞ under iteration.

Remark. (Ergodic and recurrent Fatou components) In this section, we shall use
the following terminology in order to simplify the notation: we say that U is an ergodic
(resp. recurrent) if g∗ : ∂D → ∂D is ergodic (resp. recurrent). Siegel disks, attracting and
parabolic basins are both ergodic and recurrent. Hyperbolic and simply parabolic Baker
domains are never ergodic nor recurrent. Doubly parabolic Baker domains are always
ergodic, but they may be recurrent or not. Note that the properties of the boundary
map of a Fatou component (both from the topological and the dynamical point of view)
depend essentially on this ergodic classification, rather than on the precise type of Fatou
component.

Topology of the boundary of unbounded invariant Fatou components

In the setting described above, understanding the boundary behaviour of the Riemann
map φ : D → U is used not only to study the dynamics of f on the boundary, but also to
describe the topology of ∂U . We note that, a priori, continuity of the Riemann map in D
cannot be assumed, since the continuous extension only exists if ∂U is locally connected,
something impossible if, for example, U is unbounded and it is not a univalent Baker

95



domain [BW91]. Hence, given a point ξ ∈ ∂D, we shall work with its radial limit φ∗(ξ)
(if it exists), and its cluster set Cl(φ, ξ). We prove the following.

Theorem 2.A. (Topological structure of ∂U) Let f be a transcendental entire
function, and let U be an invariant Fatou component, such that ∞ is accessible from U .
Assume U is ergodic. Let φ : D → U be a Riemann map. Then, ∂U is the disjoint union
of cluster sets Cl(φ, ·) of φ in C, i.e.

∂U =
⊔

ξ∈∂D
Cl(φ, ξ) ∩ C.

Moreover, either Cl(φ, ξ) ∩ C is empty, or has at most two connected components. If
Cl(φ, ξ) ∩ C is disconnected, then φ∗(ξ) = ∞.

Observe that this is quite a strong property. For example, there cannot be points in
∂U with more than one access from U , since they would belong to the cluster set of at
least two points in ∂D.

We shall see that Theorem 2.A plays an important role in the proofs of the main
dynamical results in this paper, but it also has some interesting more direct consequences,
like for example the following generalization of the result of Bargmann [Bar08, Corol.
3.15], which states that the boundary of a Siegel disk cannot have accessible periodic
points.

Corollary 2.B. (Periodic points in Siegel disks) Let f be a transcendental entire
function, and let U be a Siegel disk, such that ∞ is accessible from U . Then, there are no
periodic points on ∂U .

Theorem 2.A improves the understanding of the topology of the boundary of unbounded
Fatou components for transcendental entire functions, initiated by the work of Devaney
and Golberg [DG87], on the completely invariant attracting basin Uλ of Eλ(z) := λez, with
0 < λ < 1

e
. It was shown, on the one hand, that points eiθ ∈ ∂D such that φ∗

λ(eiθ) = ∞ are
dense in ∂D; and, on the other hand, that each cluster set Cl(φλ, e

iθ) is either equal to {∞}
or it consists of an unbounded curve landing at a finite accessible endpoint. This result
was generalized to totally invariant attracting basins of transcendental entire function f ,
with connected Fatou set [BK07]. We note that both in [DG87] and in [BK07], symbolic
dynamics (and tracts) play an important role in their proofs, which depend essentially on
the class of functions they consider, and it does not lead to an obvious generalization to
arbitrary Fatou components.

In this context, Theorem 2.A should be viewed as a susbtantial generalization of the
results in [BK07], since it applies to arbitrary ergodic invariant Fatou components with
infinity accessible. We remark that our proof does not rely on symbolic dynamics, but
on the fact that radii landing at infinity under the Riemann map are dense in ∂D, and
they separate the plane into infinitely many regions, each of them containing a different
cluster set, as well as on a deep analysis of clusters sets using null-chains of crosscut
neighbourhoods.
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Inner functions associated to unbounded invariant Fatou components

As in Chapter II, to each invariant Fatou component U of a transcendental entire function
f we associate an inner function g : D → D via a Riemann map φ : D → U . Such inner
function is unique up to conformal conjugacy in the unit disk, and it is well-known that it
is either a finite Blaschke product (when f |U has finite degree); or conjugate to an infinite
Blaschke product (when f |U has infinite degree) (Frostman, [Gar07, Thm. II.6.4]). In the
former case, g extends to a rational function g : Ĉ → Ĉ, whereas in the latter there exists
at least a point ξ ∈ ∂D where g does not extend holomorphically to any neighbourhood
of it, what we call a singularity (Def. II.1.4).

A natural problem in this setting is to relate the inner function g with the function f |U ,
in the sense of understanding if every inner function can be realised for some f |U , or if
considering a particular class of functions f limits the possible associate inner functions
g; for instance if a bound on the number of singularities of g in ∂D exists. Note that, in
general, there exist inner functions for which every point in ∂D is a singularity.

A first (naive) remark is that singularities of g are related to accesses from U to infinity,
since the singularities of g share many properties with the essential singularity of f (e.g.
both are the only accumulation points of preimages of almost every point). In particular,
bounded invariant Fatou components are always associated with finite Blaschke products.
In fact, it is shown in [BFJK17, Prop. 2.7] that, if ∞ is accessible from U , then

E(g) ⊂ Θ∞ = {ξ ∈ ∂D : the radial limit φ∗(ξ) is equal to ∞}.

We note that, by the results of [BD99, Bar08], when U is ergodic, the latter set is the
whole unit circle, and hence the result does not give actual information on the singularities
of g.

A different approach is found in [EFJS19, ERS20], which relies on having a great control
on the singular values of f , i.e. points for which not every branch of the inverse is locally
well-defined around it. Indeed, assuming that the orbits of singular values belong to a
compact set in F(f) (i.e. assuming f to be hyperbolic), they give explicit bounds for
the number of singularities. One can see from the proof that it is enough to assume that
f behaves as if it was a hyperbolic function when restricted to U i.e. that the orbits of
singular values in U are compactly contained in U . We shall not enter into the details at
this point, but keep in mind the main idea: controlling the singular values of f allows to
bound the singularities of g, and it is enough to have this control on the singular values
which actually lie inside U .

Definition. (Postsingularly separated Fatou components) Let f be a
transcendental entire function, and let U be an invariant Fatou component. We say that
U is a postsingularly separated Fatou component (PS Fatou component) if there exists a
domain V , such that V ⊂ U and

P (f) ∩ U ⊂ V.
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Hence, a PS Fatou component is a Fatou component whose postsingular values are
allowed to accumulate at ∞, as long as they accumulate through accesses to ∞. Indeed,
the role of the domain V is precisely to control in which accesses of U do the postsingular
values accumulate.

Observe that PS Fatou components can be seen as a generalization of Fatou components
of hyperbolic functions. In fact, if U is a Fatou component of a hyperbolic function f ,
then P (f) ∩ U is contained in a compact set V in U . PS Fatou components allow V not
to be compact, we only ask V ⊂ U .

Note that there is no requirement for P (f) outside U ; in particular, P (f) is allowed to
accumulate in ∂U .

U

Vφ

D

Figure 2.1: Schematic representation of how a postsingularly separated Fatou component would look
like. The Fatou component of the left is a Baker domain of z + e−z. For this particular example, the
domain V could have been taken simpler. However, we wanted to illustrate how V looks like in general.
As we will prove in the Technical Lemma 1, given a Riemann map φ : D → U , φ−1(V ) is a domain
enclosed by curves landing in ∂D.

The postsingularly separated condition is sufficient to describe the singularities of g, as
we show in the following theorem.

Theorem 2.C. (Singularities for the associated inner function) Let f be a
transcendental entire function, and let U be an invariant Fatou component, such that ∞
is accessible from U . Let φ : D → U be a Riemann map, and let g := φ−1 ◦ f ◦ φ be the
corresponding associated inner function. Assume U is postsingularly separated.
Then, the set of singularities of g has zero Lebesgue measure in ∂D. Moreover, if ξ ∈ ∂D
is a singularity for g, then φ∗(ξ) = ∞.

Recall that we do allow postsingular values to accumulate at ∞. Hence, in contrast to
the setting considered in [EFJS19, ERS20], we allow φ−1(SV (f)) to accumulate in ∂D.
Moreover, Theorem 2.C strengthens the result in [BFJK17, Prop. 2.7], showing that a
singularity not only must be approximated by points with radial limit infinity, but itself
must have radial limit infinity, in accordance with the a priori naive idea of relating
singularities with accesses to infinity.
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Dynamics on the boundary of unbounded invariant Fatou components

Finally, we shall apply the techniques developed throughout the paper to study periodic
points in ∂U , and also escaping points, in this general setting. To this end, and being
very far from the rational case where the only singularities of f−1 are a finite number of
critical values, we need a slightly stronger condition on the orbits of the singular values
of f . More precisely, we restrict to the following class of Fatou components, which is a
subset of the previous ones.

Definition. (Strongly postsingularly separated Fatou components) Let f be a
transcendental entire function, and let U be an invariant Fatou component. We say that
U is a strongly postsingularly separated Fatou component (SPS Fatou component) if there
exists a simply connected domain Ω and a domain V such that V ⊂ U , U ⊂ Ω, and

P (f) ∩ Ω ⊂ V.

Hence, the control on the postsingular set that we require is two-fold. On the one hand,
to control the postsingular values inside U , we ask U to be postsingularly separated. On
the other hand, the existence of the simply connected domain Ω is needed to control the
postsingular values in a neighbourhood of ∂U .

We note that this condition is analogous to the one given by Pérez-Marco [PM97] for
the study of the boundary of Siegel disks.

Example. (SPS Fatou components) Many of the examples of unbounded invariant
Fatou components that have been explicitly studied are SPS. Examples of basins of
attraction include the ones of hyperbolic functions studied in [BK07], as well as the
hyperbolic exponentials [DG87]. However, the results we prove are already known for
this class of functions, since J (f) = ∂U . A more significant example are the basins of
attraction of f(z) = z − 1 + e−z. Regarding Baker domains, consider Fatou’s function
f(z) = z + 1 + e−z, studied in [Evd16]; the Baker domains of f(z) = z + e−z,
investigated in [BD99, FH06] and in Chapter 1; and the ones in [FH06, Ex. 4].

In all cases, singular values are all critical values and lie in the Baker domains, at a
positive distance from the boundary, even though their orbits accumulate at ∞. Observe
however that they do so through only one access, and that there is an absorbing domain
V ⊂ U with P (f) ⊂ V . This implies, in particular, that iterated inverse branches are
globally well-defined around ∂U . Note that this situation is much simpler than the general
case that we address in our theorem, and in fact, if this were always the case, our proofs
could be simplified to a great extent (due to this global definition if inverse branches).

We prove the following.

Theorem 2.D. (Boundary dynamics) Let f be a transcendental entire function, and
let U be an invariant Fatou component, such that ∞ is accessible from U . Assume U is
strongly postsingularly separated. Then, periodic points in ∂U are accessible from U .
Moreover, if U is recurrent, then both periodic and escaping points are dense in ∂U .
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Remark. (Parabolic basins) Note that parabolic basins cannot be PS (and hence
neither SPS), due to the fact that the parabolic fixed point is always in P (f). However,
as we see in Section 2.5, our results apply if the parabolic fixed point is the only point in
∂U ∩ P (f).

2.1 Ergodic Fatou components and boundary structure.
Theorem 2.A and Corollary 2.B

In this section, we prove Theorem 2.A, which gives a detailed description of the topology of
the boundary of ergodic Fatou components, i.e. Fatou components for which the boundary
map f : ∂U → ∂U is ergodic. The main tool, and the reason to restrict to ergodic Fatou
components, is Theorem II.5.6, which asserts that, for an ergodic Fatou component U
and φ : D → U a Riemann map,

Θ∞ = {ξ ∈ ∂D : φ∗(ξ) = ∞} = ∂D.

Remark 2.1.1. (Non-ergodic Fatou components) We note that ergodicity is a
sufficient condition, but not necessary. Indeed, there are examples of non-ergodic Fatou
components that satisfy Θ∞ is dense in ∂D [Bar08, Example 3.6]. Likewise, it is
well-known that the Theorem II.5.6 does not hold for an arbitrary invariant Fatou
components for which infinity is accessible, as shown for example by univalent Baker
domains whose boundaries are Jordan curves [BF01].

Proof of Theorem 2.A. We shall prove first that all cluster sets are disjoint in C and its
union is ∂U , i.e. if p ∈ ∂U ∩ C, there exists a unique ξ ∈ ∂D such that p ∈ ClC(φ, ξ).

To prove the existence of such ξ it is enough to consider a sequence {zn}n ⊂ U such that
zn → p, and {wn := φ−1(zn)}n ⊂ D. Then, {wn}n must have at least one accumulation
point, which must be in ∂D. For any such accumulation point ξ, we have p ∈ Cl(φ, ξ).

To prove uniqueness, assume, on the contrary, that there exist ξ1, ξ2 ∈ ∂D such that
p ∈ Cl(φ, ξ1) ∩ Cl(φ, ξ2), and ξ1 ̸= ξ2. Since Θ∞ is dense in ∂D (Thm. II.5.6), we can
choose ζ1, ζ2 ∈ Θ∞ such that ζ1 < ξ1 < ζ2 < ξ2 (in the circular order). The radial
segments

Rζi
= {rζi : r ∈ [0, 1)} ,

i = 1, 2, give a partition of D. Since φ∗(ζi) = ∞, φ(Rζ1) ∪ φ(Rζ2) give a partition of C
(see Fig. 2.2).

Therefore, given any two sequences {w1
n}n , {w2

n}n ⊂ D, with w1
n → ξ1 and w2

n → ξ2,
the corresponding sequences in U lie in different connected components of C∖ (φ(Rζ1) ∪
φ(Rζ2)), for n large enough. Hence, they cannot accumulate at the same (finite) point,
leading to a contradiction.

To prove the second statement notice that ClC(φ, ξ) is disjoint from any other cluster
set. Therefore, any connected component of ClC(φ, ξ) is, in fact, a connected component
of ∂U . Hence, by Proposition II.4.8, each cluster set has either one or two connected
components, that must be unbounded, since the cluster set is connected in Ĉ.
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Figure 2.2: Diagram of the setup of the proof of Theorem 2.A.

Remark 2.1.2. (Connected components per cluster set) We note that, for the
the exponential attracting basin in [DG87], all cluster sets have exactly one connected
component in C. However, the previous theorem is sharp, as shown by the function
f(z) = z + e−z. For the invariant Baker domains of this function, the cluster set of every
point in Θ∞ has two connected components (see Chapter 1).

2.1.1 Siegel disks. Proof of Corollary 2.B

For entire functions, it is known that Siegel disks have no accessible boundary periodic
points [Bar08, Corol. 3.15]. An easy consequence of Theorem 2.A is that, if ∞ is accessible
from the Siegel disk, in fact there are no periodic points at all.

Proof of Corollary 2.B. Assume there exists p ∈ ∂U periodic, i.e. fn(p) = p, for some
n ≥ 1. Then, p ∈ Cl(φ, ξ), for a unique ξ ∈ ∂D, since cluster sets are disjoint (Theorem
2.A). For a Siegel disk, the associated inner function g is an irrational rotation, so it
extends continuously to ∂D. Hence, by Lemma II.5.2,

fn(ClC(φ, ξ)) ⊂ ClC(φ, gn(ξ)).

Now fn(p) = p ∈ ClC(φ, ξ) ∩ClC(φ, gn(ξ)). But this intersection is empty unless gn(ξ) =
ξ, and this is a contradiction because g is an irrational rotation.

2.2 Technical Lemmas

In this section we prove some technical results which are the basis for the proofs of
Theorems II.3 and II.4. Basically, we aim to relate the hyptothesis of being postsingularly
separated (PS), or strongly postsingularly separated (SPS), with the possibility of defining
inverse branches around points in ∂U . To do so, we construct in both cases appropriate
neighbourhoods of each component of ∂U , in which we can define all inverse branches
globally.

First, recall that if a Fatou component is PS, then there exists a domain V , such that
V ⊂ U and

P (f) ∩ U ⊂ V.
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Note that, in this case, P (f) ∩ ∂U may be non-empty, so inverse branches may not be
defined around points in ∂U . However, we can still define the inverse branches in a one-
sided neighbourhood of each connected component C of ∂U , or, equivalently, in sufficiently
small crosscut neighbourhoods. This is the content of Technical Lemma 1.

Technical Lemma 1. Let f be a transcendental entire function, and let U be an invariant
Fatou component, such that ∞ is accessible from U . Assume U is PS, and let φ : D → U

be a Riemann map.
Then, for any component C of ∂U , there exists a domain ΩC such that C ⊂ ΩC, ΩC is
simply connected, ΩC ∩ U is connected, and ΩC is disjoint from P (f) ∩ U .
In addition, for all ξ such that ClR(φ, ξ)∩C ⊂ C, the set φ−1(ΩC ∩U) contains a crosscut
neighbourhood of ξ.

If, additionally, U is SPS, i.e. if there exists a simply connected domain Ω such that
U ⊂ Ω, and

P (f) ∩ Ω ⊂ V,

then inverse branches can be defined around each component of ∂U globally, i.e. for each
component C of ∂U there exists a simply connected domain ΩC such that all inverse
branches are well-defined in ΩC . Moreover, all inverse branches are locally contracting
with respect to the hyperbolic metric in a certain neighbourhood of ∂U (see Technical
Lemma 2) and satisfy the following property, which is crucial in the proof of Theorem
2.D.

Definition 2.2.1. (Proper invertibility) Let f be a holomorphic function, and let U
be an invariant Fatou component. Let z ∈ ∂U . We say f is properly invertible (at z with
respect to U) if, there exists r > 0 such that for every w ∈ ∂U such that fn(w) = z there
exists a branch Fn of f−n which is well-defined in D(z, r), and satisfies

Fn(D(z, r) ∩ U) ⊂ U.

The definition of the inverse branches and their properties are collected in Technical
Lemma 2. In the sequel, let W := C ∖ P (f), and denote by ρW the hyperbolic metric
in W . We use standard properties of the hyperbolic metric, which can be found e.g. in
[CG93, Sect. I.4], [BM07].

Technical Lemma 2. Let U be a Fatou component satisfying the assumptions of
Technical Lemma 1. If, additionally, U is SPS, then the domain ΩC can be chosen to
satisfy the following properties.

1. ΩC ⊂ W , so ΩC ∩ P (f) = ∅.

2. For all z ∈ ∂U , there exists a neighbourhood Dz ⊂ W of z such that all branches
Fn of f−n are well-defined in Dz, Fn(Dz) ⊂ W and

ρW (Fn(x), Fn(y)) ≤ ρW (x, y), for all x, y ∈ Dz.
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3. For all z ∈ ∂U , f is properly invertible at z with respect to U .

The end of the Section, which is not needed for the proofs of Theorems C and D, is
dedicated to further comments on the relationship between proper invertibility and SPS,
and the connection with the concept of local surjectivity.

Proof of Technical Lemma 1

We assume U to be PS. Then, by definition, there exists a domain V such that V ⊂ U

and P (f) ∩ U ⊂ V . Since ∞ is accessible from U , we can assume, without loss of
generality, that ∞ is accessible from V . Indeed, if ∞ is not accessible from V , take a
curve γ : [0, 1) → U , such that γ(0) ∈ V and γ lands at ∞. Then, redefine V to contain
γ.

U
z

V
φ

D ξ

φ−1(γ1)
γ1

γ2

γ3

γ4

ΩC ∩ U

Figure 2.3: Set-up of the proof of Technical Lemma 1 for PS Fatou components.

Now, consider C∖V . Then, the boundary component C is contained in a component of
C∖V , say ΩC . By Theorem I.2.2, ΩC is simply connected, because V ∪{∞} is connected,
and, since V ⊂ U , ΩC ∩U is connected. Since P (f) ∩U ⊂ V , it holds that ΩC is disjoint
from P (f) ∩ U .

Next, let ξ ∈ ∂D be such that Clρ(φ, ξ) ∩ C ⊂ C. We have to see that φ−1(ΩC ∩ U)
contains a crosscut neighbourhood of ξ. Without loss of generality, we assume that V is
bounded by a collection of disjoint curves {γi}i∈I , each of them landing at ∞ from both
ends. By the Correspondence Theorem II.4.6, each φ−1(γi) is a crosscut in D (possibly
degenerate, i.e. such that both its endpoints in ∂D are the same).

To end the proof, we have to see that the crosscut corresponding to

∂(φ−1(ΩC ∩ U)) ∩ D = ∂(φ−1(γi)),

for some i ∈ I, is non-degenerate. Assume, on the contrary, that it is degenerate with
common endpoint ξ ∈ ∂D. By the Correspondence Theorem II.4.6, the two endpoints of
γi define the same access to infinity (the one corresponding to ξ), meaning that γ̂i is a
Jordan curve in Ĉ and ∂U is contained in the connected component of Ĉ ∖ γ̂i which is
not ΩC . Therefore, for any sequence {zn}n ⊂ ΩC ∩ U with zn → ∂̂U , we have zn → ∞.
This is a contradiction with the fact that ΩC is a neighbourhood of C ⊂ ∂U . This ends
the proof of the Technical Lemma 1.
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Proof of Technical Lemma 2

For SPS Fatou components, define ΩC to be the connected component of

Ω ∖ V

in which C is contained (adjusting V so that ∞ ∈ V ). It is straightforward to see that
C ⊂ ΩC , ΩC is simply connected, ΩC ∩U is connected, and ΩC is disjoint from P (f) ∩U .

Now we prove that f is locally expanding in W = C ∖ P (f) with respect to the
hyperbolic metric ρW . Note that W is an open neighbourhood of ∂U and W is backwards
invariant under f , i.e. f−1(W ) ⊂ W .

Proposition 2.2.2. (Set of expansion) Under the assumptions of Technical Lemma 2,
the following holds.

1. f : f−1(W ) → W is locally expanding with respect to the hyperbolic metric ρW , i.e.

ρW (z) ≤ ρW (f(z)) · |f ′(z)| , for all z ∈ f−1(W ).

2. For all z ∈ ∂U , there exists a neighbourhood Dz ⊂ W of z such that all branches
Fn of f−n are well-defined in Dz, Fn(Dz) ⊂ W and

ρW (Fn(x), Fn(y)) ≤ ρW (x, y), for all x, y ∈ Dz.

3. Moreover, if z and Fn(z) belong to the same connected component of W , then there
exists λ ∈ (0, 1) such that

ρW (Fn(x), Fn(y)) ≤ λρW (x, y), for all x, y ∈ Dz.

Proof. Let us check that W satisfies the required properties. Let ρW denote the hyperbolic
metric in W . Note that a priori W cannot be assumed to be connected, so we define ρW

component by component. Indeed, each connected component W̃ of W is a hyperbolic
domain, and hence admits a hyperbolic metric ρ

W̃
. Given z ∈ W , we define

ρW (z) := ρ
W̃

(z),

where W̃ stands for the connected component of W with z ∈ W̃ . Given z, w ∈ W , the
hyperbolic distance is defined as

ρW (z, w) := ρ
W̃

(z, w),

if z and w lie in the same connected component W̃ of W ; and ρW (z, w) = ∞, otherwise.

1. Since W does not contain singular values, given a connected component W1 of
f−1(W ), f : W1 → f(W1) is a holomorphic covering. Note that f(W1) is a connected
component of W . Indeed, f(W1) is connected, and hence contained in a connected
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component W2 of W . Since W does not contain singular values, it holds f(W1) =
W2.
By Schwarz-Pick lemma [CG93, Thm. I.4.1], f is a local isometry, i.e. if z ∈ W1,

ρf−1(W )(z) = ρW1(z) = ρW2(f(z)) |f ′(z)| = ρW (f(z)) |f ′(z)| .

Since f−1(W ) ⊂ W , it holds

ρW (z) ≤ ρf−1(W )(z) = ρW (f(z)) |f ′(z)| , for all z ∈ f−1(W ).

2. Given z ∈ ∂U , we take Dz to be a hyperbolic disk in W of radius small enough so
that Dz is simply connected. Since W is backwards invariant and P (f) ∩W = ∅, it
follows that all branches Fn of f−n are well-defined in Dz and Fn(Dz) ⊂ W .
Now, let x, y ∈ Dz. Since Dz is a hyperbolic disk, it is hyperbolically convex, so
there exists a geodesic γ ⊂ Dz between x and y, and Fn(γ) is a curve joining Fn(x)
and Fn(y). Hence, by statement 1,

ρW (Fn(x), Fn(y)) ≤
∫

Fn(γ)
ρW (s)ds =

∫
γ
ρW (Fn(t)) |F ′

n(t)| dt =

=
∫

γ
ρW (Fn(t)) 1

|(fn)′(Fn(t))|dt ≤
∫

γ
ρW (t)dt = ρW (x, y),

since γ is taken to be a geodesic between x and y.

3. Let W1 be the connected component of W in which z and Fn(z) lie. Hence,
f−n(W1) ∩ W1 ̸= ∅. We claim that any connected component of f−n(W1)
intersecting W1 is strictly contained in W1. Indeed, assume there exists n ≥ 1 such
that fn(W1) = W1. Then, for the map fn, W1 is a neighbourhood of z ∈ J (fn) for
which ⋃

m≥0
fn·m(W1) = W1 ⊂ W = C∖ P (f).

Since P (f) has more than one point, this would contradict the blow-up property of
J (fn).
Therefore, ρW1 < ρf−n(W1), and hence

ρW (w) < ρW (fn(w)) |(fn)′(w)| , for all w ∈ f−n(W1) ∩W1.

Without loss of generality, let us assume that the neighbourhood Dz of z is
compactly contained in W1. Thus, the continuous function

0 < ρW (w)
ρW (fn(w)) |(fn)′(w)| < 1

reaches a maximum in Dz. Therefore, there exists λ ∈ (0, 1) such that

ρW (Fn(x), Fn(y)) ≤ λρW (x, y), for all x, y ∈ Dz,

as desired.
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Thus, the proof of Proposition 2.2.2 is complete.

Remark 2.2.3. (Strict expansion) One may ask if this open set W can be improved
so that the function is strictly expanding on it. This is always the case for hyperbolic
and subhyperbolic functions (see e.g [MB12, BFRG15, RGS17]). The answer is negative
for arbitrary SPS Fatou components, as it can be seen for the doubly parabolic Baker
domains of f(z) = z + e−z (see Chapter 1).

Finally, to end the proof we have to see that for all z ∈ ∂U , there exists r > 0 such
that all branches Fn of f−n with Fn(z) ∈ ∂U are well-defined in D(z, r), and satisfy

Fn(D(z, r) ∩ U) ⊂ U.

We denote by C the connected component of ∂U with z ∈ C, and consider the
neighbourhood ΩC defined previously. Then, the proper invertibility follows from the
properties of the set ΩC . Indeed, since ΩC is simply connected and disjoint from P (f),
any inverse branch defined locally at z ∈ ∂U extends conformally to ΩC . By
construction, ΩC ∩ U is connected, and so is Fn(ΩC ∩ U). By the total invariance of the
Julia and the Fatou set, it follows that Fn(ΩC ∩ U) ⊂ U , as desired. This ends the proof
of Technical Lemma 2.

Proper invertibility, strongly postsingular separation and local surjectivity

Finally, in this section we discuss the necessity of the condition of being SPS. To prove
Theorem 2.D, not only we need to have all inverse branches well-defined locally around
every point in ∂U , which could be achieved simply assuming

P (f) ∩ ∂U = ∅,

but also to have proper invertibility.
Then, the following question arises: is it sufficient to add the assumption of P (f)∩∂U =

∅ to the PS condition to have proper invertibility? The answer is negative in general, so
the hypothesis of being SPS is necessary. We prove this in Proposition 2.2.4.

We note that, if one could prove that any PS Fatou component with P (f) ∩ ∂U = ∅ is,
automatically, SPS, then results of Theorem 2.D (i.e. accessibility and density of periodic
boundary points, and density of escaping boundary points) would hold only assuming the
PS condition and P (f) ∩ ∂U = ∅.

Proposition 2.2.4. (Characterizations of proper invertibility) Let f be a
transcendental entire function, and let U be an invariant Fatou component, such that ∞
is accessible from U . Assume U is PS and P (f) ∩ ∂U = ∅. Then, the following are
equivalent.

(a) U is SPS.
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(b) For each connected component C of ∂U , there exists an open neighbourhood ΩC of
C in which every branch Fn of f−n is well-defined, and, if there exists z ∈ ΩC ∩ U

such that Fn(z) ∈ U , then Fn(ΩC ∩ U) ⊂ U .

We shall rewrite the previous proposition in terms of boundary components and filled
closures, defined as follows.

Definition 2.2.5. (Filled closure) Let X ⊂ C be any connected set in the complex
plane. We define the filled closure of X as

fill(X) := X ∪
(
components Uof C∖X such that ∞ is not accessible from U

)
.

We note that fill(X) is always closed, independently of whether X is closed or not.
We observe that U being SPS is equivalent to

P (f) ∩ fill(U) ⊂ U, and to P (f) ∩ fill(∂U) = ∅.

Recall that fill(A) is closed and does not include the unbounded components of C ∖ A

from which ∞ is accessible. In particular, U ∩ fill(∂U) = ∅, if ∞ is accessible from U .
Hence, in this case, being SPS is equivalent to

P (f) ∩ fill(C) = ∅,

for all connected components C of ∂U . See Figure 2.5 below to have a geometric intuition.

Proposition 2.2.6. (Characterization of proper invertibility for boundary
components) Let f be a transcendental entire function, and let U be an invariant
Fatou component, such that ∞ is accessible from U . Assume U is PS and
P (f) ∩ ∂U = ∅. Let C be a connected component of ∂U . Then, the following are
equivalent.

(a) For all z ∈ C, f is properly invertible at z with respect to U .

(b) P (f) ∩ fill(C) = ∅.

(c) There exists an open simply connected neighbourhood ΩC of C in which all branches
Fn of f−n are well-defined, and, either Fn(ΩC ∩ U) ∩ U = ∅, or Fn(ΩC ∩ U) ⊂ U .

Proof. We address first the equivalence between (b) and (c). To see that (b) implies
(c), observe that, by Technical Lemma 2, there exists a simply connected domain ΩC ,
disjoint from P (f), such that C ⊂ ΩC and ΩC ∩U is connected. Hence, ΩC ∩U is simply
connected, for being the connected intersection of two simply connected sets. In such a
domain, all branches Fn of f−n are well-defined. Moreover, since ΩC ∩U is connected, so
Fn(ΩC ∩ U) is connected. By the total invariance of the Fatou and Julia sets, it follows
that either Fn(ΩC ∩ U) ∩ U = ∅ or Fn(ΩC ∩ U) ⊂ U . Hence, (b) implies (c).

Conversely, we note that if all inverse branches are well-defined in ΩC , then P (f)∩ΩC =
∅. In particular, since ΩC is a simply connected neighbourhood of C, it must contain
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fill(C) (recall that fill(C) consists of C and the components of its complement from which
infinity is not accessible; hence, a simply connected neighbourhood of C includes fill(C)).
Hence, we have

P (f) ∩ fill(C) = ∅.

Therefore, (c) implies (b).
It is left to prove the equivalence between (a) and (c). We note that (c) implies (a)

trivially. Next, we prove that, if (c) does not hold, neither does (a).
By assumption, P (f)∩∂U = ∅. Hence, for every z ∈ C, there exists a sufficiently small

disk D(z, r), r = r(z) > 0, such that every branch Fn of f−n is well-defined in D(z, r).
On the other hand, since U is PS, by Technical Lemma 1, there exists a simply connected
domain ΩC , such that ΩU := ΩC ∩ U is connected, simply connected and disjoint from
P (f) ∩ U .

Since we are assuming that (c) does not hold, we claim that there exists a point z0 ∈
C and n ≥ 1, such that a branch Fn of fn, well-defined in D(z0, r) does not extend
conformally to ΩU . Indeed, if (c) does not hold, then any neighbourhood ΩC of C given
by the Technical Lemma 1 would meet P (f) (outside U). Equivalently, for such ΩC and
ΩU := ΩC ∩ U , any neighbourhood of ΩU is multiply connected (otherwise it would be a
simply connected neighbourhood of C ⊂ ΩC disjoint from P (f), so (c) would hold).

In particular, there exists a point z0 ∈ C and r > 0 so that D(z0, r) ∪ ΩU is multiply
connected and D(z0, r)∪ΩU surrounds points in P (f). Thus, there exists at least a branch
Fn of fn, well-defined in D(z0, r) does not extend conformally to ΩU , as claimed.

Finally, we have to prove that, for such Fn, it does not hold

Fn(D(z, r) ∩ U) ⊂ U.

Indeed, take u0 ∈ D(z0, r) ∩ U , and consider the conformal extension of Fn to ΩU with
basepoint u0. Then, Fn|D(z0,r) is univalent, as well as Fn|ΩU

. However, since Fn does not
extend conformally to ΩU , Fn|D(z0,r)∪ΩU

is a multivalued function. Hence, there exists
w ∈ D(z0, r) ∩ ΩU such that w = fn(w1) = fn(w2), with w1 ∈ Fn(D(z0, r)), w2 ∈ Fn(ΩU).
Hence w1 /∈ U , because otherwise w1 ∈ ΩU and Fn would be multivalued at w ∈ ΩU .
Therefore fn is not properly invertible with respect to U , as desired.

From Proposition 2.2.6 we deduce Proposition 2.2.4.

Proof of Proposition 2.2.4. Observe that U being SPS is equivalent to say that, for every
boundary component C ⊂ ∂U ,

P (f) ∩ fill(C) = ∅.

Then, the equivalence (b)-(c) in Proposition 2.2.6 ends the proof.

Finally, we shall give an intuition of how a non-SPS Fatou component would look like.
First, let us look at the following example of a rational map f which is not properly
invertible.
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Example 2.2.7. (Non-properly invertible function, [Sch97]) The function

f(z) = 64
(z + 3)(z − 3)2 − 3

considered in [Sch97] is not locally surjective with respect to the invariant attracting
basin U (in black in Fig. 2.4). Indeed, the neighbourhood marked in Figure 2.4 is
mapped conformally under f onto the other marked neighbourhood. It is clear that the
corresponding inverse branch send points in U to points in U and to points outside U (in
its preimage V ) simultaneously. For a more precise description of the dynamics, we refer
to [Sch97].

VU

f

Figure 2.4: Dynamical plane of f(z) = 64
(z+3)(z−3)2 − 3, which is not locally surjective.

Note that the previous Fatou component satisfies having a bi-accessible boundary point.
This is never the case for Fatou components of transcendental entire functions: every finite
point in the boundary has a unique access from the Fatou component [Bar08, Thm. 3.14].
Moreover, if U is ergodic, every finite point z ∈ ∂U is contained in a unique cluster set
(Theorem 2.A). Hence, it seems plausible that any PS Fatou component is, automatically,
SPS.

Indeed, a Fatou component not satisfying this condition would have a complicated
boundary: there would exist a connected component C of ∂U such that

P (f) ∩ fill(C) ̸= ∅.

Since we are assuming that P (f) ∩ C = ∅, it follows that there would exist a connected
component V of C ∖ C for which infinity is not accessible. By invariance of U and
normality, V must be a Fatou component; either an attracting basin, a preimage of it, or
an escaping wandering domain.

Moreover, if U is ergodic, by Theorem 2.A, any connected component C of ∂U is either
a cluster set or it is contained in a cluster set. Hence, if U is a non-SPS Fatou component,
there would exist ξ ∈ ∂D such that

P (f) ∩ fill(ClC(φ, ξ)) ̸= ∅.

See Figure 2.5.
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U

V

Figure 2.5: Schematic representation of how a non-SPS Fatou component would look like. One may
imagine the boundary of U (in C) as a collection of curves (as in a Cantor bouquet). One of them,
corresponding to, say, ClC(φ, ξ) is not a Jordan curve, but it encloses a bounded region, V , which is a
Fatou component, by normality. For U to be non-SPS, this enclosed Fatou component V must contain a
postsingular value. It is precisely the presence of this postsingular value in fill(ClC(φ, ξ)) what prevents
the definition of inverse branches around ClC(φ, ξ).

Question 2.2.8. Let f be a transcendental entire function, and let U be an (ergodic)
invariant Fatou component, such that ∞ is accessible from U . If U is PS and P (f)∩∂U =
∅, then is U SPS?

Finally, we discuss the relation of proper invertibility with local surjectivity, a closely
related notion used in [Sch97, Ima14], to study the accessibility of periodic points in the
boundary of invariant Fatou components. The definition of local surjectivity reads as
follows.

Definition 2.2.9. (Local surjectivity) Let f be a holomorphic function, and let U be
an invariant Fatou component. Let z ∈ ∂U . We say f is locally surjective (at z with
respect to U) if there exists r > 0 such that

f(D(z, r) ∩ U) = f(D(z, r)) ∩ U.

It is easy to see that f being locally surjective on ∂U (understood as it is locally
surjective with respect to U at every point of ∂U) is equivalent to f being properly
invertible on ∂U (again, understood pointwise with respect to U). However, since we are
interested in inverse branches, the concept of proper invertibility is more convenient.

2.3 Postsingularly separated Fatou components and the
associated inner function. Theorem 2.C

We prove the following version of Theorem 2.C, which gives more details on the
behaviour of boundary orbits for the associated inner function. One should view this
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general version of Theorem 2.C as a significantly stronger version of Lemma II.5.2 for
PS Fatou components.

We use the notation Θ∞ introduced in Section II.5.3. Let us recall the definition.

Θ∞ := {ξ ∈ ∂D : φ∗(ξ) = ∞}

∂D∖ Θ∞ = {ξ ∈ ∂D : ClR(φ, ξ) ̸= {∞}}

Theorem II.3. (General version) Let f be a transcendental entire function, and let U
be an invariant Fatou component, such that ∞ is accessible from U . Let φ : D → U be
a Riemann map, and let g := φ−1 ◦ f ◦ φ be the corresponding associated inner function.
Assume U is PS. Then, the following holds.

(a) (Finite principal points avoid singularities) Let ξ ∈ ∂D. If ξ ∈ ΘC, then ξ is not a
singularity of g and g(ξ) ∈ ΘC.
In particular, if, for some n ≥ 1, ξ ∈ ∂D is a singularity for gn, then ξ ∈ Θ∞.

(b) (Few singularities) For almost every ξ ∈ ∂D (with respect to the Lebesgue measure),
there exists r := r(ξ) > 0 such that g is holomorphic in D(ξ, r). In particular, the
set E(g) has zero Lebesgue measure.

(c) (Backward and forward orbit at typical boundary points) For almost every ξ ∈ ∂D
(with respect to the Lebesgue measure), there exists r := r(ξ) > 0 such that all
branches Gn of g−n are well-defined in D(ξ, r), for all n ≥ 0. Moreover, for every
n ≥ 1, there exists ρ := ρ(ξ, n) > 0 such that gn is holomorphic in D(ξ, ρ).

(d) (Radial limit g∗ at a singularity) Let ξ ∈ ∂D be a a singularity for g, and assume
g∗(ξ) exists. Then, either g∗(ξ) ∈ D, and φ(g∗(ξ)) ∈ U is an asymptotic value for
f ; or g∗(ξ) ∈ Θ∞.

Proof. We prove the different statements separately.

(a) Let ξ ∈ ∂D∖Θ∞. By Lemma II.4.8, ClC(φ, ξ) is connected, so is f(ClC(φ, ξ)), and
hence it is contained in a component C of ∂U . Since U is assumed to be PS, by
the Technical Lemma 1, there exists a domain ΩC such that C ⊂ ΩC , ΩC is simply
connected, ΩC ∩ U is connected, and ΩC is disjoint from P (f) ∩ U . Moreover, ΩC

can be chosen so that φ−1(ΩC ∩ U) is a crosscut neighbourhood of some ζ ∈ ∂D.
Note that there are no postsingular values of g in φ−1(ΩC ∩ U).
Note that, since ξ ∈ ∂D∖ Θ∞, we can choose z ∈ ClR(φ, ξ) ∩ C. Since z is a finite
principal point, for any r > 0, there exists a null-chain {Dn}n ⊂ D(z, r). We choose
r small enough so that f(D(z, r)) ⊂ ΩC . Hence, for all n ≥ 0, f(Dn) is a crosscut
of U contained in ΩC .
Since ΩC ∩ U is simply connected and disjoint from P (f) ∩ U , all inverse branches
are well-defined in ΩC ∩ U . In particular, there exists a branch F1 of f−1 and an
inverse branch G1 of g−1 such that

φ−1(F1(ΩC ∩ U)) = G1(φ−1(ΩC ∩ U))
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contains a crosscut neighbourhood of ξ. Hence, any sufficiently small crosscut
neighbourhood DD around ξ is mapped conformally under g to a crosscut
neighbourhood g(DD) around ζ. Thus, g(DD) ̸= D. This already implies that ξ is
not a singularity (Lemma II.3.11). By Lemma II.5.2, it is clear that
g(ξ) ∈ ∂D∖ Θ∞.

Finally, note that, if ζ is a singularity for g, then ζ ∈ Θ∞. The last statement
follows directly from the backwards invariance of Θ∞. Indeed, if ζ is a singularity
for the inner function gn (n ≥ 1 taken minimal), then gn−1(ζ) is a singularity for g.
Then, gn−1(ζ) ∈ Θ∞, so ζ ∈ Θ∞.

UU

z

f(z)

f

g

F1

G1

V

φ φ

D D

ξ

ζ

Figure 2.6: Set-up of the proof of (a) for PS Fatou components. Given ξ ∈ ∂D∖Θ∞, we find a crosscut
neighbourhood around it which is mapped conformally onto another crosscut neighbourhood, implying
that ξ is not a singularity for g.

(b) Since E(g) ⊂ Θ∞, and λ(Θ∞) = 0, it follows that λ(E(g)) = 0. Hence, for λ-almost
every ξ, there exists r = r(ξ) > 0 such that g is holomorphic in D(ξ, r).

(c) Again, the first statement follows from the same argument than in (a), applied to
the set of full measure ∂D∖Θ∞. Indeed, for every point ξ ∈ ∂D∖Θ∞, there exists
a boundary component C such that ClC(φ, ξ) ⊂ C. by the Technical Lemma 1,
there exists a domain ΩC such that C ⊂ ΩC , ΩC is simply connected, ΩC ∩ U is
connected, and ΩC is disjoint from P (f) ∩ U . Moreover, φ−1(ΩC ∩ U) contains a
crosscut neighbourhood Nξ of ξ. Since ΩC ∩U is simply connected and disjoint from
P (f) ∩ U , all inverse branches Fn of fn are well-defined in ΩC ∩ U . In particular,
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for each branch Fn of f−n, there exists an inverse branch Gn of g−n such that

φ−1(Fn(ΩC ∩ U)) = Gn(φ−1(ΩC ∩ U)).

Thus, all inverse branches Gn of gn are well-defined in Nξ. By considering g as its
maximal meromorphic extension, and using Schwarz reflection, we get that there
exists r := r(ξ) > 0 such that all branches Gn of g−n are well-defined in D(ξ, r), for
all n ≥ 0.
The second statement follows from the forward invariance of ∂D∖Θ∞, by induction.
Indeed, for n = 1, if ξ ∈ ∂D ∖ Θ∞, then ξ is not a singularity for g, so there exists
a disk around ξ in which g is holomorphic. Now, for all n ≥ 2, assume gn−2 is
holomorphic in a neighbourhood of ξ. By (a), gn−1(ξ) ∈ ∂D∖Θ∞, so gn−1(ξ) is not
a singularity of g, meaning that there exists a neighbourhood of gn−1(ξ) in which g
is holomorphic. This already implies the existence of a neighbourhood of ξ in which
gn is holomorphic.

(d) We let ξ ∈ ∂D be a singularity, and assume g∗(ξ) exists. There are two possibilities:
either g∗(ξ) ∈ D, or g∗(ξ) ∈ ∂D. In the first case, it is clear that φ(g∗(ξ)) must
be an asymptotic value for f . We shall prove that, in the second case, g∗(ξ) ∈
Θ∞. Assume, on the contrary, that g∗(ξ) ∈ ∂D ∖ Θ∞. Then, by (c), for some
r > 0, all branches of g−1 are well-defined in D(g∗(ξ), r). This is a contradiction
because ξ was assumed to be a singularity, and hence it cannot be mapped locally
homeomorphically to g∗(ξ).

Remark 2.3.1. We shall make the following remarks on Theorem II.3.

1. On [BFJK17, Prop. 2.7] it is proved that E(g) ⊂ Θ∞, for a general invariant Fatou
component (i.e. without the PS assumption). Hence, (a) show how the result can
be strengthened to E(g) ⊂ Θ∞, for PS Fatou components. Taking into account that
λ(Θ∞) = 0 and λ(Θ∞) = 1 for a wide class of Fatou components, we believe that
our result is a noteworthy improvement.

2. Regarding (c), we note that, for almost every ξ, inverse branches Gn of gn are well in
a disk of fixed radius (depending only on ξ, but not on n). However, when iterating
forward, we can only ensure that gn is holomorphic on a disk whose radius depends
on n. In the general case, the result cannot be improved. Indeed, if g∗ is ergodic
and g|D has infinite degree, it is shown in [BD99, Lemma 8], [Bar08, Thm. 1.4] that⋃

n≥0
E(gn) = ∂D,

where E(gn) stands for the set of singularities of the inner function gn, as defined
in Definition II.1.4.
Hence, in general, there is no open disk around a boundary point which is never
mapped to a singularity of g.
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3. Finally, as noted in Section II.3.2, there are two distinct ways of considering iteration
in ∂D for a given inner function g. On the one hand, the approach followed in [BD99,
Bar08] consists of truncating the orbit of a point when it falls into a singularity, as
in the iteration of meromorphic functions in C.
On the other hand, there is the approach of [DM91] of considering iteration on the
set

{ξ ∈ ∂D : (g∗)n(ξ) exists for all n ≥ 0} ,

which has full Lebesgue measure in ∂D. This procedure allows us to iterate at
singularities, as long as their radial limit under g is well-defined.
Using this approach, (d) tells us that, whenever we can iterate at a singularity, its
orbit either eventually enters D and hence converges to the Denjoy-Wolff point, or
its orbit is completely contained in Θ∞.

2.4 Dynamics on the boundary of unbounded invariant Fatou
components. Theorem 2.D

Finally, we use the machinery developed in the previous sections to prove this more general
version of Theorem 2.D.

Theorem II.4. (General version) Let f be a transcendental entire function, and let U
be an invariant Fatou component, such that ∞ is accessible from U . Assume U is SPS.
Then, the following holds.

(a) Periodic points in ∂U are accessible from U .

(b) If a component C of ∂U contains a periodic point, then every other point in C is
escaping.

(c) If, additionally, U is recurrent, then periodic points and escaping points are dense
in ∂U .

Remark 2.4.1. The previous statement deserves some comments.

• (Radial limit at periodic points) Theorem 2.D(a) states that, given a periodic point
p ∈ ∂U , there exists ξ ∈ ∂D such that φ∗(ξ) = p. If U is assumed additionally to
be ergodic, such ξ is unique, by Theorem 2.A, and it is radially periodic under g.
The fact that ξ is unique implies that it has exactly the same period as p.
Furthermore, it is well-known that the boundary map g : ∂D → ∂D of any inner
function of finite degree (i.e. of a finite Blaschke product) is semi-conjugate to the
shift map σd in the space Σd of sequences of d symbols (see e.g. [IU23, Sect. 8.1]).
Therefore, each periodic point for σd in Σd (that is, periodic sequences) corresponds
to a periodic point for g in ∂D, except for the ones corresponding to 0 and d− 1,
which are identified. When f |U has finite degree, this gives an upper bound on the
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number of periodic points of a given period in ∂U . Indeed, since g|∂D has exactly
dn − 1 periodic points of period n, there are at most dn − 1 periodic points of period
n in ∂U .

• It follows trivially from Theorem 2.D(b) that any boundary connected component
of a SPS Fatou component can have at most one periodic point.

• (Accessibility of escaping points) In the case of escaping points, we may ask what
can be said about their accessibility from U . In Chapter 1 it is proven that the
Baker domains of f(z) = z + e−z have no accessible escaping point. However, the
Baker domain of f(z) = z + 1 + e−z has accessible escaping points, as it follows
easily from [Evd16]. Hence, it remains as an open problem to find conditions under
which no escaping point is accessible from the Baker domain.

Proof of Theorem 2.D. We prove the different statements separately.

(a) Periodic points in ∂U are accessible from U .

First note that, if U is SPS, any periodic point in ∂U must be repelling. Indeed,
attracting and Siegel periodic points lie in the Fatou set, while parabolic and Cremer
periodic points lie in P (f).

Let p be a periodic point in ∂U , which is repelling, and assume fn(p) = p. Let C be
the connected component of ∂U containing p. By the Technical Lemma 2, there exists
a simply connected domain ΩC containing the connected component C ⊂ ∂U , such that
ΩC ∩ P (f) = ∅, and ΩC ∩ U is connected.

Let Fn be the branch of f−n fixing p. It extends conformally to ΩC and, by the Technical
Lemma 2, Fn(ΩC ∩U) ⊂ U . Note that, not only Fn is well-defined in ΩC , but its iterates
Fm

n , for all m ≥ 0.
Let r > 0 be such that D(p, r) ⊂ ΩC . Since p is repelling, choosing r smaller if needed,

we can assume Fn(D(p, r)) ⊂ D(p, r).
Let us choose z0 ∈ D(p, r) ∩ U and define zm := Fm

n (z0) ∈ D(p, r) ∩ U . Since ΩC ∩ U

is connected, there exists a curve γ ⊂ ΩC ∩ U connecting z0 and z1. Observe that
{Fm

n }m is well-defined and normal in ΩC , because Fm
n (ΩC) ⊂ W , for all m ≥ 0 (where

W = C∖ P (f), as introduced in Sect. 2.2, which is backwards invariant).
Thus, any limit function g must be constantly equal to p in D(p, r)∩ΩC , so Fm

n → g ≡ p

uniformly on compact subsets of ΩC . In particular, Fm
n |γ → p uniformly. Hence,⋃

m≥0
Fm

n (γ)

is a curve in U landing at p, showing that p is accessible from U , as desired.

(b) If a component C of ∂U contains a periodic point, then every other point in C is
escaping.

Let p ∈ ∂U be a periodic point of f (which must be repelling), and denote by C the
connected component of ∂U for which p ∈ C. We have to prove that

C ∖ {p} ⊂ I(f).
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Without loss of generality, assume p is fixed by f . By the Technical Lemma 2, there
exists an open neighbourhood of C, say ΩC , in which the branch F1 of f−1 fixing p is
well-defined. In fact, {F n

1 }n is well-defined in ΩC and, as in the proof of (a), for every
compact set K ⊂ ΩC , we have F n

1 |K → p uniformly. Moreover, there exists r > 0 small
enough so that D(p, r) ⊂ ΩC and F1(D(p, r)) ⊂ D(p, r) (see Fig. 2.7a).

ΩC

r

p

C

(a)

ΩC

p
K

K ′

(b)

K ′

F1

F1

(c)

Ω′
C

M

p
K

F1

(d)

Figure 2.7: Steps on the proof of (b).

Now, let z ∈ C∖{p}. To prove that z is escaping, we have to see that, for any compact
set K ⊂ C, there exists n0 such that fn(z) /∈ K, for all n ≥ n0. Since p is assumed
to be fixed, by continuity it follows that f(C) ⊂ C. Hence fn(z) ∈ C and, since C is
unbounded, it is enough to show that z escapes from any compact set in C.

Hence, let us fix K compact subset of C and let us show that z escapes from K. To
do so, we will construct a domain Ω′

C ⊂ ΩC , forward invariant under F1, containing both
p and K. We will show that, if z does not escape from K, then {fn(z)}n should be
entirely contained in Ω′

C . Once we are in this situation, we will reach a contradiction
using standard arguments based on Schwarz-Pick lemma.

We start by constructing the set Ω′
C . To do so, we choose K ′ compact connected subset

of ΩC such that K ⊂ Int K ′ and p ∈ K ′ (see Fig. 2.7b). Moreover, without loss of
generality, we can choose K ′ so that there is a connected component of C ∩K ′ containing
both K and p. On the other hand, since K ′ is a compact subset of ΩC , we have F n

1 |K′ → p

uniformly, so there exists N such that FN
1 (K ′) ⊂ D(p, r).
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Let us define the following sets:

V := {z ∈ Int K ′ : F n
1 (z) ∈ ΩC , for all n ≤ N} ∪D(p, r), Ω′

C :=
N⋃

n=0
F n

1 (V ).

We note, on the one hand, that
C ∩ Int K ′ ⊂ V,

because, as f(C) ⊂ C, points in C∩Int K ′ do not leave ΩC under iteration. In particular,
the connected component of C∩K ′ containing both K and p is in V . Hence, either V is a
connected open set, or V can be redefined to be the connected component of V containing
K. In both cases, K ⊂ V (see Fig. 2.7c).

Moreover, Ω′
C is also an open connected set, since it is the union of open connected

sets, all containing p. By definition, it is forward invariant under F1, and K is compactly
contained in Ω′

C . Observe that both F1 is well-defined and univalent in Ω′
C .

Since F1(Ω′
C) ⊂ Ω′

C , we have, by Schwarz-Pick lemma,

ρΩ′
C
(p, F1(w)) = ρΩ′

C
(F1(p), F1(w)) < ρΩ′

C
(p, w),

for all w ∈ Ω′
C . Equivalently, if w, f(w) ∈ Ω′

C , it holds

ρΩ′
C
(p, w) < ρΩ′

C
(p, f(w)).

Let
M := max

w∈K
ρΩ′

C
(p, w),

(see Fig. 2.7d). We have K ⊂ DΩ′
C
(p,M), and F1(DΩ′

C
(p,M)) ⊂ DΩ′

C
(p,M). Moreover,

since DΩ′
C
(p,M) is compactly contained in Ω′

C , there exists λM > 1 such that

λMρΩ′
C
(w, p) ≤ ρΩ′

C
(f(w), p),

for all w such that w, f(w) ∈ DΩ′
C
(p,M).

Finally, let us show that the point z should escape from the compact K. Assume,
on the contrary, that fn(z) belongs to K, for infinitely many n’s. For these n’s it holds
fn(z) ∈ DΩ′

C
(p,M). Since DΩ′

C
(p,M) is backwards invariant under f , if z does not escape

from K, then
{fn(z)}n ⊂ DΩ′

C
(p,M).

Hence,
λn

MρΩ′
C
(z, p) ≤ ρΩ′

C
(fn(z), p),

for all n ≥ 0, so ρΩ′
C
(fn(z), p) → ∞, as n → ∞. In particular, there exists n ≥ 0 such

that ρΩ′
C
(fn(z), p) > M , implying that fn(z) /∈ DΩ′

C
(p,M). This is a contradiction with

the fact that {fn(z)}n ⊂ DΩ′
C
(p,M).

Hence, z escapes from the compact set K, and applying the same argument to any
compact set K ⊂ C, we get that z ∈ I(f), as desired.
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(c) If, additionally, U is recurrent, then periodic points and escaping points are dense
in ∂U .

Let us start by proving the density of periodic points. Since U is recurrent, then ωU -
almost every boundary point has dense orbit in ∂U (Thm. II.3.7), so it is enough to
approximate points in ∂U having dense orbit by periodic points in ∂U . Hence, we choose
z0 ∈ ∂U with dense orbit and ε > 0, and we want to show that there is a periodic point
in D(z0, ε) ∩ ∂U .

The idea of the proof is to see that there exists an appropriate branch Fn of f−n defined
in the hyperbolic disk DW (z0, r0) satisfying that

Fn(DW (z0, r0)) ⊂ DW (z0, r0),

where W = C∖P (f). Then, it follows straightforward from Brouwer fixed-point theorem
that Fn has a fixed point p in DW (z0, r0). The fact that p ∈ ∂U is then due to proper
invertibility.

Assume z0 ∈ ∂U has a dense orbit, and choose r0 > 0 small enough so that

DW (z0, r0) ⊂ D(z0, ε)

and DW (z0, r0) is simply connected. By the Technical Lemma 2, r0 can be chosen small
enough so that, for all n > 0, any branch Fn of f−n is defined in DW (z0, r0) and, if
Fn(z0) ∈ ∂U , then Fn(DW (z0, r0) ∩ U) ⊂ U .

Choose F ∗
n branch of f−n and λ ∈ (0, 1) such that F ∗

n(z0) ∈ ∂U and

ρW (F ∗
n(z), F ∗

n(w)) ≤ λρW (z, w), for all z, w ∈ DW (z0, r0).

Note that this is possible by Proposition 2.2.2. Without loss of generality, we assume
n = 1, so the inverse branch we consider is F ∗

1 .
Now, consider W1 := F ∗

1 (DW (z0, r0)). Hence,

F ∗
1 : DW (z0, r0) → W1, f : W1 → DW (z0, r0),

are conformal. Moreover, for r0 small enough, W1 is disjoint from any other preimage of
DW (z0, r0). Consider r1 > 0 such that DW (F ∗

1 (z0), r1) ⊂ W1, and r < r1
2 < r0. Define

W2 := DW (F ∗
1 (z0), r). Observe that DW (z, r) ⊂ W1, for any z ∈ W2. See Figure 2.8.

Since the orbit of z0 is dense in ∂U , {fn(z0)}n visits infinitely many times W2. Hence,
we can choose n0 such that λn0 < 1

3 , and n1 such that fn1+1(z0) ∈ DW (z0, r) and

# {n ≤ n1 : fn(z0) ∈ W2} ≥ n0.

Consider {zn := fn(z0)}n1+1
n=0 ⊂ W . Let F1,n be the unique branch of f−1 with F1,n(zn+1) =

zn, for n = 0, . . . , n1 (see Fig. 2.9). Each of these inverse branches F1,n is well-defined in
ΩCn , where Cn is the boundary component with zn ∈ Cn.

Define
Fn1 := F1,0 ◦ · · · ◦ F1,n1 : DW (z0, r) −→ C.

Observe that Fn1 is a branch of f−n1 defined in DW (z0, r), such that Fn1(z0) ∈ ∂U . The
Technical Lemma 2 yields that Fn1(DW (z0, r) ∩ U) ⊂ U .
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Figure 2.8: Setting of the proof of (c).
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Figure 2.9: Schematic representation of {zn}n1+1
n=0 in ∂U , with n0 = 1 and n1 = 4, and how f maps

these points. We note that, since z4 ∈ W2, then F 4
1 = F ∗

1 .

Claim. It holds
Fn1(DW (z0, r)) ⊂ DW (z0, r).

Proof. Indeed, by Technical Lemma 2, each time we apply an inverse branch F1,n, the
hyperbolic distance ρW does not increase. That is, for all z, w ∈ DW (z0, r) and n ∈
{0, . . . , n1},

ρW (F1,n◦· · ·◦F1,n1(z), F1,n◦· · ·◦F1,n1(w)) ≤ ρW (F1,n+1◦· · ·◦F1,n1(z), F1,n+1◦· · ·◦F1,n1(w)).

Moreover, when the inverse branch we apply is F ∗
1 , the hyperbolic distance ρW not only

decreases, but it is contracted by the factor λ. We claim that this happens each time that
zn lies in W2, so at least n0 times. Indeed, note that, when zn ∈ W2,

F1,n ◦ · · · ◦ F1,n1(DW (z0, r)) ⊂ DW (zn, r) ⊂ W1,

and zn+1 ∈ DW (z0, r). Hence, F1,n coincides with F ∗
1 , and it acts as a contraction by λ in

F1,n ◦ · · · ◦ F1,n1(DW (z0, r)). Then,

ρW (Fn1(z), Fn1(w)) ≤ λn0ρW (z, w) < 1
3r.
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In particular,

ρW (Fn1(z0), z0) = ρW (Fn1(z0), Fn1(zn1+1)) ≤ λn0ρW (z0, zn1+1) <
1
3r.

Therefore, applying the triangle inequality, one deduces that Fn1(w) ∈ DW (z0, r), for any
w ∈ DW (z0, r), as desired. ■

Finally, since
Fn1(DW (z0, r)) ⊂ DW (z0, r),

Brouwer fixed-point theorem ensures the existence of a fixed point p for Fn1 in DW (z0, r),
which corresponds to a periodic point of f , which must be repelling for f and hence
belongs to the Julia set. Moreover, all w ∈ DW (z0, r) converge to p under iteration of
Fn1 . In particular, if we choose w ∈ DW (z0, r)∩U , we have wm := Fm

n1(w) ∈ DW (z0, r)∩U
with wm → p as n → ∞, leading to a sequence of points in U approximating p, so p ∈ ∂U ,
as desired.

Finally, to see that escaping points are dense in ∂U , note that, (b) implies that every
periodic point in ∂U is approximated by escaping points in ∂U . Hence, since periodic
points are dense in ∂U (under the assumption of U recurrent), escaping points are also
dense.

2.5 Extension of the results to parabolic basins

Parabolic basins are always excluded when considering postsingulary separated Fatou
components, since the parabolic fixed point p is always in the postsingular set. However,
if this is the only point of P (f) in ∂U , i.e. if

P (f) ∩ ∂U = {p} ,

then we shall see that we are in a similar situation than the one considered in the sections
above and, with minor modifications, the proofs go through.

Next, we define PS and SPS parabolic basins, and we state Theorems II.3’ and II.4’.
Finally, we give an idea of the proof.

Definition 2.5.1. (Postsingularly separated parabolic basins) Let f be a
transcendental entire function, and let U be an invariant attracting basin of a parabolic
point p ∈ ∂U . We say that U is postsingularly separated (PS) if there exists a domain V ,
such that V ⊂ U ∪ {p} and

P (f) ∩ U ⊂ V.

We say that U is strongly postsingularly separated (SPS) if there exists a simply connected
domain Ω and a domain V such that V ⊂ U ∪ {p}, U ⊂ Ω, and

P (f) ∩ Ω ⊂ V.
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The parabolic basin of f(z) = exp( z2

2 − 2z) considered in [FH06, Ex. 4] is SPS, as well
as the one of f(z) = ze−z, considered in [BD99] and in Chapter 1.

Theorem 2.C’. (Singularities for the associated inner function) Let f be a
transcendental entire function, and let U be an invariant parabolic basin, such that ∞ is
accessible from U . Let φ : D → U be a Riemann map, and let g := φ−1 ◦ f ◦ φ be the
corresponding associated inner function. Assume U is PS.
Then, the set of singularities of g has zero Lebesgue measure in ∂D. Moreover, if ξ ∈ ∂D
is a singularity for g, then φ∗(ξ) = ∞.

Theorem 2.D’. (Boundary dynamics) Let f be a transcendental entire function, and
let U be an invariant parabolic basin, such that ∞ is accessible from U . Assume U is SPS.
Then, periodic points in ∂U are accessible from U . Moreover, both periodic and escaping
points in ∂U are dense in ∂U .

To prove Theorems 2.C’ and 2.D’ it is left to deal with the component of ∂U containig
the parabolic fixed point, and to explain how to adapt the proof periodic points are dense
in ∂U , Thm. 2.D (c). In the sequel, we denote by p the parabolic fixed point of U , and
we fix the Riemann map that satisfies φ∗(1) = p. Note that ClC(φ, 1) is a connected
component of ∂U .

First note that, if we define the set of expansion W as in Technical Lemma 2, i.e.

W := C∖ P (f),

it follows that p /∈ W , since p ∈ P (f). Hence, W is no longer a neighbourhood of ∂U , but
of ∂U ∖ {p}, and we only have the expanding metric on ∂U ∖ {p}. This is not a problem
because the expanding metric ρW is only needed in the proof of density of periodic points
(Thm. D (c)), but in fact we do not need ρW defined at p. Indeed, it is enough to have
ρW defined in a neighbourhood of points whose orbit is dense in ∂U , and the point p does
not have a dense orbit.

We remark that it may not be possible to find an open neighbourhood Ωp of ClC(φ, 1)
disjoint from P (f) such that Ωp ∩ U is connected. As a counterexample, see Figure 2.10.
However, we prove that we can find a neighbourhood of ClC(φ, 1) where one inverse branch
is well-defined. This is enough to prove, in the PS case, that 1 is not a singularity for the
associated inner function ending the proof of Theorem 2.C’; and, in the SPS case, that
every point in ClC(φ, 1) ∖ {p} is escaping. Hence, there are no periodic boundary points
nor points with dense orbit in ClC(φ, 1). This would finish the proof of Theorem 2.D’.

Lemma 2.5.2. (Cluster set of 1) Let f be a transcendental entire function, and let U
be an invariant parabolic basin, such that ∞ is accessible from U . Let φ : D → U be a
Riemann map, and let φ∗(1) = p be the parabolic fixed point. Assume U is PS. Then, 1
is not a singularity for the associated inner function.

In addition, if U is SPS,
ClC(φ, 1) ∖ {p} ⊂ I(f).
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Figure 2.10: Dynamical plane of f(z) = ze−z, which has a SPS parabolic basin U with parabolic fixed
point 0. The function has only one asymptotic value (0) which is fixed, and one critical value (1/e),
which converges to 0. Hence P (f) ⊂ P ∪ {0}, where P is a parabolic petal containing 1/e, and we can
take Ω = C in Definition 2.5.1. This shows that U is SPS.

Proof. In the sequel, we let F1 be the branch of f−1 defined in D(p, r), r > 0, such that
F1(p) = p. We shall prove the existence of a domain Ωp analogous to the one of Technical
Lemma 1.

Indeed, the construction of the domain Ωp follows the procedure of Technical Lemma
1, applied not to P (f) ∩ U , but to the following set of singular values

SV (f, p) = {v ∈ C : v is a singularity for F1} .

We note that SV (f, p) ⊂ P (f), and SV (f, p) ∩ D(p, r) = ∅. Therefore, SV (f, p) ∩ U

does not accumulate at any point of ClC(φ, 1), and the arguments of Technical Lemma 1
apply.

Note that Ωp is a simply connected domain with ClC(φ, 1) ⊂ Ωp, and Ωp ∩U connected
and disjoint from SV (f, p)∩U . Hence, F1 is well-defined in Ωp ∩U , and we apply the same
arguments as in Theorem 2.C to the function F1|Ωp∩U to prove that 1 is not a singularity
for the associated inner function.

In the SPS case, Ωp is disjoint from SV (f, p), and hence F1 is well-defined in Ωp. To
prove that every point in the cluster set is escaping (except for the parabolic point), we
follow the proof of Theorem 2.D(b), considering Ωp as defined above.
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Chapter 3
Periodic boundary points through recurrence

The goal of this chapter is to prove Theorem 3, which solves in a quite successful way
the problem of showing density of periodic boundary points for Fatou components with
recurrent boundary map. With the tools developed in Chapter II, we are now able to
state the following more general version of Theorem 3.

Theorem 3. (General version) Let f ∈ K, and let U be an invariant simply connected
Fatou component for f . Let φ : D → U be a Riemann map, and let g : D → D be the inner
function associated with (f, U) by φ.
Assume the following conditions are satisfied.

(a) g∗|∂D is recurrent with respect to λ.

(b) There exists x0 ∈ ∂U and r0 := r0(x0) > 0 such that, for all n ≥ 0, if Dn is
a connected component of f−n(D(x0, r0)) such that Dn ∩ U ̸= ∅, then fn|Dn is
conformal.

(c) There exists a crosscut C ⊂ D and a crosscut neighbourhood NC with NC ∩P (g) = ∅.

Then, accessible periodic points are dense on ∂U .

This proof is inspired in the one given by F. Przytycki and A. Zdunik [PZ94] to prove
density of periodic boundary points for basins of rational maps. However, as we show
next, the extension of this result to transcendental maps is not straightforward, since
many of the arguments are based on specific features of rational maps.

First of all, observe that, in the seminal paper [PZ94], two different proofs are provided:
one for simply connected attracting basins, and a general one, which works in the non-
simply connected or parabolic situations. The latter relies on a technique, known as
geometric coding trees, which has been shown not to work well in the infinite degree case,
even for hyperbolic maps (see [BK07, p. 405]).

From now on, we shall focus on the proof in [PZ94] for simply connected attracting
basins. It relies on three specific features of rational maps: f having finitely many singular
values, f extending analytically to the boundary of U (taken in Ĉ), and f having finite
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degree. Note that these three assumptions are no longer satisfied for transcendental
meromorphic maps. Indeed, a transcendental map f can have infinitely many singular
values, and it may have essential singularities on the boundary of U , implying that f |∂U

is no longer analytic. In addition, f |U may have infinite degree. Moreover, when dealing
with transcendental meromorphic functions, one encounters other new challenges, namely
a new type of Fatou components (Baker domains, on which iterates accumulate on the
essential singularity), and the presence of asymptotic values.

Next, we shall outline the main steps on the proof of [PZ94], and explain how the new
difficulties that appear for transcendental maps are overcome, showing at the same time
the need for the hypotheses of the theorem. For simplicity, we shall assume that the Fatou
component U is invariant.

In the case of an attracting basin of a rational function, Pesin theory can be applied
to prove that for ωU -almost every x ∈ ∂U , there exist inverse branches which are locally
well-defined and contracting with respect to the Euclidean metric [PZ94, Lemma 1] (see
also [PUZ91, Lemma 1], and [PU10, Thm. 11.2.3]). Crucial ingredients in this proof
are the ergodic properties of f |∂U , studied in [Prz85, Prz86], together with f |∂U being
analytic and the finitude of critical values. None of the previous conditions is satisfied for
a general transcendental meromorphic map, so a priori Pesin theory cannot be applied
in our situation. We solve this by assuming that inverse branches are well-defined ωU -
almost everywhere (this is a straightforward consequence of (b)), and we prove contraction
of inverse branches with respect to the hyperbolic metric in a suitable domain.

Next, we extend the proof of [PZ94] to other Fatou components, apart from attracting
basins. Indeed, our proof relies only on the ergodic properties of the map f |∂U , not on
the precise type of Fatou component we are considering. More precisely, we only ask f |∂U

to be ergodic and recurrent with respect to the harmonic measure ωU , which implies that
ωU -almost every orbit in ∂U is dense in ∂U . Hence, all Fatou components for which the
boundary map is ergodic and recurrent may be considered, and these include attracting
and parabolic basins, rotation domains and certain types of Baker domains (for instance,
doubly parabolic Baker domains with singular values compactly contained in U , Thm.
II.5.4). However, note that rotation domains never satisfy the hypothesis of our theorem,
since P (f) is always dense in their boundary, and (b) is never fulfilled.

Finally, as it is common in constructions of this kind, and as we have seen throughout
the thesis, the proof relies strongly on the inferred dynamics in the unit disk D via the
Riemann map φ : D → U : the dynamics of the associated inner function.

Indeed, a careful study of the associated inner function is required. In the case of a
rational attracting basin considered in [PZ94], g is a finite Blaschke product, which can
be chosen to satisfy g(0) = 0. We shall view g as a rational map g : Ĉ → Ĉ, extended
by Schwarz reflection. Then, its critical values (which are finitely many) are compactly
contained in D (and, by reflection, in Ĉ ∖D) and their orbits converge uniformly to 0 (or
to ∞), which are attracting fixed points. Hence, inverse branches of g are well-defined for
all points in ∂D. Moreover, precise estimates on the behaviour of such inverse branches
are given in [PZ94, Lemma 2].
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In the case of infinite degree and inner functions which may not have a fixed point in
D, we should rely on Theorem A (proven in Sect. II.3.3), which provides good estimates
on the behaviour of such inverse branches on ∂D, whenever defined, under some mild
assumptions on the postsingular set of the inner function. Note that, in particular,
assumptions on Theorem A allow infinite degree and infinitely many singular values.

The remaining of the chapter is devoted to the proof of Theorem 3.

3.1 Proof of Theorem 3

We shall split the proof into several steps.
1. Inverse branches well-defined ωU -almost everywhere.
First note that hypothesis (b) implies that inverse branches of fn interplaying with

∂U are well-defined in D(x0, r0), being r0 uniform for all n ≥ 0 and all inverse branches.
Let us start by proving that this actually holds for ωU -almost every x ∈ ∂U , as an easy
consequence of (b) together with the ergodic properties of f |∂U .

Claim. Under the assumptions of Theorem 3, for ωU -almost every x ∈ ∂U , there exists
r := r(x) > 0 such that, for all n ≥ 0, f−n(D(x, r)) ∩ U is non-empty, and, if Dn is a
connected component of f−n(D(x, r)) such that Dn ∩ U ̸= ∅, then fn|Dn is conformal.

We shall refer to the inverse branches considered above as relevant inverse branches of
fn at x ∈ ∂U . When we refer to a particular inverse branch, we write Fn,y,x meaning
that Fn is an inverse branch of fn sending y to x. When the points x and y are clear
from the context, we shall write only Fn to lighten the notation. Since we are interested
in the study of f |∂U , relevant inverse branches are the only ones that play a role in our
construction.

Proof of the claim. The first statement of the claim is deduced from the conjugacy
between f |U and the inner function g, and the fact that inner functions associated to
Fatou components of functions in class omit at most two values (see e.g. [Bol99, Thm.
1]).

For the second assertion, let x0 and r0 be the ones given by hypothesis (b). Since
ωU(D(x0, r0)) > 0, by hypothesis (a) and Theorem II.5.4, the orbit of ωU -almost every
point visits infinitely many times D(x0, r(x0)). Hence, ωU -almost every x ∈ ∂̂U there
exists n0 := n0(x) such that fn0(x) ∈ D(x0, r(x0)).

Fix x ∈ ∂̂U with this property. Then, there exists r := r(x) > 0 such that
fn0(D(x, r)) ⊂ D(x0, r0). By hypothesis (b), fn0|D(x,r) is conformal.

Let Dm be a connected component of f−m(D(x, r)) such that Dm ∩ U ̸= ∅. Then, Dm

is contained in a connected component of f−m−n0(D(x0, r0)), so there exists xm ∈ Dm

and a relevant inverse branch of fm+n0

Fm+n0,x0,xm : fn0(D(x, r)) ⊂ D(x0, r0) −→ Dm

which is well-defined, and hence conformal. Then,

Fm,x,xm = Fm+n0,xm,x0 ◦ fm : D(x, r) −→ Dm
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is a well-defined inverse branch of fm. In particular, fm|Dm is conformal, proving the
claim.

2. Construction of an expansive metric around ∂U .

Lemma. Under the assumptions of Theorem 3, there exists a hyperbolic open set W ⊂ C
and a measurable set X ⊂ W for which the following are satisfied.

(2.1) The set X is contained in ∂U , and it has full ωU -measure.

(2.2) For all x ∈ X and n ≥ 0, there exists rW := rW (x) > 0 such that the hyperbolic
disk DW (x, rW ) is simply connected and compactly contained in W , with all relevant
branches Fn of f−n at x well-defined in DW (x, rW ). Moreover, Fn(DW (x, rW )) ⊂ W .

(2.3) Relevant inverse branches do not increase the hyperbolic distance distW between
points, i.e. for any x ∈ W and F1 relevant branch of f−1 at x, if z, w ∈ DW (x, rW ),

distW (F1(z), F1(w)) ≤ distW (z, w).

Proof. For all x ∈ ∂U , let rn(x) ∈ [0,+∞) be the radius of the maximal Euclidean disk
D(x, rn(x)) for which all relevant branches of f−n at x are well-defined. We assume at
least one such inverse branch exists, otherwise set rn(x) = 0 (by the previous claim, this
situation only happens on a set of zero ωU -measure). Clearly, rn(x) ≥ rn+1(x), so {rn(x)}n

is a convergent sequence for all x ∈ ∂U . Consider

X := {x ∈ ∂U : rn(x) → r(x) > 0} .

By the claim in the first step, ωU(X) = 1. Let

W :=
⋃

x∈X

⋃
n≥0

{Fn(D(x, r(x))) : Fn is relevant at x} .

Note that W is open, and X ⊂ W . Hence, (2.1) holds.
Taking r(x) > 0 smaller if needed, we can assume W omits at least two points, so it is

hyperbolic and admits a hyperbolic metric on it.
Note that W may be disconnected. In this case, the hyperbolic density is defined on

each connected component separatedly. Indeed, each connected component W1 of W is a
hyperbolic domain, and hence admits a hyperbolic density ρW1 . Given z ∈ W , we define

ρW (z) := ρW1(z),

where W1 stands for the connected component of W with z ∈ W1. Given z, w ∈ W , the
hyperbolic distance is defined as distW (z, w) = distW1(z, w), if z and w lie in the same
connected component W1 of W ; and distW (z, w) = ∞, otherwise.

By construction, it holds that, for every x ∈ X, all relevant branches of f−n are well-
defined in D(x, r(x)) ⊂ W . Since the Euclidean and the hyperbolic metrics are locally
equivalent, there exists rW := rW (x) such that DW (x, rW ) ⊂ D(x, r). Hence, DW (x, rW )
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is simply connected and compactly contained in W , and all relevant inverse branches
Fn are well-defined in DW (x, rW ), and Fn(DW (x, rW )) ⊂ Fn(D(x, r)) ⊂ W . Thus, (2.2)
holds.

Finally, we claim that f does not decrease the hyperbolic distance between points.
Consider

W ′ :=
⋃

x∈X

⋃
n≥1

{Fn(D(x, r(x))) : Fn is relevant at x} ⊂ W.

Consider the hyperbolic density ρW ′ in W ′, defined component by component if needed.
Note that each connected component W1 of W ′ is mapped onto a connected component
W2 of W as a holomorphic covering. Hence, if x ∈ W1 ⊂ W ′ and f(x) ∈ W2 ⊂ W , then

ρW ′(x) = ρW1(x) = ρW2(f(x)) · |f ′(x)| = ρW (f(x)) · |f ′(x)| .

Since each connected component of W ′ is contained in a connected component of W ,
we have ρW ≤ ρW ′ and, in particular, if x ∈ W ′,

ρW (x) ≤ ρW (f(x)) · |f ′(x)| .

Now, let x ∈ W and let F1 be a relevant branch of f−1 at x. Since F1 is well-defined in
DW (x, rW ), it holds

ρW (F1(z)) |F ′
1(z)| ≤ ρW (z),

for all z ∈ DW (x, rW ). Next, take z, w ∈ DW (x, rW ). Note that z, w ∈ W1, and
F1(z), F1(w) ∈ W2, for two connected components W1,W2 of W . Moreover, since
hyperbolic disks are hyperbolically convex (i.e. a geodesic joining two points in the disk
is contained in the disk), we can take γ ⊂ DW (x, rW ) geodesic between z and w. Then,

distW (F1(z), F1(w)) = distW2(F1(z), F1(w)) ≤
∫

F1(γ)
ρW (t)dt =

=
∫

γ
ρW (F1(t)) |F ′

1(t)| dt ≤
∫

γ
ρW (t)dt = distW1(z, w) = distW (z, w).

proving the claim.

3. Control of radial limits in terms of Stolz angles.
Let us fix α ∈ (0, π

2 ), and let p ∈ D be the Denjoy-Wolff point of the associated inner
function g. It follows from Theorem II.3.18 that, λ-almost every ξ ∈ ∂D, there exists
ρ := ρ(ξ) > 0 such that:

(3.1) for all n ≥ 0, every branch Gn of g−n is well-defined in D(ξ, ρ);

(3.2) there exists ρ1 := ρ1(ξ) such that, for all n ≥ 0,

Gn(Rρ1 , p) ⊂ ∆α,ρ1(Gn(ξ), p),

where Rρ(·, p) and ∆α,ρ(·, p) stand for the radial segment and the Stolz angle with
respect to p (Def. II.2.2).
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In the sequel, to lighten the notation we denote the radial segments and the Stolz angles
just by Rρ and ∆ρ, respectively. However, one should keep in mind that they are radial
segments and Stolz angles with respect to the Denjoy-Wolff point, and that the opening
α of the Stolz angles is fixed throughtout the proof.

4. Choice of a set Kε ⊂ ∂D, where bounds on φ and Gn are uniform.

Lemma. Fix ε > 0. There exists a measurable set Kε ⊂ ∂D with λ(Kε) ≥ 1 − ε such that
the following holds.

(4.1) For all ξ ∈ Kε, φ∗(ξ) exists and φ∗(ξ) ∈ X. Moreover,

(gn)∗(ξ) ∈ ΘΩ := {ξ ∈ ∂D : φ∗(ξ) ∈ Ω(f)} ,

for all n ≥ 0.

(4.2) There exists rε > 0 such that for all ξ ∈ Kε and n ≥ 0, all relevant inverse branches
of fn are well-defined in DW (φ∗(ξ), rε).

(4.3) There exist ρε > 0 such that

i. For every ξ ∈ Kε and n ≥ 0, every branch Gn of g−n is well-defined in D(ξ, ρϵ).
ii. For every ξ ∈ Kε,

Gn(Rρε(ξ)) ⊂ ∆ρε(Gn(ξ)).

iii. For every ξ ∈ Kε, if z ∈ ∆ρε(ξ), then φ(z) ∈ W and

distW (φ(z), φ∗(ξ)) < rε

3 .

(4.4) There are no isolated points in Kε. In fact, for every ξ ∈ Kε, there exists a
subsequence {nk := nk(ξ)}k, nk → ∞, such that (gnk)∗(ξ) ∈ Kε and (gnk)∗(ξ) → ξ.

(4.5) For every ξ ∈ Kε, the orbit of φ∗(ξ) under f is dense in ∂U .

Proof. Consider K := (φ∗)−1(X) ⊂ ∂D. Observe that λ(K) = 1. There is no loss
of generality on assuming that (gn)∗(ξ) ∈ ΘΩ, for all n ≥ 0, since this holds λ-almost
everywhere. Hence, all points in K satisfy (4.1).

Next, by (2.2), for all ξ ∈ K, there exists r := r(ξ) > 0, such that all relevant inverse
branches Fn are well-defined in DW (φ∗(ξ), r(ξ)). Hence, we can write K as the countable
union of the nested measurable sets

Km := {ξ ∈ K : all relevant Fn are well-defined in DW (φ∗(ξ), 1/m)} ⊂ Km−1.

Choose m0 such that λ(Km0) ≥ 1 − ε/3, which satisfies (4.2) with rε = 1/m0.
Now, by (3.1) and (3.2), we can assume that, for all ξ ∈ Km0 , there exists ρ := ρ(ξ) > 0

such that Gn is well-defined in D(ξ, ρ) and Gn(Rρ) ⊂ ∆ρ(Gn(ξ)), for all n ≥ 0. Hence,
Km0 can be written as the countable union of the nested measurable sets

Kk
m0

:=
{
ξ ∈ Km0 : Gn well-defined in D(ξ, 1/k) and Gn(R1/k) ⊂ ∆ 1

k
(Gn(ξ))

}
.
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Choose k0 such that λ(Kk0
m0) ≥ 1 − ε/2. Finally, note that the angular limit of φ exists at

every ξ ∈ Kk0
m0 , that is, for all ξ ∈ Kk0

m0 there exists ρ1(ξ) < ρ(ξ) such that, for all z ∈ ∆ρ1 ,

distW (φ(z), φ∗(ξ)) < rε

3 .

Hence, proceeding as before, we find Kε ⊂ Kk0
m0 , with λ(Kε) ≥ 1 − ε and satisfying (4.3)

for some ρε > 0, uniform for ξ ∈ Kε.
Since λ-almost every point in Kε is a Lebesgue density point, there is no loss of

generality on assuming that every ξ ∈ Kε is a Lebesgue density point. In particular,
there are no isolated points in Kε.

Moreover, since g∗|∂D is recurrent, every measurable set E ⊂ X with λ(E) > 0, we have
that for λ-almost every point ξ ∈ Kε, there exists a subsequence {nk}k, nk → ∞, with
(gnk)∗(ξ) ∈ E.

Now, take a countable sequence {ξn}n ⊂ Kε, such that {ξn}n is dense in Kε and each
ξn is a Lebesgue density point for Kε. Consider Ej,n := D(ξn, 1/j) ∩ Kε, for j, n ≥ 1.
Since each ξn is a Lebesgue density point for Kε, λ(Ej,n) > 0, for all j, n ≥ 1.

Applying the previous property to the sequence {Ej,n}j,n, we have that, for λ-almost
every ξ ∈ Kε, there exists a subsequence {nk}k, nk → ∞, with (gnk)∗(ξ) ∈ Ek,k. Hence,
there exists a subsequence {nk}k, nk → ∞, with (gnk)∗(ξ) ∈ Kε, (gnk)∗(ξ) → ξ, proving
(4.4).

Finally, since points in ∂U with dense orbit have full harmonic measure, we can assume
that Kε is chosen so that (4.5) holds.

5. Construction of a periodic point in DW (φ∗(ξ), r), for all ξ ∈ Kε and r ∈ (0, rε).
Set ξ ∈ Kε and r ∈ (0, rε). The goal in this section is to find a periodic point in

DW (φ∗(ξ), r) ∩ ∂U .
Write ξn := (gn)∗(ξ), for all n ≥ 0. By (4.1), φ∗(ξn) exists and belongs to Ω, for all

n ≥ 0. By (4.4) and (4.2), ξn ∈ Kε infinitely often, and all relevant inverse branches
are well-defined in DW (φ∗(ξn), rε). In particular, for all 0 ≤ m < n, there is a relevant
inverse branch Fn−m of fn−m in D(φ∗(ξn), rε). Hence, for all n ≥ 0, f maps conformally
a neighbourhood of φ∗(ξn) onto a neighbourhood of φ∗(ξn+1).

Now, consider DW (φ∗(ξ0), rε), and let W1 be the connected component of W such that
φ∗(ξ0) ∈ W1. Note that, by (4.2), all relevant branches of f−n at φ∗(ξ0) are well-defined
in DW (φ∗(ξ0), rε). In particular, there exists n0 ≥ 1 and a relevant inverse branch of fn0 ,
say Fn0 , such that Fn0(φ∗(ξ0)) ∈ W1 (recall that preimages of any point are dense in the
Julia set, with at most two exceptions). Consider Dn0 := Fn0(DW (φ∗(ξ0), rε)). Therefore,

Fn0 : DW (φ∗(ξ0), rε) −→ Dn0

conformally.

Claim. There exists k ∈ (0, 1) such that, for all z, w ∈ DW (φ∗(ξ0), rε),

distW (Fn0(z), Fn0(w)) ≤ k · distW (z, w).
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Proof. The proof follows the same idea as in (2.3) (and we use the same notation). Indeed,
let W1 be the connected component of W in which φ∗(ξ0) lies, and let W ′

1 be the connected
component of W ′ that contains Fn0(φ∗(ξ0)). Then, W ′

1 ⊂ W1, and fn0 : W ′
1 → W1 is a

holomorphic covering.
Note that the inclusion W ′

1 ⊂ W1 is strict. Otherwise fn0(W1) = W1, and this is
impossible since W1 contains points of J (f) (and, by the blow-up property of the Julia
set, the neighbourhood of any point in J (f) should cover the Riemann sphere minus at
most two points under iteration – taking W1 to be that neighbourhood, the fact that
fn0(W1) = W1 causes a contradiction). Hence, ρW1 < ρW ′

1
, so

ρW1(x)| < ρW1(fn0(x)) · |(fn0)′(x)| .

Moreover, since DW (φ∗(ξ0), rW ) is compactly contained in W , there exists k ∈ (0, 1)
such that, for all x ∈ DW (φ∗(ξ0), rW ),

ρW1(Fn0(x)) ·
∣∣∣F ′

n0(x)
∣∣∣ ≤ k · ρW1(x).

With this in mind, the end of the proof is straightforward, as in (2.3).

Now, we claim that we can find N ≥ 1 satisfying the following properties.

(5.1) If N0 := # {n ≤ N : φ∗(ξn) ∈ Dn0}, then kN0 <
r

3rε

.

(5.2) ξN := (gN)∗(ξ0) ∈ Kε

(5.3) There exists tN ∈ (0, 1) such that tNξN ∈ Rρε(ξN) ∩ ∆ρε(ξ0).

Indeed, by (4.5), the orbit of φ∗(ξ0) is dense in ∂U . In particular, it visits Dn0 infinitely
many times. Hence, there exists N ′ so that (5.1) is satisfied for N ′. By (4.4), there exists
a subsequence {nk}k, nk → ∞, such that ξnk

∈ Kε and ξnk
→ ξ0. Thus, we can find

N ≥ N ′ for which conditions (5.2) and (5.3) are also satisfied. Note that the geometric
condition in (5.3) is satisfied as long ξN is close enough to ξ0, since the radius ρε and the
angle α are uniform (see Fig. 3.1 for a geometric intuition).

Claim. There exists a relevant inverse branch FN of fN at φ∗(ξN) defined in
DW (φ∗(ξN), rε), which satisfies FN(φ∗(ξN)) = φ∗(ξ0) and

FN(DW (φ∗(ξN), rε)) ⊂ DW

(
φ∗(ξ0),

r

3

)
⊂ DW (φ∗(ξN), rε).

We note that, in particular, FN(DW (φ∗(ξN), rε)) ⊂ DW (φ∗(ξ0), r).

Proof. First note that ξN ∈ Kε (5.2), so all relevant inverse branches are well-defined
in DW (φ∗(ξN), rε) (4.2). Since ξN = (gN)∗(ξ0), by Lemma II.5.2, we have fN(φ∗(ξ0)) =
φ∗(ξN). Hence, there exists a relevant inverse branch FN of fN at φ∗(ξN) defined in
DW (φ∗(ξN), rε), which satisfies FN(φ∗(ξN)) = φ∗(ξ0).

Note that FN is the composition of different inverse branches of f , and each of them does
not increase the hyperbolic distance distW between points (2.3). Moreover, {fn(ξ0)}N

n=0

130



ξN

tNξN

GN(tNξN)

R(ξN)

∆ρε(ξ0)

∂D

ξ0

Figure 3.1: The choice of the point tN ξN ∈ Rρε
(ξN ) ∩ ∆ρε

(ξ0).

visits Dn0 at least N0 times (5.1). This means that applying FN corresponds to applying
the inverse Fn0 , which acts as a contraction by k, at least N0 times. Thus, we have

FN(DW (φ∗(ξN), rε)) ⊂ DW

(
φ∗(ξ0), kN0rε

)
⊂ DW

(
φ∗(ξ0),

r

3

)
.

To see the remaining inclusion, note that, by (4.3) and (5.1), we have

φ(tNξN) ∈ DW

(
φ∗(ξ0),

rε

3

)
∩DW

(
φ∗(ξN), rε

3

)
.

Hence, applying the triangle inequality,

distW (φ∗(ξ0), φ∗(ξN)) ≤ distW (φ∗(ξ0), φ(tNξN)) + distW (φ(tNξN), φ∗(ξN)) < 2rε

3 ,

implying the desired inclusion.

Finally, we end the proof finding a periodic point in DW (φ∗(ξ0), r) ∩ ∂U . This final
argument is essentially the same as in [PZ94], which we include for the sake of
completeness.

Claim. The map
FN : DW (φ∗(ξN), rε) −→ DW (φ∗(ξN), rε)

has an attracting fixed point in DW (φ∗(ξ0), r), which is accessible from U . Hence, f has
a repelling N-periodic point in DW (φ∗(ξ0), r) ∩ ∂U .

Proof. Since FN(DW (φ∗(ξN), rε)) ⊂ DW (φ∗(ξ0), r), by the Denjoy-Wolff Theorem, Fn as
a fixed point p ∈ DW (φ∗(ξ0), r), which attracts all points in DW (φ∗(ξN), rε) under the
iteration of Fn. Hence it is repelling under fn and thus belongs to J (f).
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It is left to see that p is accessible from U . To do so, first note that, by (4.3), there
exists a branch GN of g−N such that GN is well-defined in D(ξN , ρε) and GN(ξN) = ξ0. It
holds that φ◦GN = FN ◦φ in ∆ρε(ξN). Moreover, GN(Rρε(ξN)) ⊂ ∆ρε(ξ0). In particular,
GN(tNξN) ∈ ∆ρε(ξ0).

Since tNξN ∈ ∆ρε(ξ0), we can find a curve γ ⊂ ∆ρε(ξ0) joining tNξN and GN(tNξN).
Then, φ(γ) ⊂ DW (φ∗(ξN), rε) joins φ(tNξN) with FN(φ(tNξN)). Define

Γ :=
⋃

m≥0
Fm

N (γ).

Then, Γ ⊂ ∂U lands at p, proving the claim.

ξN

tNξN

GN(tNξN)

GN

FN

γ

φ

∂D

ξ0

φ(γ)

φ∗(ξN)φ∗(ξ0)
ε

Figure 3.2: The construction of the curve γ in D, and its image φ(γ) in the dynamical plane.

5. Periodic points are dense in ∂U .
Finally, to see that the previous construction leads to density of periodic points in ∂U ,

one should take into account that supp ωU = ∂̂U (Lemma ??). Hence, for all x ∈ ∂U

and δ > 0, it holds ωU(D(x, δ)) > 0. Take ε := ωU(D(x, δ))/2, and consider Kε as before.
Note that, by the choice of ε, we have ωU(D(x, δ) ∩ φ∗(Kε)) > 0.

Let ξ ∈ Kε be such that φ∗(ξ) ∈ D(x, δ), and let r ≤ rε. In the previous step, we
proved the existence of a periodic point in DW (φ∗(ξ), r). Taking r small enough, since
φ∗(ξ) ∈ D(x, δ), we can ensure that the periodic point is in D(x, δ).

This ends the proof of Theorem 3. □
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Chapter 4
Pesin theory for transcendental maps and

applications

In the setting of smooth dynamical systems, hyperbolic dynamical systems play a
distinguished role, since they are the easiest to study and exhibit the simplest possible
behaviour. Indeed, hyperbolic dynamics are characterized by the presence of expanding
and contracting directions for the derivative at every point, which provides strong local,
semilocal or even global information about the dynamics. However, the assumption of
hyperbolicity is quite restrictive. A weaker (and hence, more general) form of
hyperbolicity, known as non-uniform hyperbolicity, was initially developed by Yakov
Pesin in his seminal work [Pes76, Pes77]. Since then, Pesin’s approach to hyperbolicity,
also known as Pesin theory, has been extended, generalized and refined in numerous
articles and research books (see e.g. [Pol93], [KH95, Supplement], [BP23]). Although
results apply to both discrete and continuous dynamical systems, in this paper we focus
on the discrete ones.

Roughly speaking, Pesin studied originally C1-diffeomorphisms on compact smooth
Riemannian manifolds. Under the assumption that such a map is measure-preserving
and ergodic, and no Lyapunov exponent vanishes except on a set of zero measure, the
forward and backwards contraction or expansion around almost every point is controlled
asymptotically by the Lyapunov exponents. Applications of this theory include periodic
points, homoclinic points, and stable manifold theory [Pol93, Part II].

One of the natural generalizations of Pesin theory is to the setting of iteration of rational
maps in the Riemann sphere Ĉ. That is, let f : Ĉ → Ĉ be holomorphic, and consider
the discrete dynamical system generated by f . The phase space Ĉ is commonly split into
two totally invariant sets: the Fatou set F(f), where the family of iterates is normal,
and hence the dynamics are in some sense stable; and its complement, the Julia set
J (f). Although the Fatou set is well-understood, the dynamics in the Julia set are more
intricate and worthy of study. For general background in rational iteration we refer to
[CG93, Mil06]. In contrast with the setting of C1-diffeomorphisms considered by Pesin,
now the iterated function is no longer bijective, which is overcome by assuming a higher
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degree of regularity on the function.
A rational map is said to be hyperbolic if all orbits of critical values (i.e. images of

zeros of f ′) are compactly contained in the Fatou set, which already implies that all
inverse branches around points in J (f) are well-defined and uniformly contracting (see
e.g. [CG93, Sect. V.2], [Mil06, Sect. 19]). Hence, following Pesin’s approach for
diffeomorphisms, it is natural to ask whether, for a general map (not necessarily
hyperbolic), generic inverse branches are well-defined and contracting. Note that one
should make precise the notion of generic inverse branches, by defining the abstract
space of backward orbits for points in J (f) and endow it with a measure (using
Rokhlin’s natural extension, see Sect. 4.1).

One can prove that, under the assumption of existence of an ergodic invariant
probability with positive Lyapunov exponent, for almost every backbard orbit {xn}n

there exists a disk around the initial point x0, such that the corresponding inverse
branches of fn are well-defined and contracting in this disk (see [Led81, Dob12], and
also [PU10, Sect. 11.2], [KU23, Chap. 9.3], [URM23, Sect. 28.3], among others). The
proof relies strongly on the fact that Ĉ is compact (and hence, J (f) is also compact),
and the finiteness of the set of critical values.

We note that the existence of ergodic invariant probabilities supported on the Julia
set of rational maps has been historically a topic of wide interest, in connection with
the measure of maximal entropy. For polynomials, the existence of such a measure was
already proved by Brolin [Bro65], whereas for rational maps it was done by Freire, Lopes
and Mañé [FLM83], and Lyubich [Lyu83], independently. Such a measure of maximal
entropy is known to be an ergodic invariant probability, and hence it can be used as an
initial cornerstone to develop Pesin theory. Moreover, Lyapunov exponents with respect
to any ergodic invariant probability supported on J (f) have been studied in depth [Prz85,
Prz93, Dob12].

The goal of this paper is to extend these well-known results for rational maps to the
transcendental setting, that is, for maps f : C → Ĉ (transcendental) meromorphic,
including the entire case. Although under the presence of poles some orbits get
truncated, one can define the Fatou and Julia set for f in a similar way than for rational
maps (as shown in Section II.1). As in the rational case, the question we want to
address is whether generic inverse branches are well-defined and contracting around
points in J (f).

Note that the cornerstones from which the rational Pesin theory is built (namely,
compact phase space, finitely many critical values, and existence of ergodic invariant
probabilities) no longer hold in general. Indeed, first, the phase space is now C, which is
no longer compact, and nor is the Julia set. In fact, this lack of compactness causes
difficulties even for the extension of the notion of hyperbolicity from the rational setting
[RGS17].

Additionally, critical values are not the only values where inverse branches fail to be
defined. Indeed, one shall consider the set of singular values (i.e. critical and asymptotic
values, and accumulation thereof, denoted by SV ), and it may be uncountable.
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Finally, the existence of invariant measures on the Julia set is much more delicate and
remains somewhat unexplored, as well as Lyapunov exponents (which depend on the
existence of the previous measures). Indeed, although the existence of invariant ergodic
probabilities supported on the Julia set has been proved for certain families (such as
the hyperbolic exponential family [UZ03]), in other cases it is known that they do not
exist [DS08]. Hence, in contrast with rational maps, the existence of an ergodic invariant
measure supported in the Julia set is unknown in the general setting.

In order to overcome some of these difficulties, we restrict ourselves to some forward
invariant subsets of the Julia set which are of special interest: the boundaries of invariant
(or periodic) connected components of the Fatou set (known as Fatou components). If we
let U be an invariant Fatou component for f , then its boundary ∂U is forward invariant
under f . In the seminal work of Doering and Mañé [DM91], invariant ergodic measures
for f : ∂U → ∂U supported on ∂U are given, following the approach initiated by Przytycki
to study rational maps restricted to the boundary of attracting basins [Prz85].

Taking advantage of these invariant measures, under some mild assumptions on the
singular values, we are able to overcome the difficulties arising from the lack of
compactness, the infinite degree and the presence of infinitely many singular values. Our
techniques include refined estimates on harmonic measure and the construction of an
appropriate conformal metric. In this manner, we can develop Pesin theory in the
boundary of some transcendental Fatou components in a quite successful way, which is
presented next.

Statement of results

Let f : C → Ĉ be a transcendental meromorphic function, i.e. so that ∞ is an essential
singularity for f , and let U be an invariant Fatou component for f . Such an invariant
Fatou component is either an attracting basin, a parabolic basin, a rotation domain or
a Baker domain (see Sect. II.1). As in the previous sections, we denote by ∂U the
boundary of U in C, and ∂̂U the boundary in Ĉ. All the derivatives and absolute values
are understood to be with respect to the spherical metric in Ĉ, and hence |f ′| is bounded
on compact subsets of the plane.

Attracting basins are the natural candidates to perform Pesin theory on their boundary,
since the harmonic measure ωU (with basepoint the fixed point p ∈ U) is invariant under
f and ergodic. The transversal assumption throughout the paper is that singular values
are ‘not too dense’ on ∂U , condition we make formal by requiring∫

∂U
log |x− SV |−1 dωU(x) < ∞

(see Sect. 4.2). We note that this assumption is always satisfied if there are only finitely
many singular values on ∂̂U (Remark 4.2.2).

Our main result is the following.

Theorem 4.A. (Pesin theory for attracting basins of transcendental maps) Let
f : C → Ĉ be a meromorphic function, and let U be a simply connected attracting basin,
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with fixed point p ∈ U . Let ωU be the harmonic measure on ∂U with base point p. Assume
f has positive Lyapunov exponent, that is log |f ′| ∈ L1(ωU) with

∫
∂U log |f ′(x)| dωU(x) > 0.

Suppose also that
∫

∂U log |x− SV |−1 dωU(x) < ∞.
Then, for every countable collection of measurable sets {Ak}k ⊂ ∂U with ωU(Ak) > 0,
and for ωU -almost every x0 ∈ ∂U , there exists a backward orbit {xn}n ⊂ ∂U and r > 0
such that

(a) xnk
∈ Ak for some sequence nk → ∞;

(b) the inverse branch Fn sending x0 to xn is well-defined in D(x0, r);

(c) diam Fn(D(x0, r)) → 0, as n → ∞.

Note that, in particular, for ωU -almost every x0 ∈ ∂U there exists a backward orbit
{xn}n, and inverse branches {Fn}n of fn, well-defined in D(x0, r), such that {xn}n is
dense on ∂U .

If we consider parabolic basins or Baker domains, the situation is even more unfavorable,
since no harmonic measure on ∂U is f -invariant. Nevertheless, there exists a σ-finite
measure which is absolutely continuous with respect to it, invariant under f , recurrent
and ergodic. By means of the first return map, we develope a similar result for parabolic
basins and Baker domains. As far as we are aware of, this result is new even for parabolic
basins of polynomials, in which case the assumptions are always trivially satisfied.

Theorem 4.B. (Parabolic Pesin theory) Let f : C → C be a meromorphic function,
and let U be a simply connected parabolic basin or Baker domain, such that SV ∩ U are
compactly contained in U . Let ωU be a harmonic measure on ∂U , such that
log |f ′| ∈ L1(ωU) with

∫
∂U log |f ′| dωU > 0. Assume there exists ε > 0 such that, if

∂U+ε := {z ∈ C : dist(z, ∂U) < ε}, singular values of f in ∂U+ε are finite.
Then, for every countable collection of measurable sets {Ak}k ⊂ ∂U with ωU(Ak) > 0,
and for ωU -almost every x0 ∈ ∂U there exists a backward orbit {xn}n ⊂ ∂U and r > 0
such that

(a) xnk
∈ Ak for some sequence nk → ∞;

(b) the inverse branch Fn sending x0 to xn is well-defined in D(x0, r0);

(c) for every subsequence
{
xnj

}
j

with xnj
∈ D(x0, r), diam Fnj

(D(x0, r)) → 0, as j →
∞.

Remark. In the particular case when f is an entire function (polynomial or
transcendental), instead of assuming that singular values of f in ∂U+ε are finite, it is
enough to assume that critical values in ∂U+ε are finite (see Section 4.4.4).

Next we present two applications of the theorems above: developing Pesin theory for
centered inner functions, and finding periodic points for transcendental maps.
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Application. Pesin theory for centered inner functions

Let D denote the unit disk, and ∂D the unit circle, and let λ be the normalized Lebesgue
measure in ∂D. An inner function is, by definition, a holomorphic self-map of the unit
disk, g : D → D, which preserves the unit circle λ-almost everywhere in the sense of radial
limits. If, in addition, we have that g(0) = 0, we say that the inner function is centered.
A point ξ ∈ ∂D is called a singularity of g if g cannot be continued analitically to any
neighbourhood of ξ. Denote the set of singularities of g by E(g).

It is well-known that the radial extension of a centered inner function preserves the
Lebesgue measure λ and is ergodic (see e.g. [DM91, Thm. A, B]). For these reasons,
centered inner functions have been widely studied as measure-theoretical dynamical
systems [Aar78, DM91, Cra91, Cra92, Aar97, IU23, IU24].

An important subset of centered inner functions are the ones with finite entropy, or
equivalently, when log |g′| ∈ L1(∂D) [Cra91]. Such a property translates to a greater
control on the dynamics, from different points of view (see e.g. [Cra91, Cra92, IU23,
IU24]). In particular, centered inner functions with finite entropy are natural candidates
to apply the theory developed above. Moreover, due to its rigidity and symmetries,
we will deduce some additional properties. In general, inner functions present a highly
discontinuous behaviour in ∂D, so it is noteworthy the great control we achieve, only by
assuming that

∫
∂D log |x− SV |−1 dλ(x) < ∞, where λ denotes the Lebesgue measure on

∂D.
Let us denote the radial segment at ξ of length ρ > 0 by

Rρ(ξ) := {rξ : r ∈ (1 − ρ, 1)} .

and the Stolz angle at ξ of length ρ > 0 and opening α ∈ (0, π
2 ) by

∆α,ρ(ξ) = {z ∈ D : |Arg ξ − Arg (ξ − z)| < α, |z| > 1 − ρ} .

Using the same construction as in Theorem 4.A, we deduce the following.

Corollary 4.C. (Pesin theory for centered inner functions) Let g : D → D be a
centered inner function, such that log |g′| ∈ L1(∂D) and

∫
∂D log |x− SV |−1 dλ(x) < ∞.

Fix α ∈ (0, π/2). Then, for every countable collection of measurable sets {Ak}k ⊂ ∂D
with λ(Ak) > 0, and for λ-almost every ξ0 ∈ ∂D there exists a backward orbit {ξn}n ⊂ ∂D
and ρ0 > 0 such that

(a) ξnk
∈ Ak for some sequence nk → ∞;

(b) the inverse branch Gn of gn sending ξ0 to ξn is well-defined in D(ξ0, ρ0);

(c) for all ρ ∈ (0, ρ0), Gn(Rρ(ξ0)) ⊂ ∆α,ρ(ξn).

In particular, the set of singularities E(g) has zero λ-measure.
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Application. Periodic boundary points in transcendental dynamics

One possible application of Pesin theory is to find periodic points. In complex dynamics,
this idea was already exploited by F. Przytycki and A. Zdunik to find periodic points on
the boundaries of basins for rational maps [PZ94]. Hence, we aim to apply Theorem 4.A
and Theorem 4.B to find periodic boundary points in the transcendental setting.

To do so, we need a stronger assumption on the orbits of singular values inside U .
Recall that, given a simply connected domain U , we say that C ⊂ U is a crosscut if C is
a Jordan arc such that C = C ∪ {a, b}, with a, b ∈ ∂U , a ̸= b. Any of the two connected
components of U ∖ C is a crosscut neighbourhood. We define the postsingular set of f as

P (f) :=
⋃

s∈SV

⋃
n≥0

fn(s).

Corollary 4.D. (Periodic boundary points are dense) Under the hypotheses of Theorem
4.A or Theorem 4.B, assume, in addition, that there exists a crosscut neighbourhood NC

with NC ∩ P (f) = ∅. Then, periodic points are dense on ∂U .

Lyapunov exponents of transcendental maps

Finally, we note that one essential hypothesis in our results is that log |f ′| is integrable
with respect to the harmonic measure ωU , and hence the Lyapunov exponent

χωU
(f) =

∫
∂U

log |f ′| dωU

is well-defined. We also require that χωU
is positive. These facts are well-known for

simply connected basins of attraction of rational maps [Prz85, Prz93], but unexplored for
transcendental maps. In this paper we give several conditions, concerning the order of
growth of the function and the shape of the Fatou component, which implies that the
Lyapunov exponent is well-defined and non-negative.

One of the main challenges that appear when considering transcendental maps is that
|f ′| may not be bounded in ∂U , even when taking the derivative with respect to the
spherical metric. Indeed, |f ′| is not bounded around the essential singularity, and the
growth can be arbitrarily fast. Thus, we introduce the following concept, which relates
the growth of the function with the shape of the Fatou component.

Definition. (Order of growth in a sector for meromorphic functions) Let f : C →
Ĉ be a transcendental meromorphic function, and let U ⊂ C be an invariant Fatou
component for f . We say that U is asymptotically contained in a sector of angle α ∈ (0, 1)
with order of growth β > 0 if there exists R0 > 0, ξ ∈ ∂D and α ∈ (0, 1), such that, if

SR = SR,α := {z ∈ C : |z| > R, |Arg ξ − Arg (1/z)| < πα}

then,

(a) U ∩ {z ∈ C : |z| > R0} ⊂ SR0 ;
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(b) f has order of growth β > 0 in SR0 , i.e. there exists A,B > 0 such that, for all
R > R0 and z ∈ SR0 ∖ SR,

A · eB·|z|−β

≤ |f ′(z)| ≤ A · eB·|z|β .

Under this asusmption on the growth, we are able to prove the following.

Proposition 4.E. (log |f ′| is ωU -integrable) Let f : C → Ĉ be a meromorphic function,
and let U be an invariant Fatou component for f . Let ωU be a harmonic measure on ∂U .
Assume U is asymptotically contained in a sector of angle α ∈ (0, 1), with order of growth
β ∈ (0, 1

2α
). Then, log |f ′| ∈ L1(ωU).

Proposition 4.F. (Non-negative Lyapunov exponents) Let f : C → Ĉ be a
meromorphic function, and let U be a simply connected attracting basin, with fixed point
p ∈ U . Let ωU be the harmonic measure in ∂U with base point p. Assume

(a) U is asymptotically contained in a sector of angle α ∈ (0, 1), with order of growth
β ∈ (0, 1

2α
);

(b)
∫

∂U log |x− SV |−1 dωU(x) < ∞.

Then,
χωU

=
∫

∂U
log |f ′| dωU ≥ 0.

Remark. The statements of Theorem 4.A and Theorem 4.B, and Corollary 4.C are a
simplified version of the ones proved inside the paper (respectively, Thms. 4.3.1, 4.4.4
and 4.5.1). These stronger statements are formulated in terms of the Rohklin’s natural
extension of the corresponding dynamical systems. Since this construction is not common
in transcendental dynamics (although it is standard in ergodic theory), we chose to present
our results in this simplified (and weaker) form. For convenience of the reader, all the
needed results about Rohklin’s natural extension can be found in Section 4.1.

Although the results are stated here for meromorphic functions, we shall work in the
more general class K of functions with countably many singularities; in particular, this
allows us to consider periodic attracting basins of meromorphic maps, not only invariant
ones.

Remark. It seems plausible to extend the previous results to multiply connected Fatou
components, as long the harmonic measure is well-defined. This is always the case of
Fatou components in class K [FJ25].

4.1 Rokhlin’s natural extension

A useful technique in the study of non-invertible measure-preserving tranformations is the
so-called Rokhlin’s natural extension [Roh64], which allows us to construct a measure-
preserving automorphism in an abstract measure space, mantaining its ergodic properties.
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However, this technique is often developed for Lebesgue spaces with invariant probabilities
(see e.g [PU10, Sect. 1.7] , [URM22, Sect. 8.5]). Since we work also with σ-finite measures,
we sketch how we can develop the theory in this more general case.

Let (X,A, µ) be a Lebesgue space, i.e. a measure space isomorphic (in the measure-
theoretical sense) to an interval (equipped with the Lebesgue measure) together with
countably many atoms. Let T : X → X be measure-preserving. The measure µ is either
finite (and we assume it is a probability measure), or σ-finite.

Consider the space of backward orbits for T

X̃ = {{xn}n ⊂ X : x0 ∈ X, T (xn+1) = xn, n ≥ 0} ,

and define, in a natural way, the following maps. On the one hand, for k ≥ 0, let
πk : X̃ → X be the projection on the k-th coordinate of {xn}n, that is πk({xn}n) = xk.
On the other hand, we define Rokhlin’s natural extension of T as T̃ : X̃ → X̃, with

T̃ ({xn}n) = T̃ (x0x1x2 . . . ) = f(x0)x0x1 . . .

It is clear that T̃ is invertible and T̃−1 is the shift-map, i.e.

T̃−1({xn}n) = T̃−1(x0x1x2 . . . ) = x1x2x3 · · · = {xn+1}n .

Moreover, for each k ≥ 0, the following diagram commutes.

X̃ X̃
{xn+1}n {xn}n

X X
xk+1 xk

T̃

πk πk

T

Note that, up to here, the construction is purely symbolic and measures have not come
out yet. In fact, the next step in the construction is to endow the space X̃ with an
appropriate σ-algebra Ã and a measure µ̃, which makes the previous projections πk and
the map T̃ measure-preserving. To do so, we will need the following more general result.

Theorem 4.1.1. (Kolmogorov Consistency Theorem, [Par67, Thm. V.3.2]) Let
(Xn,An, µn) be Lebesgue probability spaces, and let Tn : Xn+1 → Xn be
measure-preserving. Let

X̃ = {{xn}n : xn ∈ Xn, Tn(xn+1) = xn, n ≥ 0} .

and let πk : X̃ → Xk be the projection on the k-th coordinate. Then, there exists a σ-
algebra Ã and a probability measure µ̃ in X̃ such that (X̃, Ã, µ̃) is a Lebesgue probability
space and, for each k ≥ 0,

µ̃(π−1
k (A)) = µk(A), A ∈ Ak.
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Notice that the theorem above holds whenever (Xn,An, µn) are Lebesgue measure
spaces with finite measure. The σ-algebra Ã can be taken to be the smallest which
makes each projection πk : X̃ → Xk measurable [Par67, Thm. V.2.5]. Note that
Tk ◦ πk+1 = πk. Observe that now X̃ stands for the space of backward orbits under the
sequence of maps {Tn}n. Hence, one has to think of X̃ as the infinite product of the
spaces {Xn}n, since the spaces in {Xn}n are a priori different, and hence there is no
endomorphism T̃ : X̃ → X̃ in general. However, we will use these extensions (X̃, Ã, µ̃) of
some appropriate spaces as building blocks for Rokhlin’s natural extension for
transformations with σ-finite invariant measures.
Theorem 4.1.2. (Rokhlin’s natural extension for σ-finite invariant measures) let
(X,A, µ) be a Lebesgue space, and let T : X → X be a measure-preserving transformation.
Assume µ is a σ-finite measure, and consider Rokhlin’s natural extension T̃ : X̃ → X̃.
Then, there exists a σ-algebra Ã and a σ-finite measure µ̃ such that the maps πk and T̃

are measure-preserving.
Proof. In the case of (X,A, µ) being a Lebesgue probability space, the statement follows
from applying Kolmogorov Consistency Theorem 4.1.1 with Xn = X, for all n ≥ 0, as
indicated in [URM22, Thm. 8.4.2].

Otherwise, let
{
Xj

0

}
j

be a partition of X such that µ(Xj
0) is finite, for each j ≥

0. Without loss of generality, we assume µ(Xj
0) = 1, for each j ≥ 0, to simplify the

computations. Then, for all n ≥ 0,
{
Xj

n := T−n(Xj
0)
}

j
is also a partition of X such that

µ(Xj
n) = 1, for each j ≥ 0, since T is measure-preserving and preimages of disjoint sets

are disjoint.
If we write Aj

n and µj
n for the restrictions of A and µ to Xj

n, we have that, for each j ≥ 0,
(Xj

n,Aj
n, µ

j
n) is a Lebesgue probability space, and T : Xj

n+1 → Xj
n is measure-preserving.

Hence, by Theorem 4.1.1, there exists a Lebesgue probability space (X̃j, Ãj, µ̃j) such that

X̃j =
{
{xn}n : xn ∈ Xj

n, T (xn+1) = xn, n ≥ 0
}
.

and the projections πj
k : X̃j → Xj

k are measure-preserving. The space of backward orbits

X̃ = {{xn}n : xn ∈ X, Tn(xn+1) = xn, n ≥ 0}

is the disjoint union of the X̃j, j ≥ 0. Let A to be the σ-algebra generated by
{
Ãj
}

j
,

and the measure µ̃ on (X̃, Ã) unambiguously determined by the µ̃j’s. It is clear that the
maps πk are measure-preserving, for all k ≥ 0.

It is left to see that T̃ is measure-preserving. To do so, note that we have the following
measure-preserving commutative diagram.

... X̃j2 ⊂ X̃ X̃j1 ⊂ X̃ X̃j0 ⊂ X̃
{xn+2}n {xn+1}n {xn}n

... Xj
2 ⊂ X Xj

1 ⊂ X Xj0
0 ⊂ X

x2 x1 x0

T̃ T̃ T̃

π
j2
0 π

j1
0 π

j0
0

T T T
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Since the sets {(πj
n)−1(A ∩Xj

n) : A ∈ A}n,j generate the σ-algebra Ã, it is enough to prove
invariance for such sets. Thus, without loss of generality, let A ⊂ Xj

n, and then

µ̃ ◦ T̃−1((πj
n)−1(A)) = µ̃ ◦ (πj

n ◦ T̃ )−1(A) = µ̃ ◦ (T ◦ πj
n)−1(A) = µ̃ ◦ (πj

n)−1 ◦ T−1(A)
= µ(T−1(A)) = µ(A) = µ̃((πj

n)−1(A)),

as desired.

It follows from the previous theorem that µ̃ is a probability measure if and only if so is
µ. Natural extensions share many ergodic properties with the original map, as shown in
the following proposition for probability spaces.

Proposition 4.1.3. (Ergodic properties of Rokhlin’s natural extension) Let
(X,A, µ) be a Lebesgue probability space, endowed with a measure-preserving
transformation T : X → X, and consider its Rokhlin’s natural extension T̃ acting in
(X̃, Ã, µ̃), given by Theorem 4.1.2. Then, the following holds.

(a) T̃ is recurrent with respect to µ̃.

(b) T̃ is ergodic with respect to µ̃ if and only if T is ergodic with respect to µ.

Proof. Since µ is assumed to be a probability measure, µ̃ is also a probability measure,
and the recurrence of T̃ follows from Poincaré Recurrence Theorem. For (b), see [URM22,
Thm. 8.4.3].

Under the assumption of ergodicity and recurrence, we can prove that every subset of
positive measure in the phase space is visited by almost every backward orbit.

Corollary 4.1.4. (Almost every backward orbit is dense) Let (X,A, µ) be a
Lebesgue space, endowed with a measure-preserving transformation T : X → X, and
consider its Rokhlin’s natural extension T̃ acting in (X̃, Ã, µ̃), given by Theorem 4.1.2.
Assume T̃ is ergodic and recurrent with respect to µ̃, and A ⊂ X is a measurable set
with µ(A) > 0. Then, for µ̃-almost every {xn}n ∈ X̃, there exists a sequence nk → ∞
such that xnk

∈ A.

Proof. Since T̃ is ergodic and recurrent with respect to µ̃, by Theorem I.1.7, for every
Ã ∈ Ã with µ̃(Ã) > 0 and µ̃-almost every {xn}n ∈ X̃, there exists a sequence nk → ∞
such that T̃−nk({xn}n) ∈ Ã. Taking Ã to be π−1

0 (A), we have that µ̃(Ã) > 0, so for
µ̃-almost every {xn}n ∈ X̃, there exists a sequence nk → ∞ with

T̃−nk({xn}n≥0) = {xn}n≥nk
∈ π−1

0 (A).

Hence, xnk
∈ A, as desired.
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4.2 On the hypothesis

In this section we shall discuss the hypothesis we establish (specifically,∫
∂U log |x− SV |−1 dωU(x) < ∞).

We need the following lemma, which gives a geometric intuition on the condition∫
∂U log |x− SV |−1 dωU(x) < ∞, by showing that singular values are ‘not too dense’ on
∂̂U with respect to harmonic measure.

Lemma 4.2.1. Let f ∈ K, and U a Fatou component. Then,
∫

∂U log |x− SV |−1 dωU(x) <
∞ if and only if for any C > 0 and t ∈ (0, 1),

∑
n≥0

ωU

( ⋃
s∈SV

D(s, C · tn)
)
< ∞.

Remark 4.2.2. We note that
∫

∂U log |x− SV |−1 dωU(x) < ∞ always holds if SV ∩ ∂̂U is
finite. Indeed, given any simply connected domain U , for every a ∈ C, log |z − a| ∈ L1(ωU)
[Con95, Prop. 21.1.18].

Proof of Lemma 4.2.1. First note that, since we are working with the spherical metric,
log |x− SV |−1 is uniformly bounded above. Hence, one has only to examine the previous
integral close to singular values. Let 0 < t < 1, and

An :=
{
z ∈ C : tn+1 ≤ |z − SV | < tn

}
; Dn :=

⋃
s∈SV

D(s, C·tn) = {z ∈ C : |z − SV | < tn} .

Then,∫
∂U

log |x− SV |−1 dωU(x) ≥
∑

n

log(tn+1) · ωU(An) = − log t ·
∑

n

(n+ 1) · ωU(An).

This already implies that ∑n≥0 ωU(Dn) = ∑
n n · ωU(An) < ∞, for every t ∈ (0, 1). Since

for every C > 0 and 0 < t < 1 exists 0 < s < 1 with C · tn < sn for n sufficiently large,
the claim of the lemma follows.

For the converse, note that ∑n≥0 ωU(Dn) = ∑
n n · ωU(An) < ∞, implying that

∞ > − log t ·
∑

n

n · ωU(An) = −
∑

n

log(tn) · ωU(An) ≥
∫

∂U
log |x− SV |−1 dωU(x),

as desired.

Remark 4.2.3. Note that Lemma 4.2.1 already implies that SV ∩ ∂̂U have zero harmonic
measure.

4.3 Pesin theory for attracting basins. Theorem 4.A

In this section, we take on the main challenge of this paper: developing Pesin theory for a
simply connected attracting basin U of a function of class K, or, in other words, proving
that generic infinite inverse branches are well-defined on ∂U .
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The easiest assumption one shall make to get that generic infinite inverse branches are
well-defined in ∂U , is that there exists x ∈ ∂U and r > 0 so that D(x, r) ∩ P (f) = ∅.
Indeed, in such case, all iterated inverse branches are well-defined in D(x, r). Moreover,
since f |∂U is ergodic and recurrent, and D(x, r) has positive harmonic measure, it follows
that the forward orbit of ωU -almost every y ∈ ∂U eventually falls in D(x, r), so all iterated
inverse branches are well-defined around y.

The previous method has a main limitation: it does not work when ∂U ⊂ P (f). Even
in the case where f is a polynomial, one can find examples for which ∂U ⊂ P (f), or even
J (f) ⊂ P (f). Our goal is precisely to show that, even in the case where ∂U ⊂ P (f),
if
∫

∂U log |x− SV |−1 dωU(x) < ∞, generic inverse branches are well-defined. Hence, one
should work with each infinite backward orbit separatedly, and try to find a disk where the
inverse branches corresponding to this backward orbit are well-defined, but other inverse
branches may fail to be defined. Here is where Rohklin’s natural extension plays a crucial
role.

Therefore, let U be a simply connected attracting basin for a map f ∈ K with fixed point
p ∈ U , and consider the measure-theoretical dynamical system given by (∂U, ωU , f), where
ωU is the harmonic measure with basepoint p. Note that, through this section, ωU stands
for the harmonic measure with basepoint p, although we do not write it explicitly. Recall
that ωU is f -invariant, ergodic and recurrent. Note also that we omit the dependence of
the previous dynamical system on the σ-algebra B(Ĉ), in order to lighten the notation.

Now, consider the natural extension of (∂U, ωU , f), denoted by (∂̃U, ω̃U , f̃), and given
by the projecting morphisms {πU,n}n. We note that (∂U, ωU , f) is indeed a Lebesgue
probability space (in fact, it is isomorphic, in the measure-theoretical sense, to the unit
interval), and hence Theorem 4.1.2 can be applied to guarantee the existence of Rokhlin’s
natural extension. Thus, ∂̃U is the space of backward orbits {xn}n ⊂ ∂U , with f(xn+1) =
xn for n ≥ 0, and f̃ : ∂̃U → ∂̃U is the automorphism which makes the following diagram
commute.

... ∂̃U ∂̃U ∂̃U ...
{xn+2}n {xn+1}n {xn}n

... ∂U ∂U ∂U ...
xn+2 xn+1 xn

f̃ f̃ f̃ f̃

πU,n πU,n πU,n

f f f f

Since the natural extension inherits the ergodic properties of the original dynamical
system, we have that ω̃U is an f̃ -invariant, ergodic and recurrent probability (Prop. 4.1.3).
Moreover, for every measurable set A ⊂ ∂U with µ(A) > 0 and ω̃U -almost every {xn}n ∈
∂̃U , there exists a sequence nk → ∞ such that xnk

∈ A (Corol. 4.1.4).
We shall rephrase Theorem 4.A in terms of Rokhlin’s natural extension as follows.

Theorem 4.3.1. (Inverse branches are well-defined almost everywhere) Let f ∈
K, and let U be a simply connected attracting basin for f , with fixed point p ∈ U . Let ωU

be the harmonic measure in ∂U with base point p. Assume:
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(a) log |f ′| ∈ L1(ωU), and χωU
(f) > 0;

(b) ∑n ωU(D(x,Mn)) < ∞, for every M ∈ (0, 1).

Then, for ω̃U -almost every {xn}n ∈ ∂̃U , there exists r := r({xn}n) > 0 such that

(i) the inverse branch Fn sending x0 to xn is well-defined in D(x0, r);

(ii) for every χ ∈ (−χωU
, 0), there exists C > 0 such that, for all n ∈ N, |F ′

n(x0)| <
C · eχ·n;

(iii) for every r0 ∈ (0, r), there exists m ∈ N such that Fm(D(x0, r)) ⊂ D(x0, r0).

We show now how to deduce Theorem 4.A from Theorem 4.3.1, and later we give the
proof of it.

Proof of Theorem 4.A. The assumptions of Theorem 4.A and 4.3.1 are equivalent, by
Lemma 4.2.1. We have to see that the conclusions of Theorem 4.A can be derived from
the ones of Theorem 4.3.1. But this follows straightforward from Corollary 4.1.4. Indeed,
since f̃ is ergodic and recurrent with respect to ω̃U , for any A ⊂ X measurable set with
ωU(A) > 0, for ω̃U -almost every {xn}n ∈ X̃, there exists a sequence nk → ∞ such that
xnk

∈ A. It follows that, for every countable collection of measurable sets {Ak}k ⊂ ∂U

with ωU(Ak) > 0, then for ω̃U -almost every {xn}n ∈ X̃, there exists a sequence nk → ∞
such that xnk

∈ Ak.

Remark 4.3.2. Before starting the proof let us note that we are assuming f ∈ K just
because it is the largest class of functions in which Fatou components are defined. We do
not use the fact that functions in class K have only countably many singularities, we only
use that singular values are ‘not too dense’ on ∂U (hypothesis (b)).

The remaining of the section is devoted to prove Theorem 4.3.1.

4.3.1 Proof of Theorem 4.3.1

Recall that ωU is a f -invariant ergodic probability in ∂U . We fix M ∈ (e 1
4 ·χ, 1).

Lemma 4.3.3. (Almost every backward orbit does not come close to singular
values) For ω̃U -almost every {xn}n ∈ ∂̃U , it holds

(1.1) x0 /∈
⋃

s∈SV

⋃
n≥0

fn(s),

(1.2) lim
n

1
n

log |(fn)′(xn)| = χωU
(f),

(1.3) if Dn := ⋃
s∈SV

D(s,Mn), then xn ∈ Dn only for a finite number of n’s.
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Proof. Since the finite intersection of sets of full measure has full measure, it is enough
to show that each of the conditions is satisfied in a set of full measure.

Condition (1.1) follows from ωU(SV (f)) = 0. Indeed, f is holomorphic, and hence
absolutely continuous, we have ωU(⋃s∈SV (f)

⋃
n≥0 f

n(s)) = 0.
Requirement (1.2) follows from Birkhoff Ergodic Theorem I.1.9 applied to the map

log |f ′|, which is integrable by assumption (a). Indeed, for ω̃U -almost every {xn}n ∈ ∂̃U ,
it holds

χωU
(f) =

∫
∂U

log |f ′| dωU = lim
m

1
m

m−1∑
k=0

log
∣∣∣f ′(fk(x0))

∣∣∣ =

= lim
m

1
m

n−1∑
k=0

log
∣∣∣f ′(fk(πU,0({xn}n)))

∣∣∣ = lim
m

1
m

m−1∑
k=0

log
∣∣∣f ′(πU,0(f̃k({xn}n)))

∣∣∣ ,
where in the last two equalities we used the properties of Rokhlin’s natural extension.

Now, f̃ is a measure-preserving automorphism, and, since log |f ′| ∈ L1(ωU),
log |f ′ ◦ πU,0| ∈ L1(ω̃U). Then, Birkhoff Ergodic Theorem yields

lim
m

1
m

m−1∑
k=0

log
∣∣∣f ′(πU,0(f̃k({xn}n)))

∣∣∣ = lim
m

1
m

m−1∑
k=0

log
∣∣∣f ′(πU,0(f̃−k({xn}n)))

∣∣∣ =

= lim
m

1
m

m−1∑
k=0

log |f ′(xk)| = lim
m

1
m

log(|f ′(x0)| . . . |f ′(xm)|) = lim
m

1
m

log |(fm)′(xm)| .

Putting everyting together, we get that for ω̃U -almost every {xn}n, it holds

lim
n

1
n

log |(fn)′(xn)| = χωU
(f).

For condition (1.3), note that by hypothesis (b),∑
n≥1

ω̃U(π−1
U,n(Dn)) =

∑
n≥1

ωU(Dn) < ∞,

Thus, by the Borel-Cantelli Lemma I.1.4, for ω̃U -almost every {xn}n ∈ ∂̃U , xn ∈ Dn for
only finitely many n’s, as desired. This ends the proof of the Lemma.

Let us fix a backward orbit {xn}n satifying the conditions of the previous lemma. By
(1.3), there exists n1 ∈ N such that, for n ≥ n1, xn /∈ ⋃

s∈SV D(s,Mn). Moreover, by
(1.2), there exists n2 ∈ N, n2 ≥ n1 such that, for n ≥ n2,

|(fn)′(xn)|−
1
4 < Mn < 1.

Note that both n1 and n2 do not only depend on the starting point x0, but on all the
backward orbit {xn}n. Two different backward orbits starting at x0 may require different
n1 or n2.

Let
bn :=

∣∣∣(fn+1)′(xn)
∣∣∣− 1

4 , P :=
∏
n≥1

(1 − bn).

Observe that, since ∑n bn ≤ ∑
n M

n < ∞, the infinite product in P is convergent. Choose
r := r({xn}n) > 0 such that
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(2.1) 2rP < 1,

(2.2) for 1 ≤ n ≤ n2, the branch Fn of f−n sending x0 to xn is well-defined in D(x0, r),

(2.3) Fn2(D(x0, r
∏n2

m=1(1 − bm))) ⊂ D(xn2 ,M
n2).

The remaining inverse branches will be constructed by induction (Claim 4.3.4), but first
let us note that such a r > 0 exists. Indeed, it follows from the fact that the inverse
branch Fn2 sending x0 to xn2 is well-defined in an open neighbourhood of x0, since the
set of singular values of fn2 is closed, and x0 /∈ SV (fn2).

Claim 4.3.4. For every n ≥ n2, there exists an inverse branch Fn sending x0 to xn,
defined in D(x0, r

∏n
m=1(1 − bm)), and such that

Fn(D(x0, r
n∏

m=1
(1 − bm))) ⊂ D(xn,M

n).

Note that proving the claim ends the proof of the theorem. Indeed, letting n → ∞ we
get that all inverse branches are well-defined in D(x0, rP ), i.e. in a disk centered at x0

of positive radius. The estimate on the derivative follows from |(fn)′(xn)|−
1
4 < Mn < 1,

with M ∈ (e 1
4 χ, 1), for n ≥ n2.

Proof of the claim. Suppose the claim is true for n ≥ n2, and let us see that it also holds
for n+1. First, note that D(xn,M

n)∩SV = ∅ for all n ≥ n2 (by the choice of n2). Hence,
there exists a branch F of f−1 satisfying F (xn) = xn+1, well-defined in D(xn,M

n). By
the inductive hypothesis, there exists an inverse branch Fn sending x0 to xn, defined in
Dn := D(x0, r

∏n
m=1(1 − bm)), and such that Fn(Dn) ⊂ D(xn,M

n). Set Fn+1 = F ◦ Fn.
Then, Fn+1 is well-defined in Dn, and sends x0 to xn+1.

Now we use Koebe’s distortion estimates (Thm. I.3.3) to prove the bound on the size of
Fn+1(Dn+1), where Dn+1 := D(x0, r

∏n+1
m=1(1 − bm)) ⊂ Dn. Note that Fn+1 is well-defined

in Dn, which is strictly larger than Dn+1, and the ratio between the two radii of both
disks is (1 − bn). Since Fn+1|Dn is univalent, we have Fn+1(Dn+1) ⊂ D(xn+1, R), where

R = r ·
n+1∏
m=1

(1 − bm) · |(Fn+1)′(x0)| · 2
b3

n

≤ 2r · |(fn+1)′(xn+1)|−1

|(fn+1)′(xn+1)|−
3
4

≤
∣∣∣(fn+1)′(xn+1)

∣∣∣− 1
4 ≤ Mn+1,

as desired.

As noted before, this last claim ends the proof of Theorem 4.3.1. □

4.4 Entire functions and the first return map. Theorem 4.B

In this section, we extend Theorem 4.A to parabolic and Baker domains of entire maps.
The main challenge is that there does not exist an invariant probability which is absolutely
continuous with respect to harmonic measure. However, the existence of an invariant σ-
finite measure in ∂U absolutely continuous with respect to ωU will allow us to perform
Pesin theory, by means of the first return map.
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We shall start by constructing Rokhlin’s natural extension (note that this is indeed
possible due to the existence of the σ-invariant measure). We do this by showing that
Rokhlin’s natural extension is compatible with the use of first return maps if the
transformation we consider is recurrent. This allows us to move from our problem of
finding inverse branches in a space endowed with a σ-invariant measure to a probability
space, where we can perform Pesin theory in a stardard way. We do this construction of
the first return map and Rokhlin’s natural extension in Section 4.4.1, and finally we
develop Pesin theory in Section 4.4.2.

4.4.1 The first return map and Rokhlin’s natural extension

Assume U is a parabolic basin or a Baker domain, such that f |∂U is recurrent. The
measure

λR(A) =
∫

A

1
|w − 1|2

dλ(w), A ∈ B(∂D),

is invariant under the radial extension of the associated inner function g (taken such
that 1 is the Denjoy-Wolff point) and its push-forward µ = (φ∗)∗λR is an infinite σ-finite
invariant measure supported in ∂̂U (see Thm. II.5.5).

One can consider the Rokhlin’s natural extension. Indeed, let ∂̃U be the space of
backward orbits {xn}n ⊂ ∂U , with f(xn+1) = xn for n ≥ 0, and let f̃ : ∂̃U → ∂̃U be the
automorphism which makes the following diagram commute.

... ∂̃U ∂̃U ∂̃U ...
{xn+2}n {xn+1}n {xn}n

... ∂U ∂U ∂U ...
xn+2 xn+1 xn

f̃ f̃ f̃ f̃

πU,n πU,n πU,n

f f f f

One can get an equivalent construction of backward orbits by means of the first return
map. Indeed, let E ⊂ ∂U be a measurable set with µ(E) ∈ (0,∞) (we will fix E later).
Consider the first return map to E, i.e.

fE : E −→ E

x 7−→ fT (x)(x),

where T (x) denotes the first return time of x to E. We consider the measure-theoretical
dynamical system (E, µk, fXk

), where

µE(A) := µ(A ∩ E)
µ(E) ,

for every measurable set A ⊂ ∂U . Note that (E, µE) is a probability space. The following
properties of the first return map fE will be needed.
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Lemma 4.4.1. (First return map) Let fE : E → E be defined as above. Then, the
following holds.

(1.1) µk is invariant under fE. In particular, fE is recurrent with respect to µE.

(1.2) fE is ergodic with respect to µE.

(1.3) If log |f ′| ∈ L1(µ) , then log |f ′
E(x)| := log

∣∣∣(fT (x))′(x)
∣∣∣ ∈ L1(µE) and

∫
Xk

log |f ′
E| dµk = 1

µ(E)

∫
∂U

log |f ′| dµ.

Proof. The three claims are standard facts of measure-theoretical first return maps. More
precisely, (1.1) and (1.2) follow from [URM22, Prop. 10.2.1] and [URM22, Prop. 10.2.7],
respectively. Statement (1.3) comes from [URM22, Prop. 10.2.5], applied to φ = log |f ′|
and φE = log |f ′

E| .

Since (XE, µE) is a Lebesgue probability space, and µE is fE-invariant, we shall
consider its Rohklin’s natural extension, denoted by (Ẽ, f̃E), and given by the projecting
morphisms {πEn}n. Thus, Ẽ is the space of backward orbits

{
xE

n

}
n

⊂ ∂U , with
fE(xE

n+1) = xE
n for n ≥ 0, and f̃E : Ẽ → Ẽ is the automorphism which makes the

following diagram commute.

... Ẽ Ẽ Ẽ ...

{xE
n+2}n

{xE
n+1}n

{xE
n }

n

... E E E ...
xE

n+2 xE
n+1 xE

n

f̃E f̃E f̃E f̃E

πEn πEn πEn

fE fE fE fE

Since the natural extension of a probability space inherits the ergodic properties of the
original system, we have that µ̃E is f̃E-invariant, ergodic and recurrent (Prop. 4.1.3).

We claim that both constructions of spaces of backward orbits are essentially the same,
with the only difference that, when considering the first return map, orbits starting at
the set E are written ‘packed’ according to their visits to E.

Indeed, given a backward orbit
{
xE

n

}
n

⊂ E for fE, we can associate to it unambiguously
a backward orbit {xn}n ⊂ ∂U for f as follows. Let x0 := xE

0 , and let xT (xE
1 ) := xE

1 . Since
fE(xE

1 ) = fT (xE
1 )(xE

1 ) = xE
0 , for n = 1, . . . , T (xE

1 ) − 1, let xn := fT (xE
1 )−n(xE

1 ). The rest of
the backward orbit is defined recursively. We say that the f -backward orbit {xn}n ⊂ ∂U

is associated to the fE-backward orbit
{
xE

n

}
n

⊂ E. In the same way, if a f -backward
orbit visits E infinitely often, we can associate a fE-backward orbit to it.

As noted above, for every fE-backward orbit we can associate a f -backward orbit.
Moreover, due to recurrence, the converse is true µ̃-almost everywhere. Hence, it is
enough to consider fE-backward orbits.
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Lemma 4.4.2. (Distribution of fE-backward orbits in ∂U) Let (∂U, µ, f) and
(E, µE, fE), and consider their natural extensions as before. Then, for µ̃-almost every
{xn}n ⊂ ∂U with x0 ∈ E, xn ∈ E infinitely often, so we can associate a fE-backward
orbit to it.

Let us now fix the set E, whose first return map will enjoy specific properties.

Proposition 4.4.3. (The set E) Let f : C → C be a meromorphic function, and let
U be a simply connected parabolic basin or Baker domain. Consider φ : H → U , and let
h : H → H be the inner function associated with (f, U), with the Denjoy-Wolff point placed
at ∞, which we assume not to be a singularity. Let p±

1 , p
±
2 . . . be the (radial) preimages

of ∞, ordered such that p−
1 < p−

2 < · · · < p+
2 < p+

1 .
Let I :=

[
p−

1 , p
+
1

]
, and E := φ∗(I). Then, as n → ∞,

µ({x ∈ E : T (x) ≥ n}) ∼ 2√
n
.

Proof. The existence of the set I is proven in [IU23, Sect. 9.2], together with the fact
that λ(IC ∩ {T (x) = n}) ∼ 2√

n
. The standard fact for σ-finite measures λ and sweep-out

sets I
λ(I ∩ {T (x) = n}) = λ(IC ∩ {T (x) > n})

(see e.g. [Tha01]) gives that λ(I ∩ {T (x) > n}) ∼ 2√
n
. The estimates for the system

(f |∂U , µ) follow from the definition of the measure µ as the push-forward of λR under
φ∗.

4.4.2 Pesin theory for the first return map. Proof of Theorem 4.B

We shall start by rewriting Theorem 4.B in terms of the space of backward orbits given
by Rokhlin’s natural extension.

Theorem 4.4.4. (Inverse branches are well-defined almost everywhere) Let
f : C → C be a meromorphic function, and let U be a simply connected parabolic basin
or Baker domain. Assume

(a) the Denjoy-Wolff point of the associated inner function is not a singularity;

(b) log |f ′| ∈ L1(µ), and
∫

∂U log |f ′| dµ > 0;

(c) there is ε > 0 such that, if ∂U+ε := {z ∈ C : dist(z, ∂U) < ε}, SV ∩ ∂U+ε is finite.

Then, for µ̃-almost every backward orbit {xn}n ∈ ∂̃U , there is r := r({xn}n) > 0 such
that

(i) the inverse branch Fn sending x0 to xn is well-defined in D(x0, r0);

(ii) for every r ∈ (0, r0), there exists m ∈ N such that Fm(D(x0, r0)) ⊂ D(x0, r), and
diam F j

m(D(x0, r)) → 0, as j → ∞.
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It is clear that 4.4.4 implies Theorem 4.B (for hypothesis (a), see Thm. II.5.4; for (b),
see Prop. 4.8.9). Going one step further, using the set E defined above, we shall write
Theorem 4.4.4 in terms of the first return maps fE : E → E as follows.

Proposition 4.4.5. (Generic inverse branches are well-defined for the first
return map) Under the assumptions of Theorem 4.4.4, consider the set E as in
Section 4.4.1. Then, for µ̃E-almost every backward orbit

{
xE

n

}
n

∈ ∂̃U , there exists
r := r(

{
xk

n

}
n
) > 0 such that

(i) the inverse branch FE
n sending xE

0 to xE
n is well-defined in D(xE

0 , r0);

(ii) for every r ∈ (0, r0), there exists m ∈ N such that

FE
m(D(xE

0 , r0)) ⊂ D(xE
0 , r).

4.4.3 Proof of Proposition 4.4.5

We shall establish who are the ‘singular values’ for the first return map fE. The only
obstructions when defining inverse branches come from the singular values of f . Note
that, if there are no singular values of f in D(fE(x), ε) and the first return time of x is 1,
then the corresponding branch of fE is well-defined in D(fE(x), ε). Inductively, if there
are no critical values of fn in D(fE(x), ε) and the first return time of x is n, then the
corresponding branch of fE is well-defined in D(fE(x), ε). Hence, we observe an interplay
between the points in the orbit of singular values of f and the first return times, as the
limitation to define the inverse branches of fE.

Next we aim to give estimates on the first return times and the size of disks centered
at ‘singular values of fE’. This is the content of Lemma 4.4.6.

We use the following notation: let {v1, . . . , vN} be the singular values of f in ∂U+ε (we
assumed there are finitely many– other singular values do not play a role in the considered
inverse branches), and denote them by SV (f). T (x) stands for the first return time to E
of x ∈ E.

An := {x ∈ E : T (x) = n}

Bn := {x ∈ E : T (x) ≥ n}

Lemma 4.4.6. (Estimates on critical values and first returns) In the previous
setting, the following holds.

(2.1) ∑
n
µE(Bn4) < ∞.

(2.2) ∑n µE(D(CV (fn4), ε · λn)) < ∞, for any λ ∈ (0, 1).

Proof. (2.1) follows directly from the estimate in Lemma 4.4.3. For (2.2) note that, since
E has finite measure, the measures µE and ωU are comparable. Note also that fn4 has
n4 · N singular values (where N stands for the number of singular values of f). Then,

151



applying a standard estimate of the harmonic measure of disks (see Lemma 4.8.5), we
have

µ(E)
∑

n

µk(D(CV (fn4), ε · λn)) ≲
∑

n

µ(D(CV (fn4), ε · λn))

≲
∑

n

ωU(D(CV (fn4), ε · λn)) ≤
∑

n

ε1/2 ·N · n4 · λn/2 < ∞.

From here, the proof ends as the one of Theorem 4.3.1: proving that orbits under fE

do not come close to the ‘singular values of fE’, and finally constructing inductively the
required inverse branches of fE, which turn out to be a composition of inverse branches
for the original map f , as explained in Section 4.4.1. For convenience, we outline the
steps of the proof, although not giving all the details as in Theorem 4.3.1.

Set
χ :=

∫
E

log |f ′
E| dµE ∈ (0,+∞),

and let M ∈ (e 1
4 ·χ, 1).

Lemma 4.4.7. (Almost every orbit does not come close to singular values) For
µ̃E-almost every

{
xE

n

}
n

∈ Ẽ, it holds

(3.1) xE
0 /∈ ⋃

s∈SV (f)

⋃
n≥0

fn(s),

(3.2) lim
n

1
n

log
∣∣∣(fn

E)′(xE
n )
∣∣∣ = χ,

(3.3) inverse branches of fE are well-defined in D(xE
n , ε · Mn), except for finitely many

n’s.

Proof. Since the finite intersection of sets of full measure has full measure, it is enough
to show that each of the conditions is satisfied in a set of full measure.

For condition (3.1), note that ⋃s∈SV (f)
⋃

n≥0 f
n(s) is countable, and hence has zero µE-

measure. Requirement (3.2) follows from Birkhoff Ergodic Theorem I.1.9 applied to the
map log |f ′

E| (note that µE is an ergodic probability).
Condition (3.3) follows from Lemma 4.4.6 together with the first Borel-Cantelli Lemma

I.1.4. Indeed, if Dn = (D(CV (fn4), ε ·Mn)), then
∑
n≥1

µ̃E(π−1
U,n(Dn)) =

∑
n≥1

µE(Dn) < ∞,

implying that xE
n /∈ Dn, for all n ≥ n0, for some n0 and µ̃E-almost every backward orbit.

But according to (2.1) in Lemma 4.4.6,
∑
n≥1

µ̃E(π−1
U,n(Bn4)) =

∑
n

µE(Bn4) < ∞,
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so xE
n+1 /∈ Bn4 , for all n ≥ n0 (maybe taking n0 larger), and µ̃E-almost every backward

orbit. Thus, for all n ≥ n0, the return time of xE
n+1 is less than n4, so we only have to

take into account the singular values of fn4 in order to define the inverse branch from xE
n

to xE
n+1. Since xE

n /∈ Dn, the claim follows.

Fix
{
xE

n

}
n

satifying the conditions of Lemma 4.4.9. By (3.2) and (3.3), there exists
n0 ∈ N such that, for n ≥ n0, inverse branches of fE are well-defined in D(xE

n , ε · Mn),
and ∣∣∣(fn

E)′(xE
n )
∣∣∣− 1

4 < Mn < 1.

We set the following notation.

bn :=
∣∣∣(fn

E)′(xE
n )
∣∣∣− 1

4 P =
∏
n≥1

(1 − bn)

Choose r := r(
{
xE

n

}
n
) > 0 such that

(4.1) 2rP < ε,

(4.2) the branch F k
n0 of f−n0

E sending xE
0 to xE

n0 is well-defined in D(x0, r),

(4.3) FE
n0(D(xE

0 , r
∏n0

m=1(1 − bm))) ⊂ D(xE
n0 ,M

n0).

Using the same procedure as in Theorem 4.3.1 (Claim 4.3.4), one can prove inductively
the following claim.

Claim 4.4.8. (Inductive construction of the inverse branches) For every n ≥ n0,
there exists a branch FE

n of f−n
E sending xE

0 to xE
n , defined in D(x0, r

∏n
m=1(1 − bm)), and

such that
FE

n (D(xE
0 , r

n∏
m=1

(1 − bm))) ⊂ D(xE
n , ε ·Mn).

Letting n → ∞, we get that all inverse branches of fE sending xE
0 to xE

n are well-defined
in D(x0, rP ), with r > 0. Moreover, as n → ∞, diam

(
FE

n (D(x0, rP ))
)

≤ ε ·Mn → 0.
This ends the proof of Proposition 4.4.5. □

4.4.4 Parabolic Pesin theory for entire functions

We end this section by showing that, when we are dealing with an entire function, it is
enough to ask that there are finitely many critical values in ∂U+ε. To see this, it it enough
to show that inverse branches for fE are well-defined far from the orbit of critical values
of f and of exceptional points (points with finite backwards orbit; any entire function has
at most two exceptional points [Ber93, p. 6]).

Lemma 4.4.9. Let x ∈ E. Then, the inverse branch FE
1 sending fE(x) to x is well-

defined in D(fE(x), r), r < ε, as long as D(fE(x), r) ∩ CV (fT (x)) = ∅, and there are no
exceptional points in D(fE(x), r).
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Proof. If there are no exceptional points in D(fE(x), r), it is easy to see that there exists
R > 0 such that fT (x)|D(x,R) is holomorphic, and fT (x)(D(x,R)) ⊃ D(fT (x)(x), r) (see e.g.
[Mil06, Corol. 14.2]). Hence, all obstructions to define the inverse branch FE

1 come from
the critical values of fT (x), but we assumed there are not.

Lemma 4.4.9 is telling us that critical values together with exceptional points are the
‘singular values of fE’, and there are finitely many of them. Hence, one can prove a result
analogous to Proposition 4.4.5.

Theorem 4.4.10. (Inverse branches are well-defined almost everywhere) Let
f : C → C be an entire function, and let U be a parabolic basin or Baker domain. Assume

(a) the Denjoy-Wolff point of the associated inner function is not a singularity;

(b) log |f ′| ∈ L1(µ), and
∫

∂U log |f ′| dµ > 0;

(c) there exists ε > 0 such that critical values of f in ∂U+ε are finite.

Then, for µ̃-almost every backward orbit {xn}n ∈ ∂̃U , there is r := r({xn}n) > 0 such
that

(i) the inverse branch Fn sending x0 to xn is well-defined in D(x0, r0);

(ii) diam F j
m(D(x0, r)) → 0, as j → ∞.

4.5 Dynamics of centered inner functions. Corollary 4.C

In this section we apply the techniques developed previously to a particular type of self-
maps of the unit disk D, the so-called inner functions. Recall that g(0) = 0, we say that
g is a centered inner function.

Every inner function induces a measure-theoretical dynamical system g∗ : ∂D → ∂D
defined λ-almost everywhere. For centered inner functions, g∗|∂D preserves the Lebesgue
measure λ in ∂D, and g∗|∂D is ergodic. Hence, the radial extension of a centered inner
functions is a good candidate to perform Pesin theory. Therefore, we shall see Corollary
4.C as an application of the work done in Theorem 4.A, for a particular class of inner
functions (centered inner functions with finite entropy, i.e. log |g′| ∈ L1(λ)).

As in the previous sections, we rewrite Corollary 4.C in terms of Rokhlin’s natural
extension (Thm. 4.5.1). Indeed, (∂D,B(∂D), λ) is a Lebesgue space (it is isomorphic, in
the measure-theoretical sense, to the unit interval), and hence Theorem 4.1.2 guarantees
the existence of Rokhlin’s natural extension. Thus, ∂̃D is the space of backward orbits
{ξn}n ⊂ ∂D, with g∗(ξn+1) = ξn for n ≥ 0, and g̃∗ : ∂̃D → ∂̃D is the automorphism which
makes the following diagram commute.
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... ∂̃D ∂̃D ∂̃D ...
{ξn+2}n {ξn+1}n {ξn}n

... ∂D ∂D ∂D ...
ξn+2 ξn+1 ξn

g̃ g̃ g̃ g̃

πD,n πD,n πD,n

g g g g

This way, we rephrase Corollary 4.C as follows.

Theorem 4.5.1. (Pesin theory for centered inner function) Let g : D → D be an
inner function, such that g(0) = 0, and log |g′| ∈ L1(∂D). Fix α ∈ (0, π/2). Then, for
λ̃-almost every backward orbit {ξn}n ⊂ ∂D, there exists ρ > 0 such that the inverse branch
Gn of gn sending ξ0 to ξn is well-defined in D(ξ0, ρ), and, for all ρ1 ∈ (0, ρ),

Gn(Rρ1(ξ0)) ⊂ ∆α,ρ1(ξn).

Moreover, the set of singularities E(g) has zero λ-measure.

Using that g∗|∂D is ergodic and recurrent with respect to λ, it follows that for λ̃-almost
every backward orbit {ξn}n ⊂ ∂D and every set A ⊂ ∂D of positive measure, there exists
a sequence nk → ∞ such that ξnk

∈ A (Prop. 4.1.3). Hence, it is clear that Theorem
4.5.1 implies Corollary 4.C.

Proof of Theorem 4.5.1. Proceeding exactly as in Theorem 4.A, we find that, for λ̃-almost
every backward orbit {ξn}n ⊂ ∂D, there exists ρ0 > 0 such that the inverse branch Gn

of gn sending ξ0 to ξn is well-defined in D(ξ0, ρ0). Note that all inverse branches {Gn}n

are well-defined in a disk of uniform radius, namely in D(ξ0, ρ0). Hence, we can apply
Proposition II.3.17, to see that, for all α ∈ (0, π/2) there exists ρ < ρ0 such that for all
ρ1 ∈ (0, ρ),

Gn(Rρ1(ξ0)) ⊂ ∆ρ1(ξn).

It is left to see that singularities have zero Lebesgue measure. Assume on the contrary
that the set of singularities E(g) has positive measure. Then, we can take {ξn}n visting
E(g) infinitely often, and satisfying that the inverse branches {Gn}n realizing such
backward orbit are well-defined in D(ξ0, ρ). Consider

K :=
⋃

n≥1
Gn(D(ξ0, ρ)).

We claim that no point in K is a singularity for g. Indeed, for any ξ ∈ K, there exists
n ≥ 1 such that ξ ∈ Gn(D(ξ0, ρ)). Hence,

g|Gn(D(ξ0,ρ)) : Gn(D(ξ0, ρ)) −→ Gn−1(D(ξ0, ρ))

is univalent, so ξ cannot be a singularity for g. This is a contradiction with the fact that
K ∩ E(g) ̸= ∅, and ends the proof of Corollary 4.C.
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4.6 Associated inner functions and Rokhlin’s natural extension

Let f ∈ K, and let U be an invariant Fatou component for f , which we assume to be
simply connected. Consider φ : D → U to be a Riemann map. Then, f : U → U is
conjugate by φ to a holomorphic map g : D → D, i.e. f ◦ φ = φ ◦ g.

The conjugacy f ◦ φ = φ ◦ g extends almost everywhere to ∂D by means of the radial
extensions φ∗ : ∂D → ∂U and g∗ : ∂D → ∂D. More precisely, consider the following
subsets of ∂D.

ΘE := {ξ ∈ ∂D : φ∗(ξ) ∈ E(f)}

ΘΩ := {ξ ∈ ∂D : φ∗(ξ) ∈ Ω(f)}

Since E(f) is countable, λ(ΘE) = 0, so λ(ΘΩ) = 1. Then, f ◦ φ = φ ◦ g extends for the
radial extensions in ΩΘ, as shown in Lemma II.5.2. That is, for ξ ∈ ΘΩ, then g∗(ξ) and
φ∗(g∗(ξ)) are well-defined, and

f(φ∗(ξ)) = φ∗(g∗(ξ)).

In this section we show that one can go further and relate backward orbits for the
radial extension of the inner function g∗ with backward orbits for the boundary map
f |∂U . Moreover, we will show how the natural extensions of (∂D, λ, g∗) and (∂U, ωU , f)
are related.

To do so, first we have to establish, in the spirit of Lemma II.5.2, a relation between
backward orbits for g∗ and backward orbits for f . More precisely, we prove that backward
orbits associated to a well-defined sequence of inverse branches indeed commute by the
Riemann map, as long as the radial limit at the initial point exists.

Proposition 4.6.1. (Backward orbits commute) Let {ξn}n ⊂ ∂D be a backward orbit
for g∗. Assume φ∗(ξ0) exists. Then, φ∗(ξn) exists for all n ≥ 1 and

f(φ∗(ξn+1)) = φ∗(g∗(ξn+1)) = φ∗(ξn).

Proof. We note that, using an inductive argument, it is enough to prove that, if φ∗(ξ0)
exists and ξ1 ∈ ∂D is such that g∗(ξ1) = ξ0, then φ∗(ξ1) is well-defined, and

f(φ∗(ξ1)) = φ∗(g∗(ξ1)) = φ∗(ξ0).

Let Rξ0 be the radius at ξ0. Then, φ(Rξ0) is a curve landing at φ∗(ξ0), and there is a curve
γ landing at ξ1, with g(γ) = Rξ0 . Then, f(φ(γ)) = φ(Rξ0) is a curve landing at φ∗(ξ0).
Since preimages of a point under a holomorphic map are discrete and the singularities of
f are countable, φ(γ) lands at a point on ∂̂U , which, by Lindelöf Theorem II.4.5 coincides
with φ∗(ξ1) (which in particular is well-defined and satisfies f(φ∗(ξ1)) = φ∗(ξ0)).

We are interested now in the interplay between the backward orbits for the associated
inner function g, and the backward orbits for f in the dynamical plane. According to
Section 4.1, we can consider the natural extension (∂̃D, λ̃, g̃∗) of (∂D, λ, g∗), given by
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the projecting morphisms {πD,n}n, and the natural extension (∂̃U, ω̃U , f̃) of (∂U, ωU , f),
given by the projecting morphisms {πU,n}n. We are interested in relating both natural
extensions.

In views of Proposition 4.6.1, it is clear that the transformation

φ̃∗ : ∂̃D −→ ∂̃U

{ξn}n 7→ {φ∗(ξn)}n

is well-defined, and the following diagram commutes almost everywhere.

... ∂̃D ∂̃D ∂̃D ...
{ξn+2}n {ξn+1}n {ξn}n

... ∂D ∂D ∂D ...
ξn+2 ξn+1 ξn

... ∂U ∂U ∂U ...
φ∗(ξn+2) φ∗(ξn+1) φ∗(ξn)

... ∂̃U ∂̃U ∂̃U ...
{φ∗(ξn+2)}n {φ∗(ξn+1)}n {φ∗(ξn)}n

g̃ g̃ g̃ g̃

φ̃∗

πD,n

φ̃∗

πD,n

φ̃∗

πD,n

g g g g

φ∗ φ∗ φ∗

f f f f

f̃ f̃

πU,n

f̃

πU,n

f̃

πU,n

Now we claim that φ̃∗ is measure-preserving. Indeed, one may take a basis for the
σ-algebra in ∂̃U made of sets of the form π−1

U,n(A), where A ⊂ ∂U measurable, and n ≥ 0.
It is enough to prove that φ̃∗ preserves the measure of these sets. Indeed, using that
φ∗ ◦ πD,n = πU,n ◦ φ̃∗ λ̃-almost everywhere, we have

ω̃U(π−1
U,n(A)) = ωU(A) = λ(φ∗(A)) = λ̃(π−1

D,n ◦ (φ∗)−1(A)) = λ̃((φ̃∗)−1 ◦ π−1
U,n(A)),

where A ⊂ ∂U measurable, and n ≥ 0, as desired. In other words, ω̃U is the push-forward
of λ̃ by φ̃∗.

Hence, the following diagram

(∂D, λ, g∗) (∂̃D, λ̃, g̃∗)

(∂U, ωU , f) (∂̃U, ω̃U , f̃).

φ∗ φ̃∗

{πD,n}
n

{πU,n}
n

commutes almost everywhere.
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Proposition 4.6.2. (Generic inverse branches commute) Let f ∈ K, and let U be
an invariant simply connected Fatou component for f . Let φ : D → U be a Riemann map,
and let g : D → D be the inner function associated with (f, U) by φ. Assume the following
conditions are satisfied.

(a) For ω̃U -almost every backward orbit {xn}n ⊂ ∂U , there exists r > 0 such that the
inverse branch Fn sending x0 to xn is well-defined in D(x0, r).

(b) For λ̃-almost every backward orbit {ξn}n ⊂ ∂D there exists ρ > 0 such that the
inverse branch Gn sending ξ0 to ξn is well-defined in D(ξ0, ρ).

Then, λ̃-almost every backward orbit {ξn}n ⊂ ∂D there exists ρ, r > 0 such that the inverse
branch Gn sending ξ0 to ξn is well-defined in D(ξ0, ρ), the inverse branch Fn sending φ∗(ξ0)
to φ∗(ξn) is well-defined in D(φ∗(ξ0), r), and φ∗ ◦Gn(ξ0) = Fn ◦ φ∗(ξ0), for all n ≥ 0.

We note that, if ω̃U -almost every backward orbit {xn}n ⊂ ∂U satisfies an additional
property (such as the ones proved in Theorem 4.A), then it is straightforward to see
that, for λ̃-almost every backward orbit {ξn}n ⊂ ∂D, the backward orbit {xn := φ∗(ξn)}n

satisfies this additional property.

Proof of Proposition 4.6.2. The proof follows directly from the previous construction.
Indeed, one shall write the first assumption as: for λ̃-almost every backward orbit
{ξn}n ⊂ ∂D, there exists r > 0 such that the inverse branch Fn sending φ∗(ξ0) to φ∗(ξn)
is well-defined in D(φ∗(ξ0), r). Since the intersection of sets of full measure has full
measure, we have that inverse branches Gn and Fn are well-defined along the backward
orbit of ξ0 and φ∗(ξ0). By Proposition 4.6.1, such inverse branches commute.

Remark. It follows from the previous construction that one can find first the backward
orbit {ξn}n ⊂ ∂D and define the backward orbit in the dynamical plane as their image
by φ∗. Moreover, one can choose a countable collection of sets {Kk}k ⊂ ∂D and ask that
there exists a sequence nk → ∞ with ξnk

∈ Kk.

4.7 Application: periodic boundary points. Corollary 4.D

One application of Pesin theory in holomorphic dynamics is to prove that for some
invariant Fatou components, periodic points are dense in their boundary. This was done
in the seminal paper of Przytycki and Zdunik [PZ94] for simply connected attracting
basins of rational maps (note that in this paper it is proved that periodic points are
dense in the boundary of every attracting or parabolic basin of a rational map, but the
proof relies on a different technique). In the spirit of Section 3, we aim to prove a
similar result for transcendental maps.

The goal in this section is to prove Corollary 4.D, which states that, under the
hyptotheses of either Theorem 4.A or Theorem 4.B, plus an extra hyptothesis on the
singular values in U , accessible periodic boundary points are dense.

158



In view of the theory developed in the previous sections based on working in the space
of backward orbits given by Rokhlin’s natural extension, we shall formulate an alternative
(and more natural) version of Corollary 4.D, in terms of backward orbits.

Theorem 4.7.1. (Periodic points are dense) Let f ∈ K, and let U be an invariant
simply connected Fatou component for f . Let φ : D → U be a Riemann map, and let
g : D → D be the inner function associated with (f, U) by φ. Assume the following
conditions are satisfied.

(a) For ω̃U -almost every backward orbit {xn}n ⊂ ∂U , there exists r > 0 such that the
inverse branch Fn sending x0 to xn is well-defined in D(x0, r), for every subsequence{
xnj

}
j

with xnj
∈ D(x0, r), diam Fnj

(D(x0, r)) → 0, as j → ∞.

(b) For λ̃-almost every backward orbit {ξn}n ⊂ ∂D there exists ρ > 0 such that the
inverse branch Gn sending ξ0 to ξn is well-defined in D(ξ0, ρ).

Then, accessible periodic points are dense in ∂U .

However, we aim to give a proof of the density of periodic boundary points which
does not use Rohklin’s natural extension. To do so, we state Theorem 4.7.1 in a slightly
different (and stronger) way.

Theorem 4.7.2. (Periodic points are dense) Let f ∈ K, and let U be an invariant
simply connected Fatou component for f . Let φ : D → U be a Riemann map, and let
g : D → D be the inner function associated with (f, U) by φ. Assume that for every
countable sequence of measurable sets {Kk}k ⊂ ∂D with λ(Kk) > 0 and λ-almost every
ξ ∈ ∂D, there exists a backward orbit {ξn}n ⊂ ∂D, such that

(a) ξ = ξ0 and there exists ρ > 0 such that the inverse branch Gn sending ξ0 to ξn is
well-defined in D(ξ0, ρ), and there exists nk → ∞ with ξnk

∈ Kk;

(b) for the backward orbit {xn := φ∗(ξn)}n ⊂ ∂U , there exists r > 0 such that the inverse
branch Fn sending x0 to xn is well-defined in D(x0, r), for every subsequence

{
xnj

}
j

with xnj
∈ D(x0, r), diam Fnj

(D(x0, r)) → 0, as j → ∞.

Then, accessible periodic points are dense on ∂U .

According to Proposition 4.6.2, it is clear that Theorem 4.7.2 implies 4.7.1. We show
now how to deduce Corollary 4.D from Theorem 4.7.1, and later we give the proof of
Theorem 4.7.2.

Proof of Corollary 4.D. On the one hand, it is clear that, by the conclusion of Theorem
4.A and Theorem 4.B, the second requirement of Theorem 4.7.1 holds.

On the other hand, we have to see the assumption of the existence of a crosscut
neighbourhood NC in U with NC ∩ P (f) = ∅ implies (b). Indeed, φ−1(NC) is a crosscut
neighbourhood in D which contains no postsingular value for the inner function. Since
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g∗|∂D is ergodic and recurrent, for λ-almost ξ ∈ ∂D, there exists ρ > 0 such that, for all
n ≥ 0, all inverse branches of gn are well-defined in D(ξ, ρ). Denote this set of backward
orbits by Ã. We have to see that Ã has full λ̃-measure in ∂̃D. Indeed, note that
Ã = π−1

D,0(πD,0(Ã)), since the set Ã is made of all backward orbit with initial point in
πD,0(Ã). Since λ(πD,0(Ã)) = 1 and πD,0 is measure-preserving, this already implies the
requirement (b) in Theorem 4.7.1.

Proof of Theorem 4.7.2

Let x ∈ ∂U and R > 0, we have to see that f has a repelling periodic point in D(x,R)∩∂U ,
which is accessible from U .

We split the proof in several intermediate lemmas. We start by proving the existence of
a backward orbit {ξn}n ⊂ ∂D such that for both {ξn}n and {φ∗(ξn)}n the corresponding
inverse branches are well-defined (and conformal), and certain estimates on the contraction
are achieved.

In the sequel, we fix α ∈ (0, π/2), and we take all Stolz angles of opening α, although
in the notation we omit the dependence.

Lemma 4.7.3. There exists a backward orbit {ξn}n ⊂ ∂D, and constants m ∈ N, 0 <

ρm ≤ ρ, and r ∈ (0, R/2) such that:

(1.1) x0 := φ∗(ξ0) and xm := φ∗(ξm) are well-defined, and x0 ∈ D(x,R/2) and xm ∈
D(x0, r/3);

(1.2) the inverse branch Fm of fm sending x0 to xm is well-defined in D(x0, r), and
diam Fm(D(x0, r)) < r/3;

(1.3) the inverse branch Gm of gm sending ξ0 to ξm is well-defined in D(ξ0, ρm), and
satisfies

Gm(Rρm(ξ0)) ⊂ ∆ρm(ξm);

(1.4) ∆ρ(ξ0) ∩ ∆ρ(ξm) ̸= ∅, and, if z ∈ ∆ρ(ξ0) ∪ ∆ρ(ξm), then φ(z) ∈ D(x0, r).

Proof. Let An = D(xn, rn) be a countable basis for D(x,R) with the Euclidean topology,
where xn ∈ ∂U and An ⊂ D(x,R).

In order to apply the hyptothesis of the theorem, we shall construct an appropriate
countable sequence of measurable sets {Kk}k of ∂D. We do it as follows.

For all n ≥ 0, let
Kn = {ξ ∈ ∂D : φ∗(ξ) ∈ D(xn, rn/2)} .

It is clear that λ(Kn) > 0. By the Lehto-Virtanen Theorem II.2.5, the angular limit exists
whenever the radial limit exists. Therefore, there exists ρn > 0 small enough so that

Kn
ρn

= {ξ ∈ Kn : ∆ρn(ξ) ⊂ D(xn, rn/2)}
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has positive λ-measure. We can assume that every point in Kn
ρn

is a Lebesgue density
point for Kn

ρn
. Then, if we take ξn ∈ Kn

ρn
, there exists a circular interval Iξn around ξn

such that for any ζ1, ζ2 ∈ Iξn ,

∆ρn(ζ1) ∩ ∆ρn(ζ2) ̸= ∅.

Then, Kn
ρn

∩ Iξn has positive λ-measure. Note that this property only depends on the
length of the interval, as long as ξn is a Lebesgue density point for Kn

ρn
. Then, it is clear

that there exist finitely many circular intervals In
1 , . . . , I

n
in

with this property.
Let

K1,n
∗,i := Kn

ρn
∩ In

i , i = 1, . . . , in,

K1,n
∗ :=

{
K1,n

∗,1 , . . . , K
1,n
∗,in

}
.

Then, we define the set Kj,n
∗ , as before, but replacing ρn by ρn/2j.

Having introduced all this notation of the sets {Kj,n
∗ }n,j, we arrange the sequence

{Kk}k as follows. We construct this sequence of sets inductively, adding at each step
finitely many sets. Indeed, let us start by putting the block K1,1

∗ :=
{
K1,1

∗,1 , . . . , K
1,1
∗,i1

}
as

the first elements of the sequence. Then, for the k-th step of the induction, we consider
Ak and let Ak1 , . . . , Akn be all the sets of A1, . . . , An such that An ⊂ Aki

. Then, we add
to the sequence the blocks

K1,k1
∗ , . . . K1,kn

∗ , . . . , Kk,k1
∗ , . . . , Kk,kn

∗ .

Basically, the idea is that, when one set is in the sequence {Kk}k for the first time,
then it appears infinitely often. Moreover, the set of points in {Kk}k has measure
λ((φ∗)−1(D(x,R))). Indeed, the set of points in ∂D for which the radial limit exists has
full measure. Let ζ be one of such points. Then, φ∗(ζ) ∈ Aj, for some j, and for ρ > 0
small enough, ∆ρ(ζ) ⊂ Aj. Then, there exists n ≥ 0 such that An ⊂ Aj and ρ < ρj/2n,
so ζ ∈ Kn

∗,kn
, as desired.

By the assumption of the theorem, for λ-almost every ξ0 ∈ ∂D, there exists a backward
orbit {ξn}n such that the hypothesis on the definition of the inverse branches for {ξn}n

and {xn := φ∗(ξn)}n are accomplished, and there exists nk → ∞ with ξnk
∈ Kk.

Without loss of generality, we assume ξ0 is chosen so that x0 ∈ D(x,R/2). Let r > 0
be such that the inverse branches realizing the backward orbit {xn}n are well-defined in
D(x0, r). There is no loss of generality on assuming r ∈ (0, R/2).

On the one hand, since {An}n is a basis for D(x,R), there exists n0 such that

x0 ∈ An0 ⊂ D(x0, r/3),

and ξ0 ∈ Kn0
∗ , by the previous remark. In particular, for ρn0 ,

∆ρn0
(ξ0) ⊂ An0 ⊂ D(x0, r/3).

On the other hand, by the construction of the sets {Kn}n, the backward orbit visits
D(x0, r) infinitely many times. Let n1 be large enough so that, for all n ≥ n1, if xn ∈
D(x0, r), then diam Fn(D(x0, r)) < r/3.
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By the construction of the sets {Kn}n, there exists m ≥ max {n0, n1} such that ξm ∈
Kn0

∗ . Hence, we take r > 0, ρ = ρn0 , and ξ0 and ξm as above, and define ρm > 0 as the
radius such that the inverse branch Gm sending ξ0 to xm is defined around ξ0 (such a
radius exists by our assumptions on the orbit {ξn}n). We have to check that, with these
choices, the requirements are accomplished.

First, by the choice of {ζn}n, φ∗(ξ0) =: x0 and φ∗(ξm) =: xm are well-defined. Moreover,
by the choice of r, we have x0 ∈ D(x,R/2). Since ξ0, ξm ∈ Kn0

∗ , we have

∆ρ(ξ0) ∩ ∆ρ(ξn) ̸= ∅,

and ∆ρ(ξ0),∆ρ(ξm) ⊂ An0 ⊂ D(x0, r/3). In particular, xm ∈ D(x0, r/3), so (1.1) and (1.4)
holds. To see (1.2), note that r has been chosen so that the inverse branches corresponding
to {xn}n are well-defined in D(x0, r), and m is large enough to that diam Fm(D(x0, r)) <
r/3, as desired. Requirement (1.3) is directly satisfied by the choice of ρm. Therefore, we
have proved the lemma.

ξ0

Gm

Fm

φ

∂D

∂U

ξm

x0xm

R
R/2

Figure 4.1: Situation after Lemma 4.7.3.

Next we prove the existence of a repelling periodic point in D(x0, r). Note that, since
D(x0, r) ⊂ D(x,R), the proof of the next lemma ends the proof of the theorem.

Lemma 4.7.4. The map Fm has an attracting fixed point in D(x0, r) which is accessible
from U . Hence, f has a repelling m-periodic point in D(x0, r) ∩ ∂U .

Proof. First note that Fm(D(x0, r)) ⊂ D(x0, r). Indeed, by (1.1) and (1.2), we have that
xm ∈ D(x0, r/3) and diam Fm(D(x0, r)) < r/3, so

Fm(D(x0, r)) ⊂ D(xm, 2r/3) ⊂ D(x0, r).

Therefore, by the Denjoy-Wolff Theorem, there exists a fixed point p ∈ D(x0, r), which
attracts all points in D(x0, r) under the iteration of Fm. Hence, it is repelling under fm

and thus belongs to J (f).
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It is left to see that p is accessible from U . To do so, first note that, by (1.3), the inverse
branch Gm of g−m is well-defined in D(ξ0, ρm), and it holds that

φ ◦Gm = Fm ◦ φ

in ∆ρm(ξ0). Moreover, we have that

Gm(Rρm(ξ0)) ⊂ ∆ρm(ξm) ⊂ ∆ρ(ξm).

By (1.4), ∆ρ(ξ0) ∪ ∆ρ(ξm) is connected. Therefore, if we take z ∈ Rρm(ξ0), then Gm(z) ∈
∆ρ(ξm), and we can find a curve γ ⊂ ∆ρ(ξ0) ∪ ∆ρ(ξm) joining z and Gm(z). By (1.4),
φ(γ) ⊂ D(x0, r), and joins φ(z) with Fm(φ(z)). See Figure 4.2.

ξ0

z

Gm(z)

Gm

Fm

γ

φ

∂D

ξm

φ(γ)

φ∗(ξ0)φ∗(ξm)
r

Figure 4.2: The construction of the curve γ in D, and its image φ(γ) in the dynamical plane.

Define
Γ :=

⋃
k≥0

F k
m(γ).

Then, Γ ⊂ ∂U lands at p, ending the proof of Lemma 4.7.4, and hence of Theorem
4.7.1.

4.8 Lyapunov exponents for transcendental maps

Let f ∈ K, and let X ⊂ Ĉ. Let µ be a measure supported on X, and assume log |f ′| ∈
L1(µ). Then,

χµ :=
∫

∂U
log |f ′| dµ

is called the Lyapunov exponent of f (with respect to the measure µ). In the previous
sections, we were interested in the particular case where X is the boundary of an invariant
Fatou component U , and µ = ωU . We needed to assume log |f ′| ∈ L1(ωU). It is well-
known that this holds for rational maps [Prz85], but it is not clear what happens in the
transcendental case. In Section 4.8.1, we prove integrability of log |f ′| with respect to
ωU , under some assumptions on the shape of the Fatou component and the growth of
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the function. In Section 4.8.2 we give conditions under which Lyapunov exponents are
non-negative. Again, this is well-known for rational maps [Prz93], but unexplored in the
transcendental case. Finally, Section 4.8.3 is devoted to extend some of the results to
parabolic basins and Baker domains.

4.8.1 Integrability of log |f ′|. Proposition 4.E

We examine the integrability of log |f ′| with respect to harmonic measure. First observe
that, by Harnack’s inequality, if log |f ′| ∈ L1(ωU(p, ·)), then log |f ′| ∈ L1(ωU(q, ·)), for all
q ∈ U . Hence, we simply write log |f ′| ∈ L1(ωU).

To begin with, we prove that the integrability of log |f ′| and the Lyapunov exponent
is invariant under conjugating f by Möbius transformations. This is the content of the
following lemma, which follows from [Prz85, p. 165].

Lemma 4.8.1. (Lyapunov exponent invariant under Möbius transformations)
Let f ∈ K, and let U be an invariant Fatou component for f . Let M : Ĉ → Ĉ be a Möbius
transformation, and let g ∈ K be defined as g := M ◦ f ◦M−1. Then, log |f ′| ∈ L1(ωU) if
and only if log |g′| ∈ L1(ωM(U)). Moreover, if ωU is f -invariant, then ωM(U) is g-invariant,
and

χωU
(f) = χωM(U)(g).

Observe that, for rational maps, |f ′| is bounded, so χµ(f) is well-defined (although
a priori may be equal to −∞). By a careful study of f around critical points, it is
established that it is never the case, and in fact Lyapunov exponents are always non-
negative ([Prz93], see also [URM23, Sect. 28.1]). In the case of transcendental maps, |f ′|
may not be bounded, and this is why we need the assumption on the growth.

To simplify the notation, in the sequel we shall assume ∞ ∈ U , hence ∂̂U is a compact
subset of the plane, and that none of the singularities is placed at ∞.

Definition 4.8.2. (Order of growth in sectors) Let f ∈ K, and let U ⊂ Ĉ be an
invariant Fatou component for f . We say that U is asymptotically contained in a sector of
angle α ∈ (0, 1) with order of growth β > 0 if there exists r0 > 0, s1, . . . , sk ∈ ∂̂U ∖ {∞}
and ξ1, . . . , ξk ∈ ∂D, such that, if

Sα,r =
k⋃

i=1
{z ∈ C : |z − si| < r, |Arg ξi − Arg (z − si)| < πα}

satisfies

(a) U ∩
k⋃

i=1
D(si, r0) ⊂ Sα,r0 ;

(b) f has order of growth β > 0 in Sα,r0 , i.e. there exist A,B > 0 such that, for all
r < r0 and z ∈ Sα,r0 ∖ Sα,r,

A · eB·rβ ≤ |f ′(z)| ≤ A · eB·r−β

.
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Geometrically, each of the sets

Si = {z ∈ C : |z − si| < r, |Arg ξi − Arg (z − si)| < α}

is a sector of angle α ∈ (0, π), and side-length r > 0, with vertex at si ∈ ∂̂U . Note that
this notion of order of growth in sectors is invariant under conjugating f by a Möbius
transformation M , as long as M(U) ⊂ C and M(si) ̸= ∞, i = 1, . . . , k. Indeed, M ′

is uniformly bounded around ∂̂U and hence distances are distorded in a controlled way
when applying M .

Next we check that, if U is asymptotically contained in a sector of angle α ∈ (0, 1),
with order of growth β ∈ (0, 1/2α), then log |f ′| ∈ L1(ωU).

Proposition 4.8.3. (log |f ′| is ωU -integrable) Let f ∈ K, and let U be an invariant
Fatou component for f . Assume U is asymptotically contained in a sector of angle α ∈
(0, 1), with order of growth β ∈ (0, 1

2α
). Then, log |f ′| ∈ L1(ωU).

Note that Proposition 4.8.3 implies Proposition Proposition 4.E. Before proving it, we
need some estimates on the harmonic measure of sectors.

Estimates on the harmonic measure of sectors

We start by recalling the following estimate on harmonic measure of disks for simply
connected domains, which follows from Beurling’s Projection Theorem [GM05, Thm. 9.2].

Theorem 4.8.4. (Harmonic measure of disks, [GM05, p. 281]) Let U ⊂ Ĉ be a
simply connected domain, such that ∞ ∈ U and diam(∂U) = 2. Then, for all x ∈ ∂U

and r > 0, it holds
ωU(∞, D(x, r)) ≤

√
r.

Assuming that U is contained in some sector

Sα,r(x, ξ) = {z ∈ C : |z − x| < r, |Arg ξ − Arg (z − x)| < πα} ,

with vertex at x ∈ ∂U (see Fig. 4.3), we obtain improved estimates of harmonic measure
for disks centered at x.

Lemma 4.8.5. (Harmonic measure of sectors) Let U ⊂ C be a simply connected
domain, and let z0 ∈ U , x ∈ ∂U . Assume there exists r0 > 0, α ∈ (0, 1) and ξ ∈ ∂D, such
that

D(x, r0) ∩ U ⊂ Sα,r0(x, ξ).

Then, there exists C > 0 and r1 ∈ (0, r0) such that, for all r ∈ (0, r1),

ωU(z0, D(x, r)) ≤ C · r
1

2α .
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z 7→ z − x
x

r

r

πα

ξ

Sα,r(x, ξ)
U

Figure 4.3: A visual representation of the definition of the sector Sα,r(x, ξ).

Proof. Without loss of generality we assume z0 /∈ Sα,r0(x, ξ), and let r ∈ (0, r0). First
observe that, if V denotes the connected component of U ∖D(x, r) that contains z0, we
have that

ωU(z0, D(x, r)) = ωU(z0, D(x, r) ∩ ∂U) ≤ ωV (z0, ∂D(x, r) ∖ ∂U) ≤ ωV (z0, ∂D(x, r)),

where in the first inequality we applied the Comparison Lemma [Con95, Prop. 21.1.13]
(note that we apply it to the complements, and hence the inequality is reversed), and the
second follows from the inclusion of the measured sets.

Next we observe that, without loss of generality, we can assume that

V ⊂ Sα(x, ξ) = {z ∈ C : |Arg ξ − Arg (z − x)| < πα} .

Indeed, since we want to estimate the harmonic measure of disks D(x, r) centered at
x ∈ ∂U (which is a local property of the boundary around the point x), and D(x, r0)∩U ⊂
Sα,r0(x, ξ), for r > 0 small enough, we can disregard the part of ∂U outside D(x, r0).

Therefore, up to composing by appropriate Möbius transformations, it is left to see
that, if

S = {z ∈ C : |Arg z| < πα} ,

then, for some constant C > 0, we have

ωS∖D(0,r)(1, ∂D(0, r)) ≤ C · r
1

2α .

However, since the length of a circumference of radius r is 2πr (i.e. proporcional to the
radius), it is enough to see that ωS(1, D(0, r)) decays to 0 like r 1

2α , when r → 0 (see Fig.
4.4). But, since M(z) = z

1
2α is a conformal map from S to the right half-plane fixing 1,

this follows straighforward (see again Fig. 4.4)
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S ∖ D(0, r) S H

r r rθ
z 7→ zθ

θ = 1/2α

Figure 4.4: A visual scheme to approximate harmonic measure of sectors.

Proof of Proposition 4.8.3

Proof of Proposition 4.8.3. By conjugating by a Möbius transformation if needed, we can
assume ∞ /∈ U . Note that log |f ′| is integrable with respect to harmonic measure when
restricted to compact subsets of the domain Ĉ ∖ {s1, . . . , sk}. Indeed, the only difficulty
is to see that log |f ′| is integrable around critical points. It is easy to check this by
considering the Taylor expansion of f around the critical point, and using that log |z − a|
is integrable with respect to ωU for all a ∈ C (see e.g. [PU10, Sect. 11.2]).

It is left to check integrability near the singularities, and here is where we use the
estimates on the growth. Let us use the notation

log+ |f ′(z)| := max(0, log |f ′(z)|), log− |f ′(z)| := − min(0, log |f ′(z)|),

so that |log |f ′|| = log+ |f ′| + log− |f ′| . Since log+ |f ′| and log− |f ′| satisfy analogous
estimates, we check only that log+ |f ′| ∈ L1(ωU). In fact, we only need to check
integrability near si, say in a disk D(si, r) for some r > 0. Write Dn = D(si, 1/n), for n
small enough. We have∫

∂U∩D(si,r)
log+ |f ′| dωU ≲

∑
n

nβ (ωU(Dn) − ωU(Dn+1)) ≲
∑

n

((n+ 1)β − nβ)ωU(Dn+1)

≲
∑

n

nβ−1 · 1
n2α

=
∑

n

1
n−β+1+2α

.

The hypothesis β ∈ (0, 1
2α

) guarantees the convergence of the sum, and hence of the
integral, as desired.

4.8.2 Non-negative Lyapunov exponents. Proposition 4.F

Next, we give conditions under which χωU
is non-negative. Our result is inspired in

[KU23, Lemma 9.1.2, Corol. 9.1.3], but we remark that we do not assume that f extends
holomorphically (in fact, not even continuously) to a neighbourhood of ∂̂U .

Proposition 4.8.6. (Lyapunov exponents are non-negative) Let f ∈ K, and let U
be an invariant Fatou component for f , such that ωU is f -invariant. Assume
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(a) U is asymptotically contained in a sector of angle α ∈ (0, 1), with order of growth
β ∈ (0, 1

2α
);

(b)
∫

∂U log |x− SV |−1 dωU(x) < ∞.

Then,
χωU

=
∫

∂U
log |f ′| dωU ≥ 0.

Note that Proposition 4.8.6 implies Proposition 4.F.

Proof. If ωU is f -invariant, then U is either an attracting basin or a Siegel disk, and ωU is
precisely the harmonic measure with basepoint the fixed point p ∈ U . In particular, f |∂U

is ergodic with respect to ωU .

1. Asymptotic contraction of fn|∂U , ωU -almost everywhere. By Proposition 4.8.3, the
integral χωU

=
∫

∂U log |f ′| dωU is well-defined. Since f |∂U is ergodic, Birkhoff Ergodic
Theorem I.1.9, for ωU -almost every x ∈ ∂U ,

lim
n

1
n

log |(fn)′(x)| = χωU
(f).

We want to see that χωU
(f) ≥ 0. We shall assume, on the contrary, that χωU

(f) < 0, and
seek for a contradiction.

Since χωU
(f) < 0, it follows that there exists M ∈ (e

χωU
4 , 1) and n0 := n0(x) ∈ N such

that, for all n ≥ n0,
|(fn)′(x)|

1
4 ≤ Mn < 1.

We fix x ∈ ∂U satisfying the previous property, and we denote by {xn}n its forward orbit.

2. Shrinking domains where f |∂U is univalent, ωU -almost everywhere. Let M ∈ (0, 1) be
the constant fixed in the previous step, and let xn = fn(x), for n ≥ 0.

Lemma 4.8.7. For ωU -almost every x ∈ ∂U and λ ∈ (M, 1), there exists n1 ≥ n0 such
that f |D(xn,λn) is univalent, for all n ≥ n1.

In particular, since λ > M , f |D(xn,Mn) is univalent, for all n ≥ n1.

Proof. Since β < 1
2α

, we can choose γ ∈ (β, 1
2α

). Then, applying the estimates of Lemma
4.8.5, we have

ωU

(
S

α,n
− 1

γ

)
≤ C · n− 1

γ·2α ,

and therefore ∑
n≥1

ωU

(
S

α,n
− 1

γ

)
≤
∑
n≥1

C · n− 1
γ·2α < +∞.

By the assumption on the growth, for all z /∈ S
α,n

− 1
γ

and n ∈ N large enough, we have

|f ′(z)| ≤ C · en
β
γ
,
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for some constant C > 0. Then, it is easy to see that there exists C ′ > 0 such that, for
z /∈ S

α,n
− 1

γ
and n ∈ N large enough,

|f ′(z)| ≤ C ′ · λ−n/4,

where λ ∈ (M, 1) is the constant given in the statement of the lemma.
Now, using the previous computations and assumption (b), the first Borel-Cantelli

Lemma I.1.4 yields that, for ωU -almost every x ∈ ∂U and n large enough (depending on
x), it holds

(1.1) xn+1 /∈
⋃

s∈SV
D(s, λ(n+1)/2),

(1.2) xn /∈ S
α,n

− 1
γ
.

By (1.1), all inverse branches of f are well-defined in D(xn+1, λ
(n+1)/2) and are univalent.

Denote by F the inverse branch of f defined in D(xn+1, λ
(n+1)/2) such that F (xn+1) = xn.

By Koebe’s distortion estimates I.3.3, we have

F (D(xn+1, λ
(n+1)/2)) ⊃ D(xn, R),

where

R = 1
4 · |F ′(xn+1)| · λ(n+1)/2 = λ(n+1)/2

4 · 1
|f ′(xn)| ≥ λ(n+1)/2

4 · λn/4 = K · λ
3n
4 ,

for some constant K > 0. It follows that there exists n1 := n1(x) large enough so that,
for n ≥ n1,

F (D(xn+1, λ
(n+1)/2)) ⊃ D(xn, λ

n).

Hence, f |D(xn,λn) is univalent, for all n ≥ n1.

Hence, we fix a point x ∈ ∂U such that its forward orbit {xn}n satisfies the following
conditions, with M ∈ (0, 1) and n1 := n1(x) as above:

(2.1) |(fn)′(x)|
1
4 ≤ Mn < 1, for all n ≥ n1;

(2.2) f |D(xn,Mn) is univalent, for all n ≥ n1.

3. Quantitative contraction of fn|D(x,λn), for n large enough. Let

bn :=
∣∣∣(fn+1)′(x)

∣∣∣ 1
4 , P :=

∏
n≥1

(1 − bn).

Observe that, since ∑ bn ≤ ∑
Mn < ∞, P is convergent. For all n, let

Dn := D(x, r ·
n∏

m=1
(1 − bm)).

We can choose r := r(x) > 0 small enough so that 2r < 1, fn1|Dn1
is univalent, and

fn1(Dn1) ⊂ D(xn1 ,M
n1).
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Claim 4.8.8. For n ≥ n1, fn|Dn is univalent, and fn(Dn) ⊂ D(xn,M
n).

It follows from the claim that, for all n ∈ N, fn is univalent in D(x, rP ) and fn|D(x,rP ) ⊂
D(xn,M

n).

Proof. We prove the claim inductively: assume the claim is true for n ≥ n1, and let us
see that it also holds for n+ 1.

First note that, since fn(Dn) ⊂ D(xn,M
n) (by inductive assumption) and f is univalent

in D(xn,M
n) (by Lemma 4.8.7), it follows that fn+1|Dn is univalent. In particular, since

Dn+1 ⊂ Dn, we have that fn|Dn+1 is univalent.
Now we use Koebe’s distortion estimates (Thm. I.3.3) to prove the bound on the size

of fn+1(Dn+1). Indeed, since fn+1|Dn is univalent, we have fn+1(Dn+1) ⊂ D(xn+1, R),
where

R = r ·
n∏

m≥1
(1 − bm)) ·

∣∣∣(fn+1)′(x)
∣∣∣ · 2
b3

n

≤ 2r · |(fn+1)′(x)|
|(fn+1)′(x)|

3
4

≤
∣∣∣(fn+1)′(x)

∣∣∣ 1
4 ≤ Mn+1,

as desired.

4. Contradiction with the blow-up property of the Julia set. Let R > 0 be small enough
so that D(p,R) ⊂ U , where p is the fixed point of f in U . Let n2 ≥ n1 be such that
Mn2 < R

2 (recall that M ∈ (0, 1), so such n2 exists).
Then, fn2(D(x, rP )) is a neighbourhood of xn2 = fn2(x) ∈ J (f). By the previous step,⋃

n≥n2

fn(D(x, rP )) ⊂
⋃

n≥n2

D(xn,M
n) ⊂

⋃
n≥n2

D(xn,M
n2) ⊂ Ĉ ∖D(p,R/2).

This is a contradiction of the blow-up property of the Julia set. Notice that the
contradiction comes from assuming χωU

< 0. Therefore, χωU
≥ 0, and this ends the

proof.

4.8.3 The Lyapunov exponent for parabolic basins and Baker domains

The boundary of parabolic basins and doubly parabolic Baker domains do not support
invariant probabilities which are absolutely continuous with respect to the harmonic
measure ωU . However, the measure

λR(A) =
∫

A

1
|w − 1|2

dλ(w), A ∈ B(∂D),

is invariant under the radial extension of the associated inner function g (taken such that
1 is the Denjoy-Wolff point) and its push-forward µ = (φ∗)∗λR is an infinite invariant
measure supported on ∂̂U .

Hence, in the case of parabolic basins and doubly parabolic Baker domains, we shall
consider the Lyapunov exponent of f with respect to µ

χµ(f) :=
∫

∂U
log |f ′| dµ.
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We show that, for parabolic basins, if log |f ′| is integrable with respect to harmonic
measure, then it is also integrable with respect to the invariant measure µ. Note also
that Lemma 4.8.1 and Proposition 4.8.3 give conditions for log |f ′| ∈ L1(ωU) and do not
assume that ωU is invariant, so they still hold in the parabolic setting.

Proposition 4.8.9. (Parabolic Lyapunov exponents) Let f ∈ K, and let U be a
parabolic basin. If log |f ′| ∈ L1(ωU), then log |f ′| ∈ L1(µ). If, in addition, χωU

> 0, then
χµ > 0.

Proof. For the first statement note that, since ωU and µ are comparable except in a
neighbourhood of the parabolic fixed point p ∈ ∂U , it is enough to check that∫

D(p,r)
log |f ′| dµ < ∞,

for some r > 0. We note that, in contrast with the situation considered in Proposition
4.8.3, log |f ′| achieves a (finite) maximum and minimum around p (since f ′(p) = 1), but
now the difficulty comes from the fact that µ is an infinite measure.

On the one hand, around the parabolic fixed point (which we assume to be the origin),
we have the following normal form, f(z) = z + azq + . . . , with a ∈ C and q ≥ 2 (see e.g.
[Mil06, Sect. 10]). Therefore, log |f ′(z)| ∼ log(1 + qa |z|q−1).

On the other hand, by Lemma 4.8.4, we have that

λ((φ∗)−1(D(p, r))) = ωU(D(p, r)) ≤ C ·
√
r.

Therefore, setting Dn = D(p, 1/n),
∫

D(p,r)
log |f ′| dµ ≲

∞∑
n=n0

log
∣∣∣∣1 + qa

1
nq−1

∣∣∣∣ (µ(Dn) − µ(Dn+1))

≲
∞∑

n=n0

(
1

nq−1 − 1
(n+ 1)q−1

)
· µ(Dn)

≲
∞∑

n=n0

nq−2

n2(q−1) ·
√
n < ∞,

as desired.
For the second statement, applying the Leau-Fatou Flower Theorem (see e.g. [Mil06,

Sect. 10]), we have that log |f ′| > 0 in D(p, r) ∩ ∂U , for r small enough. Then the
statement follows directly.

Remark 4.8.10. Proposition 4.8.9 is stated only for parabolic basins, and its proof used
the normal form around a parabolic fixed point. For a Baker domain, there is no longer
a normal form around the convergence point, since it is an essential singularity for f ,
and hence the argument cannot be applied in general. However, for some explicit Baker
domains, similar estimates can be obtained and the argument may work ad hoc. Indeed,
consider for instance the Baker domain of the map f(z) = z+ e−z (see Chapter 1). Since
it is contained in a strip and f has finite order, by Proposition 4.8.3, log |f ′| ∈ L1(ωU). To
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see that log |f ′| ∈ L1(µ), it is enough to check integrability in a neighbourhood of infinity.
Note that f ′(z) = 1 − e−z, so the estimates on |f ′| are even better than in the parabolic
case, and the same argument can be applied. Moreover, |f ′| > 1 in a neighbourhood of
∂U , so χµ(f) > 0.

172



Chapter 5
Boundaries of hyperbolic and simply

parabolic Baker domains

The goal of this chapter is to understand both topologically and dynamically the
boundaries of hyperbolic and simply parabolic Baker domains.

We note that all the Fatou components studied in the previous chapters (and in the
works of [DG87, BD99, BW91, BK07, Bar08, BFJK17]) are attracting and parabolic
basins, and doubly parabolic Baker domains, which share the same ergodic properties
of the boundary map (f |∂U is ergodic and recurrent with respect to harmonic measure
ωU , and ωU -almost every point has a dense orbit in ∂U – aspects that are used in a
fundamental way in the previous works).

On the other hand, hyperbolic and simply parabolic Baker domains may exhibit a
completely different boundary behaviour. For instance, for the simply parabolic Baker
domain of the function

f(z) = z + 2πiα + ez,

for appropriate α ∈ [0, 1] ∖ Q, studied in [BW91, Thm. 4] (see also Ex. II.5.12), all
points in the boundary, which is a Jordan curve, converge to infinity under iteration.
Thus, the previous techniques do not apply and such Baker domains remain somehow
unexplored, except for the results in [RS18], [BFJK19, Thm. A] (Thm. II.5.4), which
establish the measure of the escaping set in ∂U , under certain conditions on the associated
inner function.

First, from an ergodic point of view, a hyperbolic or simply parabolic inner function
is non-ergodic and non-recurrent with respect to the Lebesgue measure λ (Thm. II.5.4).
By relying on properties of the Riemann map, we show that both non-ergodicity and
non-recurrence transfer to the boundary map, with respect to harmonic measure.
Theorem 5.A. (Ergodic properties of the boundary map) Let f ∈ K, and let U
be a simply connected Baker domain, of hyperbolic or simply parabolic type. Then, f |∂U

is non-ergodic and non-recurrent with respect to the harmonic measure ωU .
Now, let us turn to analyze the Carathéodory set of such Baker domains. Let us recall

that, in Chapter II, we introduce the notion of Carathéodory set of the Baker domain U as
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the points x ∈ ∂U such that, for any crosscut neighbourhood N ⊂ D at the Denjoy-Wolff
point p ∈ ∂D, there exists k0 such that, for all k ≥ k0,

fk(x) ∈ φ(N).

In other words, the Carathéodory set is the set of points in ∂U whose orbit converges to
the Denjoy-Wolff point in the Carathéodory’s topology of ∂U .

By the results of Doering and Mañé for inner functions (Thm. II.3.7), the Carathéodory
set has full harmonic measure (and, in particular, it is dense in ∂U) for simply connected
Baker domains, of hyperbolic or simply parabolic type. Moreover the escaping points
constructed in [RS18], [BFJK19, Thm. A] are also in the Carathéodory set (and since they
are escaping, they are also in the Denjoy-Wolff set). However, points in the Carathéodory
set may fail to converge to infinity in general, if the cluster set of the Denjoy-Wolff point
is non-degenerate.

In view of these results, one shall ask if there exist points in ∂U which are not in the
Carathéodory set. The answer is negative in general, as shown by the univalent Baker
domain of f(z) = z + 2πiα + ez introduced above (Ex. II.5.12). In Section II.5.4, we
analyse other examples of univalent Baker domains which have either none or a single
non-Carathéodory point in the boundary. We note that, in this case, the associated inner
function is a Möbius transformation, and every point in ∂D (with at most one exception)
converges to the Denjoy-Wolff point.

On the other hand, if the Baker domain U is non-univalent, there exists a perfect set
in ∂D in which iterates do not converge to the Denjoy-Wolff point locally uniformly (the
Julia set J (g)), and thus one expects plenty of non-Carathéodory points in the boundary
of U .

Our result reads as follows.

Theorem 5.B. (Non-empty non-Carathéodory set) Let f : C → C be an entire
function, and let U be a non-univalent hyperbolic or simply parabolic Baker domain. Let
φ : D → U be a Riemann map, and let g = φ−1 ◦ f ◦ φ be the inner function associated
with (f, U) by φ. Assume there exists a crosscut neighbourhood Nξ of ξ ∈ J (g) such
that φ(Nξ) ∩ P (f) = ∅. Then, there are uncountably many points which are not in the
Carathéodory set, which are furthermore accessible from U .

The hypothesis of the existence of a crosscut neighbourhood Nξ of ξ ∈ J (g) such that
φ(Nξ) ∩ P (f) = ∅ is always satisfied when SV (f) ∩ U is compactly contained in U , in
particular, if f |U has finite degree (see Prop. II.5.1). Note also that, if SV (f) ∩ U is
compactly contained in U , then the Denjoy-Wolff point of the inner function is not a
singularity (Prop. II.5.1), and by [BFJK19, Thm. A], the Denjoy-Wolff set (and the
Carathéodory set) has full harmonic measure. However, it follows from Theorem 5.B that
not all points in ∂U are in the Carathéodory set.

The previous result relies strongly on the topology of the boundary of unbounded Fatou
components of entire functions, studied in [BD99, Bar08], following the same argument

174



as in Theorem 2. Recall that, for non-univalent Fatou components of entire functions,
the set of accesses to infinity

Θ∞ := {ξ ∈ ∂D : φ∗(ξ) = ∞}

is related with the Julia set J (g) in the sense that J (g) ⊂ Θ∞ (see Chapter II). For
hyperbolic and simply parabolic Baker domains, this translates into the following
properties, concerning the topology of the boundary, the Julia set J (g) and the
singularities of the associated inner function.

Proposition 5.C. (Baker domains of entire functions) Let f : C → C be an entire
function, and let U be a non-univalent hyperbolic or simply parabolic Baker domain. Let
φ : D → U be a Riemann map, and let g = φ−1 ◦ f ◦ φ be the inner function associated
with (f, U) by φ. Then, the following holds.

(a) (Topology of ∂U) ∂U has infinitely many components. Moreover, for all ξ ∈ ∂D,
the cluster set Cl(φ, ξ) ∩ C is contained in either one or two components of ∂U ; in
the later case, φ∗(ξ) = ∞.
Each component C of ∂U contains points of the cluster set Cl(φ, ξ) ∩C of a unique
ξ ∈ J (g), with at most countably many exceptions.

(b) (Associated inner function) Assume Θ ̸= ∂D. Then, J (g) is a Cantor set, and
the set of singularities of g, E(g), is nowhere dense in ∂D. If, in addition, the
Denjoy-Wolff point p ∈ ∂D is not a singularity, then both J (g) and E(g) have zero
λ-measure.

(c) (Periodic points) Assume J (g) ̸= ∂D. Then, periodic points are not dense on ∂U .

Examples of non-univalent hyperbolic or simply parabolic Baker domains of entire
functions are given in [RS18], [Rip06], [Bar08, Ex. 3.6] [BZ12], compare also with
[Bar08, Sect. 2.5] for examples of meromorphic functions (thought as inner functions
with a unique singularity). The examples in [BZ12] satisfy that Θ ̸= ∂D, and in fact φ
extends continuously to an arc.

The question on the size of the singularities of the inner function associated with a
Fatou component has been widely studied [EFJS19, ERS20], see also [IU23, Part III]
and Theorem 2 and Theorem A, although all these inner functions are associated with
attracting or parabolic basins, or doubly parabolic Baker domains. This is the first time
that inner functions of hyperbolic or simply parabolic type are addressed. Note also that,
although for finite degree Blaschke products the Julia set is either a Cantor set or the unit
circle, this no longer holds for inner functions of infinite degree [Bar08, Sect. 2.5], and
hence (b) provides additional requirements on the inner functions that can be associated
to Fatou components.

Finally, one can go one step further and ask whether there are periodic points in the
boundary of such Baker domains. Even if periodic points are not dense in the boundaries
in general, we prove the following.
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Theorem 5.D. (Boundary dynamics) Let f ∈ K and let U be a non-univalent simply
connected Baker domain, of hyperbolic or simply parabolic type. Let φ : D → U be a
Riemann map, and let g = φ−1 ◦f ◦φ be the inner function associated with (f, U <) by φ.
Assume there exists a crosscut neighbourhood Nξ of ξ ∈ J (g) such that φ(Nξ)∩P (f) = ∅.
Then, the following holds.

(a) There exist countably many accessible periodic points on ∂U . More precisely, for any
ζ ∈ J (g) and any crosscut neighbourhood Nζ of ζ, there is an accessible periodic
point in φ(Nζ).

(b) For any countable collection of crosscut neighbourhoods {Nξk
}k of ξk ∈ J (g), there

exists an accessible point x ∈ ∂U and a sequence nk → ∞ such that fnk(x) ∈ φ(Nξk
).

Moreover, if f |U has infinite degree, x can be taken bungee, i.e. such that {fn(x)}n

neither escapes nor is compactly contained in Ω(f).

(c) If J (g) = ∂D and ωU(P (f)) = 0, then periodic points are dense on ∂U . Moreover,
if f |U has infinite degree, there are accessible points on ∂U whose orbit is dense on
∂U .

The assumptions in (c) are satisfied for the hyperbolic Baker domain of the function

f(z) = 2z − 3 + ez,

studied by Bargmann [Bar08, Ex. 3.6] (see Ex. II.5.14). Note the wide range of boundary
dynamics for hyperbolic and simply parabolic Baker domains: from examples for which
every point in ∂U is escaping, to others for which both periodic and bungee points are
dense on ∂U .

We remark that the construction of periodic boundary points for basins of rational
maps in [PZ94] relies strongly on the ergodic properties of the boundary map (more
precisely, ergodicity and recurrence), as well as the constructions in Theorems II and
III. Instead, we use the topological properties of J (g), but the complexity of the proof
increases substantially.

5.1 Ergodic properties of f : ∂U → ∂U . Proof of Theorem 5.A

Now we prove Theorem 5.A, which states that, for a hyperbolic or simply parabolic
Baker domain U , the boundary map f : ∂U → ∂∂U is non-ergodic and non-recurrent
with respect to harmonic measure ωU .

Note that, even though the diagram

∂U ∂U

∂D ∂D

f

g∗

φ∗ φ∗
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commutes λ-almost everywhere, and thus f |∂U is a factor of g∗|∂D, the map φ∗ : ∂D → ∂U

need not be an isomorphism. Thus, the non-ergodicity and non-recurrence of f |∂U can not
be deduced straightforward from the non-ergodicity and non-recurrence of g∗|∂D (Thm.
II.3.7), and our proof relies on properties of the Riemann map (more precisely, Thm.
II.4.2), and of hyperbolic and simply parabolic inner functions (Thm. II.3.7, II.3.9). For
more details on the ergodic properties of measure-theoretical isomorphisms and factor
maps see e.g. [KH95, Sect. 4.1.g].

Remark 5.1.1. In the particular case of hyperbolic and simply parabolic Baker domains
of entire maps, the map φ∗ : ∂D → ∂U is one-to-one (Thm. II.5.7), and thus the non-
ergodicity and non-recurrence follow straightforward from the analogous properties of the
associated inner function.

Proof of Theorem 5.A. Let us start by proving that f |∂U is non-recurrent with respect to
ωU . Note that if

φ∗ : ∂D → ∂U

is a measure-theoretical isomorphism (i.e. a bijection up to sets of zero measure), non-
recurrence follows from the same property of the associated inner function. Therefore, we
shall assume that there exist ξ1, ξ2 ∈ ∂D and x ∈ ∂U ⊂ Ω(f) such that φ∗(ξ1) = φ∗(ξ2) =
x. Then, the image under φ of the radial segments at ξ1 and ξ2, together with x, i.e.

φ(R(ξ1)) ∪ φ(R(ξ2)) ∪ {x}

is a Jordan curve in Ĉ, and divides ∂U in two sets X1, X2 of positive measure. Moreover, ξ1

and ξ2 delimit two (non-degenerate) open circular arcs, say I1 and I2, and (φ∗)−1(X1) ⊂ I1

and (φ∗)−1(X2) ⊂ I2. We assume the Denjoy-Wolff point of the inner function lies in I1.
Since λ-almost ξ ∈ ∂D converges to the Denjoy-Wolff point under the iteration of g∗

(Thm. II.3.7), it follows that ωU -almost every point in X2 does not come back to X2

infinitely often (since its orbit is eventually contained in X1), and proves non-recurrence.
See Figure 5.1.

Let us turn now to prove non-ergodicity, i.e. the existence of an invariant set of neither
full nor zero measure. To do so, let

X := {ξ ∈ ∂D : φ∗(ξ) = a, φ∗(ξj) = a for three distinct points ξj ∈ ∂D} .

By Theorem II.4.2, λ(X) = 0, since it is the countable union of sets of measure zero.
Moreover, since inner functions are non-singular,

Z := ∂D∖
⋃

n∈Z
(g∗)n(X)

is invariant under g∗ and has zero λ-measure.
Since g∗|∂D is non-ergodic, there exists A ⊂ Z such that λ(A) ∈ (0, 1) and (g∗)−1(A) =

A. Since f ◦φ∗ = φ∗ ◦ g∗ holds λ-almost everywhere, the set φ∗(A) is f -invariant up to a
set of zero measure. If ωU(φ∗(A)) ∈ (0, 1) we are done.
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1

g

f

φ

D
U

x ∈ ∂U

φ∗(1)

φ(0)

0

ξ1

ξ2

I1I2 X1 X2

Figure 5.1: Set-up of the proof of non-recurrence: schematic representation the Riemann map φ : D →
U , together with the choice of ξ1, ξ2 ∈ ∂D.

Otherwise, ωU(φ∗(A)) = 1, and φ∗|A is one-to-one (up to a set of zero measure). We
claim that there exists A′ ⊂ A such that (g∗)−1(A′) = A′ and 0 < λ(A′) < λ(A).
This would imply that ωU(φ∗(A′)) ∈ (0, 1), since φ∗|A is one-to-one (up to a set of zero
measure), and thus will end the proof of Theorem 5.A.

To prove the existence of A′ we rely on Theorem II.3.9, which claims that there exists
h inner function and T Möbius transformation such that

∂D ∂D

∂D ∂D

g∗

h∗ h∗

T

λ-almost everywhere, and h∗|∂D is measure-preserving. With this diagram in mind it is
easy to obtain the set A′ (since there exist T -invariant sets of arbitrarily small measure
contained in h∗(A)). The proof is now complete.

5.2 Hyperbolic and simply parabolic Baker domains of entire
functions. Proof of Theorem 5.B and Proposition 5.C

In this section we prove Theorem 5.B, which asserts that the non-Carathéodory set is
non-empty for non-univalent Baker domains of entire functions, of hyperbolic or simply
parabolic type, under the assumption that there exists a crosscut neighbourhood Nξ of
ξ ∈ J (g) with φ(Nξ) ∩ P (f) = ∅.

We split the proof into three steps: first, we prove that J (g) has positive Hausdorff
dimension; second, we prove topological properties of the boundaries of such Baker
domains (Proposition 5.C); and finally we prove Theorem 5.B, which will be a
consequence of the two previous results.

The Hausdorff dimension of J (g)

We prove the following.
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Lemma 5.2.1. (Hausdorff dimension of J (g)) Let f ∈ K, and let U be a non-
univalent simply connected Baker domain, of hyperbolic or simply parabolic type. Let
φ : D → U be a Riemann map, and let g = φ−1 ◦ f ◦ φ be the inner function associated
with (f, U) by φ. Assume there exists a crosscut neighbourhood Nξ of ξ ∈ J (g) such that
φ(Nξ) ∩ P (f) = ∅. Then, the Hausdorff dimension of Nξ ∩ J (g) is positive.

Note that, in the case where g has finite degree (and thus it is a rational function),
the fact that the Hausdorff dimension of J (g) is positive follows from a result of Garber
[Gar78, Thm. 1].

Our proof follows the same ideas as in [Sta94, Thm. A], where Stallard prove that the
Julia set of a meromorphic function has always positive Hausdorff dimension. In its turn,
her result relies on the following lemma [Fal03, Prop. 9.7] (see also [Sta94, Lemma 2.1]).
Lemma 5.2.2. Let ϕ1, ϕ2 be contractions on a closed set D ⊂ C such that for each
x, y ∈ D, we have

bi |x− y| ≤ |ϕi(x) − ϕi(y)|
with 0 < bi < 1, i = 1, 2. Let F ⊂ D be such that

F = ϕ1(F ) ⊔ ϕ2(F ).

Then, the Hausdorff dimension of F is greater than s, where bs
1 + bs

2 = 1.

Proof of Lemma 5.2.1. Since φ(Nξ) ∩ P (f) = ∅, according to Proposition II.3.14, there
exists a disk D such that D ∩ J (g) ̸= ∅, and all branches Gn of gn are well-defined (and
univalent) in D. Without loss of generality, let us assume that the Denjoy-Wolff point of
g is not in D.

Recall that preimages of any point in J (g) are dense in J (g) (Lemma II.3.12), and,
as an straightforward consequence of Koebe distortion theorem together with the fact
that Julia sets have empty interior, given a sequence of iterated inverse branches {Gn}n,
diam Gn(D) → 0. Therefore, we can choose ϕ1 = Gn1|D and ϕ2 = Gn2|D such that
ϕ1(D) ⊔ ϕ2(D) = ∅, ϕ2(D) ⊂ D and ϕ1(D) ⊂ D (for appropriate n1, n2 and suitable
inverse branches).

Now the proof continues as in [Sta94, Thm. A]; we outline it for completeness. First,
note that ϕ1, ϕ2 satisfy the hypothesis of Lemma 5.2.2 (indeed, the fact that they are
contractions follows from Schwarz lemma; the existence of bi follows from the univalence
of ϕi in D). Next, define

Di1...in = ϕi1 ◦ · · · ◦ ϕin(D),

H =
⋃ ∞⋂

n=1
Di1...in ,

where the union is taken over all possible sequences i1 . . . in, ij ∈ {1, 2}. Then, H is a
non-empty compact set and

H = ϕ1(H) ⊔ ϕ2(H).
According to Lemma 5.2.2, H has positive Hausdorff dimension. Moreover, the orbit
under g∗ of points in H comes back to H ⊂ D infinitely often. Thus, points in H do not
converge to the Denjoy-Wolff point, meaning that H ⊂ J (g), as desired.
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Note that, more precisely, we proved that the set of points in Nξ ∩∂D which come back
to Nξ infinitely often under iteration has positive Hausdorff dimension.

Proof of Proposition 5.C

We prove the different statements separately.

(a) If U is a non-univalent Baker domain, then J (g) ⊂ Θ and J (g) is uniformly perfect
(Lemma II.3.10, Thm. II.5.6). Thus, Θ is infinite. Moreover, given ξ1, ξ2 ∈ Θ, the image
under φ of the radial segments at ξ1 and ξ2, together with infinity, i.e.

φ(R(ξ1)) ∪ φ(R(ξ2)) ∪ {∞}

is a Jordan curve in Ĉ, say γ, and Ĉ ∖ γ has two connected components, each containing
points of ∂U . It follows that ∂U has infinitely many connected components. The fact
that, for all ξ ∈ ∂D, Cl(φ, ξ) ∩C is contained in either one or two connected components,
and φ∗(ξ) = ∞ in the latter case, follows from Lemma II.4.8.

It is left to prove that each component C of ∂U contains Cl(φ, ξ) ∩ C for a unique
ξ ∈ J (g), with at most countably many exceptions. Since prime ends are symmetric with
at most countably many exceptions [Pom92, Prop. 2.21], we shall restrict to ξ ∈ ∂D such
that Cl(φ, ξ) ∩ C is contained in a unique component of ∂U .

Assume first that Θ∞ = ∂D. Let ξ1, ξ2 ∈ ∂D. Then, there exists ζ1, ζ2 ∈ Θ∞, the image
under φ of the radial segments at ζ1 and ζ2, together with infinity, i.e.

φ(R(ζ1)) ∪ φ(R(ζ2)) ∪ {∞}

is a Jordan curve in Ĉ, say γ, and Ĉ ∖ γ has two connected components, one containing
Cl(φ, ξ1)∩C and the other containing Cl(φ, ξ2)∩C. This already implies that Cl(φ, ξ1)∩C
and Cl(φ, ξ2) ∩ C lie in different components of ∂U . See Figure 5.2.

ξ2

g

f

φ

D
Uφ∗(ζ1)

φ∗(ζ2)

φ(0)0

ζ1

ζ2

ξ1

Figure 5.2: Set-up of the proof of Proposition 5.C(a): schematic representation the Riemann map
φ : D → U , together with ξ1, ξ2 ∈ ∂D, and the choice of ζ1, ζ2 ∈ Θ.

Now, assume Θ∞ ̸= ∂D. Then, ∂D ∖ Θ∞ is open, so consists of countably many
(open) circular intervals on ∂D. These open intervals (which are in F(g)), together with
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their endpoints (in J (g)), correspond to countably many components of ∂U , which we
disregard. The remaining points are in Θ∞, and we can proceed as in the previous case.
This ends the proof of (a).

(b) We rely on the following version of the Gross star theorem for iterates of a meromorphic
function. The proof can be found in [MPRW25, Thm. 3.1], inspired in the general version
of the Gross star theorem given by Kaplan [Kap54, Thm. 3].

Theorem 5.2.3. (Gross star theorem for iterates) Let f : C → Ĉ be a meromorphic
function, and let z0 ∈ C and k ≥ 1 be such that w0 = fk(z0) is defined and (fk)′(z0) ̸= 0.
Let W ∋ w0 be a simply connected domain; for θ ∈ (0, 2π), denote by γθ the hyperbolic
geodesic of W starting at w0 in the direction θ. Then, for almost every θ ∈ (0, 2π), γθ is
an arc connecting w0 to an endpoint wθ ∈ ∂W , and the branch Fk of f−k that maps w0

to z0 can be continued analytically along γθ into wθ.

We have to prove that J (g) is has empty interior (then, since it is uniformly perfect,
it follows that it is a Cantor set, and, since E(g) ⊂ J (g), E(g) has empty interior). On
the contrary, assume I ⊂ J (g) is a (non-degenerate) circular interval.

The set
X :=

⋃
{φ(R(ξ)) : ξ ∈ Θ∞} ∪ {∞}

divides Ĉ (and ∂U) into infinitely many components. Let J ⊂ ∂D ∖ Θ∞ be a maximal
circular interval. Then, Cl(φ, J) is contained in one component of ∂U , say C, and any
other interval in ∂D∖ Θ∞ is contained in a different one.

Since preimages of points in ∂D are dense in J (g) there exists I0 ⊂ I and n ≥ 1 such
that gn(I0) ⊂ J . Since critical points of fn are discrete, take z0 = φ∗(ξ0) ∈ C, for some
ξ0 ∈ I0, not a critical point of f . Then, fn(z0) = w0 ∈ C, and let W ∋ w0 be a simply
connected domain, such that W ∩ ∂U ⊂ C (note that this is possible because all other
components of ∂U lie in different components of Ĉ ∖ X). Then, by Theorem 5.2.3, the
branch Fn of fn sending w0 to z0 can be continued along an open set containing a continua
K0 ⊂ C in C. This implies that, for an interval I1 ⊂ I0,

{Cl(φ, ξ) : ξ ∈ I1} ⊂ K0.

This contradicts the fact that I0 ⊂ J (g) ⊂ Θ∞ (and thus accesses to infinity are dense
in {Cl(φ, ξ) : ξ ∈ I}), implying that J (g) is nowhere dense in ∂D.

Finally, if the Denjoy-Wolff point p ∈ ∂D is not a singularity for g, it follows from the
local dynamics around p (which is either an attracting or a parabolic point, with one
petal, for g), that the Fatou set F(g) is non-empty, and

J (g) = {ξ ∈ ∂D : (g∗)n(ξ) ̸→ p} ∪
⋃

n≥0
(g∗)n(p).

In other words, the only way of converging to the Denjoy-Wolff point is either being a
preimage of it, or being in the Fatou set. According to Theorem II.3.7, the right-hand side
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set has zero λ-measure. Therefore, λ(J (g)) = 0 and, since E(g) ⊂ J (g), λ(E(g)) = 0, as
desired.

(c) Assume J (g) ̸= ∂D, we have to prove that periodic points are not dense in ∂U . As in
(b), note that the set

X :=
⋃

{φ(R(ξ)) : ξ ∈ Θ∞} ∪ {∞}

divides Ĉ (and ∂U) into infinitely many connected components.
Let I ⊂ ∂D∖J (g) be an (open) circular interval, which we can choose so that I and the

Denjoy-Wolff point p ∈ ∂D can be separated in ∂D by two different points ξ1, ξ2 ∈ Θ∞,
i.e. p and I lie in different circular arcs I1, I2 of ∂D ∖ {ξ1, ξ2}, say p ∈ I1, I ⊂ I2. Note
that

φ(R(ξ1)) ∪ φ(R(ξ2)) ∪ {∞}

is a Jordan curve in Ĉ, say γ, and Ĉ∖γ has two connected components, X1 and X2, with
Cl(φ, Ii) ∩ C ⊂ Xi.

Since gn|I → p uniformly on compact sets, gn(I) ⊂ I1 for large n, and

Cl(φ, I) ⊂ Cl(φ, I2) ⊂ X2,

fn(Cl(φ, I)) = Cl(φ, gn(I)) ⊂ Cl(φ, I1) ⊂ X1.

This implies that there are no periodic points in Cl(φ, I2), and thus periodic points are
not dense in ∂U .

The proof of Proposition 5.C is now complete. □

Proof of Theorem 5.B

Without loss of generality, assume that the Denjoy-Wolff point p of g does not belong to
Nξ. Since J (g) is uniformly perfect, we can find a crosscut neighbourhood Mξ such that
Mξ ⊂ Nξ, and there exists ξ1, ξ2 ∈ Θ such that p and Mξ do not lie in the same circular
arc of ∂D∖{ξ1, ξ2}. Therefore, for any crosscut neighbourhood N ⊂ D of p small enough,

φ(N) ∩ φ(Mξ) = ∅.

According to Lemma 5.2.1, the Hausdorff dimension of Mξ ∩ J (g) is positive (more
precisely, the set of points in Mξ ∩ ∂D which come back to Mξ infinitely often under
iteration has positive Hausdorff dimension). Hence, there exists ξ ∈ Mξ ∩ J (g) such that
φ∗(ξ) ∈ Ω(f). We can assume that the orbit of ξ comes back to Mξ infinitely often.

We claim that φ∗(ξ) does not belong to the Carathéodory set. Indeed, if φ∗(ξ) belongs
to the Carathéodory set, for any crosscut neighbourhood N ⊂ D at the Denjoy-Wolff
point p ∈ ∂D, there exists k0 ≥ 0 such that, for all k ≥ k0,

fk(x) ∈ φ(N).

Since φ(N) ∩ φ(Mξ) = ∅, this contradicts the fact that the orbit of ξ visits Mξ infinitely
often. The proof of Theorem 5.B is now complete. □
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5.3 Boundary dynamics. Proof of Theorem 5.D

Proof of Theorem 5.D. Before proceeding with the proof, note that, since there exists
a crosscut neighbourhood Nξ of ξ ∈ J (g) such that φ(Nξ) ∩ P (f) = ∅, Lemma 5.2.1
guarantees that the Hausdorff dimension of J (g) ∩ (Nξ) is positive. In particular, there
exists ξ ∈ J (g) ∩ (Nξ) such that φ∗(ξ) exists and belongs Ω(f).

We split the proof in several steps.

(1) Construction of a region of expansion. Let us consider an appropriate neighbourhood
W of φ(Nξ), and prove that, with respect to the hyperbolic metric in W , inverse branches
are contracting, and uniformly contracting when restricted to compact sets.

Lemma 5.3.1. Let W := C∖ P (f). Then, the following holds.

(a) f : f−1(W ) → W is locally expanding with respect to the hyperbolic metric ρW , i.e.

ρW (z) ≤ ρW (f(z)) · |f ′(z)| , for all z ∈ f−1(W ).

(b) For all z ∈ W , there exists a neighbourhood Dz ⊂ W of z such that all branches Fn

of f−n are well-defined in Dz, Fn(Dz) ⊂ W and

distW (Fn(x), Fn(y)) ≤ distW (x, y), for all x, y ∈ Dz.

(c) Let z ∈ W , and let DW (z,R) be the hyperbolic disk centered at z of radius R. Then,
there exists C ∈ (0, 1) such that, if Fn(z) ∈ DW (z, 2R) and r ∈ (0, R), then

Fn(DW (z, r)) ⊂ DW (Fn(z), C · r) ⊂ DW (z, 3R).

Note that φ(Nξ) ⊂ W , since φ(Nξ) ∩ P (f) = ∅. Note also that the constant C does
not depend on n.

Proof. The first two items are standard in transcendental dynamics. For the third item,
note that, by the Schwarz-Pick lemma [CG93, Thm. I.4.1] and the triangle inequality, we
have that

Fn(DW (z, r)) ⊂ DW (Fn(z), r) ⊂ DW (z, 3R).

This last disk is relatively compact in W , and hence there exists C ∈ (0, 1) such that

ρW (z) ≤ C · ρW (f(z)) · |f ′(z)| , for all z ∈ DW (z, 3R).

Then, by the Schwarz-Pick lemma [CG93, Thm. I.4.1],

ρW (z) ≤ C · ρW (f(z)) · |f ′(z)|
≤ C · ρW (fn−1(f(z))) ·

∣∣∣(f (n−1))′(f(z))
∣∣∣ · |f ′(z)|

≤ C · ρW (fn(z)) · |(fn)′(z)| ,

for all z ∈ DW (z, 3R), implying the first inclusion. The last inclusion follows from the
triangle inequality.

183



(2) Construction of accessible periodic points. Let us start with the following lemma.

Lemma 5.3.2. Let ζ ∈ J (g) be such that x = φ∗(ζ) ∈ C and there exists a crosscut
neighbourhood Nζ such that φ(Nζ)∩P (f) = ∅. Then, for all r > 0, there exists a periodic
point p in DW (x, r), which is accessible from U .
Moreover, given a finite collection of crosscut neighbourhoods {Nξk

}n
k=1, with ξk ∈ J (g),

p can be taken with fnk(p) ∈ φ(Nξk
), for appropriate nk ∈ N.

Note that, in particular, p can be taken of arbitrarily large period.

Proof. Let us start by proving the following claim.

Claim 5.3.3. There exists ρ > 0, a closed non-degenerate circular interval I and a subset
K ⊂ I such that

1. K = I;

2. for all η ∈ K, ∆ρ(ζ) ⊂ DW (x, r/4);

3. for all η1 ∈ I and ρ1 > 0, there exists η2 ∈ K so that Rρ(η1) ∩ ∆ρ(η2) ̸= ∅;

4. for all η ∈ I, iterated inverse branches are well-defined in D(η, ρ) and

Gn(Rρ(η)) ⊂ ∆ρ(Gn(η))

where Rρ and ∆ρ denote the radial segment and Stolz angle, respectively (for some
opening α ∈ (0, π/2) which is fixed throughout the whole proof of Theorem 5.D).

Proof. Note that ωU(DW (x, r/4)) > 0, so X := (φ∗)−1(D(x, r)) has positive Lebesgue
measure. Without loss of generality, we can assume X is contained in a circular interval
for which condition (4) is satisfied, for some ρ > 0. Now, write

Xn :=
{
ξ ∈ X : ∆ρ/n(ξ) ⊂ DW (x, r/4)

}
.

Since radial and angular limits coincide, we have

X =
⋃

n≥0
Xn,

implying that λ(Xn) > 0 for some n ≥ 0. Let K be the set of Lebesgue density points for
Xn. Note that λ(K) = λ(Xn) > 0. Without loss of generality, we can assume that K is
connected (and hence it is a non-degenerate closed circular interval). Denote this closed
circular interval by I.

Replacing ρ by ρ/n, we constructed a circular interval I and a subset of it, K ⊂ I,
which satisfy conditions (1), (2) and (4). Then, condition (3) follows straightforward from
the fact that K is dense in I (replacing I by a smaller subinterval if needed). This ends
the proof of the claim.
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Without loss of generality, we can assume ζ ∈ I (otherwise, replace ζ by a point in I,
and prove the lemma for this new point; this already implies the theorem for the original
ζ).

Now, let C be the constant of hyperbolic contraction given by Lemma 5.3.1(c), and let
n0 be such that Cn0 < 1/2. Since iterated preimages of any point in J (g) are dense in J (g)
(Lemma II.3.12), we can find an inverse branch Gn of gn, well-defined in ⋃η∈I D(η, ρ), such
that, if we denote by Gj, j = 1, . . . , n, the inverse branch of gj sending ζ to gn−j(Gn(ζ)),
it holds

1. # {j = 1, . . . , n : Gj(ζ) ∈ I} ≥ n0;

2. Gn(ζ) ∈ I;

3. if we denote by Iξk
the circular arc bounded by Nξk

, there exists j ∈ {1, . . . , n} with
Gj(ζ) ∈ Iξk

.

Now, let Fj be the inverse branch of f j corresponding to Gj (i.e. the one such that
φ ◦Gj = Fj ◦ φ in ∆ρ(ζ)), which is well-defined in DW (x, r). We claim that

Fn(DW (x, r)) ⊂ DW (Fn(x), Cn0 · r) ⊂ DW (Fn(x), r/2).

According to Lemma 5.3.1, it is enough to see that

# {j = 1, . . . , n : Fj(x) ∈ DW (x, 2r)} ≥ n0.

Indeed, for all j ∈ {1, . . . , n}, we have that

Fj(DW (x, r)) ⊂ DW (Fj(x), r).

Moreover, for all j ∈ {1, . . . , n} such that Gj(ζ) ∈ I (what happens at least n0 times),
there exists η ∈ K such that

∅ ≠ Gj(Rρ(ζ)) ∩ ∆ρ(η) ∋ z.

Thus, w = gj(z) ∈ ∆ρ(ζ), Gj(w) = z ∈ ∆ρ(η), so

φ(w), φ(Gj(w)) = Fj(φ(w)) ∈ DW (x, r/4).

Therefore, by the triangle inequality,

distW (Fj(x), x) ≤ distW (Fj(x), Fj(φ(w))) + distW (Fj(φ(w)), x) ≤ 2r,

as desired.
Next we claim that

Fn(DW (x, r)) ⊂ DW (x, r).

Indeed, recall that Gn has been chosen so that Gn(ζ) ∈ I. Therefore, there exists η ∈ K

such that
∅ ≠ Gn(Rρ(ζ)) ∩ ∆ρ(η) ∋ z,
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and, as above, w = gn(z) ∈ ∆ρ(ζ), Gn(w) = z ∈ ∆ρ(η), so

φ(w), φ(Gn(w)) = Fn(φ(w)) ∈ DW (x, r/4).

Note that ∆ρ(η) ∩ ∆ρ(ζ) ̸= ∅.
Since we just proved that Fn(DW (x, r)) ⊂ DW (Fn(x), r/2), we have

distW (Fn(x), x) ≤ distW (Fn(x), Fn(φ(w))) + distW (Fn(φ(w)), x) ≤ r

2 + r

4 = 3r
4 .

Therefore, Fn(DW (x, r)) ⊂ DW (x, 3r/4), implying the claim.
See Figure 5.3.

ζ

Gn

Fn

φ

∂D

∂U

Gn(ζ)
η

x
Fn(x)

w

Gn(w)

r

r/4

Figure 5.3: Set-up of the proof of the existence of a periodic point in D(x, r), for x = φ∗(ζ) ∈ C,
ζ ∈ J (g).

Finally, by the Brouwer fixed point theorem, Fn has a fixed point p ∈ DW (x, r). We
claim that p is accessible from U , and thus p ∈ ∂U . Indeed, let γ be a curve connecting w
and Gn(w) in ∆ρ(η) ∪ ∆ρ(ζ), which exists because ∆ρ(η) ∩ ∆ρ(ζ) ̸= ∅. Then, φ(γ) joins
φ(w) and Fn(φ(w)) in U ∩DW (x, r). The curve

Γ =
⋃

m≥0
Fm

n (φ(γ))

lands at p, ending the proof of the lemma.

(3) Distribution of periodic points. Statement (a) follows straightforward from Lemma
5.3.2, taking into account that the preimages of ξ ∈ ∂D are dense in J (g), and, if ζ =
Gn(ξ), then φ∗(ζ) exists and it belongs to W . Indeed, this follows from the commutative
relation φ ◦ Gn = Fn ◦ φ in any sufficiently small Stolz angle at ξ. Then, for the radial
segment R(ξ), we have

Fn(φ(R(ξ))) = φ(Gn(R(ξ))).
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By Lindelöf Theorem II.4.5, this already implies that φ∗(ζ) exists (and belongs to W by
the backward invariance of W ). Therefore, one can apply Lemma 5.3.2 to ζ = Gn(ξ) and
get the desired result.

If J (g) = ∂D and ωU(P (f)) = 0, note that one can apply Lemma 5.3.2 to λ-almost
every point on ∂D.

(4) Accessible points with prescribed orbit. We find the desired point inductively. Indeed,
let x0 = φ∗(ζ0) ∈ W as in Lemma 5.3.2, there exists an inverse branch Fn1 , well-defined
in DW (x0, r0) such that

1. Gn1(ζ0) = ζn1 , Fn1(x0) = φ∗(ζn1) = xn1 ∈ W ∩ ∂U ;

2. Fn1(D(x0, r0)) ⊂ DW (xn1 , r1) ⊂ DW (x0, r0), r1 = r0/2;

3. at least one of the sets {DW (x0, r0), F1(DW (x0, r0)), . . . , Fn1(DW (x0, r0))} intersects
φ(Nξ1).

Since xn1 = φ∗(ζn1) ∈ W ∩ ∂U , we can apply again Lemma 5.3.2 to find an inverse
branch Fn2 , well-defined in DW (xn1 , r1), satisfying the analogous properties. Therefore,
proceeding inductively, we get a sequence of inverse branches {Fnk

}k and points {ζnk
}k ⊂

∂D, {xnk
}k ⊂ ∂U satisfying that the inverse branch Fnk

, well-defined in DW (xnk−1 , rk−1)
and

1. Gnk
(ζnk−1) = ζnk

, Fnk
(xk−1) = φ∗(ζnk

) = xnk
∈ W ∩ ∂U ;

2. Fnk
(D(xnk−1 , rk−1)) ⊂ DW (xnk

, rk) ⊂ DW (xnk−1 , rk−1), rk = rk−1/2;

3. at least one of the sets{
DW (xnk−1 , rk−1), F1(DW (xnk−1 , rk−1)), . . . , Fnk

(DW (xnk−1 , rk−1))
}

intersects (Nξnk
).

See Figure 5.4.
Let

x∗ :=
⋂
k

Fnk
(D(x0, r0)).

Note that x∗ ∈ ∂U , since xnk
→ x∗ (and ∂U is closed).

It is left to prove that x∗ is accessible from U . To do so, note that, by the construction
in Lemma 5.3.2, at step k, it is satisfied that there exists a measurable set Kk and ηk ∈ Kk

(chosen as in the Claim 5.3.3) such that

∆ρk
(ζnk−1) ∩Rρk

(ζnk
) ̸= ∅;

Gnk
(Rρk

(ζnk−1)) ⊂ ∆ρk
(ζnk

);

Gnk
(Rρk

(ζnk−1)) ∩ ∆ρk
(ηk) ̸= ∅;
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Figure 5.4: Set-up of the proof of the existence of an accessible point in ∂U with a prescribed orbit.

φ(∆ρk
(ζnk−1)), φ(∆ρk

(ηk)) ⊂ DW (xnk−1 , rk−1/4);
for some appropriate radius ρk. Without loss of generality, we shall assume that the
sequence {ρk}k is decreasing.

Thus, for all n ≥ 0, take

znk
∈ ∆ρk

(ζnk
) ∩Rρk

(ζnk−1).

We claim that there exists a curve γk connecting φ(znk
) to φ(znk+1) in DW (xnk−1 , rk−1)∩U .

Indeed, since znk
∈ ∆ρk

(ζnk−1) and znk+1 ∈ ∆ρk+1(ζnk
), if we prove that the set

∆ρk
(ζnk−1) ∪ ∆ρk

(ηk) ∪Gnk
(∆ρk

(ζnk−1)) ∪ ∆ρk+1(ζnk
)

is connected, since

φ(∆ρk
(ζnk−1)), φ(∆ρk

(ηk)) ⊂ DW (xnk−1 , rk−1),

φ(Gnk
(∆ρk

(ζnk−1))) = Fnk
(φ(∆ρk

(ζnk−1))) ⊂ Fnk
(DW (xnk−1 , rk−1)) ⊂ DW (xnk−1 , rk−1),

φ(∆ρk+1(ζnk
)) ⊂ D(xnk

, rk) ⊂ D(xnk−1,rk−1),
then the existence of the curve γk follows straightforward.

To see that ∆ρk
(ζnk−1) ∪ ∆ρk

(ηk) ∪Gn(∆ρk
(ζnk−1)) ∪ ∆ρk+1(ζnk

) is connected, note that,
on the one hand, ∆ρk

(ζnk−1) ∩ ∆ρk
(ηk) ̸= ∅, by the Claim 5.3.3 in Lemma 5.3.2. Then,

Gnk
(Rρk

(ζnk−1)) ∩ ∆ρk
(ηk) ̸= ∅, by the choice of ηk. On the other hand,

Rρk
(ζnk−1) ⊂ ∆ρk

(ζnk−1),

and, according to Proposition II.3.17, Gn(Rρk
(ζnk−1)) is a curve landing at ζnk

inside
∆ρk

(ζnk
), and hence intersecting ∆ρk+1(ζnk

). Hence, the intersection between
Gn(∆ρk

(ζnk−1)) and ∆ρk+1(ζnk
) is non-empty. This proves the claim.
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Finally,
Γ =

⋃
k≥0

γk

is an access to x∗, as desired.

(5) The case of infinite degree. It is left to show that, in the case of infinite degree, the
set of periodic points in ∂U is unbounded and x∗ can be taken bungee.

This follows from the fact that the crosscut neighbourhood Nζ with φ(Nζ) ∩ P (f) = ∅
has countably many preimages, and, for every compact subset K of C, only finitely many
of them intersect K. Hence, in the choices of crosscuts in Lemma 5.3.2, we can construct
a periodic point which is outside D(0, n), leading to an unbounded sequence of periodic
points. The same can be done to show that x∗ can be taken to be bungee. This ends the
proof of the theorem.
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List of symbols

C complex plane.
Ĉ Riemann sphere.
C (non-degenerate) crosscut. Def II.2.1.

D(x, r) disk of center x and radius r.
D unit disk.
∂D unit circle.

∆α,ρ(ξ) Stolz angle of openning α and length ρ at ξ ∈ ∂D. Def. II.2.1.
∆α,ρ(ξ, p) Stolz angle of openning α and length ρ at ξ ∈ ∂D, with respect to p. Def. II.2.2.
E(g) set of singularities of an inner function g. Def. II.1.4.
H+ upper half-plane.
H− lower half-plane.
λ normalised Lebesgue measure on ∂D.
N crosscut neighbourhood. Def II.2.1.

Rρ(ξ) radial segment of length ρ at ξ ∈ ∂D. Def. II.2.1.
Rρ(ξ, p) radial segment of length ρ at ξ ∈ ∂D. Def. II.2.2.

R real axis.
R+ positive real axis.
R− negative real axis.
ωU harmonic measure with respect to a simply connected domain U . Def. ??.

Moreover, given f ∈ K, we use the following notation.
Ω(f) domain of holomorphicity of f .
E(f) set of singularities of f .
A closure of a set A ⊂ Ω(f) taken in Ω(f).
Â closure of a set A ⊂ Ω(f) taken in Ĉ.
∂A boundary of a set A ⊂ Ω(f) taken in Ω(f).
∂̂A boundary of a set A ⊂ Ω(f) taken in Ĉ.

∆α,ρ(ξ, p)
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