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Abstract

The theory of finite transformation groups investigates the finite symmetries of topological
objects, such as manifolds or CW-complexes. In this thesis, we focus on actions on mani-
folds and we adopt the following approach: rather than directly studying the properties of
a finite group G acting on a manifold M, we focus on the properties of the action restricted
to suitable subgroups H ⊆ G of bounded index. This index is controlled by a constant C
that depends only on M. Several problems align with this philosophy, including determin-
ing whether the homeomorphism group of a manifold is Jordan, computing the discrete
degree of symmetry of a manifold, establishing whether a manifold is almost-asymmetric,
and examining the number and size of stabilizer subgroups for finite group actions on
manifolds.

In the first part of the thesis, we provide solutions to these problems for two broad classes
of manifolds, specifically:

(1) Closed connected aspherical manifolds whose fundamental group has Minkowski
outer automorphism group (a group G is Minkowski if there exists a constant C such
that every finite subgroup H ≤ G satisfies |H| ≤ C).

(2) Closed connected orientable manifolds that admit a non-zero degree map to a nil-
manifold.

We show that the outer automorphism group of a lattice in a connected Lie group is
Minkowski, enabling our results to be applied to closed aspherical locally homogeneous
spaces. Additionally, we provide the first known examples of manifolds M and M′ with
isomorphic cohomology rings H∗(M, Z) ∼= H∗(M′, Z) where Homeo(M) is Jordan but
Homeo(M′) is not. We establish two rigidity results for the discrete degree of symmetry:
if M is a closed, connected aspherical manifold whose fundamental group has Minkowski
outer automorphism group, or if M admits a non-zero degree map to a nilmanifold and its
fundamental group is virtually solvable, then M is homeomorphic to a torus if its discrete
degree of symmetry equals the dimension of M. The latter means that M supports effec-
tive actions of a sequence of groups (Z/ai)

n, where {ai} is a strictly increasing sequence
of natural numbers and n = dim(M).
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In the second part, we refine the concept of group actions to explore the topological and
cohomological rigidity of manifolds in greater depth. We introduce the notion of iterated
actions of a collection of finite groups {G1, . . . , Gn} on a manifold M, which is a collection
of effective group actions of Gi on Mi−1 for 1 ≤ i ≤ n, where M0 = M and Mi = Mi−1/Gi

for i ≥ 1. This framework allows us to analyze the structure of closed aspherical mani-
folds and those admitting non-zero degree maps to nilmanifolds in more detail. We define
new invariants, such as the iterated length of a manifold, which is closely related to its
self-coverings, and introduce a refined version of the discrete degree of symmetry, termed
the iterated discrete degree of symmetry. We demonstrate that if M is a closed oriented
manifold admitting a non-zero degree map to a 2-step nilmanifold N/Γ, and both mani-
folds have the same iterated discrete degree of symmetry, then H∗(M, Q) ∼= H∗(N/Γ, Q).
Furthermore, if π1(M) is virtually solvable, then M ∼= N/Γ. We also prove that if M is a
closed aspherical locally homogeneous space with an iterated discrete degree of symmetry
equal to its dimension, then M is homeomorphic to a 2-step nilmanifold.

Key words: finite group actions, geometric topology, aspherical manifolds, lattices of Lie
groups
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Resum en català

En aquesta tesi avancem en el camp de la teoria de grups finits de transformació obtenint re-
sultats que segueixen el següent enfocament: en comptes d’estudiar directament les propi-
etats d’un grup finit G que actua sobre una varietat M, ens centrem en les propietats de
l’acció restringida a certs subgrups H ⊆ G d’índex acotat per una constant C que depèn
únicament de M. Hi ha diversos problemes que s’alineen amb aquesta filosofia, com ara
determinar si el grup d’homeomorfismes d’una varietat és Jordan, calcular el grau discret
de simetria d’una varietat, establir si una varietat és quasi asimètrica i examinar el nombre
i la mida dels subgrups d’isotropia d’accions de grups finits sobre varietats. A la primera
part de la tesi, oferim solucions a aquests problemes per a varietats tancades connexes
asfèriques localment homogènies i per a varietats tancades connexes i orientables que ad-
meten una aplicació de grau diferent de zero cap a una nilvarietat. Establim dos resultats
de rigidesa per al grau discret de simetria: si M és una varietat tancada connexa asfèrica
localment homogènia, o si M admet una aplicació de grau diferent de zero cap a una nilva-
rietat i el seu grup fonamental és virtualment resoluble, llavors M és homeomorfa a un tor
si el seu grau discret de simetria és igual a la seva dimensió. A la segona part, refinem el
concepte d’accions de grup per explorar la rigidesa topològica i cohomològica de les vari-
etats amb més detall. Introduïm la noció d’accions iterades d’una col·lecció de grups finits,
definim nous invariants, com la longitud iterada d’una varietat i introduïm una versió re-
finada del grau discret de simetria, anomenada grau discret iterat de simetria. Demostrem
que si M és una varietat tancada orientada que admet una aplicació de grau diferent de
zero cap a una nilvarietat N/Γ, on N té classe de nilpotència 2 i ambdues varietats tenen
el mateix grau discret iterat de simetria, llavors H∗(M, Q) ∼= H∗(N/Γ, Q). També provem
que si M és una varietat tancada asfèrica i localment homogènia amb un grau discret iterat
de simetria igual a la seva dimensió, llavors M és homeomorfa a una nilvarietat N/Γ, on
N té classe de nilpotència 2.

Paraules clau: accions de grups finits, topologia geomètrica, varietats asfèrqiues, reticles de
grups de Lie
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Introduction

The theory of finite transformation groups focuses on studying the symmetries of topo-
logical objects, such as manifolds, by analysing the actions of finite groups on them. A
fundamental question in this field is: Given a closed topological manifold M, can we de-
termine which finite groups act effectively on M? A complete answer to this question is
completely out of reach in the vast majority of cases with the current tools of finite transfor-
mation groups theory. One way to modify this question to obtain a more tractable problem
is to consider actions of a finite group G on M and to study properties not of the action
of G on M, but on the restriction to some subgroup of G of index bounded by a constant
C only depending on M. Let us recall some problems that follow this philosophy from
[MiR24b], a recent survey on the topic.

We need the following definition to state the first problem:

Definition 1. A group G is said to be Jordan if there exists a constant C such that every finite
subgroup G ≤ G has an abelian subgroup A ≤ G such that [G : A] ≤ C.

The name of this property is motivated by a classical theorem of Camille Jordan which
states that GL(n, R) is Jordan. Around 30 years ago Étienne Ghys asked in a series of talks
whether the diffeomorphism group of any closed connected smooth manifold M is Jordan.
This question has been answered affirmatively for a lot of different manifolds like closed
flat manifolds, integral homology spheres, closed connected manifolds with non-zero Eu-
ler characteristics or closed connected manifolds up to dimension 3 (see [MiR10, Zim14,
Ye19, MiR19]). However, it has been shown that there are closed manifolds whose diffeo-
morphism group is not Jordan, like S2 × T2 (see [CPS14, MiR17, Sza19, Sza23, Zar14] for
various examples of non-Jordan groups). More recently, the same question has been stud-
ied for the homeomorphism group of closed topological manifolds, extending the results
obtained in the smooth case (see [MiR24b] and references therein).

Note that this property does not tell us anything for finite groups G acting on M with
|G| ≤ C, but it becomes relevant for large enough finite groups acting effectively on M.
There is no universal method to prove or disprove whether the homeomorphism group
of a closed, connected manifold is Jordan, and many manifolds remain for which it is
unknown whether their homeomorphism group has the Jordan property.
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We remark that the Jordan property also has a rich history in the field of algebraic geometry,
which started when J.-P. Serre proved that the Cremona group Cr2 = Bir(P2) is Jordan in
[Ser09] and asked if higher rank Cremona groups Crn also have this property (the question
has been affirmatively answered in [PS16, Bir21]). For the most recent developments on the
Jordan property in algebraic geometry we refer to the survey [BZ24], as well as [MiR24a,
§2], the introductions of [CPS22] and [Gol23].

Another interesting problem, specially when Homeo(M) is Jordan, is to study the rank of
finite abelian groups (defined as the smallest number of elements needed to generate the
group) which can act effectively on M. Here again we follow the philosophy of looking for
a statement that eventually requires to replace the group by a subgroup of bounded index.

Question 2. Fix a natural number k. Does there exist a constant C such that every finite abelian
group A acting effectively on M has an abelian subgroup B such that [A : B] ≤ C and rank(B) ≤
k?

This question can be reformulated in terms of the following invariant introduced in [MiR24a].

Definition 3. Given a manifold M let

µ(M) = {r ∈N : M admits an effective action of (Z/a)r for arbitrarily large a}.

More explicitly, r ∈ µ(M) if there exists an increasing sequence of natural number {ai} and effective
group actions of (Z/ai)

r on M for each i.

The discrete degree of symmetry of a manifold M is

disc-sym(M) = max({0} ∪ µ(M)).

Question 2 is equivalent to asking whether disc-sym(M) ≤ k. By a theorem of L.N.Mann
and J.C.Su (see [MS63] and theorem 1.1.32) we know that if M is a closed connected man-
ifold then disc-sym(M) is a well-defined natural number, but finding the exact value of
disc-sym(M) is probably difficult in most cases. Note that a manifold M can admit group
actions of abelian group of higher rank than disc-sym(M). For example, for any natural
numbers a, b there exists a closed surface Σg(a,b) of genus g(a, b) ≥ 2 such that (Z/a)b acts
freely on Σg(a,b). On the other hand disc-sym(Σg(a,b)) = 0. This fact is a consequence of the
84(g− 1) theorem of Hurwitz, see [FM11, Chapter 7]).

The definition of disc-sym(M) is analogous to the definition of the toral degree of symme-
try

tor-sym(M) = max({0} ∪ {r ∈N : Tr acts effectively on M})

studied in [Hsi12, Chapter VII. §2]. A classical result states that if M is a closed manifold
of dimension n then tor-sym(M) ≤ n and that tor-sym(M) = n if and only if M ∼= Tn



3

(see theorem 1.1.48). It is not known, however, whether disc-sym(M) ≤ dim(M) for every
M and whether disc-sym(M) = dim(M) implies M ∼= Tn (see [MiR24b, Question 3.4,
Question 3.5]). For more results on the toral degree of symmetry we refer to [LR10, §11.7,
§11.8] and the survey [Gro02].

The third problem relates to counting the number of stabilizers of a group action on a
manifold.

Definition 4. Let G be a finite group acting effectively on a manifold M. The set of stabilizer
subgroups of the action of G on M is denoted by

Stab(G, M) = {Gx : x ∈ M}.

It is not possible to bound | Stab(G, M)| only depending on M. For example, for all n there
is an effective action of the dihedral group Dn on S1 such that | Stab(Dn, S1)| ≥ n/2. On the
other hand, it is proven in [CMiRPS21, Theorem 1.3] that for any closed connected manifold
M there exists a constant C only depending on M such that any finite p-group G acting
effectively on M has a subgroup H such that [G : H] ≤ C and | Stab(H, M)| ≤ C. This result
was crucial in proving a generalized version of the Jordan property of the homeomorphism
group of closed manifolds in [CPS22], which states that there exists a constant C such that
every finite group F acting on M has a nilpotent subgroup N such that [F : N] ≤ C. It
is unknown whether the hypothesis of F being a p-group can be removed in [CMiRPS21,
Theorem 1.3] (see [MiR24b, Question 12.2]).

To address the final question, we introduce the following definition:

Definition 5. A group G is said to be Minkowski if there exists a constant C such that every finite
subgroup G ≤ G satisfies |G| ≤ C.

Remark 6. This name is motivated by a classical result of Hermann Minkowski which states that
GL(n, Z) is Minkowski. The Minkowski property was studied in [Pop18, Gol23, BZ24] under the
name of bounded finite subgroups property.

If M is a closed manifold and Homeo(M) is Minkowski then M is said to be almost-
asymmetric. In the particular case where M does not admit any effective finite group
action we say that M is asymmetric. This case has been extensively studied (see [Pup07]
and references therein).

Compact group actions on closed aspherical manifolds have been widely studied since
the seventies, beginning with an unpublished work by A.Borel where the first example of
asymmetric manifold is constructed (see [Bor83]) and the seminal work of P.E.Conner and
F.Raymond (see [Con70]). This area of research is still active at present (see, for exam-
ple, [JL10, CLW18, Ye19, BT21, BK23b, BK23a]). However, the above questions have not
been studied in full generality in the literature. These questions are particularly relevant
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for closed connected aspherical manifolds, since tori are the only compact connected Lie
groups that act effectively on them [LR10, Theorem 3.1.16]. Therefore, tor-sym(M) and
disc-sym(M) become important invariants.

We recall some notation before stating the main results of this paper. Given a group G we
denote the automorphism group of G by Aut(G). Given g ∈ G, we denote by cg : G −→ G
the conjugation by g, cg(h) = ghg−1. The normal subgroup {cg : g ∈ G} ⊴ Aut(G) is
denoted by Inn(G). Recall that Inn(G) ∼= G/ZG, where ZG denotes the center of G. The
outer automorphisms group of G is Out(G) = Aut(G)/ Inn(G).

Our first theorem is the following:

Theorem 7. (Theorem 2.0.1) Let M be a closed connected n-dimensional aspherical manifold such
that Zπ1(M) is finitely generated and Out(π1(M)) is Minkowski. Then:

1. Homeo(M) is Jordan.

2. disc-sym(M) ≤ rankZπ1(M) ≤ n, and disc-sym(M) = n if and only if M is homeomor-
phic to Tn.

3. If χ(M) ̸= 0 then M is almost-asymmetric.

4. If Aut(π1(M)) is Minkowski, then there exists a constant C such that every finite group F
acting effectively on M has a subgroup H such that [F : H] ≤ C and | Stab(H, M)| ≤ C.

This result is mainly a combination of several known results. Note that items 2 and 4 par-
tially answer affirmatively the questions [MiR24b, Question 3.4, Question 3.5] and [MiR24b,
Question 12.2] respectively.

As an application of theorem 7, we prove:

Proposition 8. (Proposition 2.0.5) There exists a closed connected aspherical manifold M such that
Homeo(M) is Jordan and H∗(M) ∼= H∗(T2 × S3).

Note that Homeo(T2× S3) is not Jordan by [MiR17]. Proposition 8 provides the first exam-
ple of two manifolds with the same cohomology with integer coefficients such that one has
Jordan homeomorphism group and the other does not.

We also obtain a rigidity result for closed connected aspherical n-dimensional manifolds
when disc-sym(M) = n− 1. Let K denote the Klein bottle and SK denote the only non-
trivial principal S1-bundle over K, then:

Proposition 9. (Proposition 2.0.6) Let M be a closed connected n-dimensional aspherical manifold
such that Zπ1(M) is finitely generated, Out(π1(M)) is Minkowski and Inn π1(M) has an element
of infinite order. If disc-sym(M) = n− 1 then M ∼= Tn−2 × K or M ∼= Tn−3 × SK

It is important to know when the hypothesis on the fundamental group of theorem 7 are
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satisfied. At the moment there are no known closed aspherical manifolds where Zπ1(M)

is not finitely generated (see [LR10, Remark 3.1.19]). Regarding the second hypothesis, we
prove:

Theorem 10. (Theorem 2.0.2) Let Γ be a lattice in a connected Lie group G. Then Out(Γ) and
Aut(Γ) are Minkowski.

The proof of this results uses several theorems of the theory of lattices of Lie groups,
like the Mostow-Prasad-Margulis rigidity theorem, the Borel density theorem, Margulis
superrigidity theorem, and Margulis normal subgroup theorem, as well as the results in
[Mal02], which are used to compute the outer automorphism group of a group extension.

If G is a connected Lie group, H is a maximal compact subgroup and Γ is a torsion-free co-
compact lattice of G then the closed aspherical locally homogeneous space H \G/Γ satisfies
the hypothesis of theorem 7. In particular, flat manifolds, nilmanifolds, almost-flat mani-
folds, solvmanifolds, infra-solvmanifolds and closed connected aspherical locally symmet-
ric spaces satisfy the hypothesis of theorem 7. Note that if we remove the asphericity
hypothesis then closed locally homogeneous spaces do not necessarily have Jordan home-
omorphism group. Indeed, T2 × S2 is homogeneous (and hence locally homogeneous) but
Homeo(T2 × S2) is not Jordan.

Theorem 10 generalizes [Gol23, Theorem 1.7], where it is proven that the outer automor-
phism group of a cocompact lattice on connected complex Lie groups is Minkowski. In
the real case we need to be careful with the compact factors and factors isomorphic to
PSL(2, R) of the semisimple part of G.

Note that theorem 10 is also valid for non-cocompact lattices, although it cannot be used to
deduce properties of large finite groups actions on non-compact aspherical locally homo-
geneous spaces, since the compactness hypothesis in theorem 7 is essential.

To complement theorem 10, we also prove that the bound on the discrete degree of sym-
metry is reached for closed connected aspherical locally homogeneous spaces.

Theorem 11. (Theorem 2.0.4) Let H \ G/Γ be a closed connected aspherical locally homogeneous
space, where G is a connected Lie group. Then disc-sym(H \ G/Γ) = rankZΓ.

This result is a combination of the results in [LR10, Section 11.7] on the toral degree of
symmetry and the validity of the Borel conjecture for lattices of connected Lie groups
[KLR16].

Finally, using similar arguments used to prove theorem 10 we also prove:

Proposition 12. (Proposition 2.0.3) Let M = M1 × · · · ×Mm, where Mi are a closed aspherical
manifolds such that π1(Mi) is hyperbolic and dim(Mi) ≥ 3. Then Out(π1(M)) is finite and
Aut(π1(M)) is Minkowski.
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Proposition 12, together with theorem 7 and the fact that π1(M) is centreless, implies that
M is almost asymmetric.

There have been many efforts to generalize the results of group actions on closed connected
aspherical manifolds to a wider class of manifolds, for example closed connected manifolds
which admit a non-zero degree map to a closed aspherical manifold (see [Sch81, DS82,
GLO85, KK83, WW83, MiR10, MiR24a]). In this thesis we also prove a generalization of
theorem 7 for manifolds which admit a non-zero degree map to a nilmanifold. Recall that
a nilmanifold is a manifold which admits a transitive group action of a simply connected
nilpotent Lie group N. If a nilmanifold is compact then it is homeomorphic to the coset
space N/Γ, where Γ is a lattice of N. If N is c-step nilpotent then we say that N/Γ is a
c-step nilmanifold.

Theorem 13. (Theorem 3.0.2) Let M be a closed connected orientable manifold of dimension n and
let f : M −→ N/Γ be a non-zero degree map to a nilmanifold. Then:

1. Homeo(M) is Jordan.

2. disc-sym(M) ≤ rankZΓ and if disc-sym(M) = n then H∗(M, Z) ∼= H∗(Tn, Z).

3. If χ(M) ̸= 0 then M is almost-asymmetric.

4. There exists a constant C such that every finite group G acting effectively on M has a subgroup
H such that [G : H] ≤ C and | Stab(H, M)| ≤ C.

Theorem 13 is a generalization of [MiR24a, Theorem 1.3, Theorem 1.14, theorem 1.15]. To
prove theorem 13, we introduce a new concept called exporting map, inspired by [MiR24a,
Theorem 4.1]. A map between manifolds f : M −→ M′ is an exporting map if there
exists a constant C such that every finite group G acting on M has a subgroup H ≤ G
such that H acts on M′, there exists a H-equivariant map fH : M −→ M′ homotopic to f
and [G : H] ≤ C (see definition 3.2.3). Using local systems, we will prove that a non-zero
degree map to a nilmanifold is an exporting map. An accurate study of the relation between
exporting maps and the Jordan property, the discrete degree of symmetry, asymmetry and
the stabilizer set will complete the proof of theorem 13.

It is a natural question to ask whether disc-sym(M) = rankZΓ implies that H∗(M, Z) ∼=
H∗(N/Γ, Z). However, this is not true in general (see proposition 3.3.13). Thus, we want
to find a new invariant refining disc-sym(M) to study cohomological rigidity for mani-
folds admitting a non-zero degree map to a nilmanifold. In order to do so, we recall that
nilmanifolds are precisely the iterated principal S1-bundles, [Bel20]. This fact leads to the
following definition:

Definition 14. Let G = {Gi}i=1,...,n be a collection of groups and let X be a topological space.
An iterated action of G on X (denoted by G ↷ X) is a collection of group actions {Φi : Gi −→
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Homeo(Xi−1)}i=1,...,n, where X0 = X and Xi = Xi−1/Gi for all 1 ≤ i ≤ n. The orbit maps will
be denoted by pi : Xi−1 −→ Xi for all 1 ≤ i ≤ n. We will denote n = l(G).

A closed connected manifold M is homeomorphic to a nilmanifold if and only if it admits
an iterated action of {Tb1 , · · · , Tbc} such that each action is free and ∑c

i=1 bi = dim(M).
Indeed, since all the actions are free, the maps pi : Mi−1 −→ Mi are principal Tbi-bundles
and the quotient Mc−1 is a closed manifold of dimension dim(M) − ∑c−1

i=1 bi = bc. Since
Mc−1 is closed and connected and it admits a free action of a torus Tdim(Mc−1) we can
conclude that Mc−1

∼= Tbc . This implies that M can be obtained as iterated principal torus
bundles and hence M is a nilmanifold.

The concept of iterated group action has appeared implicitly in the literature. For example,
towers of regular self-covering are studied in [BBS01, VL18, vL21, QSW24]. A regular self-
covering of a closed manifold M is a map p : M −→ M which is a regular covering. We
can compose this map with itself to obtain a tower of regular self-coverings

M M · · · M M.
p p p p

Since p : M −→ M is a regular covering, there exists a finite group G acting freely on M
such that p can be seen as the orbit map p : M −→ M/G. Consequently, the study of
towers of regular self-coverings is the study of iterated group actions of G = {G,

n· · ·, G}
such that Mi

∼= M for all i and all the actions Φi : G −→ Homeo(M) are the same. In
[FOM12] iterated group actions are used to describe and classify spin orbifolds of the form
S7/Γ where Γ is a finite group of SO(8). Iterated group actions have also been studied when
each group Gi is a connected Lie group. For example, in [BK23a] O.Baues and Y.Kamishima
study iterated group actions on Riemannian aspherical manifolds where each group Gi is
the solvable radical of Isom(Mi−1)

0.

Nevertheless, it seems that a theory of iterated group actions have not been developed yet
in full generality. In the last part of the thesis we start the development of a theory of finite
iterated group actions. Recall that if a compact Lie group G acts freely on a manifold M
then the quotient map M/G is also a manifold. Thus, our first focus is on free iterated
actions of finite groups on manifolds. Let us briefly define some of the notions that we
need to state our results on iterated actions.

Definition 15. Let G = {Gi}i=1,...,n and G ′ = {G′i}i=1,...,n′ be two collections of groups supporting
free iterated actions on M. We say that the iterated actions G ↷ M and G ′ ↷ M are equivalent (and
we denote it by G ↷ M ∼ G ′ ↷ M) if Mn ∼= Mn′ and p = pn ◦ · · · ◦ p1 and p′n′ ◦ · · · ◦ p′1 = p′ are
isomorphic coverings. The equivalence class will be denoted by [G ↷ M]. If G ↷ M is equivalent to
an iterated group action of length 1 (a usual group action), then we say that G ↷ M is simplifiable.

With definition 15 is straightforward to see that a free iterated action G = {G1, . . . , Gn} ↷
M is simplifiable if and only if π1(M) ⊴ π1(Mn). In particular, all free iterated actions



8

on simply-connected manifolds are simplifiable. However, there exist manifolds with non-
trivial fundamental group where all free iterated actions on them are simplifiable (see
lemma 4.2.5). There also many examples of non-simplifiable free iterated actions (see, for
example, remark 4.2.6).

With this equivalence relation we can study free iterated group actions on nilmanifolds. In
particular, we prove:

Theorem 16. (Theorem 4.0.8) There exists a constant C only depending on Γ such that any
free iterated action G ↷ N/Γ is equivalent to a free iterated action G ′ ↷ N/Γ where G ′ =
{A1, . . . , Ac, G′}, Ai are finite abelian groups and |G′| ≤ C.

The proof of theorem 16 can be deduced from the properties of infranilmanifolds and the
theory of almost-crystallographic groups. The conclusion of theorem 16 can be though
as a generalized Jordan property. Indeed, given a closed connected manifold M we say
that M has the iterated Jordan property if there exists a constant C depending only on
M such that any free iterated action G ↷ M is equivalent to a free iterated action of the
form {A1, . . . , Ac, G} ↷ M, where Ai is abelian for 1 ≤ i ≤ c and |G| ≤ C. Theorem 16
shows that nilmanifolds have the iterated Jordan property. Another example of manifolds
satisfying this property are manifolds satisfying that all free iterated actions on them are
simplifiable (for example, simply connected manifolds). This is a consequence of the valid-
ity of the generalized Jordan conjecture on closed connected manifolds (see [CPS22]).

With this equivalence relation we can define two invariants that measure the size of free
iterated actions on a closed connected manifold. The first invariant is called the iterated
length of a manifold.

Definition 17. Given a free iterated action G ↷ M, the length of the iterated action is

l(G ↷ M) = min{l(G ′) : G ′ ↷ M ∈ [G ↷ M]}.

The iterated length of a manifold M is

l(M) = max{l(G ↷ M) : free iterated action G ↷ M}.

Given a closed connected manifold M, it is an interesting question to study when l(M) is
bounded. If no bound exists then we will write l(M) = ∞.

Theorem 18. (Theorem 4.0.10, cases where the length of a space is bounded)

1. If N/Γ is a c-step nilmanifold, then l(N/Γ) ≤ c + 1.

2. Given a locally symmetric space H \G/Γ, there exists C depending on Γ such that l(M) ≤ C.

The bound of theorem 18.1. is sharp. For example l(Tn) = 2 for n ≥ 3 and l(Tn) = 1 for
n = 1, 2 (see remark 4.3.9).
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Theorem 19. (Theorem 4.0.11, cases where the length of a space is not bounded)

1. There exists a closed solvmanifold M such that l(M) = ∞.

2. There exist a closed connected aspherical locally homogeneous space H \ G/Γ such that the
solvable radical of G is abelian and l(H \ G/Γ) = ∞.

The proof of theorem 18 is based on the properties of lattices in nilpotent and semisimple
Lie groups, specially the existence of lattices of minimal volume in semisimple Lie groups
for item 3. Regular self-coverings play a key role in the proof of theorem 19.

The second invariant is a generalization of the discrete degree of symmetry of a manifold
for free iterated actions of length 2. Recall that the rank of a finite group is the minimal
number of elements needed to generate it.

Definition 20. Given a free iterated actionA↷ M of abelian groups, the rank of the iterated action
is

rankab(A↷ M) = min{
n

∑
i=1

rank A′i : {A′1, . . . , A′n}↷ M ∈ [A↷ M] A′i abelian for all i}.

We define µ2(M) as the set of all pairs ( f , b) ∈ (N)2 which satisfy:

1. There exist an increasing sequence of prime numbers {pi}, a sequence of natural numbers
{ai} and a collection of free iterated actions {(Z/pai

i )
f , (Z/pi)

b}↷ M for each i ∈N.

2. rankab({(Z/pai
i )

f , (Z/pi)
b}↷ M) = f + b for each i ∈N.

Consider the lexicographic order in N2 ((a, b) ≥ (c, d) if a > c, or a = c and b ≥ d). Define the
iterated discrete degree of symmetry of M as

disc-sym2(M) = max{(0, 0) ∪ µ2(M)}.

Note that there are two significant differences between the conditions used in the defi-
nitions of the discrete degree of symmetry and the iterated discrete degree of symmetry.
On the iterated discrete degree of symmetry we only consider actions of abelian p-groups,
and all these actions are assumed to be free. While this hypothesis are made for technical
reasons, they do not suppose a big loss of generality in our case, since we will see that
the manifolds that we study have effective actions of abelian p-groups for arbitrarily large
prime p and these actions are free for p large enough.

The iterated discrete degree of symmetry has similar properties to the degree of symmetry,
and the following results shows that it is a suitable invariant to study rigidity problems
related with nilmanifolds.

Theorem 21. (Theorem 4.0.13) Let M be a closed connected n-dimensional aspherical manifold such
thatZπ1(M) andZ(Inn π1(M))is finitely generated, and Aut(Inn π1(M)) and Out(Inn π1(M))
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are Minkowski. If disc-sym2(M) = ( f , b) with f + b = n then M ∼= N/Γ, where N/Γ is the
total space of a principal T f -bundle over Tb.

The proof is based on generalizing some arguments from theorem 7 and a careful analysis
of the different group short exact sequences induced by the various free group actions.
The key step is that there exists a constant C such that if (Z/pa)b acts freely on M and
p > C then Aut(π1(M/(Z/pa)b)) does not depend on p. We note that it is not known
whether Aut(Inn π1(M)) and Out(Inn π1(M)) are Minkowski for every closed connected
aspherical manifold M. The same arguments used in theorem 10 show that if Γ is a lattice
in a connected Lie group G then Aut(Inn Γ) and Out(Inn Γ) are Minkowski. In particular,
theorem 21 can be used on closed aspherical locally homogeneous spaces H \ G/Γ with G
connected.

We also compute the free iterated discrete degree of symmetry for closed connected as-
pherical 3-manifolds. Let H/Γ denote a Heisenberg manifold (see example 1.3.26), let K
denote the Klein bottle and SK denote the total space of the unique non trivial principal
S1-bundle over K. Then:

Theorem 22. (Theorem 4.0.15) Let M be a 3-dimensional closed connected aspherical manifold.
Then:

1. disc-sym2(M) = (3, 0) if M ∼= T3.

2. disc-sym2(M) = (2, 0) if M ∼= K× S1 or M ∼= SK.

3. disc-sym2(M) = (1, 2) if M ∼= H/Γ.

4. disc-sym2(M) = (1, 0) if Zπ1(M) ∼= Z and Inn π1(M) is centreless.

5. disc-sym2(M) = (0, 0) if M does not belong to one of the previous 4 cases.

Finally, we obtain the following generalization of item (2) in theorem 13 for iterated group
actions.

Theorem 23. (Theorem 4.0.14) Let M be a closed connected orientable manifold admitting a non-
zero degree map f : M −→ N/Γ to a 2-step nilmanifold, which is the total space of a principal Ta-
bundle over Tb. Then disc-sym2(M) ≤ (a, b) and if disc-sym2(M) = (a, b) then H∗(M, Q) ∼=
H∗(N/Γ, Q).

The proof of theorem 23 is based on refining the ideas used in theorem 13 and [MiR24a,
Theorem 1.3], as well as in the generalization of some commutative algebra results proved
in [MiR24a, §6] to a non-commutative algebra setting.

It is natural to ask if we can remove the freeness hypothesis in the study of iterated group
actions. Assuming that each step of the iterated action is only effective is a hypothesis
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which is too weak to obtain meaningful results. Thus, we introduce the following hypoth-
esis:

Definition 24. Assume that we have an iterated action of G on a topological space X. An open
subset U ⊆ X is said to be G-invariant if there exists a connected open subset V ⊆ X/G such that
p−1(V) = U, where p : X −→ X/G is the orbit map.

An iterated action of G ↷ X is said to be locally simplifiable if for every x ∈ X there exists an open
G-invariant neighbourhood U of x such that the iterated action of G on U is simplifiable.

Theorem 25. (Theorem 4.0.17) Assume that we have a locally simplifiable iterated action of G on a
manifold M. Then M/G is an orbifold and p : M −→ M/G is an orbifold covering.

As a corollary of theorem 25, if M is simply connected then every locally simplifiable iter-
ated action is simplifiable. Using orbifolds, we can define an equivalence relation between
locally simplifiable iterated actions as in definition 15. We can define the iterated discrete
degree of symmetry for locally simplifiable actions.

Definition 26. Given a locally simplifiable iterated action A ↷ M of abelian groups, the rank of
the iterated action is

rankab(A↷ M) = min{
m

∑
i=1

rank A′i : {A′1, . . . , A′m}↷ M ∈ [A↷ M] and all A′i are abelian}.

We define µls
2 (M) as the set of all pairs ( f , b) ∈ (N)2 which satisfy:

1. There exist an increasing sequence of prime numbers {pi}, a sequence of natural numbers
{ai} and a collection of locally simplifiable iterated actions {(Z/pai

i )
f , (Z/pi)

b} ↷ M for
each i ∈N.

2. rankab({(Z/pai
i )

f , (Z/pi)
b}↷ M) = f + b for each i ∈N.

Consider the lexicographic order in N2 ((a, b) ≥ (c, d) if a > c, or a = c and b ≥ d). Define the
locally simplifiable iterated discrete degree of symmetry of M as

disc-symls
2 (M) = max{(0, 0) ∪ µls

2 (M)}.

Theorem 21, theorem 22 and theorem 23 also hold vacuously for locally simplifiable actions,
since all manifolds appearing in the theorems satisfy that if a finite p-group acts on them
for p a prime large enough, then the action is free. An example where disc-symls

2 (M) ̸=
disc-sym f ree

2 (M) is the following.

Proposition 27. We have disc-symls
2 (S

n) = ([n+1
2 ], 0) and disc-sym f ree

2 (Sn) = ( (−1)n+1+1
2 , 0),

where [x] denotes the integer part of x.

We finish the introduction with a discussion of open problems and possible research direc-
tions stemming from the results of this thesis.
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The first questions are related to the hypothesis of theorem 7 and proposition 9.

1. Does there exist a closed connected aspherical manifold M such Out(π1(M)) is not
Minkowski? Note that Out(π1(M)) not having the Minkowski property does not
imply that Homeo(M) is Jordan, since, in general, not all subgroups G ≤ Out(π1(M))

can be realized as an effective group action of G on M (this is the generalized Nielsen
realization problem for closed connected aspherical manifolds, see [BW08]). There
exist aspherical finite CW-complexes whose outer automorphism group does not have
the Minkowski property(see remark 2.1.5).

2. Does there exist a closed connected aspherical manifold M such that Inn π1(M) is
infinite periodic? An affirmative answer to this question would be highly surprising,
since π1(M) is finitely presented and torsion-free. An affirmative answer would also
provide a counterexample to the finitely presented version of the Burnside problem,
see [Sap07, pg. 3].

3. Given a closed connected aspherical manifold M, is disc-sym(M) = rankZπ1(M)?
This question is a revised conjecture of P.E.Conner and F.Raymond, which asked
whether tor-sym(M) = rankZπ1(M) for every closed connected aspherical mani-
fold (see [Con70]). This conjecture was disproved by S.Cappell, S.Weinberger and
M.Yan in [CWY13] by constructing closed connected aspherical manifolds M satis-
fying tor-sym(M) = 0 and rankZπ1(M) = 1. Nevertheless, these manifolds satisfy
disc-sym(M) ≥ 1 and they are not counterexamples to the proposed question.

The second set of questions is related to group actions on closed connected manifolds
which generalize the class of aspherical manifolds.

4. Recall that if M is a closed connected aspherical manifold, then any compact con-
nected Lie group acting effectively on M is a torus (see [LR87] for other examples of
classes of manifolds on which only tori can act). On the other hand, if M is a closed
connected manifold which admits actions of SO(3) or SU(2) then Homeo(M× T2) is
not Jordan (see [MiR17, Sza19, Sza23]). These two facts lead to the following question:
If M is a closed connected manifold such that the only compact connected Lie groups
acting effectively on M are tori and such that Homeo(M) is Jordan, is Homeo(M×T2)

Jordan?

Let us consider the smooth version of this question. If M is a closed connected smooth
manifold such that the only compact connected Lie groups acting effectively and
smoothly on M are tori and such that Diff(M) is Jordan, is Diff(M× T2) Jordan? This
question would have interesting consequences independently on the answer being
positive or negative. By a result of R.Schultz in [Sch72], there exists an exotic 10-
sphere Σ where the only connected compact Lie group that act effectively on Σ is
S1. If the answer of the question was positive, Diff(Σ × T2) would be Jordan. On



13

the other hand, since Σ is homeomorphic to S10, Homeo(Σ× T2) is not Jordan. This
would provide the first example of a smooth manifold whose diffeomorphism group
is Jordan and whose homeomorphism group is not Jordan. If the answer to the
question was negative, we would have found new examples of smooth manifolds with
non-Jordan diffeomorphism group which cannot be constructed using the techniques
in [MiR17, Sza19, Sza23].

Lastly, we present some questions and problems on finite iterated actions:

5. The iterated discrete degree of symmetry has been defined for free or locally simpli-
fiable iterated group actions of lenght 2. An interesting problem would be to extend
its definition to free or locally simplifiable iterated group actions of length c, where c
is an arbitrary natural number. More precisely, we define µc(M) as the set of tuples
( f1, . . . , fc) ∈ (N)c which satisfy:

1. There exist an increasing sequence of prime numbers {pi}, c − 1 sequences of
natural numbers {ai,j}i∈N and 1 ≤ j ≤ c − 1, and a collection of free iterated
actions {(Z/pai,1

i ) f1 , (Z/pai,2
i ) f2 , · · · , (Z/pi)

fc}↷ M for each i ∈N.

2. rankab({(Z/pi
ai,1) f1 , (Z/pai,2

i ) f2 , · · · , (Z/pi)
fc}↷ M) = ∑c

k=1 fk for each i ∈N.

We define the c-iterated degree of symmetry as

disc-symc(M) = max
{
(0,

c· · ·, 0) ∪ µc(M)
}

where the maximum is taken with respect to the lexicographic order. A first interest-
ing question is whether there exists a natural number c0 such that for all c > c0 we
have disc-symc(M) = ( f1, . . . , fc0 , 0, . . . , 0). We would like to generalize theorem 21
and theorem 23. Thus, we propose the following two questions:

5A. Let M be a closed connected n-dimensional aspherical manifold and let Ziπ1(M)

be the i-th term of the lower central series of π1(M). Suppose that the groups
Aut(π1(M)/Zc−1π1(M)) and Out(π1(M)/Zc−1π1(M)) are Minkowski and sup-
pose that disc-symc(M) = ( f1, . . . , fc) satisfies that ∑ fi = n. Is M a c-step nil-
manifold obtained as iterated T fi-bundles?

5B. Let M be a closed connected orientable manifold and f : M −→ N/Γ a non-
zero degree map to a c-step nilmanifold. If disc-symc(M) = disc-symc(N/Γ), is
H∗(M, Q) ∼= H∗(N/Γ, Q) ?

6. It is conjectured in [MiR24a] that any closed connected manifold M satisfies that
disc-sym(M) ≤ dim(M). Is it true that if M is a closed connected manifold with
disc-sym2(M) = (d1, d2) then d1 + d2 ≤ dim(M)? The answer is affirmative for the
closed connected manifolds appearing in theorem 21, theorem 22 and theorem 23.
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7. A possible application of iterated group actions could be the study of geometric struc-
tures which involve fibrations and fiber bundles. Sasakian manifolds are an odd di-
mensional analogue of Kähler manifolds. Given a closed connected regular Sasakian
manifold M, there exists an S1 action on M such that M/S1 is a compact Kähler
orbifold (M −→ M/S1 is known as the Boothby-Wang fibration), see [BG07] and
[BK20]. Recall that a Kähler nilmanifold is necessarily a torus (see [BG88]). Similarly,
a Sasakian nilmanifold is necessarily a Heisenberg manifold (a non-trivial principal
S1-bundle over T2n), by [Kas16].

If M is closed connected Kähler manifold such that disc-sym(M) = dim(M) then
M is biholomorphic to Tdim(M) (see [MiR24a]). Let M be a closed connected Sasaki
manifold such that disc-sym2(M) = (d1, d2) with d1 + d2 = dim(M), does there exist
a Sasaki automorphism between M and a Heisenberg manifold?

The thesis is divided in 4 chapters. The first chapter provides the necessary tools to prove
the results of this thesis and it contains five sections. The first section is a succinct intro-
duction to theory of finite transformations groups. We present general definitions, notation
and results that will be used freely in the rest of the thesis. Thereafter, we also provide more
background on the theory of large finite group actions on manifolds. In the second section
we present group theory results aimed to study outer automorphism groups. These re-
sults are crucial to prove theorem 10. The third section is devoted to aspherical manifolds,
focusing on the different types of aspherical locally homogeneous spaces. We also give
the results of the theory of finite group actions on closed aspherical manifolds that will be
used in extensively in this thesis. The fourth section contains a summary of the theory of
non-commutative ring theory, which play a major role in the prove of theorem 23. Finally,
the fifth section is an introduction to the theory of orbifolds, required to prove theorem 25.
We have two important remarks about this chapter. First, most of the results of this chap-
ter are given without proof and we refer to the literature for the detailed proofs of these
statements. We only provide the proof of a result if it contains ideas that will be relevant to
prove the original results of the thesis. Secondly, although most of the chapter is expository,
it also contains some new definitions and results in section 1.1.3 and section 1.5. We will
indicate clearly which results are new.

The second chapter is devote to the study of large finite group actions on closed aspher-
ical manifolds, proving theorem 7, proposition 8, proposition 9, theorem 10, theorem 11
and proposition 12. The results of this chapter appear on the preprint [DS24], which
has been accepted for publication in the journal International Mathematics Research Notices
(https://doi.org/10.1093/imrn/rnaf126).

In the third chapter we study large finite group actions on manifolds which admit a non-
zero degree map to a nilmanifold. In particular, we prove theorem 13.
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Finally, in chapter 4 we study develop a theory of finite iterated actions, staring with free
iterated group actions. We prove theorem 18, theorem 19, theorem 16, theorem 21, theo-
rem 22, theorem 23, theorem 25 and proposition 27 in this chapter.



Chapter 1

Preliminaries

The goal of this chapter is to provide the necessary material required to explain and to
prove the results of this thesis. The chapter is divided into six sections. The two largest
sections (section 1.1,section 1.3) are introductions to the theory of finite transformation
groups and the theory of aspherical manifolds, which are the main research topics of this
thesis. There are three shorter sections dedicated to group cohomology (section 1.2), non-
commutative ring theory (section 1.4) and orbifolds (section 1.5), which will become neces-
sary tools to prove some of the thesis contributions.

1.1 Group actions on manifolds

1.1.1 Definitions and generalities

The aim of this section is to introduce the basic notions and results of the theory of com-
pact transformation groups and to fix some notation for the rest of this thesis. The main
references used are [Bor16, Bre72, Kaw91, LR10].

Definition 1.1.1. A topological group G is a Hausdorff topological space together with a continuous
map G× G −→ G (denoted by (g, h) 7→ gh) which makes G into a group and such that the map
G −→ G, where g 7→ g−1, is continuous. If G is a smooth manifold and the product and inverse
maps are smooth we say that G is a Lie group.

We are ready to define the concept of continuous group action on a topological space. In
this thesis we will assume that all topological spaces are Hausdorff.

Definition 1.1.2. A continuous left group action of G on a topological space X is a continuous map
Φ : G× X −→ X such that:

(1) Φ(gh, x) = Φ(g, Φ(h, x)) for all g, h ∈ G and x ∈ X.

16
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(2) Φ(e, x) = x for all x ∈ X, where e is the identity element of G.

Similarly, a continuous right group action of G on a topological space X is a continuous map
Φ : X× G −→ X such that:

(1) Φ(x, gh) = Φ(Φ(x, g), h) for all g, h ∈ G and x ∈ X.

(2) Φ(x, e) = x for all x ∈ X, where e is the identity element of G.

A topological space X endowed with a group action of G is called a G-space.

Notation 1.1.3. To ease the notation, we denote Φ(g, x) by gx. Given g ∈ G, the map Φ(g, ·) :
X −→ X will be denoted by ϕg.

Note that given a left continuous action of G on X we can define a right action of G on X
given by xg = g−1x for all x ∈ X and g ∈ G. To ease notation, we will omit the adjective
left and right from the statements on this thesis, since it will be clear from the context if the
action is left or right.

Additionally, if X is a smooth manifold and G is a Lie group acting on X, then we say that
the action of G on X is smooth if Φ : G × X −→ X is a smooth map. All actions in this
thesis will be assumed to be continuous.

Remark 1.1.4. Note that a continuous group action of G on X induces a group morphism ϕ :
G −→ Homeo(X) such that ϕ(g) = ϕg.

If X has an extra geometric structure, we can impose to the action of G to preserve it. For example,
if X is a smooth manifold then G acts smoothly on X if ϕg is a diffeomorphism for all g ∈ G. In this
case we have a group morphism ϕ : G −→ Diff(X).

Example 1.1.5. (1) The group GL(n, R) acts on Rn by linear transformations. Given A ∈
GL(n, R) and x ∈ Rn then Φ(A, x) = Ax is the multiplication of a matrix and a vector.

(2) Let G be a Lie group. Then G acts on itself (seeing G as a manifold) by left multiplication.
More precisely, the action Φ : G× G −→ G satisfies Φ(g, h) = gh for all g, h ∈ G.

Definition 1.1.6. Let G be a group acting on spaces and X and Y. A continuous map f : X −→ Y
is said to be equivariant if it satisfies f (gx) = g f (x) for all g ∈ G and x ∈ X.

Definition 1.1.7. Let G be a group acting on X and let x ∈ X, then:

• The stabilizer of x (also called isotropy subgroup of x) is Gx = {g ∈ G : gx = x}. Note that
Gx is a closed subgroup of G.

• The orbit of x is O(x) = Gx = {gx : g ∈ G}. The space of all orbits with the quotient
topology will be denoted by X/G.

• The set of fixed points is XG = {x ∈ X : gx = x for all g ∈ G}.
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Note that we can define an equivalence relation on X such that x ∼ y if and only if Gx = Gy
(that is, there exists g ∈ G such that y = gx). Thus, X/G is a topological space with the
topology induced by the map π : X −→ X/G that sends each point to its orbit.

Some basic properties of group actions are the following:

Definition 1.1.8. Let G be a group acting on X. Then:

(1) The action is said to be effective if
⋂

x∈X Gx = {e} (or equivalently, ϕ : G −→ Homeo(X) is
injective).

(2) The action is almost free if Gx is finite for all x ∈ X, and it is free if Gx = {e} for all x ∈ X.

(3) The action is transitive if for all x, y ∈ X there exists g ∈ G such that y = gx (or equivalently,
Gx = X for a x ∈ X). If a space X admits a transitive action of a group we will say that X is
a homogeneous space.

The next proposition summarises some of the properties of compact group actions (see
[Bre72, I.3.1.]).

Proposition 1.1.9. Let G be a compact group acting on X, then:

(1) The map Φ : G× X −→ X is a closed map.

(2) The orbit space X/G is Hausdorff. The space X is compact if and only if X/G is compact.

(3) The quotient map π : X −→ X/G is closed and proper.

Remark 1.1.10. (Non-compact vs. compact group actions) We define an action R of T2 such that
t(e2πix, e2πiy) = (e2πi(x+t), e2πi(y+at)), with a ∈ R. The action behaves differently depending on
whether a is rational or irrational. If a = r/s is rational, then the action is not effective, since
the action of the integral multiples of s ∈ R induce the identity map on T2. In consequence, this
action induces an effective action of S1 = R/(sZ) on T2. On the other hand, if a is irrational the
action of R on T2 is free, but the orbit for any (x, y) ∈ T2 is dense in T2. In particular T2/R is
homeomorphic to the quotient of S1 by the group generated by a rotation of infinite order, which has
the trivial topology. In particular, T2/R is not Hausdorff.

If G is not compact we can impose the following conditions on the group action to avoid
the situation of the above example.

Definition 1.1.11. Let G be a Lie group acting on a space X. We say that the action is

1. locally proper if for each x ∈ X there exists a neighbourhood U of x such that {g ∈ G :
gU ∩ U ̸= ∅} has compact closure. In particular, Gx is compact and Gx is finite if G is
discrete.

2. proper if for each x ∈ X, there exists a neighbourhood U of x such that, for each y ∈ X,
there exists a neighbourhood V of y such that {g ∈ G : gV ∩U ̸= ∅} has compact closure.
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Equivalently, the action of G on X is proper if the map G×X −→ X×X such that (g, x) 7→
(gx, x) is proper.

3. properly discontinuous if every x ∈ X has a neighbourhood U such that {g ∈ G : gU ∩U ̸=
∅} only contains the identity element. Notice that a properly discontinuous action is free and
the projection X −→ X/G is a covering map.

For example, if G is a Lie group and Γ is a discrete subgroup of G, then the action of Γ on
G by multiplication is properly discontinuous. All non-compact group actions appearing
in this thesis will be proper.

Given a space X with a group action of G, we want to understand and classify the different
orbits that this action can produce. Given x ∈ X, we define the evaluation map at x to be
the continuous map evx : G −→ X such that evx(g) = gx. Note that we have a bijective
map αx : G/Gx −→ Gx such that αx(gGx) = gx. Moreover if G is compact then αx

is a continuous map of a compact to a Hausdorff space which implies that αx is closed.
Therefore:

Lemma 1.1.12. [Bre72, I.4.1] If G is compact, then αx is a homeomorphism.

Thus every orbit is homeomorphic to a coset space G/H where H is a closed subgroup of
G. In consequence, we need to study coset spaces G/H.

Lemma 1.1.13. [Bre72, I.4.2] Let G be a compact group and H and K closed subgroups. Then:

(1) There exists an equivariant map G/H −→ G/K if and only if there exists a ∈ G such that
aHa−1 ⊆ K.

(2) Let H and K be closed subgroups of G and assume that there exists a ∈ G such that aHa−1 ⊆
K, then the map RK,H

a : G/H −→ G/K such that RK,H
a (gH) = ga−1K is well-defined and

equivariant. Any equivariant map G/H −→ G/K is of this form.

(3) aHa−1 ⊆ H implies aHa−1 = H

Corollary 1.1.14. If there exists equivariant maps G/H −→ G/K and G/K −→ G/H then H
and K are conjugate and these maps are homeomorphisms.

Let G be a compact Lie group and let G denote the family of all homogeneous spaces of G.
Given X, Y ∈ G we define an equivalence relation X ∼ Y ∈ G if and only if there exists a G-
equivariant homeomorphism f : X −→ Y. The equivalence classes under this relation are
called orbits types and denoted by type(X). By lemma 1.1.12, for any X ∈ G there always
exists a closed subgroup H ≤ G and a G-equivariant homeomorphism X ∼= G/H. Thus, we
can always choose a coset space G/H as a representative of each orbit type. Moreover, we
can define a partial order relation in G/ ∼ given by type(X) ≥ type(Y) if and only if there
exists a G-equivariant map X −→ Y (note that it is a well-defined partial order because of
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lemma 1.1.13). Note that we have a minimum and maximum elements corresponding to
type(G/G) and type(G) respectively.

Similarly, given a homogeneous space X equivalent to G/H, we define the isotropy type of
X to be the conjugacy class of H in G, which we will denote by (H). In the set of conjugacy
classes of closed subgroups of G there is a partial order given by (H) ≤ (K) if and only
if H is conjugate to a subgroup of K. Then, the lemma 1.1.13 implies that we have an
anti-isomorphism of partially ordered sets between G/ ∼ and the set of conjugacy classes
of closed subgroups of G given by type(G/H) 7→ (H).

Given a manifold M, the union of all orbits with isotropy type (H) will be denoted by
M(H). The next theorem is known as the principal orbit theorem.

Theorem 1.1.15. Let G be a compact Lie group acting on a connected manifold M. There exists
a maximal orbit type (also known as principal orbit type) G/H on M. The set M(H) is open and
dense in M and the image of M(H) by the orbit map is connected in M/G.

The proof can be found in [Kaw91, Theorem 4.27] or [Bre72, IV.3.1].

Theorem 1.1.16. Any action of a compact Lie group on a compact connected manifold has finitely
many orbit types.

See [Kaw91, Theorem 4.23] for a proof of the theorem.

Now, we briefly explain the construction of associated bundles to a principal G-bundle. Let
X be a G-space and p : E −→ B a principal G-bundle. The associated bundle construction
is a way to construct fiber bundles with fiber X by replacing X to each fiber of a principal
G-bundle using the group action of G on X. More precisely, consider the diagonal G-action
on E× X such that (a, x)g = (ag, g−1x) for all g ∈ G and (a, x) ∈ E× X. Note that this
action is free. The quotient space (E × X)/G is denoted by E ×G X and its elements by
[a, x]. We have a continuous map q : E×G F −→ B defined by q[e, f ] = p(e), which is a
fiber bundle over B with fiber X.

Definition 1.1.17. Let G be a compact group and X be a G-space. A slice at x is a subspace S ⊆ X
containing x such that Gx(S) = S, and the map τ : G×Gx S −→ X given by [g, s] 7→ gs is a tube
about Gx (that is, τ is a G-equivariant homeomorphism onto an open neighbourhood of G(x)).

The slice theorem asserts that, assuming certain conditions on the topological space and the
group action, there exists a slice for every x ∈ X. The theorem was first proved by Gleason
in the case of free group actions. The proof of the general statement has contributions from
Montgomery, Zippin, Koszul, Yang, Mostow and Palais.

Theorem 1.1.18. Let G be a compact Lie group acting on a completely regular topological space X.
Then there exists a slice for every x ∈ X.

Recall that a space X is completely regular if for any closed subset C ⊆ X and any point
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x ∈ X \ C there exists a continuous function f : X −→ [0, 1] satisfying that f (x) = 0 and
f (C) = 1. We refer to [Bre72, §2.5] for a proof of the theorem.

Remark 1.1.19. If G is finite then X being Hausdorff is enough for the existence of a slice for every
x ∈ X.

The slice theorem has far-reaching consequences. As a first corollary, we have the following
result:

Theorem 1.1.20. Suppose that X is a completely regular space with an action of a compact Lie
group G and that all orbits have type G/H. Then the orbit map π : X −→ X/G is a fiber bundle
with fiber G/H and structural group N(H)/H acting by right translations on G/H.

The proof can be found in [Bre72, Theorem 5.8]. In particular, if the action of G on X is
free then π : X −→ X/G is a principal G-bundle. If G is a compact group acting freely
on a manifold M then the orbit space M/G is also a manifold of dimension dim M −
dim G. We also note that the slice theorem is a key ingredient to prove theorem 1.1.15 and
theorem 1.1.16.

We end this section with some comments on the relation between group actions and cover-
ings. Let X be a topological space admitting a covering space theory (for example, X being
connected, locally arcwise connected and semilocally 1-connected) and let π : X̃ −→ X
denote the universal covering of X. Recall that π1(X) acts freely on X̃. If we have a finite
group G acting effectively on X then we can lift (non uniquely, in general) each homeomor-
phism g : X −→ X to a homeomorphism g̃ : X̃ −→ X̃ such that π ◦ g̃ = g ◦ π. Then;

Lemma 1.1.21. [Bre72, 9.3 Theorem] Let X and G be as above. There exists a short exact sequence

1 −→ π1(X) −→ G̃ −→ G −→ 1

where G̃ is the group of all lifts of elements of G. The group G̃ acts effectively on X̃. If the action of
G on X is free then the action of G̃ on X̃ is free and π1(X/G) = G̃.

If the action of G is not free then the description of π1(X/G) is more difficult, as the next
result shows:

Theorem 1.1.22. [Arm82, Arm68] Let X and G be as above. Then π1(X/G) = G̃/K, where K is
the normal subgroup of G̃ generated by all elements g̃ ∈ G̃ such that g̃ ∈ G̃x̃ for some x̃ ∈ X̃.

Corollary 1.1.23. With X and G as in theorem 1.1.22, assume also that X is simply connected and
that XG is non-empty. Then X/G is simply connected.

1.1.2 Transformation groups and cohomology

The aim of this section is to recall some results of the theory of finite transformation groups
whose proofs require the use of cohomology. We review the Borel construction and equiv-



22 1.1 Group actions on manifolds

ariant cohomology. As an application, we provide a proof sketch of a theorem of L.N.Mann
and J.C.Su (see [MS63]) and a proof of a result of P.A.Smith (originally proved in [Smi41]
using different techniques). Our main references are [Bre72, AP93, Hsi12, LR10].

Theorem 1.1.24. [Mil56a, Mil56b] For any Lie group G there exists a contractible space EG where
G acts freely.

Remark 1.1.25. 1. EG is unique up to G-homotopy.

2. The quotient EG/G = BG is called the classifying space of G. This name is a consequence of
the fact that there is a bijection between the set of principal G-bundles over a finite CW-complex
X, PrinG(X), and the set of homotopy classes of maps [X, BG] (see [Mil56a, Mil56b]).

3. The principal bundle EG −→ BG is called the universal principal G-bundle.

Before sketching the main ideas of the proof (for a detailed discussion, we also refer to
[AP93, §1.1]), we will focus on an important example:

Example 1.1.26. Let p be a positive integer. We will construct EG when G = Z/p. Firstly, we
consider the sphere

S2n−1 = {(z1, . . . , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 = 1} ⊆ Cn.

There is a group action of Z/p on S2n−1 given by a(z1, . . . , zn) = (e
2πia

p z1, . . . , e
2πia

p zn) for any
a ∈ Z/p and (z1, . . . , zn) ∈ Cn. It is straightforward to check that this action is free. Moreover,
form m ≤ n, the inclusion maps in,m : S2m−1 −→ S2n−1, im,n(z1, . . . , zn) = (z1, . . . , zn, 0, . . . , 0)
are Z/p-equivariant.

We have obtained a family of groups actions of Z/p on spaces that are not contractible. We will
use them to construct a Z/p-action on a contractible space. Note that we have a chain of Z/p-
equivariant inclusions S1 ⊆ S3 ⊆ S5 ⊆ · · · . Then we can define the space

S∞ =
⋃

n∈N

S2n−1

with this topology: U ⊆ S∞ is open if and only if S2n−1 ∩U is open in S2n−1 for all n ∈ N. A
point in S∞ is a sequence (z1, z2, . . . ) with zi ∈ C, only finitely many of them are non-zero and
∑ |zi|2 = 1. The free group actions of Z/p on S2n−1 for n ≥ 1 induce a free group action of Z/p
on S∞. In addition, we have the well-known result:

Lemma 1.1.27. S∞ is contractible.

Proof. Let 1 : S∞ −→ S∞ be the constant map 1(z1, z2, . . . ) = (1, 0, . . . ) and let σ : S∞ −→
S∞ be the shift map σ(z1, z2, . . . ) = (0, z1, z2, . . . ). Then σ is continuous and the map
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H : S∞ × I −→ S∞ defined by

H(z, t) =
(1− t)z + t1(z) + (t− t2)σ(z)
|(1− t)z + t1(z) + (t− t2)σ(z)|

is a homotopy from the identity to 1. Hence, S∞ is contractible.

In consequence, EZ/p ≃ S∞. The orbit spaces S2n−1/(Z/p) ∼= Ln
p are known as lens spaces. The

space BZ/p is usually denoted by L∞
p .

Note that the action of Z/p on S2n−1 is the restriction of the free action of S1 ⊆ C∗ on S2n−1. We
can use the same construction to show that ES1 ≃ S∞ and BS1 ∼= CP∞.

Recall that given two topological spaces X and Y, we define the join X ∗ Y to be X ×
Y × I/ ∼, with the equivalence relation (x, y, 0) ∼ (x, y′, 0) and (x, y, 1) ∼ (x′, y, 1) for all
x, x′ ∈ X and y, y′ ∈ Y. Moreover, if X and Y are G-spaces then X ∗Y is is a G-space where
the action satisfies g[x, y, t] = [gx, gy, t] for all [x, y, t] ∈ X ∗Y and g ∈ G.

We are now ready to explain the Milnor construction of EG for an arbitrary Lie group
G. Firstly, note that G (as a group) acts freely on itself (as a topological space) by right
multiplication. Explicitly, given g, h ∈ G we have g(h) = gh. We set EG(0) = G and
EG(n) = EG(n− 1) ∗ G fro n ≥ 1. The free action of G on itself induces a free action of G
on each EG(n). On the other hand, EG(n) is n− 1-connected for n ≥ 1.

We have a sequence of G-equivariant inclusions EG(0) ⊆ EG(1) ⊆ EG(2) ⊆ · · · . There-
fore, we can define EG to be the colimit of the chain of inclusions. The space EG can be
constructed as the infinite join G ∗ G ∗ G ∗ · · · . This space is contractible and has a free
action of G.

Example 1.1.28. As an example, we construct EG for G = Z/2 using the Milnor construction.
Since Z/2 ∼= S0, we can use that Sm ∗ Sn ∼= Sm+n+1 to conclude that EZ/2(n) = Sn for all
n ≥ 0. It can also be shown that the action of Z/2 induced on EZ/2(n) is the antipodal action, In
consequence EZ/2(n)/(Z/2) ∼= RPn. Therefore EZ/2 ∼= S∞ and BZ/2 ∼= RP∞.

Z/2
Z/2

Z/2 ∗Z/2 ∼= S1
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Remark 1.1.29. If G1 and G2 are two Lie groups, then E(G1 × G2) ≃ EG1 × EG2 and B(G1 ×
G2) ∼= BG1 × BG2.

Definition 1.1.30. Let G be a Lie group and X a G-space, the Borel construction of X is the space
XG = EG×G X. The equivariant cohomology of X is

H∗G(X) = H∗(XG).

Remark 1.1.31. 1. By using the universal principal G-bundle and the associated bundle con-
struction, we can find a fibration

X −→ XG −→ BG.

This fibration is known as the Borel fibration.

2. If the action of G on X is free, we can use the principal G-bundle π : X −→ X/G to construct
a fibration

EG −→ XG −→ X/G.

Since EG is contractible, H∗G(X) ∼= H∗(X/G).

An elementary p-group (or p-torus) is a group of the form (Z/p)r. The Borel construction
can be used to prove the next theorem of L.N. Mann and J.C. Su.

Theorem 1.1.32. [MS63] Let M be a closed manifold of dimension n. For a prime p, we define
bp(M) = ∑n

i=0 dim Hi(M, Z/p). There exists a number Cp only depending on n and bp(M) such
that if (Z/p)r acts effectively on M then r ≤ Cp.

We will only give a sketch of the proof of this theorem with the extra assumption that the
action is free.

Proof. Assume that we have a free action of G = (Z/p)r on M. We consider the Serre
spectral sequence of the Borel fibration M −→ MG −→ BG. Thus, we have a convergent
spectral sequence with second page

Es,t
2 = Hs(BG,Ht(M, Z/p)) =⇒ Hs+t

G (M),

where we use the calligraphic letter H to denote the cohomology with local coefficients.
Since Hi(M, Z/p) = 0 for all i > n, the spectral sequence collapses at the page n + 1.
Hence, E∞ = En+1. Moreover, since the action of G on M is free, we have Hi

G(M) =

Hi(M/G) = 0 for all i > n. This fact together with some computations on the spectral
sequence implies that

dim Es+1,0
2 ≤

n

∑
j=0

dim Es−j,j
2 .
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On the other hand

dim Es,t
2 ≤

(
s− r− 1

r− 1

)
dim Ht(M, Z/p),

where the first factor is precisely dim Hs(BG, Z/p), which can be computed using the
Künneth formula. Moreover

dim En+1,0
2 =

(
n− r
r− 1

)
.

With these two inequalities and some straightforward computations we reach the conclu-
sion that

r ≤

√
n2 + 4n(n + 1)bp(M)− n

2
= Cp.

Remark 1.1.33. 1. The condition of M being a manifold is necessary. For any r > 0 we can
construct a contractible 2-complex Xr which admits an action of (Z/p)r as shown in the
image below. Each component of (Z/p)r rotates one of the disks and fixes the line through the
origin.

X3

(Z/p)3

2. We cannot bound r with a constant only depending on the dimension. For any r > 0, it is
possible to construct a surface Sr which admit an action of (Z/p)2r.

3. The compactness of M is essential. For example, we have the following theorem due to V.
Popov:

Theorem 1.1.34. [Pop15, Theorem 1] For each n ≥ 4, there exists a simply connected ori-
entable non-compact smooth n-dimensional manifold M such that every finite group acts
smoothly and freely on M.

4. We can ask how sharp the bound is. For example, if M = S1 (so n = 1 and bp(S1) = 2) then
Cp is approximately 1, 47. Therefore, if (Z/p)r acts freely on S1 then r = 1. However, it is
possible to find much better bounds if we focus on some specific manifold:

Theorem 1.1.35. [Smi60] Assume that (Z/p)r acts effectively on Sn. If p > 2 then r ≤ n+1
2 .

If p = 2 then r ≤ n + 1.
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Note that this bound is for effective group actions.

Another result that can be proved using the Serre spectral sequence on the Borel fibration
is the following:

Lemma 1.1.36. Let M be a closed connected manifold and p a prime number. Assume that we have
an effective action of a finite p-group G on M. Then

dim Hk(M/G, Z/p) ≤ ∑
i+j=k

dim Hi(BG, Z/p)dim Hj(M, Z/p).

We refer to [SC19, Lemma 1.46] for a detailed proof of the lemma. The next result, which
is also proved using the Borel construction, will be crucial to study group actions on as-
pherical manifolds. Recall that given a commutative ring A, a space X is A-acyclic if the
reduced cohomology H̃i(X, A) = 0 for all i.

Theorem 1.1.37. [LR10, Lemma 3.1.6] Let X be a connected finite CW-complex. Then:

1. Assume that X is Q-acyclic and that S1 acts effectively on X. Then F = XS1
is not empty

and is also Q-acyclic.

2. Let p be a prime. Assume that X is Z/p-acyclic and that a finite p-group G acts effectively
on X. Then F = XG is not empty and is also Z/p-acyclic.

Proof. We start proving the first part. From the Borel construction we obtain a diagram

X S∞ × X S∞ = ES1

X/S1 XS1 CP∞ = BS1

π2

π1

π2

π1

Since π1 is a fibration with a Q-acyclic fiber X, the morphism π∗1 : H∗(CP∞, Q) −→
H∗(XS1 , Q) is an isomorphism. Suppose F = ∅. Given x ∈ S1 and its orbit x ∈ X/S1,
we have π−1

2 (x) = S∞/S1
x = BS1

x. Since S1
x is either trivial or finite cyclic, we can conclude

that BS1
x is Q-acyclic. Consequently, π∗2 : H∗(X/S1, Q) −→ H∗(XS1 , Q) is an isomorphism

by Vietoris mapping theorem. Thus, H∗(CP∞, Q) ∼= H∗(X/S1, Q), which is not possible
since H∗(X/S1, Q) is finite dimensional and H∗(CP∞, Q) ∼= Q[a] with deg(a) = 2. There-
fore, F ̸= ∅.

For x ∈ (X/S1) \ F, π−1
2 (x) is still Q-acyclic. In consequence, π∗2 : H∗(X/S1, F, Q) −→

H∗(XS1 , FS1 , Q) is an isomorphism. There exists a long exact sequence

· · · Hq(XS1 , FS1 , Q) Hq(XS1 , Q) Hq(FS1 , Q) · · ·i∗
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If q > dim(X/S1) then i∗ : Hq(XS1 , Q) −→ Hq(FS1 , Q) becomes an isomorphism. Using
that FS1 = F×CP∞ and that π∗1 is an isomorphism, we obtain that

Hq(CP∞, Q) = Hq(CP∞ × F, Q) ∼=
⊕

i+j=q

Hi(F, Q)⊗ H j(CP∞, Q)

for q > dim(X/S1). This implies that F must be Q-acyclic.

For the second part, analogous arguments can be used replacing S1 by Z/p and Q by Z/p,
obtaining the second result for G = Z/p. For the general case of a finite p-group G, we
use the fact that G is solvable and contains a nontrivial normal subgroup H. Consequently,
using that XG = (XH)G/H, we can reduce this case to the case G = Z/p by induction.

Theorem 1.1.37 as well as the next two results can be proved using Smith theory. Their
proofs can be found in [Kaw91, §5.5] or [Bre72, Chapter 3, §10].

Theorem 1.1.38. Let p be a prime number, X a CW-complex and G a p-group acting effectively
on X. Assume that H∗(X, Z/p) ∼= H∗(Sn, Z/p). Then H∗(XG, Z/p) ∼= H∗(Sm, Z/p) with
−1 ≤ m ≤ n (m = −1 if XG = ∅). If p is odd then n−m is even.

Theorem 1.1.39. Let p be a prime and let X be a CW-complex with a free action of Z/p. Then
dim Hn(X/(Z/p), Z/p) ≤ ∑i≥n Hi(X, Z/p).

1.1.3 Actions of large finite groups on manifolds

In this section we review some questions and results presented in the introduction.

Jordan property

Definition 1.1.40. A group G is said to be Jordan if there exists a constant C such that every finite
subgroup G ≤ G has an abelian subgroup A ≤ G such that [G : A] ≤ C.

The name of this property is motivated by the following classical theorem of Camille Jordan
(see [Rag12, Theorem 8.29] and [Bre23] for an overview of the original proof).

Theorem 1.1.41. The group GL(n, R) is Jordan for all n.

The next theorem summarises the known results about the Jordan property for homeomor-
phism groups of manifolds.

Theorem 1.1.42. [MiR24b] Let M be a manifold. Assume that it satisfies one of the following
conditions:

1. M is compact and dim M ≤ 3.

2. M has dimension n and H∗(M, Z) ∼= H∗(Sn, Z).
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3. M is connected, H∗(M, Z) is finitely generated and χ(M) ̸= 0.

4. M is compact, connected and orientable and it admits a non-zero degree map M −→ Tn.

5. M is a closed flat manifold.

Then Homeo(M) is Jordan.

On the other hand, if M admits an effective action of SO(3) or SU(2) then Homeo(M× T2) is not
Jordan.

The method to show that Homeo(M× T2) is not Jordan when SO(3) or SU(2) acts effec-
tively on M can be generalized as follows:

Theorem 1.1.43. [CPS22, Theorem 2.4] Let M be a closed connected manifold and G a connected
compact Lie group with finite center. For any principal G-bundle E −→ T2, the homeomorphism
group of the total space of the associated bundle Homeo(E×G M) is not Jordan.

However, Csikós, Pyber and Szabó proved that the homeomorphism group of closed con-
nected manifolds have that following property:

Theorem 1.1.44. [CPS22, Theorem 1.4] Let M be a closed connected manifold. There exists a
constant C such that every finite group G acting effectively on M has a nilpotent subgroup H ≤ G
such that [G : H] ≤ C.

We note that we can remove the hypothesis of being closed and connected by H∗(M, Z)

being finitely generated. It is interesting to study the class of nilpotency of the subgroup
H. For example:

Theorem 1.1.45. [MiRSC22, Theorem 1.1] Let M be a closed connected smooth 4-manifold. There
exists a constant C such that every finite group G acting effectively and smoothly on M has a
nilpotent subgroup H ≤ G of at most nilpotency class 2 such that [G : H] ≤ C.

Discrete degree of symmetry

Recall the definition of the discrete degree the introduction:

Definition 1.1.46. Given a manifold M let

µ(M) = {r ∈N : M admits an effective action of (Z/a)r for arbitrarily large a}.

More explicitly, r ∈ µ(M) if there exists an increasing sequence of natural number {ai} and effective
group actions of (Z/ai)

r on M for each i.

The discrete degree of symmetry of a manifold M is

disc-sym(M) = max({0} ∪ µ(M)).
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By theorem 1.1.32, we know that if M is a closed connected manifold then disc-sym(M)

is a well-defined natural number, but finding the exact value of disc-sym(M) is probably
difficult in most cases.

The definition of disc-sym(M) is related to the definition of the toral degree of symmetry
tor-sym(M) (see [Hsi12, Chapter VII. §2]):

Definition 1.1.47. Let M be a manifold. The toral degree of symmetry of M is

tor-sym(M) = max{r : Tr acts effectively on M}.

It is clear that tor-sym(M) ≤ disc-sym(M). We can bound the toral degree of symmetry of
a manifold depending on its dimension.

Theorem 1.1.48. Assume that M is a connected manifold of dimension n. Then tor-sym(M) ≤ n
and tor-sym(M) = n if and only if M is homeomorphic to Tn.

Proof. Assume that M admits an effective action of Tr for some r and let H be the isotropy
type of the principal orbits of the action. Thus, all points in M(H) have an isotropy subgroup
conjugated to H. Since Tr is abelian, all points in M(H) have H as isotropy subgroup.
Since M(H) is open and dense and H acts trivially on M(H), the action of H on M is also
trivial. Because the action of Tr on M is effective we can conclude that H is the trivial
subgroup. Therefore, we can choose x ∈ M with trivial isotropy group. The evaluation
map f : Tr −→ M such that f (t) = tx is continuous and injective, which implies that
r ≤ dim M = n. If r = dim M, then the map f (Tr) is open. Since f (Tr) is also closed and
M is connected, we have M = f (Tr). Since f is continuous, injective and open, we can
conclude that f is a homeomorphism between M and Tr.

Let n = dim(M). It is not known whether disc-sym(M) ≤ n, and whether disc-sym(M) =

n if and only if M ∼= Tn. However, we have the following bound:

Theorem 1.1.49. [MiR24a, Theorem 1.2] For any closed connected n-dimensional manifold M we
have disc-sym(M) ≤ 3

2 n.

If we put some restriction on the manifold we can obtain better bounds. Recall that [x]
denotes the integer part of a number x ∈ R.

Theorem 1.1.50. [MiR24b, Theorem 4.3] Let M be a closed connected n-dimensional manifold. If:

1. H∗(M, Z) ∼= H∗(Sn, Z) then disc-sym(M) ≤ [n+1
2 ]. In particular, disc-sym(Sn) =

[n+1
2 ].

2. χ(M) ̸= 0 then disc-sym(M) ≤ [n
2 ].

For the next application of the discrete degree of symmetry we need to introduce the
following notation:
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Definition 1.1.51. A group G is said to be Minkowski if there exists a constant C such that every
finite subgroup G ≤ G satisfies |G| ≤ C.

Remark 1.1.52. This name is motivated by a classical result of Hermann Minkowski which states
that GL(n, Z) is Minkowski (see [Ser10, §1]). The Minkowski property was studied in [Pop18,
Gol23] under the name of bounded finite subgroups property.

If M is a closed manifold and Homeo(M) is Minkowski then M is said to be almost-
asymmetric. In the particular case where M does not admit any effective finite group
action we say that M is asymmetric. This case has been extensively studied (see [Pup07]
and references therein).

Lemma 1.1.53. [MiR24b, Lemma 8.1] Given a closed connected manifold M, disc-sym(M) = 0 if
and only if M is almost asymmetric.

The relation between the Minkowski property of groups and short exact sequences is ex-
plained in the next elementary group-theoretic lemma, which will be used later.

Lemma 1.1.54. Let 1 K H Q 1
p

be a short exact sequence of groups.
If K and Q are Minkowski, then H is Minkowski. If K is finite and H is Minkowski then Q is
Minkowski.

Proof. Let us prove the first part of the statement. Let G be a finite subgroup of H. Then
we have a short exact sequence 1 −→ G1 −→ G −→ G3 −→ 1, where G3 is the image of G
by the map H −→ Q and G1 = G ∩ K. If C1 and C3 are the Minkowski constants of K and
Q respectively then |G| ≤ |G1||G3| ≤ C1C3. Therefore H is Minkowski.

For the second part assume that G is a finite subgroup of Q, then p−1(G) is a finite subgroup
of H of order |K||G|. Since H is Minkowski, |K||G| ≤ C2. Therefore |G| ≤ C2/|K|. Thus Q
is Minkowski.

Proposition 1.1.55. [Gol23, Proposition 2.8] Let 1 K H Q 1
p

be a
short exact sequence of groups. Suppose that K is Jordan and Q is Minkowski. Then H is Jordan.

We finish this section by introducing other invariants which are similar to disc-sym(M)

and tor-sym(M). Recall that an action of a Lie group G on a manifold M is said to be
almost-free if Gx is finite for all x ∈ M.

Definition 1.1.56. Let M be a manifold. We define the following invariants:

1. The rank of M is

rank(M) = max{{0} ∪ {r : Tr acts almost-freely on M}}.

2. Given a prime p, the p-rank of M is

rankp(M) = max{{0} ∪ {r : (Z/p)r acts freely on M}}.
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3. Let

µP(M) = {r : M admits free actions of (Z/p)r for arbitrarily high prime p}.

The stable rank of a space M is

stable-rank(M) = max{{0} ∪ µP(M)}.

It is clear that rank(M) ≤ tor-sym(M) and that rank(M) ≤ stable-rank(M) ≤ disc-sym(M).
There are two important conjectures regarding rank(M) and rankp(M).

Conjecture 1.1.57. Let M be a closed connected manifold. Then:

1. (Toral rank conjecture) dim H∗(M, Q) ≥ 2rank(M).

2. (Carlsson conjecture) For all prime p, dim H∗(M, Z/p) ≥ 2rankp(M).

The toral rank conjecture (proposed by S. Halperin in [Hal85]) and the Carlsson conjecture
(see [Car86]) have been studied extensively (see [FOT08, §7.3]). We can also ask if given
a closed connected manifold M there exists a constant C such that dim H∗(M, Z/p) ≥
2rankp(M) for all prime p > C. We will call this weaker version of the Carlsson conjecture
the stable Carlsson conjecture. For example:

Theorem 1.1.58. [Han09] Let M = Sn1 × · · · × Sno × Sm1 × · · · × Sme , where all ni are odd and
all mi are odd. Then rankp(M) = o for all p > 3 dim(M). In particular, stable-rank(M) = o
and the stable Carlsson conjecture is true for M.

Small and few stabilizers

We finish this section by introducing some problems about the stabilizers of finite group
actions on manifolds.

Definition 1.1.59. Let G be a finite group acting effectively on a manifold M. The set of all stabilizer
subgroups is

Stab(G, M) = {Gx : x ∈ M}.

We say that M has few stabilizers if there exists a constant C such that every a finite group G acting
effectively on M has a subgroup H ≤ G such that [G : H] ≤ C and | Stab(H, M)| ≤ C.

Note that it is not possible to bound | Stab(G, M)| only depending on M. For example,
the natural dihedral group Dn action on S1 resulting from the inclusion Dn ↪→ O(2, R)

is effective and satisfies | Stab(Dn, S1)| ≥ n/2. It is not known if all closed connected
manifolds have few stabilizers. However, if we only consider actions of p-groups then the
analogous property is known to be true:
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Theorem 1.1.60. [CMiRPS21, Theorem 1.3] There exists a constant C such that any finite p-
group G acting effectively on a closed manifold M has a subgroup H such that [G : H] ≤ C and
| Stab(H, M)| ≤ C.

Note that C does not depend on the prime p. This result was crucial to prove theorem 1.1.44.
An application of theorem 1.1.60 is:

Corollary 1.1.61. [CMiRPS21, Corollary 1.5] Let M be a manifold such that H∗(M, Z) is finitely
generated. There exists a constant C depending only on dim(M) and H∗(M, Z) such that every
finite p-group acting effectively on M has a characteristic subgroup H containing the center such
that [G : H] ≤ C and dim H∗(M′H, Z/p) ≤ C, where M′H = {x ∈ M : Hx = {e}}.

Given a finite group acting effectively on a closed connected manifold, we are also inter-
ested in how large the stabilizers of this action can be. Thus, we introduce the following
two definitions:

Definition 1.1.62. Let M be a closed connected manifold. Then:

1. We say that M has the small stabilizers property if there exist a constant C such that if G is a
finite group acting effectively on M then |Gx| ≤ C for all x ∈ M.

2. We say that M has the almost fixed point property if there exists a constant C such that if G
is a finite group acting effectively on M then there exist x ∈ M such that [G : Gx] ≤ C.

The first property is new and it has not been studied yet. We will show that most manifolds
studied in this thesis have this property. The second property was studied in [MiR24c].

Theorem 1.1.63. [MiR24c, Theorem 1.5] Let M be a closed connected manifold with χ(M) ̸= 0.
Then M has the almost fixed point property.

The almost-fixed point property and the small stabilizers property are dual in the following
sense:

Lemma 1.1.64. A closed manifold M with the small stabilizers and the almost fixed point property
is almost asymmetric.

Proof. Let C be the constant of the almost fixed point property and D the constant of the
small stabilizers property. Assume that we have a finite group G acting effectively on M.
Then there exists x ∈ M such that [G : Gx] ≤ C. In addition, |Gx| ≤ D. Consequently,
|G| ≤ C · D. Thus, M is almost asymmetric.

Another relation between these properties is the following:

Lemma 1.1.65. Let M be a closed connected manifold with the small stabilizers property and such
that Homeo(M) is Jordan. Then M has the few stabilizers property.
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Proof. Let C be the constant of the Jordan property and let C′ be the constant of the small
stabilizers property. Let G be a finite group acting effectively on M. Since Homeo(M) is
Jordan there exists an abelian subgroup H such that [G : H] ≤ C. We will see that we can
bound Stab(H, M) by a constant C′′ for any finite abelian group acting effectively on M
and therefore the constant of the few stabilizer property will be D = max{C, C′′}. Recall
that, by theorem 1.1.32, there exists a constant r such that any finite abelian group H which
acts effectively on M satisfies rank(H) ≤ r.

We have an inclusion Stab(H, M) ⊆ {L ≤ H : |L| ≤ C′}, thus we will bound the number
of subgroups of H of order at most C′ instead of the number of stabilizers of the action of
H. Since H is abelian, we have a decomposition H = H1 × · · · × Hl, where each Hi is a
pi-Sylow subgroup, thus is of the form Hi = Z/pai,1

i × · · · ×Z/p
ai,ri
i , where ai,1 ≤ · · · ≤ ai,ri

and ri ≤ r for all i. Then we have a bijective correspondence

{L ≤ H} ←→
l

∏
i=1
{Li ≤ Hi}

which induces an inclusion

{L ≤ H : |L| ≤ C′} ⊆
l

∏
i=1
{Li ≤ Hi : |Li| ≤ C′}.

For a prime p we define e(p) = max{e ∈ N : pe ≤ C′} and we denote the set of all primes
such that e(p) ̸= 0 by P . Note that P is precisely the set of primes which are equal or
smaller than C′ and therefore |P| ≤ C′. Moreover,

{Li ≤ Hi : |Li| ≤ C′} ⊆ Si = {Li ≤ Hi : all elements of L have order at most e(pi)}

for each i. Note that if pi /∈ P then |Si| = 1. Therefore

{L ≤ H : |L| ≤ C′} ⊆
l

∏
i=1
|Si|.

For each Hi we choose an inclusion Hi −→ (Z/p
ai,ri
i )r, which induce an inclusion

Si ⊆ {Li ≤ (Z/p
ai,ri
i )r : all elements of L have order at most e(pi)}.

Finally, we use that if L is a subgroup of (Z/p
ai,ri
i )r where all elements are of order at most

e(pi) then Li ≤ (Z/pe(pi)
i )r ≤ (Z/p

ai,ri
i )r. In consequence, we have an inclusion

{Li ≤ (Z/p
ai,ri
i )r : all elements of Li have order at most e(pi)} ⊂ {Li ≤ (Z/pe(pi)

i )r}.

Since pi ≤ C′ and e(pi) ≤ C′, we have |{Li ≤ (Z/pe(pi)
i )r}| ≤ 2|(Z/p

e(pi)
i )r| ≤ 2(C

′C′ )r
, which

does not depend on the prime pi. Therefore, |Si| ≤ 2(C
′C′ )r

if pi ∈ P and |Si| = 1 if pi /∈ P .
By using that |P| ≤ C′ we can conclude that | Stab(H, M)| ≤ |{L ≤ H : |L| ≤ C′}| ≤
∏l

i=1,pi∈P |Si| ≤ (2(C
′C′ )r

)C′ , which completes the proof.
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Finally, the following remark will be important:

Remark 1.1.66. Let M be a closed connected manifold with the small stabilizers property with
constant C. Every effective action of a finite p-group on M is free for all prime p > C.

1.2 Group theory preliminaries

1.2.1 Group cohomology

In this section we summarize some basic results in group cohomology, focusing on the
relationship between group extensions and low dimensional cohomology groups. We use
[LR10, Bro12] as a reference.

Let G be a group and ZG be its group ring. Recall that the group ring ZG is a ring whose
elements are formal sums ∑g∈G agg where only finitely many ag ∈ Z are non-zero. Given
another element ∑g′∈G bg′g′ ∈ ZG we have

( ∑
g∈G

agg)( ∑
g′∈G

bg′g′) = ∑
h∈G

chh

where
ch = ∑

gg′=h
agbg′ .

See section 1.4 for some examples. A module over ZG will be called a G-module. Recall

also that a module P is projective if for any exact sequence M i−→ M′
j−→ M′′ and any map

ϕ : P −→ M′ such that j ◦ ϕ = 0 there exists a morphism ψ : P −→ M such that i ◦ ψ = ϕ.
Given a module M, a projective resolution of M is a long exact sequence

· · · → Fn
dn−→ Fn−1 → · · · → F0

ϵ−→ M→ 0

where Fi is projective for all i ≥ 0. We will denote it by ϵ : F∗ −→ M.

Definition 1.2.1. Let G be a group and ϵ : F∗ −→ Z a projective resolution of Z by G-modules.
The group homology H∗(G, Z) is defined as H∗(FG), where FG

∼= Z⊗ZG F∗.

If M is a G-module, then we define H∗(G, M) = H∗(F ⊗ZG M). The group cohomology is
H∗(G, M) = H∗(HomG(F, M)).

Remark 1.2.2. There is a natural isomorphism between the group cohomology of G and the singular
cohomology of the classifying space BG, H∗(G, Z) ∼= H∗(BG, Z) (see [Bro12, §I.4]).

Proposition 1.2.3. [Bro12, III.(6.1)Proposition] Let 0 → M′ → M → M′′ → 0 be a short exact
sequence of G-modules. Then there exists a long exact sequence:

· · · → Hi−1(G, M′′)→ Hi(G, M′)→ Hi(G, M)→ Hi(G, M′′)→ Hi+1(G, M′)→ · · ·
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Now we give an interpretation of the cohomology groups of dimension 0, 1 and 2.

Remark 1.2.4. We have

H0(G, M) = MG = {m ∈ M : gm = m for all g ∈ G}.

H0(G, M) = MG = M/IM,

where I is the augmentation ideal (that is, the kernel of the map ZG −→ Z, which send ∑g∈G agg
to ∑g∈G ag.)

Consider a short exact sequence 1 → N → E → G → 1. We have a group morphism
ϕ : E −→ Aut(N) given by ϕ(x) = cx the conjugation by x. If N is abelian then ϕ(n) = IdN

for all n ∈ N and therefore we obtain a new group morphism ψ : E/N ∼= G −→ Aut(N).
Hence, N becomes a G-module.

Notation 1.2.5. When studying group extensions of 1 → N → E → G → 1, we will write the
cohomology group Hi(G, N) as Hi

ψ(G, N) to emphasize the structure of G-module of the group N
induced by ψ. If ψ is trivial (thus N has the structure of a trivial G-module), then we will omit the
subindex ψ.

Definition 1.2.6. We say that a short exact sequence 1 → N → E π−→ G → 1 splits if there exists
a group morphism s : G −→ E such that π ◦ s = IdG.

Remark 1.2.7. There always exist set-theoretic sections s : G −→ E, but they are not group
morphisms in general.

Two short exact sequences 1 −→ N −→ E −→ G −→ 1 and 1 −→ N −→ E′ −→ G −→ 1
are said to be equivalent if there exists an isomorphism f : E −→ E′ such that

E

1 N G 1

E′

f

Proposition 1.2.8. [Bro12, IV.(2.1)Proposition] A short exact sequence 1 → N → E → G → 1
with N abelian is split if and only if it is equivalent to 1 → N → N ⋊ψ G → G → 1, where
ψ : G −→ Aut(N) is the map defined above.

On the other hand, the extension 1 → N → E → G → 1 is central if and only if ψ = 0. In
consequence, if we have a central split extension, then E ∼= N × G.
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We say that two splittings s1 : G −→ E and s2 : G −→ E are conjugate if there exist n ∈ N
such that s1(g) = ns2(g)n−1 for all g ∈ G.

Theorem 1.2.9. [Bro12, IV.(2.3)Proposition] Let N be an abelian group, there exists a one to one
correspondence between conjugacy classes of splittings of the extension 1→ N → N ⋊ψ G → G →
1 and the first cohomology group H1

ψ(G, N).

We can also describe the first cohomology groups as follows.

Definition 1.2.10. A crossed homomorphism (or 1-cocycle) is a map f : G −→ N such that

f (gh) = f (g) + ψ(g)( f (h))

for all g, h ∈ G. The set of 1-cocycles is denoted by Z1
ψ(G, N).

A principal crossed homomorphism (or 1-coboundary) is a crossed homomorphism f : G −→ N
such that there exists n ∈ N satisfying

f (g) = ψ(g)(n)− n

for all g ∈ G.

Lemma 1.2.11. [Bro12, IV.(2.1)Proposition] We have Z1
ψ(G, N)/B1

ψ(G, N) ∼= H1
ψ(G, N).

We say that a set-theoretic section s : G −→ E is normalized if s(1) = 1. Given a nor-
malized set-theoretic section s : G −→ E, we define the abstract kernel of the extension
ψ : G −→ Aut(N) to be the group morphism ψ(g) = cs(g). We denote by E(G, N, ψ) the set
of equivalence classes of short exact sequences with abstract kernel ψ. Then:

Theorem 1.2.12. [Bro12, IV.(3.12)Theorem] There exists a one to one correspondence between
E(G, N, ψ) and H2

ψ(G, N), where the subindex denotes that the G-module structure on N is in-
duced by ψ.

If N is not abelian, then the abstract kernel constructed as above is not a group morphism
in general. But, if we only look at automorphisms up to conjugation, we obtain a group
morphism ψ : G −→ Out(N) defined as ψ(g) = [cs(g)]. In this case, we have the following
theorem:

Theorem 1.2.13. [Bro12, IV.(5.4)Theorem] Given an abstract kernel ψ : G −→ Out(N), choose a
set-theoretic lift ψ̃ : G −→ Aut(N). Then the set of all extensions with abstract kernel ψ is in one
to one correspondence with the set of all maps c : G× G −→ N satisfying

ψ̃(g) ◦ ψ̃(h) = cc(g,h) ◦ ψ̃(gh),

c(g, 1) = 1 = c(1, h),

c(g, h)c(gh, k) = ψ̃(g)(c(h, k))c(g, hk).
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Given a group extension 1 −→ N −→ E −→ G −→ 1 with abstract kernel ψ, we can
take a normalized section s : G −→ E and define the map c : G × G −→ N as c(g, h) =

s(g)s(h)s−1(gh). It can be easily verified that c is well defined and that it satisfies the
conditions on the theorem. Conversely, given c and a lift ψ̃ we can construct the group
N ×(ψ̃,c) G, with underlying set N × G and group operation

(a, g)(b, h) = (aψ̃(g)c(g, h), gh).

One can check that we have a short exact sequence 1 −→ N −→ N ×(ψ̃,c) G −→ G −→ 1
with abstract kernel ψ.

Theorem 1.2.14. [Bro12, IV.(6.6)Theorem] If E(G, N, ψ) ̸= ∅ then we have a one to one correspon-
dence between E(G, N, ψ) and H2

ψ′(G,ZN), where ψ′ : G −→ Aut(ZN) is obtained by restricting
the outer automorphism ψ(g) to the center ZN. Moreover E(G, N, ψ) is a H2

ψ(G,ZN)-torsor.

Theorem 1.2.15. [Bro12, IV.(6.7)Theorem] Any abstract kernel ψ : G −→ Out(N) has an associ-
ated element uψ ∈ H3(G,ZN). Then E(G, N, ψ) ̸= ∅ if and only if uψ = 0.

We end this section with the Lyndon-Hochschild spectral sequence. Given a short exact
sequence 1→ N → E π−→ G → 1 and a E-module M then:

Theorem 1.2.16. [Bro12, VII.(6.3)Theorem] There exists a convergent spectral sequence such that

Ep,q
2 = Hp(G, Hq(N, M)) =⇒ Hp+q(E, M).

Corollary 1.2.17. [Bro12, VII.(6.4)Corollary] We have a long exact sequence

0→ H1(G, MN)→ H1(E, M)→ H1(N, M)→ H1(N, M)G → H2(G, MN)→ H2(E, M).

1.2.2 Outer automorphism group

The aim of this section is to briefly explain the constructions in [Mal02] used to compute
the outer automorphism group of a group extension.

Let
1 K G Q 1

p

be a short exact sequence of groups. The extension is determined by the morphism ψ :
Q −→ Out(K) and a 2-cocycle c ∈ H2

ψ(Q,ZK). Let Aut(G, K) = { f ∈ Aut(G) : f (K) =

K} and Out(G, K) = Aut(G, K)/ Inn G. Define the group morphism Θ : Aut(G, K) −→
Aut(K)×Aut(Q) such that f 7→ ( f|K, f ), where f : Q −→ Q is the map induced by f on
Q. Finally, recall that if H is a subgroup of G, the centralizer CG(H) is {g ∈ G : ch(g) =

g for all h ∈ H}.

Theorem 1.2.18. [Mal02, Theorem 3.3, Theorem 3.6] With the above notation, we have
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1. Im(Θ) are the elements of Aut(K)×Aut(Q) which fix the 2-cocycle c.

2. There exists an isomorphism ξ : Ker(Θ) −→ Z1
ψ(Q,ZK).

Definition 1.2.19. [Mal02, Definition 3.7] We define

B1
ψ(Q,ZK) = {ξ(cg) : g ∈ CG(K), p(g) ∈ ZQ}.

Proposition 1.2.20. [Mal02, Proposition 3.8] We have

B1
ψ(Q,ZK) ≤ B1

ψ(Q,ZK) ≤ Z1
ψ(Q,ZK).

In consequence, there exists a surjective morphism

H1
ψ(Q,ZK) −→ H1

ψ(Q,ZK) = Z1
ψ(Q,ZK)/B1

ψ(Q,ZK).

We have an isomorphism B1
ψ(Q,ZK) ∼= (p−1(ZQ) ∩ CGK)/ZG.

We can think H1
ψ(Q,ZK) as the subgroup of Out(G, K) whose automorphism classes in-

duce inner automorphisms on K and Q. This interpretation is made precise in the next
theorem.

Theorem 1.2.21. [Mal02, Theorem 4.8] There exist short exact sequences

1 K Out(G, K) L1 1,

and

1 H1
ψ(Q,ZK) K L2 1

where
L1 = { f ∈ Aut(Q) : f ∈ Aut(G, K)}/ Inn(Q) ≤ Out(Q)

and
L2
∼= (StabAut(K) c/ Inn(K))/Zψ(Q) ≤ COut(K)ψ(Q)/ψ(ZQ).

There is also a version for the automorphism group.

Theorem 1.2.22. [Mal02, Theorem 4.8] There exist short exact sequences

1 K′ Aut(G, K) L′1 1,

and
1 Z1

ψ(Q,ZK) K′ L′2 1

where
L′1 = { f ∈ Aut(Q) : f ∈ Aut(G, K)} ≤ Aut(Q)

and
L′2 = StabAut(K) c ≤ Aut(K).
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Remark 1.2.23. If K is a characteristic subgroup of G then Aut(G, K) = Aut(G) and Out(G, K) =
Out(G).

Another result about outer automorphism groups we will extensively use is the following:

Lemma 1.2.24. Let Γ and Γ′ be finitely generated groups with finitely generated center such that
Γ′ ⊴ Γ and Γ/Γ′ = F is a finite group. If Out(Γ′) is a Minkowski, then Out(Γ) is Minkowski.

Proof. By [McC88, Lemma 1.(a)] we know that [Out(Γ) : Out(Γ, Γ′)] < ∞, hence it is enough
to prove that Out(Γ, Γ′) is Minkowski.

By theorem 1.2.21 and lemma 1.1.54, if Out(F), COut(Γ′)ψ(F)/ψ(ZF) and H1
ψ(F,ZΓ′) are

Minkowski then Out(Γ, Γ′) is Minkowski. But Out(F) and H1
ψ(F,ZΓ′) are Minkowski

since F is finite and ZΓ′ is finitely generated. Finally, the group COut(Γ′)ψ(F)/ψ(ZF) is
Minkowski because COut(Γ′)ψ(F) ≤ Out(Γ′) is Minkowski by hypothesis and ψ(ZF) is a
finite group, hence we can use the second part of lemma 1.1.54.

1.3 Aspherical manifolds

The aim of this section is to give an introduction to aspherical manifolds, which are one of
the main object of study of this thesis.

Definition 1.3.1. A connected manifold M is said to be aspherical if its universal cover M̃ is
contractible.

The definition implies that πi(M) = 0 for all i > 1. There are also some restrictions on the
fundamental group of M. For example:

Proposition 1.3.2. If M is a closed aspherical manifold, then π1(M) is torsion-free.

Proof. Suppose that π1(M) has torsion. Thus, there exists a prime p such that Z/p ≤
π1(M). Note that the universal cover M̃ is Z/p-acyclic since it is contractible. Since the ac-
tion of π1(M) on M̃ is free, the set M̃Z/p is empty, contradicting theorem 1.1.37. Therefore
π1(M) is torsion-free.

Proposition 1.3.3. Let M1 and M2 be closed manifolds of dimension n ≥ 3 which are not homo-
topically equivalent to a sphere. Then M1#M2 is not aspherical.

See [Lüc09, Lemma 3.2] for a proof. Despite these restrictions there is an abundance of
aspherical manifolds. Let us show some ways to construct them.

Firstly, if G is a connected Lie group and K is a maximal compact subgroup of G then
G/K homeomorphic to Rm for some m (see [Hel01, Chapter VI, Theorem 1]). If Γ ≤ G is
a discrete torsion-free subgroup of G then the double coset space Γ \ G/K is an aspherical
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manifold. These type of manifolds are known as aspherical locally homogeneous space
(or classical aspherical manifolds, see [FJ90]). Closed connected surfaces of genus equal or
greater than 2 and closed connected hyperbolic manifolds fall into this class.

There are two other important techniques to construct aspherical manifolds. Although
they are not used in the thesis, we briefly review them for the sake of completeness. Firstly,
there is the hyperbolization technique due to Gromov (see [Gro87]), which turns a cell
complex into a non-positively curved (hence aspherical by the Cartan-Hadamard theorem)
polyhedron. The version of this technique for manifolds is the following:

Theorem 1.3.4. Let M be a closed oriented manifold. There exists a closed aspherical manifold
h(M) and a continuous map f : h(M) −→ M which induces a surjection on the fundamental
group and the integral homology.

The hyperbolization process can be modified to obtain manifolds of negative curvature (the
construction is known as strict hyperbolization [CD95]). In this setting, the fundamental
group π1(h(M)) is a hyperbolic group.

Finally, the Davis’ reflection trick is a method to construct closed aspherical manifolds by
using Coxeter groups. For a detailed exposition on this topic see [Dav12].

Theorem 1.3.5. [Dav12, Chapter 9, Chapter 11] Let Γ be a group such that BΓ has a finite model.
Then there exists a closed aspherical manifold M with fundamental group π1(M) = W̃ ⋊ Γ, where
W̃ is a torsion-free subgroup of a (maybe infinitely generated) Coxeter group.

Davis’ reflection trick was used to construct closed aspherical manifolds with exotic prop-
erties.

Theorem 1.3.6. [Dav12, Chapter 10, Chapter 11] For every n ≥ 4 there exist:

(1) A closed connected n-dimensional aspherical manifold whose universal cover is not homeo-
morphic to Rn.

(2) A closed connected n-dimensional aspherical manifold which is not homotopy equivalent to a
PL-manifold.

(3) A closed connected n-dimensional aspherical manifold whose fundamental group is not resid-
ually finite.

(4) A closed connected n-dimensional aspherical manifold whose fundamental group contains an
infinite divisible abelian group.

(5) A closed connected n-dimensional aspherical manifold whose fundamental group has an un-
solvable word problem.

A recent application of Davis’ trick is the following:
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Theorem 1.3.7. [DHHRS24] There exists a pair of closed connected aspherical 4-manifolds which
are homeomorphic but not diffeomorphic.

Note that a closed aspherical manifold M is an Eilenberg-Maclane space K(π1(M), 1). In
consequence, it is natural that the fundamental group plays a crucial role in the under-
standing the topology of M. This idea is summarised in the next conjecture:

Conjecture 1.3.8. (Borel conjecture) Homotopy equivalent closed aspherical manifolds are homeo-
morphic.

This conjecture has been answered affirmatively for a large class of closed aspherical mani-
folds in [BL12]. In particular, the Borel conjecture holds for aspherical locally homogeneous
spaces K \ G/Γ, where G is a connected Lie group, K is a maximal compact subgroup of
G, Γ is a cocompact lattice of G and dim(Γ \ G/K) ̸= 4 (see [KLR16]). Note that the Borel
conjecture is not true in the smooth category. There exist manifolds which are homeomor-
phic but not diffeomorphic to tori in all dimensions equal or bigger than 5, see [HS70].
While, it is not known if there exist manifolds homeomorphic but not diffeomorphic to T4,
theorem 1.3.7 shows that the smooth Borel conjecture is false also in dimension 4.

The rest of this section is devoted to the study of aspherical locally homogeneous spaces
and group actions on aspherical manifolds.

1.3.1 Lattices of Lie groups

The aim of this section is to introduce the concept of lattice of a Lie group. In order to do
so, we will need to introduce some preliminary notions.

Proposition 1.3.9. [Mor01b, (A3.1) Proposition] Let G be a Lie group. There exists a unique (up
to scalar multiple) measure µ on G such that:

1. µ(K) is finite, for every compact set K of G.

2. µ(gA) = µ(A) for every Borel subset A of G and g ∈ G.

The measure µ is called the left Haar measure on G.

Remark 1.3.10. Analogously, there exists a unique (up to scalar multiple) measure µ′ such which
satisfies item 1 of proposition 1.3.9 and µ′(Ag) = µ′(A) for every Borel subset A of G and g ∈ G.
µ′ is known as right Haar measure. We say that G is unimodular if the left and right Haar measure
coincide, µ = µ′. For example, if G is simple, then G is unimodular.

Lemma 1.3.11. [Mor01b, (A3.8) Proposition] Let µ be the left Haar measure of a Lie group G. Then
µ(G) < ∞ if and only if G is compact.

Using a Haar measure we can define fundamental domains and strict fundamental domains
of discrete subgroups of Lie groups. Recall that Γ is a discrete subgroup of G if there exists
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a neighbourhood U of the identity element e such that U ∩ Γ = {e}.

Lemma 1.3.12. [Mor01b, (4.1.1) Lemma] Let G be a Lie group and Γ a discrete subgroup of G.
There exists a Borel subset F such that the map F −→ G/Γ, defined by g 7→ gΓ, is bijective. The
set F is known as a strict fundamental domain for G/Γ in G.

There exists a Borel subset F ′, called fundamental domain for G/Γ in G, such that:

1. F ′Γ = G.

2. F ′ is closed, the interior F ′o is dense in F ′ and F ′ \ F ′o has measure 0.

3. F ′γ ∩ F ′o = ∅ for all non-trivial elements γ ∈ Γ.

Remark 1.3.13. Given a fundamental domain F ′, there exists a strict fundamental domain F ⊆ F ′

such that F ′ \ F has measure 0.

Proposition 1.3.14. [Mor01b, (4.1.3) Proposition] Let G be a Lie group and Γ ≤ G a discrete
subgroup. There exists a unique (up to scalar multiple) G-invariant measure ν on G/Γ such that
given any strict fundamental domain F for G/Γ in G and any Γ-invariant Borel set A of G we have

ν(A/Γ) = µ(F ∩ A).

We are ready to define lattice of a Lie group.

Definition 1.3.15. A discrete subgroup Γ of G is a lattice if ν(G/Γ) < ∞. A lattice is said to be
cocompact if G/Γ is compact.

Lemma 1.3.16. [Mor01b, (4.1.11) Proposition] Let G be a Lie group, Γ a discrete subgroup of G
and µ the left Haar measure of G. The following are equivalent:

1. Γ is a lattice of G.

2. There exists a (strict) fundamental domain F for G/Γ on G such that µ(F ) ≤ ∞.

3. There exists a Borel subset A of G such that AΓ = G and µ(A) < ∞.

We are interested in the following corollary, which will be extensively used in this thesis.

Corollary 1.3.17. [Mor01b, (4.1.14) Corollary] Let G be a Lie group. Then:

1. Every cocompact discrete subgroup of G is a lattice.

2. Every finite index subgroup of a lattice is a lattice.

Example 1.3.18. The subgroup Z2 is a cocompact lattice of R2. Indeed, Z2 is clearly discrete,
since the open set (−1/3, 1/3)2 satisfies Z2 ∩ (−1/3, 1/3)2 = {(0, 0)}. Moreover, R2/Z2 is
homeomorphic to the torus T2, which is compact. By corollary 1.3.17, Z2 is a lattice of R2. Note
that [0, 1)2 is a strict fundamental domain and [0, 1]2 is a fundamental domain.
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Strict f undamental domain Fundamental domain

Figure 1.1: Strict fundamental domain and fundamental domain of the lattice Z2 in R2.

1.3.2 Nilmanifolds

Nilmanifolds were introduced in the seminal paper of Mal’cev [Mal51] and they have seen
a wide range of applications in geometry and topology. There are several references that
gives a detailed account of nilmanifold properties. For this section we mainly use [Rag12,
Chapter 2] and [Dek16].

We start with a fact on homogeneous spaces. Given a homogeneous space X with a transi-
tive action of a Lie group G, we have a transitive action of the universal cover G̃ of G on X.
Indeed, we consider the universal covering map p : G̃ −→ G, which is a group morphism.
We can define a transitive group action of G̃ on X such that g̃x = p(g̃)x. Consequently,
given a homogeneous space X, we can always assume that the Lie group G which acts
transitively on X is simply connected.

We now recall the definition and some of the properties of nilpotent groups. Given a group
G and two elements g, h ∈ G, we define [g, h] = ghg−1h−1. If H and K are subgroups of G,
then [H, K] denotes the subgroup generated by elements of the form [h, k] with h ∈ H and
k ∈ K. Recall that given a group G we define the lower central series G ≥ G1 ⊴ · · · ⊴ Gi ⊴

. . . , where G0 = G, Gi = [G, Gi−1].

Similarly, for a Lie algebra g and Lie subalgebras h and k, we define [h, k] to be the Lie
subalgebra generated by elements of the form [h, k], where h ∈ h and k ∈ k and [·, ·] is the
Lie bracket. Given a Lie algebra g, we define the lower central series g ⊇ g1 ⊇ · · · ⊇ gi ⊇
. . . , where gi = [g, gi−1].

Definition 1.3.19. A group G is nilpotent if there exists a c such that Gc = {e}. A Lie algebra g

is nilpotent if there is a c such that gc = {0}.

The smallest c such that Gc = {e} or gc = {0} is the nilpotency class of G or g. A c-step nilpotent
Lie group (resp. Lie algebra) is a nilpotent Lie group (nilpotent Lie algebra) with class of nilpotency
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c.

Remark 1.3.20. We can also define nilpotency using the upper central series. The upper central
series is the subnormal series of subgroups of G {e} = Z0 ⊴ Z1 ⊴ Z2 ⊴ · · · , where Zi+1/Zi

∼=
Z(G/Zi) for all i ≥ 0. Then G is nilpotent if and only if G = Zc for some c.

When we consider Lie groups, we have the following properties:

Lemma 1.3.21. [Rag12, Chapter I.1.9] A Lie group N is nilpotent if and only if its Lie algebra
L(N) is nilpotent. If N is a simply connected nilpotent Lie group then:

1. The exponential map exp : L(N) −→ N is a diffeomorphism.

2. The exists a number n such that N is a Lie subgroup of the group of unipotent n× n matrices
with real coefficients, U (n, R).

Recall that a unipotent matrix is an upper triangular matrix with ones in the diagonal. We
are ready to introduce nilmanifolds and to explain their properties.

Definition 1.3.22. A nilmanifold M is a smooth manifold which admits a transitive action of a
connected nilpotent Lie group N.

Since M is a homogeneous space, there is a diffeomorphism between M and a coset space
N/H. The work of A.Mal’cev (see [Mal51] and [Rag12, Chapter 2]) describes the structure
of nilmanifolds:

Theorem 1.3.23. Let N be a simply connected nilpotent Lie group, then:

1. (Lattices of N) Any lattice Γ of N is cocompact.

2. (Structure of nilmanifolds) If N acts transitively and effectively on a compact manifold M,
then M ∼= N/Γ where Γ is a lattice of N. In general, a nilmanifold is diffeomorphic to the
product of a compact nilmanifold and a simply connected nilpotent Lie group.

3. (Rigidity) Let Γ1 and Γ2 be lattices of simply connected nilpotent Lie groups N1 and N2

respectively. Assume that we have a group morphism f : Γ1 −→ Γ2, then there exists a
group morphism F : N1 −→ N2 such that F|Γ1

= f . In particular, F descends to a map
N1/Γ1 −→ N2/Γ2. If Γ1 and Γ2 are isomorphic then N1/Γ1 and N2/Γ2 are diffeomorphic.

4. (Existence of lattices) N admits a lattice if and only if L(N) has a basis with rational
constant structures. That is, there exists a basis {e1, . . . , en} such that for every i, j, k the
numbers ck

i,j such that [ei, ej] = ∑ ck
i,jek are rational.

5. (Abstract group properties of lattices) A group Γ is a lattice of some simply connected
nilpotent Lie group if and only if Γ is nilpotent, finitely generated and torsion-free.

Remark 1.3.24. By properties 2. and 3. of theorem 1.3.23, given a closed connected nilmanifold M,
there exists a unique simply connected nilpotent Lie group N acting transitively and effectively on
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M. If N has nilpotency class c, we will say that M ∼= N/Γ is a c-step nilmanifold.

Remark 1.3.25. Since N is contractible, a compact nilmanifold N/Γ is an aspherical manifold with
fundamental group Γ.

Example 1.3.26. 1. (The abelian case) Rn is a 1-step simply connected nilpotent Lie group. Any
lattice of Rn is isomorphic to Zn and therefore the only closed 1-step nilmanifold is the torus
Tn.

2. (Heisenberg manifolds) The matrix group

H2n+1 = {(x, y, z) =

 1 x z
0 Idn yT

0 0 1

 : x, y ∈ Rn, z ∈ R}.

is called generalized Heisenberg group of dimension 2n + 1. It is straightforward to show
that the product of two elements takes the form (x, y, z)(x′, y′, z′) = (x + x′, y + y′, z + z′ +
xy‘T) and (x, y, z)−1 = (−x,−y,−z + xyT), which implies that [(x, y, z), (x′, y′, z′)] =

(0, 0,−x′yT + xy′T). In consequence, [Hn, Hn] = {(0, 0, z) : z ∈ R}, which is also the
center of Hn. This implies that [Hn, [Hn, Hn]] = {(0, 0, 0)} and Hn is 2-step nilpotent.
To construct a lattice we can consider the discrete subgroup Γ2n+1 = {(x, y, z) ∈ Hn :
x, y ∈ Zn, z ∈ Z}. Then the 2-step nilmanifold H2n+1/Γ2n+1 of dimension 2n + 1 is called
generalized Heisenberg manifold. The case n = 1 is usually known as Heisenberg manifold.

Generalized Heisenberg manifolds admit non-isomorphic lattices. To construct them we take
a vector of positive integers r = (r1, . . . , rn) such that ri divides ri+1 for all 1 ≤ i ≤ n− 1.
If x = (x1, . . . , xn) ∈ Rn, we write rx = (r1x1, . . . , rnxn). We now consider a lattice of
the form Γn(r) = {(rx, y, z) : x, y ∈ Zn, z ∈ Z}. It can be seen that every lattice on a
generalized Heisenberg manifold takes the form of Γn(r) for some r and that the coefficients of
r uniquely determine Hn/Γn(r).

3. (Filiform groups) We construct these groups from their Lie algebras. An n-dimensional nilpo-
tent Lie algebra fn is said to be filiform if dim fin = n− i− 1, 1 ≤ i ≤ n− 1. The simplest
way to construct an example of filiform Lie algebra is by taking a basis {X1, . . . , Xn} of a
n-dimensional vector space and defining the Lie bracket by the relations [X1, Xi] = Xi+1 with
1 ≤ i ≤ n− 1, where the undefined brackets are 0 except the brackets obtained by antisymme-
try. The Lie algebra fn is called the standard filiform algebra. We can describe fn with matrices
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H/Γ1 T3

Figure 1.2: 3-dimensional Heisenberg manifold and torus

in the following way. We consider the n− 1× n− 1 matrix

τ(x) =



0 x 0 · · · 0 0
0 0 x · · · 0 0
0 0 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 x
0 0 0 · · · 0 0


with x ∈ R and we denote the canonical basis of Rn−1 by e1, . . . , en−1, then

fn = {
(

τ(x) vT

0 0

)
: x ∈ R, v ∈ Rn−1}

and

X1 =

(
τ(1) 0

0 0

)
and Xi =

(
τ(0) eT

n+1−i
0 0

)
for 2 ≤ i ≤ n. By using the exponential map and the Baker-Campbell-Hausdorff formula
we can describe explicitly the simply connected nilpotent Lie group Fn corresponding to fn.
Firstly, we define the n− 1× n− 1 matrix

σ(x) =



1 x x2

2! · · ·
xn−3

(n−3)!
xn−2

(n−2)!

0 1 x · · · xn−4

(n−4)!
xn−3

(n−3)!

0 0 1 · · · xn−5

(n−5)!
xn−4

(n−4)!
...

...
... . . . ...

...
0 0 0 · · · 1 x
0 0 0 · · · 0 1


.
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Then

Fn = {
(

σ(x) vT

0 1

)
: x ∈ R, v ∈ Rn−1}.

Note that Fn = Rn−1 ⋊σ R, where σ : R −→ GL(n− 1, R) sends x ∈ R to σ(x).

If we want to obtain a lattice, we can consider the Z-span of X1, . . . , Xn in fn and then take
Γ = exp(⟨X1, . . . , Xn⟩Z). The resulting nilmanifold Fn/Γ is a n − 1-step nilmanifold of
dimension n.

The rest of this subsection is devoted to explain in more detail some of the tools used in
the proof of the statements of theorem 1.3.23, which are also relevant to prove some of the
results of this thesis.

Mal’cev completion

Given a finitely generated torsion-free nilpotent group Γ one can refine the upper central
series to obtain a series

Γ = Γ0 ⊵ Γ1 ⊵ · · · ⊵ Γk = {e}

such that Γi/Γi+1 = Z and Γi/Γi+1 ≤ Z(Γ/Γi+1) for all i ≥ 0. Now, we can choose an
element ai+1 ∈ Γi which projects to a generator of Γi/Γi+1. The set {a1, . . . , ak} generates Γ
and satisfies that any x ∈ Γ can be uniquely expressed as an element of the form

x = az1
1 az2

2 · · · a
zk
k .

The set {a1, . . . , ak} is known as the Mal’cev basis of Γ.

Proposition 1.3.27. [Dek16, Proposition 2.4] Let Γ be a finitely generated torsion-free nilpotent
group with Mal’cev basis {a1, . . . , ak}. There exist polynomials pi(x1, x2, . . . , xi−1, y1, y2, . . . , yi−1)

for 2 ≤ i ≤ k with coefficients in Q such that if x = ax1
1 · · · a

xk
k and y = ay1

1 · · · a
yk
k then

xy = ax1+y1
1 ax2+y2+p2(x1,y1)

2 · · · axk+yk+pk(x1,...,xk,y1,...,yk)
k .

Using these polynomials we can define two new groups, ΓQ and ΓR, known as the ratio-
nal and real Mal’cev completion. These groups consist formally of elements of the form
ax1

1 . . . axk
k with xi ∈ Q or xi ∈ R respectively. Both groups ΓQ and ΓR are torsion-free

nilpotent groups, but they are not finitely generated. The real Mal’cev completion ΓR is a
simply connected nilpotent Lie group containing Γ as a lattice. We also have an extension
property for the rational Mal’cev completion.

Proposition 1.3.28. [Dek16, Proposition 2.5] Let f : Γ1 −→ Γ2 be a group morphism between
torsion-free finitely generated nilpotent groups. Then there exists a unique group morphism fQ :
Γ1Q
−→ Γ2Q

such that fQ|Γ1
= f .
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Note that if f is an isomorphism so it is fQ. To announce the next proposition we need the
following group-theoretic definition.

Definition 1.3.29. Two groups G and G′ are said to be commensurable if there exist finite index
subgroups H ≤ G and H′ ≤ G′ such that H ∼= H′.

Proposition 1.3.30. [Dek16, Proposition 2.7] Let Γ1 and Γ2 be torsion-free finitely generated nilpo-
tent groups. Then Γ1 and Γ2 are commensurable if and only if Γ1Q

∼= Γ2Q
.

We want to use Lie algebras to study ΓQ and ΓR. In order to do so, we first need the next
proposition.

Proposition 1.3.31. [Dek16, Theorem 2.10] Let Γ be a finitely generated torsion-free nilpotent
group. Then there exists an embedding of Γ to the group of upper triangular matrices with 1s in the
diagonal and integer coefficients, Γ −→ U (n, Z).

Hence, we can assume that Γ ≤ U (n, Z) ≤ U (n, Q) ≤ U (n, R). The group U (n, R)

is a real simply connected nilpotent matrix group and hence we have bijections exp :
L(U (n, R)) −→ U (n, R) and log : U (n, R) −→ L(U (n, R)) where L(U (n, R)) is the Lie
algebra of U (n, R), which can be described as the upper triangular matrices with 0s in the
diagonal and Lie bracket [A, B] = AB− BA. The exponential and logarithm map can be
explicitly described as

exp(A) =
∞

∑
i=0

1
i!

Ai

and

log(A) =
∞

∑
i=0

(−1)i+1

i
(Ai − Id)i.

Since U (n, R) is nilpotent both sums are finite. The Campbell-Backer-Hausdorff formula
gives a relationship between the Lie bracket in L(U (n, R)) and the matrix multiplication in
U (n, R). Given A, B ∈ L(U (n, R)), we have

exp(A) exp(B) = exp(A + B + 1
2 [A, B] + 1

12([A, [A, B]] + [B, [B, A]]) +
∞

∑
i=4

ri)

where ri is a rational combination of i-fold Lie brackets in A and B. Note that the sum also
becomes finite. Since all coefficients are rational, we obtain:

Proposition 1.3.32. [Dek16, Theorem 2.11, Theorem 2.12] Let Γ ≤ U (n, Z) and let F = Q or R.
Define L(Γ)F = ⟨log(Γ)⟩F, the F-vector space generated by log(Γ) in L(U (n, R)). Then L(Γ)F

is a Lie algebra over F and ΓF = exp(L(Γ)F).

Moreover, given a group morphism f : Γ1 −→ Γ2 between finitely torsion-free nilpotent group,
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there is a unique Lie algebra morphism f∗ : L(Γ1)F −→ L(Γ2)F such that

Γ1F
Γ2F

L(Γ1)F L(Γ2)F

fF

log log

f∗

exp exp

commutes. Conversely, given any f∗ : L(Γ1)F −→ L(Γ2)F there exists a unique fF : Γ1F
−→ Γ2F

making the above diagram commutative.

Note that under this correspondence fF is an isomorphisms if and only if f∗ is a Lie algebra
isomorphism. In consequence, we obtain

Corollary 1.3.33. [Dek16, Corollary 2.13] Let Γ be a finitely generated torsion-free nilpotent group.
Then Aut(ΓF) = Aut(L(Γ)F) with F = Q or R.

Nilmanifolds and coverings

Let G/H be a homogeneous space and p : M′ −→ G/H a covering. Then M′ is also a
homogeneous space since it admits a transitive action of the universal cover G̃ of G. If the
homogeneous space is a nilmanifold N/Γ then M′ is also a nilmanifold with a transitive of
N, hence M′ ∼= N/Γ′.

If N/Γ is compact and the covering is finite then Γ′ is a lattice of N. In this case the
covering map p : N/Γ′ −→ N/Γ induces an injective map p∗ : Γ′ −→ Γ. The unique lift
pR : Γ′R −→ ΓR is the identity map and ΓR

∼= N. Thus, we obtain a new covering map
of the form q : N/Γ′ −→ N/Γ such that q(nΓ′) = nΓ. Note that p and q are homotopy
equivalent. In general:

Proposition 1.3.34. [Bel03, Proposition 5.4] Let f : N′/Γ′ −→ N/Γ be a non-zero degree map
between nilmanifolds. Then f is homotopy equivalent to a covering.

In particular, N and N′ are isomorphic. An interesting question is to determine if given lat-
tices Γ, Γ′ ≤ N, there exists a non-zero degree map f : N/Γ −→ N′/Γ. By proposition 1.3.30
and proposition 1.3.34, a necessary condition is ΓQ

∼= Γ′Q.

Definition 1.3.35. A group G is Hopfian if any surjective group morphism G −→ G is an isomor-
phism. A group G is co-Hopfian if any injective morphism G −→ G is an isomorphism. A group G
is called compressible if any subgroup H ≤ G of finite index contains a subgroup GH of finite index
in H isomorphic to G.

Any finitely generated torsion-free nilpotent group is Hopfian (see [Bel03, Proposition 5.1]).

Note that if a finitely generated torsion-free nilpotent group Γ is co-Hopfian then any
non-zero degree map f : N/Γ −→ N/Γ is homotopic to a diffeomorphism. We have the
following criteria in order to check when Γ is co-Hopfian.
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H/Γ1 H/Γ2

f

Figure 1.3: 2-covering of Heisenberg manifolds

Proposition 1.3.36. [Bel03, Theorem 1.1] A finitely generated torsion-free nilpotent group Γ is co-
Hopfian if and only if any Lie algebra automorphism of f : L(Γ)Q −→ L(Γ)Q which maps log(Γ)
into itself satisfies |det( f )| = 1.

Proposition 1.3.37. [Smi85, Theorem A] Let Γ and Γ′ be finitely generated torsion-free nilpotent
groups such that ΓQ

∼= Γ′Q. Then Γ is compressible if and only if Γ′ is compressible.

The next proposition implies that 2-step finitely generated torsion-free nilpotent groups are
not co-Hopfian.

Proposition 1.3.38. [Smi85, Proposition 2] Any 2-step nilpotent finitely generated torsion-free
nilpotent group is compressible.

Iterated principal S1-bundles

Recall that we denote the upper central series of a group G by {e} = Z0 ⊴ Z1 ⊴ Z2 ⊴ · · · ⊴
Zi ⊴ · · · , where Z1 = ZG and Zi+1/Zi = Z(Gi+1/Zi). We consider a c-step nilmanifold
N/Γ. First we note that ZΓ = ZN ∩ Γ. The inclusion ZΓ ⊆ ZN ∩ Γ is clear. To prove the
other direction we use that any automorphism of Γ lifts uniquely to an automorphism of
N. Then by lifting the conjugation automorphism cγ : Γ −→ Γ where γ ∈ ZΓ we obtain
that γ ∈ ZN. Thus the other inclusion also holds.

The action by left multiplication of ZN on N descends to a free Tn = ZN/ZΓ action
on N/Γ, where the quotient is the c − 1 step nilmanifold (N/ZN)/(Γ/ZΓ). Taking a
subgroup S1 ≤ Tn we obtain that N/Γ is the total space of a principal S1-bundle over a
nilmanifold. By repeating this process with the base nilmanifold, we have seen the ’if’ part
of the next theorem:

Theorem 1.3.39. A compact manifold is the total space of an iterated principal circle bundle if and
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only if it is a nilmanifold.

For the ’only if’ part, let p : E −→ N′/Γ′ be a principal S1-bundle over a nilmanifold. By
using the long exact sequence of homotopy, we can conclude the that E is aspherical and
its fundamental group fits into the central extension

1 −→ Z −→ π1(E) −→ Γ′ −→ 1.

In particular Γ = π1(E) is a finitely generated torsion-free nilpotent group and therefore
it is the fundamental group of a compact nilmanifold N/Γ, which is the total space of a
principal S1-bundle over q : N/Γ −→ N′/Γ′. By construction the first Chern classes c1(p :
E −→ N′/Γ′) and c1(q : N/Γ −→ N′/Γ′) are equal, which implies that the principal S1-
bundles are isomorphic. This isomorphism provides the desired diffeomorphism between
E and N/Γ.

2-step nilmanifolds

The aim of this part is to study principal torus bundle over a torus. These spaces are
precisely compact nilmanifolds where the transitive nilpotent Lie group is 2-step nilpotent
(see [PS61, Jak74, Bel20]). Let T f ↪→ Y

p−→ Tb be a principal bundle. We first recall how
to construct a nilpotent Lie group acting transitively on Y. From the exact sequence of
homotopy we obtain a central exact sequence

1 −→ Z f −→ π1(Y) = Γ −→ Zb −→ 1.

The abstract kernel ϕ : Zb −→ Aut(Z f ) is trivial and Γ is determined by a cohomology
class c ∈ H2(Zb, Z f ) ∼= H2(Tb, Z f ) ∼= (H2(Tb, Z)) f . Thus we can write c = (c1, . . . , c f )

with ci ∈ H2(Tb, Z). Each ci can be thought as the first Chern class of the circle bundle
S1 ↪→ Y/T f

i −→ Tb where T f
i = {(θ1, . . . , θ f ) ∈ T f : θi = 0}.

Let {e1, . . . , eb} be a basis of H1(Tb, Z). Since H2(Tb, Z) =
∧2 H1(Tb, Z) we have ci =

∑1≤j<k≤b ci
jkej ∧ ek. Hence we can define coefficients di

jk for all 1 ≤ j, k ≤ b and 1 ≤ i ≤ f as

di
jk = ci

jk if j < k, di
jk = −ci

kj if j > k and di
jk = 0 if j = k.

We can construct a Lie algebra L(Y) generated by b + f elements {x1, . . . , xb, y1, . . . , y f }
and a Lie bracket which satisfies that [xj, xk] = ∑

f
i=1 di

jkyi, [xj, yk] = 0 and [yj, yk] = 0 for
all j, k. It is straightforward to check that L(Y) is a 2-step nilpotent Lie algebra. Then
exp(L(Y)) = N(Y) is a 2-step nilpotent simply connected Lie group which acts transitively
on Y.

Cohomology of nilmanifolds

Let g be a Lie algebra over a field F of characteristic 0. We define the Chevalley-Eilenberg
cochain complex (C∗(g), d) as follows. We set Ck = Hom(

∧k g, F). The differential d :
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C1 −→ C2 is the dual of the Lie bracket [·, ·] :
∧2 g −→ g. Using linearity and the Leibniz

rule we can uniquely define the differential d, which satisfies that for an alternating form
f : gn −→ F,

d f (x1, . . . , xn) = ∑
i<j

(−1)i+j f ([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xn).

where the caret signifies omitting that argument.

It is straightforward to prove that d2 = 0. Therefore, we can define the Lie algebra coho-
mology H∗(g, F) = Ker d/ Im d. The cohomology of nilmanifolds can be computed using
Lie algebra cohomology.

Theorem 1.3.40. [Nom54] Let N/Γ be a closed nilmanifold. Then H∗(N/Γ, Q) ∼= H∗(L(Γ)Q, Q)

and H∗(N/Γ, R) ∼= H∗(L(N), R).

Note that the integer cohomology of a nilmanifold H∗(N/Γ, Z) depends on the lattice.
The nilmanifolds from example 1.3.26(1) have first homology group H1(H3/Γ3(r), Z) ∼=
Z2 ⊕Z/r. Therefore H∗(H3/Γ3(r), Z) ≇ H∗(H3/Γ3(r′), Z) if r ̸= r′.

On the other hand H∗(N/Γ, Q) ∼= H∗(N/Γ′, Q) if Γ and Γ′ are commensurable. Finally,
H∗(N/Γ, R) only depends on the Lie group N.

1.3.3 Solvmanifolds

Solvmanifolds are a generalization of nilmanifolds. In this section we give a brief intro-
duction to the properties of solvmanifolds. The main references used in this section are
[Rag12, Chapter III, Chapter IV] and [LR10, Chapter 6].

Definition 1.3.41. A group S is solvable if there exists a number c such that S(c) = {e}, where
S = S(0) and S(i) = [S(i−1), S(i−1)] for all i > 0. A Lie algebra s is solvable if there exists a number
c such that s(c) = {0}, where s = s(0) and s(i) = [s(i−1), s(i−1)] for all i > 0.

Remark 1.3.42. All nilpotent groups are solvable.

If S is a Lie group, the conditions of S being solvable as an abstract group and of its
Lie algebra s being solvable are equivalent. Solvable Lie groups are more complicated
than nilpotent Lie groups. For example, the exponential map exp : s −→ S of a simply
connected solvable Lie group S is not bijective in general. However, there are some types
of solvable Lie groups which resemble nilpotent Lie groups.

Definition 1.3.43. Let S be a simply connected solvable Lie group, then:

1. S is of type (R) (also known as completely solvable or triangular) if all the eigenvalues of the
linear map ad(g) : s −→ s are real for all g ∈ S.

2. S is of type (E) if the exponential map exp : s −→ S is a diffeomorphism.
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Remark 1.3.44. Let G be a simply connected Lie group, then we have the chain of implications

G nilpotent⇒ G of type (R)⇒ G of type (E)

Lemma 1.3.45. [Rag12, Chapter I.1.9] If S is a simply connected solvable Lie group of dimension
n, then S is diffeomorphic to Rn.

Definition 1.3.46. A manifold M is a solvmanifold if there exists a connected solvable Lie group S
acting transitively on M.

Recall that we do not lose any generality if we assume that S is simply connected.

A group Γ is polycyclic if there exist a series Γ = Γ0 ⊵ Γ1 ⊵ · · · ⊵ Γn−1 ⊵ Γn = {e}
such that Γi/Γi+1 is cyclic for all i, and it is strongly polycyclic if Γi/Γi+1

∼= Z for all i.
An equivalent definition is that a group is polycyclic if and only if it is solvable and all its
subgroups are finitely generated. The next theorem summarises the most important results
on solvmanifolds (see [Rag12, Chapter III, Chapter IV]):

Theorem 1.3.47. 1. (Lattices of solvable Lie groups) Let S be a simply connected solvable
Lie group and Γ ≤ S a lattice, then Γ is cocompact.

2. (Lattices and compact solvmanifolds) Let M be compact solvmanifold, then there exists
a finite cover p : S/Γ −→ M, where S is a simply connected solvable Lie group and Γ is a
lattice of S.

3. (Structure of non-compact solvmanifolds) A non-compact solvmanifold is the total space
of a vector bundle over a compact solvmanifold.

4. (Rigidity) Let Γ1 and Γ2 be lattices of simply connected solvable Lie group S1 and S2 respec-
tively. If ϕ : Γ1 −→ Γ2 is an isomorphism, then there exists a diffeomorphism ϕ̃ : S1 −→ S2

such that ϕ̃|Γ1
= ϕ and ϕ̃(sγ) = ϕ̃(s)ϕ(γ) for any s ∈ S1 and γ ∈ Γ1. In particular, if two

solvmanifolds have the same fundamental group then they are diffeomorphic.

5. (Mostow fibration) Let N be the nilradical of a simply connected solvable Lie group S (the
maximal connected nilpotent Lie subgroup of S). If Γ is a lattice of S, then N ∩ Γ is a lattice
of N and we have the homogeneous fibration:

N/N ∩ Γ ∼= NΓ/Γ −→ S/Γ −→ S/NΓ ∼= Tr.

6. (Lattices as abstract groups) Let S be a simply connected solvable Lie group and Γ ≤ S a
lattice, then Γ is strongly polycyclic. Conversely, any strongly polycyclic group has a finite
index subgroup which is a lattice of a simply connected solvable Lie group.

Remark 1.3.48. Unlike nilmanifolds, not all solvmanifolds are coset spaces of a simply connected
solvable Lie group by a lattice. The Klein bottle is one of such examples. Recall that the Klein bottle



54 1.3 Aspherical manifolds

is K = R2/ ∼, where (x, y) ∼ (x + n, (−1)ny + m) for any (n, m) ∈ Z2. We can write it as a
solvmanifold in the following way; let S = C ⋊ϕ R, where ϕ : R −→ Aut(C) with ϕ(t) = eπit

so that (w, t)(z, s) = (eiπtz + w, t + s). Let H = {(p + iu, q) : p, q ∈ Z, u ∈ R}. We have
S/H ∼= K. If K was of the form S′/Γ where S′ is a simply connected solvable Lie group and Γ a
lattice of S′, then K would be parallelizable and therefore orientable, but K is not orientable.

Remark 1.3.49. The diffeomorphism provided by theorem 1.3.47(4) is not in general an isomor-
phism. For example, let S = C ⋊ϕ R where ϕ : R −→ Aut(C) is given by ϕ(t)z = e2πitz.
Consider Γ = {(n1 + in2, m) : n1, n2, m ∈ Z}. Then S/Γ ∼= T3, and Γ ∼= Z3. However, we
cannot extend this isomorphism to an isomorphisms between S and R3, since S is not abelian.

However, if S is a simply connected solvable Lie group of type (R), any automorphism between
ϕ : Γ −→ Γ of a lattice Γ lifts to an isomorphism ϕ̃ : S −→ S.

The Mostow fibration motivates the next definition.

Definition 1.3.50. [LR10, Definition 9.5.1.] A Mostow-Wang group Γ is a group Γ which fits in
the short exact sequence 1 −→ ∆ −→ Γ −→ Zk −→ 1 where ∆ is torsion-free finitely generated
and nilpotent. Moreover, we say that Γ is predivisible if Γ is Mostow-Wang and for every γ ∈ Γ the
automorphism cγ∗ : L(∆R) −→ L(∆R) induced by the conjugation of γ ∈ Γ on the Lie algebra
of real Mal’cev completion satisfies that all its eigenvalues λ satisfy λ

|λ| = cos(2πρ) + i sin(2πρ)

with ρ = 0 or irrational.

Predivisible groups will be useful because of the next theorem:

Theorem 1.3.51. [LR10, §9.5] Any torsion-free polycyclic group contains a characteristic Mostow-
Wang group of finite index. Any Mostow-Wang group contains a characteristic predivisible group
of finite index.

For a predivisible group Γ, there exists a connected solvable Lie group G = S ⋊ K satisfying:

1. S is a closed normal subgroup of G.

2. K is a torus and a maximal compact subgroup of G.

3. Γ is a lattice of G.

4. For any f ∈ Aut(Γ) there exists a unique f̃ ∈ Aut(G) such that f̃|Γ = f .

The cohomology of solvmanifolds is harder to understand and to compute than the coho-
mology of nilmanifolds. For some results about the cohomology solvmanifolds we refer to
[CF11, Wit95].

1.3.4 Flat manifolds and infranilmanifolds

In this subsection we review some properties of manifolds finitely covered by tori and
nilmanifolds. They are aspherical and have remarkable geometrical properties, but we are
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mostly interested in the group theoretic properties of their fundamental group. For this
section we refer to the books [Cha12, Dek06, Szc12], as well as the survey [Dek16] and
[LR10, Chapter 8].

Let E(n) = Rn ⋊ O(n) denote the group of isometries of Rn. An element g ∈ E(n) is
of the form g = (a, A) and the action of E(n) on Rn satisfies that gx = Ax + a for all
g ∈ E(n) and x ∈ Rn. There are group morphisms r : E(n) −→ O(n) and t : Rn −→ E(n)
such that r(g) = A and t(a) = (a, Id). Cocompact lattices Γ of E(n) are called crystallo-
graphic groups. The next classical theorem due to Bieberbach describes the structure of
crystallographic groups (see [LR10, Chapter 8], [Dek06, §2.1] or [Szc12, Chapter 2]).

Theorem 1.3.52. Let Γ be a crystallographic group. We have:

1. (1st Bieberbach theorem) The group Λ = Γ ∩Rn is a lattice of Rn (in particular, Λ ∼= Zn),
Λ is the unique maximal normal abelian subgroup of Γ and Γ/Λ is a finite subgroup of O(n),
which is called the holonomy of Γ.

2. (2nd Bieberbach theorem) Assume that Γ′ is crystallographic group isomorphic to Γ. Then any
isomorphism Γ −→ Γ′ is given by a conjugation by an element of Rn ⋊ GL(n, R).

3. (3rd Bieberbach theorem) In each dimension n, there are only finitely many crystallographic
groups up to isomorphism.

There is also an algebraic characterization of crystallographic groups due to Zassenhaus.

Theorem 1.3.53. [Dek06, Theorem 2.1.4] Let Γ be an abstract group which contains a normal,
maximal abelian subgroup of finite index isomorphic to Zn. Then there exists an injective morphism
ϕ : Γ −→ E(n) such that ϕ(Γ) is crystallographic.

Let Γ ≤ E(n) be a crystallographic subgroup. The group Γ acts on Rn by restricting the
action of E(n) on Rn. If Γ is torsion-free (in this case we say that Γ is a Bieberbach group)
then the action is free and the quotient Rn/Γ is a closed manifold of dimension n. Every
closed flat manifold M is isometric to Rn/Γ for some Bieberbach group Γ. By the first
Bieberbach theorem we can take the maximal abelian normal subgroup Λ ⊴ Γ to obtain a
finite regular covering Tn = Rn/Λ −→ Rn/Γ. In addition, if M1 and M2 are homotopically
equivalent closed flat manifolds, then they are affinely diffeomorphic, which means that
there exists a diffeomorphism which lifts to an affine transformation in the universal cover
Rn. Finally, by the third Bieberbach theorem, there are finitely many closed flat manifold
up to diffeomorphism in each dimension.

Theorem 1.3.54. [Cha12, Chapter III.5] For every finite group G there exists a closed connected
flat manifold with holonomy group G.

Note that if an n-dimensional flat manifold M is a nilmanifold then M ∼= Tn. This is
because π1(M) and Zn are commensurable, which implies that they have the same rational
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Mal’cev completion. This implies that π1(M) is abelian and hence M ∼= Tn. On the other
hand, there exist flat manifolds which are also solvmanifolds (for example the Klein bottle).
For more details of flat solvmanifolds we refer to [AA58, Tol20].

Let N be a simply connected nilpotent Lie group and C be a maximal compact subgroup
of Aut(N). A discrete cocompact subgroup Γ of N ⋊ C is called an almost-crystallographic
group (abbreviated as AC-group). Moreover, Γ is said to be almost-Bieberbach if it is
torsion-free. Bieberbach theorems have been generalized to almost-crystallographic groups.
Before announcing them we need to introduce some more notation.

Definition 1.3.55. Let Λ be a finitely generated torsion-free nilpotent group. An extension 1 −→
Λ −→ Γ −→ G −→ 1 in which G is finite is said to be essential if Λ is a maximal nilpotent
subgroup of Γ.

Theorem 1.3.56. [Dek06, Chapter 2] Let N be a simply connected nilpotent Lie group and C a
maximal compact subgroup of Aut(N).

1. (Generalized 1st Bieberbach theorem) Let Γ ≤ N ⋊ C be an AC-group of N. The subgroup
N ∩ Γ = Λ is a lattice of N, Λ is the unique normal maximal nilpotent subgroup of Γ and
Γ/Λ is a finite group.

2. (Generalized 2nd Bieberbach theorem) Let Γ and Γ′ be AC-groups of N. Assume that there
exists an isomorphism f : Γ −→ Γ′. Then f can be realized as a conjugation by an element of
Aff(N) = N ⋊ Aut(N).

3. (Generalized 3rd Bieberbach theorem) Let Λ be a lattice of N. There are only finitely many
essential extensions 1 −→ Λ −→ Γ −→ G −→ 1.

If Γ is an almost-Bieberbach group of N then Γ acts freely on N and the orbit space N/Γ
is a closed connected aspherical manifold which is finitely covered by the nilmanifold
N/Λ. These manifolds are known as infranilmanifolds, and they also have a geometric
characterization.

Definition 1.3.57. A closed manifold M is said to be almost-flat if for any ϵ > 0 there exists a
Riemannian metric gϵ such that |Kϵ|diam(M, gϵ)2 < ϵ, where Kϵ is the sectional curvature and
diam(M, gϵ) is the diameter of M using the metric gϵ.

Theorem 1.3.58. [Gro78, Ruh82] A closed manifold M is almost flat if and only if M is an in-
franilmanifold.

The algebraic characterization of crystallographic groups can also be generalized to AC-
groups, but we need some further definitions to state it.

Definition 1.3.59. Let Γ be a virtually polycyclic group. The Fitting subgroup Fitt(Γ) is the unique
maximal normal nilpotent subgroup of Γ.
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Lemma 1.3.60. [Dek06, Definition 2.3.3] The Fitting subgroup Fitt(Γ) is unique.

Theorem 1.3.61. [Dek06, Theorem 3.4.6] Let Γ be a virtually polycyclic group. The following are
equivalent:

1. Γ is an AC-group.

2. Fitt(Γ) is torsion-free, maximal nilpotent and of finite index in Γ.

3. Γ contains a torsion-free nilpotent subgroup Λ of finite index such that CΓ(Λ) is torsion-free.

4. Γ contains a nilpotent subgroup of finite index and Γ does not contain any non-trivial finite
normal subgroup.

Corollary 1.3.62. If Γ is a torsion-free virtually polycyclic group then Γ is an AC-group if and only
if it contains a nilpotent subgroup of finite index.

The proof of theorem 1.3.61 uses the next proposition, which will be also used in the
following chapters.

Proposition 1.3.63. Let Λ be a finitely generated torsion-free nilpotent group and 1 −→ Λ −→
Γ −→ G −→ 1 a group extension where G is finite. Then Λ is maximal nilpotent in Γ if and only
if the induced map ϕQ : G −→ Out(ΛQ) is injective.

This proposition is proved in [Dek06, Lemma 3.1.1] for the real Mal’cev completion, and
the same argument can be used to prove proposition 1.3.63 with the rational Mal’cev com-
pletion.

The proposition can be also reformulated in the following way:

Proposition 1.3.64. Let Λ be a finitely generated torsion-free nilpotent group and 1 −→ Λ −→
Γ −→ G −→ 1 a group extension where G is finite and Γ is torsion-free. Then Γ is nilpotent if and
only if the induced map ϕQ : G −→ Out(ΛQ) is trivial.

1.3.5 Lattices on semisimple Lie groups and aspherical locally homoge-
neous spaces

This section has 3 parts. The first one is devoted to introduce the main results of the theory
of lattices in semisimple Lie groups. In the second part we give a brief introduction to
the theory of relatively hyperbolic groups. Finally, in the third part we study lattices on
connected Lie groups, without the extra assumptions that the group is either solvable or
semisimple. Each of these three parts provides key ingredients to prove theorem 10.
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Lattices on semisimple Lie groups

Most of the following results are well-known, as they are the cornerstone of the theory of
discrete subgroups on semisimple Lie groups. Our main reference is the introductory book
[Mor01b], although we also refer to [Wan72, Mar91, Rag12].

We have seen that not all nilpotent Lie groups have lattices. Therefore, it is a natural
question to ask whether semisimple Lie groups always have lattices. This was answered
affirmatively by Borel and Harish-Chandra.

Theorem 1.3.65. [Rag12, Theorem 14.1] Let G be a connected non-compact semisimple Lie group.
Then G has both cocompact and non-cocompact lattices.

Note that, unlike the nilpotent and solvable case, there exist lattices which are not co-
compact. Another difference with the solvable case is the following result by Kazdan and
Margulis:

Theorem 1.3.66. [Rag12, 11.9 Corollary] Let G be a connected semisimple Lie group without
compact factors and µ a Haar measure on G. Then there exists a constant C > 0 with the following
property. For any lattice Γ of G, we have µ(F ) > C, where F is a strict fundamental domain for
G/Γ on G.

If a lattice in a semisimple Lie group is the fundamental group of an aspherical manifold
then it needs to be torsion-free. Consequently, it is important to understand torsion ele-
ments in lattices of semisimple Lie groups. The main result is known as Selberg’s lemma:

Theorem 1.3.67. (Selberg’s lemma, [Mor01b, (4.2.8)Theorem]) Let G be a connected semisimple
linear group without compact factors and Γ a lattice of G. Then Γ contains a normal torsion-free
lattice Γ′ of finite index in Γ.

Recall that a Lie group G is linear if there exists an injective morphism G −→ GL(l, R) for
some l. The condition of G being linear is essential in theorem 1.3.67. In [Del78], Deligne
constructed lattices in the universal cover of Sp(2n, R) which are not virtually torsion-free.
The first example of cocompact lattice which is not virtually torsion-free was constructed
by Raghunathan in [Rag84] by using the universal cover of Spin(2, n). Note that if G is a
connected semisimple Lie group then G/ZG is a connected semisimple linear Lie group,
by taking the adjoint representation Ad : G/ZG −→ GL(l, R) with l = dim G.

The proof of Selberg’s lemma uses Borel’s density theorem, which has far-reaching conse-
quences.

Theorem 1.3.68. (Borel’s density theorem,[Mor01b, (4.5.1) Theorem]) Assume that G is a connected
semisimple linear group without compact factors, Γ is a lattice of G and V is a finite dimensional
vector space over R or C with a representation ρ : G −→ GL(V). Then any ρ(Γ)-invariant vector
or subspace of V is ρ(G)-invariant.
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We are interested in the next two consequences of Borel’s density theorem:

Corollary 1.3.69. [Mor01b, (4.5.3) Corollary] Let G be a connected semisimple linear group without
compact factors and Γ a lattice of G. The group NG(Γ)/Γ is finite and CG(Γ) = ZG (equivalently,
ZΓ = Γ ∩ ZG).

Corollary 1.3.70. [Mor01b, (4.5.2) Corollary] Let G be a connected semisimple linear group without
compact factors, Γ a lattice of G and H be a connected closed subgroup of G. Assume that Γ
normalizes H, then H is normal in G.

We can deduce the next corollary from corollary 1.3.70

Corollary 1.3.71. Let G be a connected semisimple linear group without compact factors and Γ a
torsion-free lattice of G. Then Γ does not contain normal solvable subgroups.

Proof. Assume on the contrary, that Γ contains a solvable normal subgroup Λ. Then, the
connected component of the identity of the Zariski closure Λ

o
is a connected solvable Lie

subgroup of G. Since Λ is normal in Γ then Λ
o

is normalized by Γ. By corollary 1.3.70,
Λ

o
is a connected solvable normal subgroup of G, which contradicts the semisimplicity of

G.

Definition 1.3.72. Let G be a connected semisimple Lie group. A lattice Γ is said to be irreducible
if ΓH is dense in G for every non-compact closed normal subgroup H of G. A lattice that it is not
irreducible will be called reducible.

For other conditions which are equivalent to irreducibility we refer to [Rag12, 5.21. Corol-
lary].

Remark 1.3.73. If G is a simple Lie group then all lattices of G are irreducible.

If Γi is a lattice of a connected semisimple Lie group Gi for i = 1, 2, then Γ1 × Γ2 is a reducible
lattice for G1 × G2.

Proposition 1.3.74. [Mor01b, (4.3.3) Proposition] Let G be a centreless connected semisimple Lie
group without compact factors and let Γ be a lattice of G. Then there exist semisimple subgroups
G1, . . . , Gr of G and lattices Γi ≤ Gi for all 1 ≤ i ≤ r such that G = G1× · · ·Gr and Γ1× · · · × Γr

is a normal finite index subgroup of Γ.

Another important concept to study lattices in semisimple Lie groups is the real rank of a
semisimple group.

Definition 1.3.75. Let G be a semisimple linear connected Lie group. A subgroup A is a R-split
torus if there exists an element g ∈ GL(n, R) such that gAg−1 consists of diagonal matrices. The
rankR G is the dimension of a maximal R-split torus A in G. It is independent of the choice of A
and it only depends on G as a Lie group (that is, it is independent of the choice of embedding of G
in a linear group).
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The real rank rankR G has a geometric interpretation. Given a semisimple linear connected
Lie group G and a maximal compact subgroup K ≤ G, a flat is a connected totally geodesic
flat submanifold of the symmetric space G/K. Then rankR G is the dimension of the largest
closed (in the sense that it contains all its accumulation points), simply connected flat of
G/K. The next proposition summarises some useful properties of rankR G.

Proposition 1.3.76. [Mor01b, §8.1] Let G be a semisimple connected Lie group. Then:

1. We have rankR(G) = 0 if and only if G is compact.

2. If rankR(G) = n, then Zn ≤ Γ for any lattice of Γ of G.

3. Let G′ be another semisimple connected Lie group. Then rankR(G × G′) = rankR(G) +

rankR(G′).

The behaviour of lattices of a connected semisimple Lie group G is really different depend-
ing on whether rankR G = 1 or rankR G > 1. For example:

Proposition 1.3.77. [Mor01b, §10.2] Assume that Γ is a cocompact lattice in G. Then Γ is hyper-
bolic (in the sense of remark 1.3.85) if and only if rankR G = 1.

Our aim is to study the outer automorphism group of a lattice Γ. In order to do so, we will
need rigidity results which extend automorphisms of Γ to automorphisms of G.

Theorem 1.3.78. (Mostow-Prasad-Margulis rigidity theorem, [Mor01b, (15.1.2) Theorem]) Let G
and G′ be connected semisimple linear Lie groups without compact factors, and let Γ and Γ′ be
lattices of G and G′ respectively. Assume that G and G′ have trivial center. Finally, assume that
there does not exists any simple factor H of G such that H ∼= PSL(2, R) and H ∩ Γ1 is a lattice in
H. Then any isomorphism from Γ to Γ′ extends to a unique continuous isomorphism from G to G′.

Theorem 1.3.79. (Margulis superrigidity, [Mor01b, §16.1]) Let G be a connected semisimple linear
group without compact factors and Γ a lattice of G. Assume that rankR G ≥ 2 and that Γ is an
irreducible lattice. Given a representation ρ : Γ −→ GL(n, R), let ρ(Γ)

o
be the identity compo-

nent of the Zariski closure of ρ(Γ) in GL(n, R) and set Γ0 = ρ−1(ρ(Γ)
o
). Then there exists a

representation ρ̃ : G −→ ρ(Γ)
o

such that ρ̃|Γ0
= ρ|Γ0

.

Theorem 1.3.80. (Margulis normal theorem,[Mor01b, (17.1.1) Theorem]) Let G be a connected
semisimple linear group without compact factors and Γ a lattice of G. Assume that G has rankR G ≥
2 and finite center, and that Γ is an irreducible lattice. If N is a normal subgroup of Γ, then either
N ≤ ZG or Γ/N is finite.

Finally, we recall a well-known fact about the outer automorphism group of semisimple
Lie groups.

Lemma 1.3.81. [Gor94, Theorem 3.3.1] Let G be a connected semisimple Lie group. Then Out(G)

is finite.
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Relatively hyperbolic groups

We now introduce the results we need from the theory of relatively hyperbolic groups. For
an introduction to relatively hyperbolic groups we refer to [Bow97, Osi06].

Let us recall the definition of relative hyperbolicity from [Osi06, MO10]. Given a group H
and a collection of proper subgroups {Hi}i∈I , a subset X of G is a relative generating set
of H with respect to {Hi}i∈I if X together with the union of all Hi generates H. In this
situation H can be written as a quotient group of a free group F = (∗i∈I Hi) ∗ F(X), where
F(X) denotes the free group with basis X. If the kernel F −→ H is the normal closure of
a subset R of F then we say that H has a relative presentation ⟨X, Hi, i ∈ I|R⟩. If X and R
are finite sets then we say that H is finitely presented relative to {Hi}i∈I .

Set H =
⊔

i∈I(Hi \ {e}). Given a word W in the alphabet X± ∪H representing the trivial
element e in H there exists an element of the form ∏k

j=1 f jR±1
j f−1

j which is equal to W in
the group F , where Rj ∈ R and f j ∈ F . The smallest possible k for which W is equal
to an element of the form ∏k

j=1 f jR±1
j f−1

j is called the relative area of W and denoted by

Arearel(W). If ||W|| denotes the length of W in the alphabet X± ∪H then:

Definition 1.3.82. [MO10, Definition 2.1] A group H is hyperbolic relative to a collection of proper
subgroup {Hi}i∈I if H is finitely presented relative to {Hi}i∈I and there is a constant C > 0 such
that any word W in X± ∪H representing the identity in H satisfies that

Arearel(W) ≤ C||W||.

The groups Hi are called peripheral subgroups. We say that a group H is relatively hyperbolic if
there exists a collection of subgroups {Hi}i∈I such that H is hyperbolic relative to {Hi}i∈I .

Remark 1.3.83. The definition is independent of the choice of X and R (see [Osi06]).

Remark 1.3.84. There are other definitions of relative hyperbolicity of a group H with respect a
collection of subgroups {Hi}i∈I in the literature. If H is torsion-free and finitely presented and Hi

is finitely presented for all i, then all the definitions are equivalent (see [BSB08, Definition 1.1] and
references therein). This will happen in our setting.

Remark 1.3.85. A group H is hyperbolic if it is hyperbolic relative to the collection of subgroups
which only contains the trivial subgroup.

We need to introduce relative hyperbolicity because of the next theorem (compare to propo-
sition 1.3.77):

Theorem 1.3.86. ([Far98] and [Gro87, §0.2(F)]) A lattice Γ in a connected semisimple Lie group
without compact factors G is relatively hyperbolic if and only if rankR G = 1. If rankR G = 1,
then Γ is hyperbolic relative to the collection of all its cusp subgroups associated to the cusps of the
symmetric space H \ G/Γ. The cusp subgroups are virtually nilpotent.
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Let H be a group relatively hyperbolic to {Hi}i∈I . Recall that h ∈ H is said to be parabolic
if its is conjugate to an element of Hi for some i. An element h ∈ H which is not parabolic
is said to be hyperbolic.

Lemma 1.3.87. Let H be a torsion-free group relative hyperbolic to {Hi}i∈I . Then:

1. [MO10, Lemma 2.4] If h ∈ H is hyperbolic then CH(h) is cyclic.

2. [MO10, Proposition 3.3] The set of hyperbolic elements generates H.

3. [MO10, Lemma 2.2] Given i ∈ I and h ∈ H \ Hi, we have Hi ∩ hHih−1 = {e}.

We are interested in the following corollary of item 3.

Corollary 1.3.88. Let h be a non-trivial element of Hi, then CH(h) ≤ Hi.

Proof. Suppose that h′ ∈ CH(h). Then h′hh′−1 = h, therefore Hi ∩ h′Hih′−1 ̸= {e}. By
lemma 1.3.87, h′ ∈ Hi. Thus, CH(h) ≤ Hi.

Lattices in connected Lie groups

The last part of this section focuses on lattices in connected Lie groups without the semisim-
plicity assumption. Given a connected Lie group G, a lattice Γ of G and a closed subgroup
H of G, our goal is to understand when Γ ∩ H is a lattice of H.

Definition 1.3.89. Let G be a connected Lie group and H a closed subgroup. Given a lattice Γ of
G we say that H is Γ-hereditary if H ∩ Γ is a lattice of H. We say that H is lattice hereditary if it is
Γ-hereditary for every lattice Γ of G.

Lemma 1.3.90. [Gen15, Theorem 2.6] Let Γ and H be a lattice and a closed subgroup of G respec-
tively. If H is normal or Γ is cocompact the following are equivalent:

1. H is Γ-hereditary.

2. The image of Γ is discrete in G/H.

3. The image of Γ is a lattice in G/H (when H is normal).

Theorem 1.3.91. [Gen15, Corollary 1.3] Let G be a connected Lie group and let N and R be its
nilpotent and solvable radical respectively. If the semisimple part S = G/R of G has no compact
factor acting trivially on R then the nilradical N is lattice hereditary. Moreover if no compact factor
of S acts trivially on R/N then R is lattice hereditary.

From the theorem one can deduce:

Corollary 1.3.92. [Gen15, Corollary 1.4] Let G be a connected Lie group and let N and R be its
nilpotent and solvable radical respectively, let S = G/R be the semisimple part of G and let C and
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SK be the maximal connected semisimple compact normal subgroups of G and S respectively. Then
the following subgroups of G are lattice hereditary:

C ⊆ NC ⊆ NSK ⊆ RSK.

The solvable radical R is not in general lattice hereditary. For example, let G = R× SO(3)
and Γ is the subgroup generated by (1, a), where a ∈ SO(3) has infinite order. Since SO(3)
is compact [0, 1]× SO(3) is a fundamental domain and Γ \G is compact, so Γ is a lattice. In
this case the solvable radical is R = R and S = SO(3). Then, R ∩ Γ = (0, Id) which it is not
a lattice of R.

To solve this problem we use the concept of amenability:

Definition 1.3.93. A compact convex G-space is a G-invariant compact and convex subset of any
locally convex topological vector space on which G acts linearly.

We say that G is amenable if every non-empty convex compact G-space has a G-fixed point.

There are many equivalent definitions of amenability (see [Mor01b, (12.3.1) Theorem]). We
are interested in the following properties of amenable groups:

Lemma 1.3.94. (See [Zim13, §4.1] or [Mor01b, Chapter 12])

1. Let 1 −→ G1 −→ G2 −→ G3 −→ 1 be a short exact sequence of groups. Then G2 is
amenable if and only if G1 and G3 are amenable.

2. Solvable Lie groups and compact Lie groups are amenable. In particular, finite groups and Z

are amenable.

3. SL(2, R) is not amenable.

4. A lattice Γ of a Lie group G is amenable if and only if G is amenable.

Let G be a connected Lie group, let R be its solvable radical and let SK be the maximal
connected semisimple compact subgroups of S respectively. The group A = RSK is known
as the amenable radical of G, since it is the connected maximal amenable normal subgroup
of G. We have a decomposition G = A ⋊ Snc (where Snc = S/SK), analogous to the Levi
decomposition G = R ⋊ S.

By corollary 1.3.92, given a lattice Γ of G, the subgroup Γ∩ A is a lattice of A. This fact will
be crucial to prove theorem 10.

1.3.6 Group actions on aspherical manifolds

Let M be a closed connected manifold and let x0 ∈ M. Assume that we have a finite
group G acting on M. Then for each g ∈ G we have an isomorphism g∗ : π1(M, x0) −→
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π1(M, gx0). If x0 is fixed by the action of G on M, then we can define a group morphism
G −→ Aut(π1(M, x0)).

If x0 is not fixed by the action of G on M then above group morphism is not well defined.
However, since π1(M, x0) and π1(M, gx0) are isomorphic and the isomorphism is given
by a conjugation, we have a well-defined group morphisms ψ : G −→ Out(π1(M, x0)) =

Aut(π1(M, x0))/ Inn(π1(M, x0)) given by ψ(g) = [g∗ : π1(M, x0) −→ π1(M, gx0)]. We will
say that the action is inner if ψ : G −→ Out(π1(M, x0)) is trivial. We will omit the base
point whenever it is not necessary for the discussion.

We can always lift the action of G on M to an action of a group G̃ on the universal cover
M̃, where the group G̃ fits into the short exact sequence

1 π1(M) G̃ G 1.

The abstract kernel of the group extension coincides with the group morphism ψ.

Lemma 1.3.95. [LR10, Lemma 3.1.14] Let G be a finite group acting effectively on a closed manifold
M. Then, there is a commutative diagram with exact rows and columns

1 1 1

1 Zπ1(M) CG̃(π1(M)) Ker ψ 1

1 π1(M) G̃ G 1

1 Inn(π1(M)) Aut(π1(M)) Out(π1(M)) 1

1

ψ

where CG̃(π1(M)) is the centralizer of π1(M) in G̃.

Moreover, if M is aspherical we can use the above commutative diagram and theorem 1.1.37
to obtain the following theorem:

Theorem 1.3.96. [LR10, Theorem 3.1.16] Let G be a finite group acting effectively on a closed
connected n-dimensional aspherical manifold M, then:

1. CG̃(π1(M)) is torsion free.

2. Ker ψ is abelian. Moreover, if Zπ1(M) is finitely generate of rank k, then Ker ψ is a subgroup
of the torus Tk.



1.3 Aspherical manifolds 65

Proof. Suppose that CG̃(π1(M)) has torsion. Thus, there exists a prime p such that Z/p ≤
CG̃(π1(M)). There is an effective action of CG̃(π1(M)) on M̃. Let F̃ = M̃Z/p, which a
proper non-empty Z/p-acyclic subset of M̃ by theorem 1.1.37. Since π1(M) acts freely on
M̃ and Z/p and π1(M) commute we have a free action of π1(M) on F̃. Thus, F = F̃/π1(M)

is a proper subset of M.

Since F̃ is Z/p-acyclic, we have H∗(F, Z/p) ∼= H∗(π1(M), Z/p) ∼= H∗(M, Z/p). Assume
that M is orientable (if not we can take the orientable 2-cover), then Hn(M, Z/p) = Z/p.
But Hn(F, Z/p) = 0 since F is a proper subset of M. We have reached a contradiction. In
conclusion, CG̃(π1(M)) is torsion free.

To prove the second part we note that the first row of the diagram of lemma 1.3.95 is
a central short exact sequence. Since CG̃(π1(M)) is torsion-free then it is abelian and
rank CG̃(π1(M)) = k. Therefore, Ker ψ is a subgroup of Tk

We assume now that G is a compact Lie group but not necessarily finite. Suppose that
G acts effectively on a closed aspherical manifold M. Given x0 ∈ M, we can define the
evaluation map evx0 : G −→ M such that evx0(g) = gx0. Recall that the action is said to be
injective if the map evx0∗ : π1(G, e) −→ π1(M, x0) is injective for all x0 ∈ M. Then:

Theorem 1.3.97. [LR10, Corollary 3.1.17, Corollary 3.1.12] Let G be a compact Lie group acting
effectively on a closed aspherical manifold M. Then:

1. If G is connected, then G is a torus Tk and the action is injective. In particular, any action of
a connected Lie group on a closed connected aspherical manifold is almost-free.

2. If x0 is a fix point, then G is finite and the group morphism G −→ Aut(π1(M, x0)) is
injective.

3. If Zπ1(M, x0) = {e}, then G is finite and ψ : G −→ Out(π1(M, x0)) is injective.

Recall that an action of a connected Lie group on a manifold is said to be almost free if
all the stabilizers are finite. The proof of theorem 1.3.97 is similar to the proof of theo-
rem 1.3.96, hence we will omit it.

The next part of this section is devoted to explain the Seifert space construction, which can
be used to construct torus actions on some aspherical manifolds. The main reference used
is [LR10].

Definition 1.3.98. Let P be a manifold and G a Lie group acting effectively on P. A weak G-
equivalence is a homeomorphism f : P −→ P such that there exists a group morphisms α f :
G −→ G satisfying f (gx) = α f (g) f (x) for all g ∈ G and x ∈ X. We denote the group of weak
G-equivalence by HomeoG(P).

We define MapG(P, G) to be the group of G-equivariant continuous maps f : P −→ G, where the
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action of G is given by the conjugation on G.

Note that HomeoG(P) is the normalizer of G in Homeo(P). The group HomeoG(P) has the
following structure:

Lemma 1.3.99. [LR10, Proposition 4.2.8, Corollary 4.2.10] Assume that G acts freely on P in such
a way that the projection P −→ P/G = W is a principal G-bundle. Then we have the exact
sequence

1 −→ G×ZG MapG(P, G) −→ HomeoG(P) −→ Out(G)×Homeo(W).

If the principal G-bundle P −→W is trivial, then we have a short exact sequence

1 −→ Map(W, G)⋊ G −→ HomeoG(P) −→ Out(G)×Homeo(W) −→ 1.

Let Λ ≤ HomeoG(P) be a discrete subgroup with respect the compact-open topology on
HomeoG(P). Then Λ acts on W. If this action is proper then we say that the induced map
τ : Λ \ P −→ Λ \W is a Seifert fibering and Λ \ P is a Seifert fibered space modeled on the
principal bundle P −→ W. Note that Γ = G ∩Λ is a closed normal subgroup of Λ which
acts properly and freely on each fiber of P −→ W. We will say that Γ \ G is a typical fiber
of τ. Note also that Q = Λ/Γ acts on W. With these notions we can introduce the Seifert
construction.

Definition 1.3.100. [LR10, §4.6] Let P −→ W be a principal G-bundle and let H be a closed
subgroup of HomeoG(P). A Seifert construction with uniformizing group H for

1. A short exact sequence 1 −→ Γ −→ Λ −→ Q −→ 1

2. A group morphism i : Γ −→ G×ZG MapG(P, G)

3. A proper action ρ : Q −→ Homeo(W)

is a group morphism θ : Λ −→ H such that θ|Γ = i such that the diagram

Λ H HomeoG(P)

Λ Q Homeo(W)

idΛ

θ

ρ

commutes.

Definition 1.3.101. A Lie group G has the the unique automorphism extension property (UAEP),
if for every lattice Γ ≤ G and automorphism f ∈ Aut(Γ) there exists a unique automorphism
f̃ ∈ Aut(G) such that f̃|Γ = f .
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For example, all simply connected nilpotent Lie groups has the UAEP.

Assume that G is a simply connected solvable Lie group with the UAEP. Let W be a mani-
fold and consider the trivial principal G-bundle G×W −→W. Then:

Theorem 1.3.102. [LR10, Theorem 7.3.2](Seifert construction theorem) Let Γ ≤ G be a lattice and
ρ : Q −→ Homeo(W) a proper discrete action by a discrete subgroup Q. Then for any extension
1 −→ Γ −→ Λ −→ Q −→ 1 (with abstract kernel ψ : Q −→ Out(Γ)), the following are true:

1. Existence: There exists θ : Λ −→ HomeoG(G×W) making the following diagram

1 Γ Λ Q 1

1 Map(W, G)⋊ Inn(G) HomeoG(G×W) Out(G)⋊ Homeo(W) 1

i θ ψ̃×ρ

commute, where ψ̃ : Q −→ Out(G) is obtained by using the UAEP of G and the abstract
kernel ψ.

2. Uniqueness: Suppose that θ1, θ2 : Λ −→ HomeoG(G ×W) are two group morphisms
fitting on the above diagram with fixed i and ψ̃× ρ. Then there exists f ∈ Map(W, G) such
that θ2 = f θ1 f−1.

3. Rigidity: Suppose that θ1, θ2 : Λ −→ HomeoG(G ×W) are two group morphisms fitting
on the above diagram with possible distinct i and ρ. Then there exists f ∈ HomeoG(G×W)

such that θ2 = f θ1 f−1.

We have the following application for closed aspherical manifolds.

Theorem 1.3.103. [LR10, Theorem 11.1.2] With the same hypothesis as in theorem 1.3.102, assume
that W is also contractible and W/Q is compact. If Γ is torsion-free then for any Seifert construction
θ : Λ −→ HomeoG(G ×W) the quotient (G ×W)/θ(Λ) is a closed aspherical manifold with
fundamental group Λ.

Using the Mostow fibration, theorem 1.3.103 can be extended as follows:

Theorem 1.3.104. [LR10, Theorem 11.1.4] Let Λ be a torsion-free group fitting in the short exact
sequence 1 −→ Γ −→ Λ −→ Q −→ 1 where Γ is virtually polycyclic and Q acts properly on
a contractible manifold with compact quotient. Then there exists a closed aspherical manifold with
fundamental group Λ.

Using the Seifert construction we can study torus actions on aspherical manifolds, as
showed in the next theorems.

Theorem 1.3.105. [LR10, Theorem 11.7.29] Let M be a closed connected aspherical manifold such
that there exists a short exact sequence 1 −→ ΓR −→ π1(M) −→ Γnc −→ 1 where ΓR is virtually
polycyclic and Γnc is a centreless cocompact lattice in a semisimple connected Lie group S. Then
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there exists a closed connected aspherical manifold M′ homotopically equivalent to M such that
tor-sym(M′) = rankZπ1(M′).

Proof. Since ΓR is a virtually polycyclic group it contains a characteristic finite index sub-
group Γ′ which is a Mostow-Wang group (see theorem 1.3.51). Then ΓR contains a charac-
teristic subgroup of finite index Γ′′ which is predivisible. The discrete nilradicals of these
groups satisfy nΓR =n Γ′ =n Γ. Thus, we will denote them by ∆. Moreover, Γ′′/∆ ∼= Zm.
Finally, let Q = Γ/Γ′′.

Let K be a maximal compact subgroup of S. Then the action of Γnc on K \ S induces
a group action of Q on K \ S via the group morphism Q = Γ/Γ′′ −→ Γnc. Since ∆ is
characteristic in Γ′′ then ∆ is normal in Γ. Hence, there exist short exact sequence 1 −→
∆ −→ Γ −→ Γ/∆ −→ 1 and 1 −→ Zm −→ Γ/∆ −→ Q −→ 1, where the second short
exact sequence exists because Γ′′ is predivisible. We use the Seifert space construction
with the second short exact sequence and the action of Q on K \ S to obtain an action of
Γ/∆ on Rm × K \ S. We use again the Seifert space construction, now using the first exact
sequence and the group action of Γ/∆ on Rm × K \ S to obtain a group action of Γ on
∆R × Rm × K \ S, where ∆R denotes the real Mal’cev completion of ∆. We have ZΓ ≤
Z∆ ≤ Z∆R. If k = rank(ZΓ) then there exists a subgroup Rk ≤ ∆R such that Γ∩Rk ∼= Zk.
In consequence, the action by multiplication of Rk on ∆R × Rm × K \ S descends to an
action of Tk on M′ = (∆R ×Rm × K \ S)/Γ. Since M′ is a closed aspherical manifold with
the same fundamental group as M then M and M′ are homotopically equivalent. Finally,
the bound tor-sym(M′) ≤ k is reached, so tor-sym(M′) = k, as we wanted to see.

Theorem 1.3.106. [LR10, Theorem 11.7.28] Let K \ G/Γ be a closed connected aspherical locally
homogeneous space and let R be its radical. Assume that R is lattice-hereditary, that R has the
UAEP and that exp : L(R) −→ R is surjective. Then tor-sym(M) = rankZΓ.

Proof. Let G = R ⋊ϕ S be the Levi decomposition of G and let

A = {a ∈ R : (a, u) ∈ ZΓ for some u ∈ S}.

Firstly, we will see that A is commutative. Indeed, take (a, u) ∈ ZΓ and (z, e) ∈ ΓR = Γ∩ R.
Then (z, 1)(a, u) = (a, u)(z, 1) which implies that ϕ(u)(z) = a−1za. Since R has the UAEP,
both automorphisms ϕ(u) and ca−1 extend to the same automorphism of R. Therefore,
ϕ(u)(x) = a−1xa for all x ∈ R. In addition, ϕ(v)(a) = a for any (a, v) ∈ Γ, which implies
that A is a commutative subgroup of R.

Assume that ZΓ ∼= Zk and choose generators (ai, ui) for i = 1, . . . , k. Since exp : L(R) −→
R is surjective, we can choose elements Ai ∈ L(R) such that exp(Ai) = ai. Then we can
define a map αR : Rk −→ L(R)

exp−−→ R, where the first map sends the standard basis of Rk

to {A1, . . . , Ak}. Since {A1, . . . , Ak} generates a commutative Lie subalgebra (because A is
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commutative), the exponential map restricted to this subalgebra is a group morphism. In
consequence, α is also a group morphism.

Now, we construct a group morphism αS : Rk −→ S. Let S = S1 × · · · × Sr, where Si are
simple Lie groups. The maximal compact subgroup of the adjoint form of Si is either Hi or
Hi × S1, where H has no circle factors, depending on whether Si has infinite center or not.
This determines a subgroup H̃i ×Rϵi ⊆ Si where H̃i is compact and ϵi is 1 if Si has infinite
center and 0 otherwise. Then K = ∏ H̃i is a maximal compact subgroup of S. Now we take
the map ZΓ −→ ∏(H̃i ×Rϵi) −→ ∏ Rϵi ⊆ S, which can be extended to a group morphism
αS : Rk −→ S.

The group K commutes with ∏ Rϵi , hence we have an induced Rk action on K \ S (which
may not be effective). We can define a group action of Rk on K \ G such that (b, w)x =

(bαR(x), wαS(x)). This action commutes with the action of Γ on K \ G and since Rk ∩ Γ =

ZΓ, the action descends to an action of Tk on K \ G/Γ.

We end this section by introducing some generalizations to the concept of aspherical man-
ifolds which possess similar properties.

Definition 1.3.107. [LR10, Definition 3.2.7] Let M be a closed connected oriented n-dimensional
manifold. Then:

1. M is hyper-aspherical if there exists an aspherical n-dimensional manifold N and a degree one
map f : M −→ N.

2. M is said to be a K-manifold if there exists a torsion-free group Γ and a map f ∗ : M −→
K(Γ, 1) such that f ∗ : Hn(K(Γ, 1), Z) −→ Hn(M, Z) is surjective.

3. M is admissible if the only periodic self-homeomorphisms of M̃ commuting with the deck
transformations group π1(M) are elements of Zπ1(M).

Remark 1.3.108. Note that

Aspherical =⇒ Hyper-aspherical =⇒ K-manifold =⇒ Admissible

but no implication can be reversed (see [LR10, 3.2.8] or [LR87] for a complete discussion)

The next result is a generalization of Theorem 1.3.96 for the class of admissible manifolds.

Theorem 1.3.109. [LR10, Theorem 3.2.2] Let M be an admissible manifold and suppose that
Zπ1(M)/Torsion(Zπ1(M)) has finite rank k. Then:

1. If G is a connected Lie group acting on M then G ∼= Tr with r ≤ k.

2. If G is a finite group acting on M then Ker(ψ : G −→ Out(π1(M))) is a subgroup of Tk.

3. If G is a finite group acting on M with a fix point x then ϕ : G −→ Aut(π1(M, x)) is
injective.
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1.4 Noncommutative ring theory

The objective of this section is to introduce some tools of noncommutative ring theory
which will be used to prove theorem 23. Most of the results of this section are general-
izations of well-known facts of commutative algebra. This will enable us to generalize the
commutative algebra results in [MiR24a] to its noncommutative counterparts in a straight-
forward way. Our main references are the books [GW04, Rob13, Lam91, McR1987] as well
as the notes [Bel88].

Our interest in noncommutative ring theory stems from the group ring of noncommutative
groups. Let R be a ring and let G be a group. Recall that the group ring RG is a ring whose
elements are formal sums ∑g∈G agg where only finitely many ag ∈ R are non-zero. Given
another element ∑g′∈G bg′g′ ∈ RG we define

( ∑
g∈G

agg)( ∑
g′∈G

bg′g′) = ∑
h∈G

chh

where
ch = ∑

gg′=h
agbg′ .

If either R or G are noncommutative then RG will be a noncommutative ring. Let us study
more carefully the structure of group rings of finitely generated torsion-free 2-step nilpo-
tent groups. Given a ring R and an automorphism α : R −→ R, a skew-Laurent ring
S = R[x±1; α] is a ring satisfying that R ⊆ S is a subring, S is a free R-module with basis
{1, x±1, x±2, . . . } and xr = α(r)x. This construction can be repeated over S to obtain an iter-
ated skew-Laurent ring, denoted by R[x±1

1 , . . . , x±1
n ; α1, . . . , αn] = (R[x±1

1 ; α1] · · · )[x±1
n ; αn].

Let Γ = Z f ×c Zb be a torsion-free 2-step nilpotent group where c : Zb × Zb −→ Z f

is a normalized 2-cocycle. Take a set of generators {z1, . . . , z f , x1, . . . , xb} of Γ. Then the
elements of RΓ are of the form ∑ ze1

1 · · · z
e f
f xa1

1 · · · x
ab
b r. Recall the product of two elements

(z, x), (z′, x′) ∈ Γ is (z + z′ + c(x, x′), x + x′) and that for any x ∈ Zb, the maps c(·, x) :
Zb −→ Z f and c(x, ·) : Zb −→ Z f are group morphisms.

Lemma 1.4.1. The group ring RΓ is an iterated skew-Laurent ring.

Proof. We proceed by induction on the number of generators of Γ. If Γ ∼= Z then RZ =

R[z±1; idR]. To use the induction step we consider Λ = ⟨z1, . . . ., z f ⟩ ⊴ Γ. Since (z, x)(0, xb) =

(z + c(x, xb), x + xb) and (0, xb)(z, x) = (z + c(xb, x), x + xb) we can define an isomorphism
α : Λ −→ Λ such that α(z, x) = (z + c(xb, x)− c(x, xb), x) which extends to an automor-
phism α : RΛ −→ RΛ. Then (RΛ)[x±1

b ; α] = RΓ.

More in general, group rings over virtually polycyclic groups are iterated skew-Laurent
rings (see [GW04, pg. xvii]).
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Our main goal is to understand the properties of RΓ. We start by recalling some basic
definitions of noncommutative ring theory.

From now on R will denote a ring with unit. A right R-module is an abelian group (M,+)

together with an operation · : M× R −→ M such that

1. (x + y) · r = x · r + y · r for all x, y ∈ M and r ∈ R.

2. x · (r + s) = x · r + x · s for all x ∈ M and r, s ∈ R.

3. (x · r) · s = x · (rs) for all x ∈ M and r, s ∈ R.

4. x · 1 = x for all x ∈ M.

We can also define left R-modules analogously. We will assume that all the modules are
right R-modules unless stated the contrary and we will write xr to denote x · r. Note that
R has structure of right R-module and of left R-module.

Let A be a collection of subsets of a set A. We say that A satisfies the ascending chain
condition (or ACC) if for every ascending infinite chain A1 ⊆ A2 ⊆ · · · of elements of A
there exists a number i0 such that Ai = Ai0 for all i ≥ i0. Recall that B ∈ A is a maximal
element if for any A ∈ A such that B ⊆ A we have B = A.

Proposition 1.4.2. [GW04, Proposition 1.1] For a module M, the following are equivalent:

1. M has the ACC property on the set of its submodules.

2. Every nonempty family of submodules of M has a maximal element.

3. Every submodule of M is finitely generated.

If M satisfies these equivalent conditions we say that M is Noetherian.

Definition 1.4.3. A ring R is right (left) Notherian if it is Noetherian as a right (left) R-module. If
R is both right and left Noetherian we say that R is a Noetherian ring.

Lemma 1.4.4. [GW04, Proposition 1.2] Let N be a submodule of M. Then M is Noetherian if
and only if N and M/N are Noetherian. In particular, if R is a right Noetherian ring, all finitely
generated right R-modules are Noetherian.

The first important theorem we need is a generalization of the Hilbert basis theorem. Recall
that the Hilbert basis theorem asserts that if R is a commutative Noetherian ring then the
polynomial ring R[x] is also Noetherian. The generalization to the noncommutative case is

Theorem 1.4.5. [GW04, Theorem 1.14, Corollary 1.15] Let R be a right (left) Noetherian ring and
α : R −→ R an automorphism. Then, the skew-Laurent ring R[x±1; α] is right (left) Noetherian.

Theorem 1.4.5 can be used to prove by induction the next theorem due to P.Hall.
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Theorem 1.4.6. [GW04, Theorem 1.16] Let R be a right (left) Noetherian ring and G a virtually
polycyclic group. Then, the group ring RG is right (left) Noetherian.

In particular, if Γ is a torsion-free finitely generated nilpotent group then ZΓ is Noetherian.

The next part of the section is devoted to composition series. Let A be a collection of
subsets of a set A. We say that A satisfies the descending chain condition (or DCC) if for
every descending infinite chain A1 ⊇ A2 ⊇ · · · of elements of A there exists a number i0
such that Ai = Ai0 for all i ≥ i0. Recall that B ∈ A is a minimal element if for any A ∈ A
such that B ⊇ A we have B = A.

Proposition 1.4.7. [GW04, Chapter 4, Artinian modules] For a module M, the following are equiv-
alent:

1. M has the DCC property on the set of its submodules.

2. Every nonempty family of submodules of M has a minimal element.

If M satisfies these equivalent conditions we say that M is Artinian.

Definition 1.4.8. A ring R is right (left) Artinian if it is Artinian as a right (left) R-module. If R
is both right and left Artinian we say that R is an Artinian ring.

Lemma 1.4.9. [GW04, Proposition 4.5] Let N be a submodule of M. Then M is Artinian if and
only if N and M/N are Artinian. In particular, if R is a right Artinian ring, all finitely generated
right R-modules are Artinian.

Definition 1.4.10. A ring is simple if its only ideals are 0 and R.

In commutative algebra, the only simple ring are fields. However, in non commutative al-
gebra there exist simple rings which are not division rings. For example, given a field k and
an infinite order automorphism α : k −→ k the skew Laurent ring k[x±1; α] is simple (see
[GW04, Example 1S]). Simple Artinian rings will play the role of fields in noncommutative
ring theory.

Definition 1.4.11. A composition series for a module M is a chain of submodules

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

such that each of the factors Mi/Mi−1 is a simple module. The number n is called the length of the
composition series. We say that a module M has finite length if M has a composition series. By
convention the module 0 has length 0.

Proposition 1.4.12. [GW04, Proposition 4.8] A module M has finite length if and only if M is both
Noetherian and Artinian.

A finite length module can have different composition series. The Jordan-Hölder theorem
also holds for modules over noncommutative rings:
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Theorem 1.4.13. [GW04, Theorem 4.11] Let M be a finite length module. Then all composition
series of M have the same length.

In particular, given a finite length module M we can define lenght(M) to be the length of
any of its composition series.

Lemma 1.4.14. [GW04, Proposition 4.12] Let N be a submodule of a finite length module M. Then

lenght(M) = lenght(N) + lenght(M/N).

Our next goal is to study prime ideals of Noetherian noncommutative rings. Recall that a
proper ideal p of R is prime if whenever I and J are ideals such that I J ⊆ p then I ⊆ p or
J ⊆ p. Equivalently, p is a prime ideal if and only if for any x, y ∈ R satisfying xRy ⊆ p,
then x ∈ p or y ∈ p (see [GW04, Proposition 3.1]). A prime ideal is said to be minimal if it
does not properly contain any prime ideal.

Given a R-module M, the annihilator of M is

annR(M) = {r ∈ R : xr = 0 for all x ∈ M}.

Note that annR(M) is an ideal of R.

Definition 1.4.15. A module M is faithful if annR(M) = 0. A module is fully faithful if all
its non-zero submodules are faithful. A module M is said to be prime if it is fully faithful as a
R/ annR(M)-module.

Theorem 1.4.16. [GW04, Proposition 3.13, Proposition 3.14] Let M be a finitely generated module
over a Noetherian ring R. Then there exists a series

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

such that:

1. Mi/Mi−1 is a prime module for each i.

2. annR(Mi/Mi−1) = pi is a prime ideal for each i.

3. If p is a minimal prime over annR(M) then there exists a number i such that p = pi.

Definition 1.4.17. A ring R is prime if 0 is a prime ideal.

Theorem 1.4.18. [Lam91, (A) Connell’s Theorem] Let R be a ring and G a group. Then the group
ring RG is prime if and only if R is prime and G has no finite proper normal subgroups.

In particular, if Γ is a finitely generated torsion-free nilpotent group then ZΓ is prime.

The results presented until now point are straightforward generalizations of the theory of
commutative algebra. The next part of the section explains the theory of localization of
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prime ideals in noncommutative Noetherian rings, which present more difficulties than its
commutative counterparts.

Given a ring R and a multiplicatively closed subset C, a right localization of R with respect
C is a ring S together with a morphism i : R −→ S such that:

1. i(c) is a unit of S for each c ∈ C.

2. Every element of S is of the form i(r)i(c)−1 for some r ∈ R and c ∈ C.

3. i(r)i(c)−1 = i(r′)i(c)−1 if and only if there exists d ∈ C such that rd = r′d.

Given another ring S′ and a morphism i′ : R −→ S such that i′(c) is a unit of S′ for every
c ∈ C there exists a morphism f : S −→ S′ such that f ◦ i = i′. Thus, S is unique and hence
we will denote S by RC−1. Notice that Ker i = {r ∈ R : rc = 0 for some c ∈ C}. Thus, if all
elements of C are regular (they are not zero divisors) then condition 3 does not need the
element d.

In commutative algebra, given a multiplicatively closed subset C we can always construct
the localization RC−1. This is not the case in noncommutative algebra:

Theorem 1.4.19. [Bel88, Theorem 1.1] Let C be a multiplicatively closed set in R. The right
localization RC−1 exists if and only if C satisfies the following 2 conditions:

1. (right Ore condition) For all r ∈ R and c ∈ C there exist s ∈ R and d ∈ C such that rd = cs.

2. (right reversible) For all r ∈ R and c ∈ C such that cr = 0 there exists d ∈ C such that
rd = 0.

Lemma 1.4.20. [Bel88] Let C be a multiplicatively closed subset of a right Noetherian ring R
satisfying the right Ore condition. Then C is right reversible.

Given a right R-module M, we can localize MC−1 = M⊗R RC−1.

Lemma 1.4.21. [Bel88, Lemma 1.3] Localizations of right R-modules is an exact functor and RC−1

is flat as left R-module.

The next theorem shows that we can localize on the set of regular elements.

Theorem 1.4.22. [Bel88, Theorem 1.10](Goldie theorem) Suppose that R is a right Noetherian ring
and C is the set of regular elements of R. Then the localization RC−1 exists. Moreover, RC−1 is
Artinian simple if and only if R is prime.

We turn our attention to the localization of prime ideals. Given an ideal I of R we define
CR(I) = {r ∈ R : r + I is regular in R/I}. A prime ideal p is right localizable if we can
localize R with respect CR(p). Like in the commutative case, we will denote RCR(p)

−1 by
Rp.
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Lemma 1.4.23. [Bel88, Corollary 2.2] Let R be a right Noetherian ring and C a multiplicatively
closed subset satisfying the right Ore condition. Then there exists a bijective inclusion-preserving
correspondence between primes of R disjoint from C and primes of RC−1 given by p 7→ pC−1. If
C ⊆ CR(0), then the inverse is given by q 7→ q∩ R.

Corollary 1.4.24. Let R be a right Noetherian ring and p a right localizable prime ideal of R. Then
pRp is the unique maximal ideal of Rp and Rp/pRp is Artinian. If R is prime then Rp/pRp is simple
Artinian.

For our purpose, the main difference with commutative algebra is that in general the lo-
calization on a prime ideal may not exist. Therefore, the last result that we need is the
following:

Theorem 1.4.25. [Bel88, pg. 17](see also [Poo90, Ros71]) Let R be a commutative Noetherian
ring and Γ a finitely generated torsion-free nilpotent group. Then every prime ideal of RΓ is right
localizable.

1.5 Orbifolds

The aim of this section is to introduce the basic concepts of the theory of orbifolds, which
will become relevant when studying iterated group actions which are not free. In partic-
ular, orbifolds will be used to prove theorem 25 and proposition 27. We will use [CJ19],
[Thu22], [BG07, Chapter 4] and [ALR07] as references for generalities on orbifolds. We
refer to [GGKRW18, §2] for an introduction to group actions on orbifolds. We will follow
the classical theory of orbifolds, using local charts, instead of using Lie grupoids (for an
introduction to orbifolds using Lie grupoids we refer to [Moe02, Ler10]).

Definition 1.5.1. A local model is a pair (Ũ, Γ), where Ũ is an open connected set of Rn and Γ is a
finite group acting effectively on Ũ. A map between models (Ũ1, Γ1) and (Ũ2, Γ2) is a pair (ϕ∗, ϕ̃),
where ϕ∗ : Γ1 −→ Γ2 is a group morphism and ϕ̃ : Ũ1 −→ Ũ2 is a ϕ∗-equivariant map.

If ϕ̃ : Ũ1 −→ Ũ2 is an embedding then we say that ϕ̃ is an embedding of models. In this situation,
ϕ∗ is injective.

Definition 1.5.2. Let X be a topological space and p ∈ X. A local chart around p is a tuple
U = (U, Ũ, Γ, π) such that:

1. U is an open neighbourhood of p.

2. (Ũ, Γ) is a local model.

3. π : Ũ −→ U is a Γ-invariant map (π(γũ) = π(ũ) for all ũ ∈ Ũ and γ ∈ Γ) such that the
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following diagram commutes

Ũ

Ũ/Γ U

π

∼=

An orbifold atlas is a collection of local charts A = {Uα}α∈A satisfying that
⋃

α∈A Uα = X and
that for any p ∈ Uα ∩Uβ there exists Uγ ∈ A such that:

(i) p ∈ Uγ ⊆ Uα ∩Uβ.

(ii) We have embeddings (Ũγ, Γγ) −→ (Ũα, Γα) and (Ũγ, Γγ) −→ (Ũβ, Γβ).

An atlas A refines an atlas B if every chart in A admits and embedding in a chart in B. Two atlases
are equivalent if they have a common refinement.

Definition 1.5.3. A n-dimensional orbifold, denoted by O is a second-countable Hausdorff topolog-
ical space |O| (called the underlying topological space) together with an equivalence class of orbifold
atlas.

Remark 1.5.4. Usually the word orbifold refers to smooth orbifold, where we require the actions and
the maps in definition 1.5.1 to be smooth. Our notion of orbifold is known as topological orbifold or
orbispace (see [Che01]). Since the results we need hold for topological orbifolds as well as smooth
orbifolds we will use the term orbifold without further adjective for the sake of brevity.

Remark 1.5.5. Given p ∈ O, there always exists a local chart (Up, Ũp, Γp, πp) such that the
preimage of p by πp is a single point, π−1

p (p) = { p̃}. Consequently, p̃ is fixed by Γp. Moreover, Γp

only depends on p and not on the local chart. This type of local chart will be called good chart and
denoted by Up.

Given an orbifold O and a group Γ, we denote by ΣΓ = {p ∈ O : Γp ∼= Γ}. In particular,
Σ{e} is a manifold and a dense subset of |O|. This follows from theorem 1.1.15.

Definition 1.5.6. A map f : O1 −→ O2 between orbifolds is a continuous orbifold map if the
map f : |O1| −→ |O2| is continuous and for any p ∈ O1 and good charts Up and U f (p) such
that f (U) ⊆ U f (p) there exists a (possibly non-unique) map of local models between (Ũp, Γp) and
(Ũ f (p), Γ f (p)) such that the following diagram commutes

Ũp Ũ f (p)

Up U f (p)

f̃p

πp π f (p)

f

We say that f : O1 −→ O2 is an orbifold homeomorphism if f has an inverse map f−1 : O2 −→ O1

which is continuous in the orbifold sense.
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Note that when f : O1 −→ O2 is a homeomorphism then Γp ∼= Γ f (p) for all p ∈ O1 and
given two lifts f̃1, f̃2 : Ũp −→ Ũ f (p) then there exists γ ∈ Γ f (p) such that f̃2 = γ f̃1.

Example 1.5.7. A manifold M is an orbifold with Γp = {e} for all p ∈ M. More in general, if a
Lie group G acts effectively, properly and almost-freely on a manifold M, then the quotient M/G
can be endowed with a structure of orbifold. If O is an orbifold homeomorphic to M/G with G is a
discrete group then we will say that O is good. If G is finite then we will say that O is very good.

If an orbifold O is not good then we will say that O is bad. For example, we consider the subsets
of S2, BN = S2 \ S and BS = S2 \ N where N and S are the north and south pole respectively.
Thus, S2 = BN ∪ BS. Let B̃i = R2 for i = N, P. Suppose that aN and aS are two natural
numbers. We consider the local models (B̃i, Z/ai), where the Z/ai acts by rotations of order ai. We
consider local charts (Bi, B̃i, Z/ai, πi), where πi : B̃i −→ Bi is obtained by composing the quotient
map B̃i −→ B̃i/(Z/ai) with the corresponding stereographic projection. It is straightforward to
prove that {(BN, B̃N, Z/aN, πN), (BS, B̃S, Z/aS, πS)} forms an orbifold atlas. Thus, we obtain
an orbifold, whose underlying topological space is the sphere S2, known as the (aN, aS)-football. If
aS = 1 then the south pole becomes a regular point and the corresponding orbifold is known as the
aN-teardrop.

N

S

πN πS
π/2 2π/3

B̃N B̃S

Figure 1.4: The (4, 3)-football orbifold.

It can be proved that the (aN, aS)-football orbifold is good if and only if aN = aS. In particular,
the (a, a)-football orbifold is the orbit space of the action of Z/a by rotations around the axis of S2

containing the north and south pole.

Remark 1.5.8. Let O be an orbifold. The underlying space |O| is not necessarily a manifold.
For example, consider the Z/2 action on R3 given by the reflection with center the origin. Then
O = R3/(Z/2) is the cone of the projective space RP2. If |O| was a manifold then removing
a point would not change the fundamental group of |O|. But removing the cone of the vertex
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yields a space which is homotopically equivalent to RP2, whose fundamental group is not trivial.
Consequently, |O| is not a manifold.

We are ready to extend the notion of a covering map of manifolds to a covering map of
orbifolds.

Definition 1.5.9. A covering map of orbifolds is a continuous orbifold map ρ : Õ −→ O such that:

1. For any p ∈ O there exists a local chart U = (U, Ũ, Γ, π) such that ρ−1(U) is a disjoint
union of open subsets Vi.

2. For each Vi we have a local chart Vi = (Vi, Ṽi, Γi, πi) which makes the next diagram commu-
tative

Ṽi Ũ

Vi U

∼=

πi π

ρ

and the induced map (ρi)∗ : Γi −→ Γ is an injective group morphism.

Example 1.5.10. A covering of manifolds M̃ −→ M is a covering of orbifolds. If G is a finite group
acting effectively on a manifold M, then M −→ M/G is a covering of orbifolds.

Definition 1.5.11. A covering ρ : Õ −→ O is a universal covering if for any other covering
ρ′ : O′ −→ O there exists a covering τ : Õ −→ O′ such that ρ = ρ′ ◦ τ.

Theorem 1.5.12. [Thu22, Proposition 13.2.4] Any connected orbifold has a universal cover.

We will denote the universal cover of an orbifold O by Õ.

Definition 1.5.13. Let ρ : O −→ O be a covering, then

Aut(ρ) = { f : O −→ O : f is an orbifold homeomorphism and ρ ◦ f = ρ}.

If O is connected and ρ : Õ −→ O is the universal cover then Aut(ρ) = πorb
1 (O) (see [CJ19,

Chapter 2]).

Proposition 1.5.14. [CJ19, Proposition 2.3.5] The set of isomorphism classes of coverings of O is
in bijection with the conjugacy classes of πorb

1 (O).

Remark 1.5.15. If M is a manifold then πorb
1 (M) ∼= π1(M).

Any covering ρ : O −→ O induces an injection πorb
1 (O) −→ πorb

1 (O). We say that the
covering is regular if πorb

1 (O) ⊴ πorb
1 (O).

Lemma 1.5.16. [ALR07, Example 2.20] Let G be a finite group acting on effectively on a manifold
M, then we have a short exact sequence

1 −→ π1(M) −→ πorb
1 (M/G) −→ G −→ 1.
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Lemma 1.5.17. [CJ19, Example 2.3.2] Let G be a discrete group acting effectively and properly on
M and G′ ≤ G. Then M/G′ −→ M/G is an orbifold covering.

Proposition 1.5.18. [ALR07, Lemma 2.22] Let O be an orbifold. The following statements are
equivalent:

1. O is good.

2. Õ is a manifold.

3. We have an injection Γp −→ πorb
1 (O) for all p ∈ O.

Definition 1.5.19. An orbifold O is said to be aspherical if its universal cover Õ is a contractible
manifold.

With the introduction of regular covering of orbifolds, it is natural to ask which is the best
way to define the concept of (finite) group action on an orbifold.

Definition 1.5.20. Let G be a Lie group and O an orbifold. An orbifold action of G on O is a
continuous orbifold map ϕ : G×O −→ O such that ϕ(g1g2, x) = ϕ(g1, ϕ(g2, x)) and ϕ(e, x) = x
for all g1, g2 ∈ G and x ∈ O.

In particular, we have a continuous action of G on the underlying topological space |O|.
Moreover, a finite group G acts on an orbifold O if and only if G acts continuously on |O|
and the map ϕ(g, ·) : O −→ O is an orbifold homeomorphism for all g ∈ G.

The next lemmas summarize some of the properties of group actions on orbifolds.

Lemma 1.5.21. [GGKRW18, Lemma 2.11] Let G be a compact Lie group acting on an orbifold O.
The orbits are homogeneous manifolds.

Lemma 1.5.22. [GGKRW18, Lemma 2.12] Let G be a compact Lie group acting on an orbifold O.
Pick x ∈ O. Let Gx denote the isotropy subgroup of x and let Ux be a Gx-invariant local chart.
Then there exists a compact Lie group G̃x acting effectively on Ũx such that Ũx/G̃x = Ux/Gx and
such that G̃x fits on a short exact sequence

1 −→ Γx −→ G̃x −→ Gx −→ 1.

Moreover, there exists a Gx-invariant good local chart (which we also denote by Ux) such that any
y ∈ Ux has a Gy-invariant good local chart Uy ⊆ Ux such that we have a commutative diagram

1 Γy G̃y Gy 1

1 Γx G̃x Gx 1

where the vertical arrows are inclusions.
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Lemma 1.5.23. [BG07, Theorem 4.3.18] Let G be a finite group acting effectively on an orbifold
O. Then the orbit space |O|/G has an orbifold structure (denoted by O/G) and the orbit map
p : O −→ O/G is a regular orbifold covering. There exists a short exact sequence

1 −→ πorb
1 (O) −→ πorb

1 (O/G) −→ G −→ 1.

In particular, given x ∈ O, we have a short exact sequence

1 −→ Γx −→ Γp(x) −→ Gx −→ 1.

Finally, we generalize theorem 1.3.96. If O is a closed connected aspherical orbifold and G
is a finite group acting effectively on O then there exists a short exact sequence

1 −→ πorb
1 (O) −→ πorb

1 (O/G) −→ G −→ 1.

Consequently, we have an abstract kernel ψ : G −→ Out(πorb
1 (O)).

Theorem 1.5.24. Let O be a closed connected aspherical very good orbifold and let G be a finite
group acting smoothly on O. Assume that Zπorb

1 (O) is finitely generated of rank k. Then:

1. Ker ψ is a subgroup of Tk.

2. If the action has a fix point x, then the morphism G −→ Aut(πorb
1 (O, x)) is injective.

Proof. Since O is very good, it is finitely covered by a manifold. In consequence, there exists
a torsion-free normal finite index subgroup Γ ⊴ πorb

1 (O) which acts freely on the manifold
Õ. Note that Zπorb

1 (O) is torsion-free, since Cπorb
1 (O)(Γ) is torsion-free by theorem 1.3.96

and Zπorb
1 (O) ≤ Cπorb

1 (O)(Γ).

Like in theorem 1.3.96, we will prove that Cπorb
1 (O/G)(π

orb
1 (O)) is torsion-free. Assume on

the contrary, then there exists a prime p such that Z/p ≤ Cπorb
1 (O/G)(π

orb
1 (O)). Let F̃ be

the proper Z/p-acyclic subset F̃ = ÕZ/p. Since Γ and Z/p commute, we have a free group
action of Γ on F̃. The same arguments from the proof of theorem 1.3.96 imply that this is
not possible. Thus, Cπorb

1 (O/G)(π
orb
1 (O)) is torsion-free.

We are ready to prove the first part. We have a central short exact sequence

1 −→ Zπorb
1 (O) −→ Cπorb

1 (O/G)(π
orb
1 (O)) −→ Ker ψ −→ 1.

Since the first two group are torsion-free, we have Ker ψ ≤ TrankZπorb
1 (O), as we wanted to

see.

For the second part, since the action has a fix point we have a group morphism section
G −→ πorb

1 (O/G). We can use the commutative diagram from lemma 1.3.95 together
with the fact that Cπorb

1 (O/G)(π
orb
1 (O)) is torsion-free to deduce that the group morphism

G −→ Aut(πorb
1 (O, x)) is injective.
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There exist closed connected orbifolds which are good but not very good (see [Lan24]).
However, it is not known whether all closed connected aspherical orbifolds are very good
(see [Lan24, Question 2.2]). From Selberg’s lemma (theorem 1.3.67), we have:

Proposition 1.5.25. [Lan24, Proposition 2.1] A nonpostively curved compact locally symmetric
orbifold is very good.



Chapter 2

Large finite group actions on aspherical
manifolds

In this section we study finite group actions on aspherical manifolds, proving theorem 7,
theorem 10, theorem 11, as well as proposition 8, proposition 9 and proposition 12. Let us
recall the statement of these results. First, we prove a general theorem for large finite group
actions on closed connected aspherical manifolds:

Theorem 2.0.1. Let M be a closed connected n-dimensional aspherical manifold such that Zπ1(M)

is finitely generated and Out(π1(M)) is Minkowski. Then:

1. Homeo(M) is Jordan.

2. disc-sym(M) ≤ rankZπ1(M) ≤ n, and disc-sym(M) = n if and only if M is homeomor-
phic to Tn.

3. If χ(M) ̸= 0 then M is almost-asymmetric.

4. If Aut(π1(M)) is Minkowski, then M has the small stabilizers property and the few stabilizers
property.

It is important to know when the hypothesis of theorem 2.0.1 are satisfied. Thus, we prove:

Theorem 2.0.2. Let Γ be a lattice in a connected Lie group G. Then Out(Γ) and Aut(Γ) are
Minkowski.

Proposition 2.0.3. Let M = M1 × · · · × Mm, where Mi are a closed aspherical manifolds such
that π1(Mi) is hyperbolic and dim(Mi) ≥ 3. Then Out(π1(M)) is finite and Aut(π1(M)) is
Minkowski.

In particular, we can use theorem 2.0.1 on closed connected aspherical locally homogeneous
spaces H \G/Γ, where G is a connected Lie group, H is a maximal compact subgroup of G
and Γ is a torsion-free cocompact lattice of G. Note that part 2 of theorem 2.0.1 only gives

82
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an upper bound on the discrete degree of symmetry. We prove that this bound is reached
for closed connected aspherical locally homogeneous manifolds.

Theorem 2.0.4. Let H \G/Γ be a closed aspherical locally homogeneous space. Then disc-sym(H \
G/Γ) = rankZΓ.

Finally, we also prove two further results about large finite group actions on aspherical
manifolds.

Proposition 2.0.5. There exists a closed connected aspherical manifold M such that Homeo(M) is
Jordan and H∗(M) ∼= H∗(T2 × S3).

Proposition 2.0.6. Let M be a closed connected n-dimensional aspherical manifold such that
Zπ1(M) is finitely generated, Out(π1(M)) is Minkowski and Inn π1(M) has an element of infi-
nite order. If disc-sym(M) = n− 1 then M ∼= Tn−2 × K or M ∼= Tn−3 × SK

This chapter is divided in six sections. In the first section is devoted to prove theorem 2.0.1
and we also prove some results about the relation between the discrete degree of symmetry
and finite coverings. The second and third section are devoted to prove theorem 2.0.2 in the
case of solvmanifolds and locally homogeneous spaces. In section 4, we prove theorem 2.0.2
in full generality and we also prove proposition 2.0.3 and theorem 2.0.4. Finally, in section
5 we prove proposition 2.0.5 and in section 6 we prove proposition 2.0.6.

2.1 Finite group actions on aspherical manifolds: proof of
theorem 2.0.1

We start this section by proving theorem 2.0.1. The main tool is theorem 1.3.96.

Proof of part 1. of theorem 2.0.1. Let C be the Minkowski constant of Out(π1(M)). If G is a fi-
nite group acting effectively on M, then Ker ψ is an abelian subgroup of G by theorem 1.3.96
and [G : Ker ψ] = |G/ Ker ψ| ≤ C since G/ Ker ψ ≤ Out(π1(M)). Thus Homeo(M) is Jor-
dan.

To prove the second part we need the following group theoretic results (the second one due
to Schur).

Lemma 2.1.1. [MiR24a, Lemma 2.1] Let a, b, C be natural numbers and suppose that G is a sub-
group of (Z/a)b such that [(Z/a)b : G] ≤ C. Then there exists a subgroup G′ ≤ G isomorphic to
(Z/a′)b such that C!a′ ≥ a.

Lemma 2.1.2. [Rob13, Theorem 4.12] Let Γ be a finitely generated group such that [Γ : ZΓ] < ∞.
Then the commutator subgroup [Γ, Γ] is finite.
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Proof of part 2. of theorem 2.0.1. We start proving the inequality disc-sym(M) ≤ k. Suppose
that {ai}i∈N is a sequence of natural numbers such that ai −→ ∞ and such that (Z/ai)

b

acts effectively on M for some b ∈N. We have induced group morphisms ψi : (Z/ai)
b −→

Out(π1(M)) for each i such that [(Z/ai)
b : Ker ψi] ≤ C. By lemma 2.1.1, there exists a

sequence {a′i}i∈N such that (Z/a′i)
b ≤ Ker ψi. Since a′iC! ≥ ai, we have a′i −→ ∞. Moreover,

(Z/a′i)
b is a subgroup of Tk for any i, so we can conclude that b ≤ k. In consequence

disc-sym(M) ≤ k. To prove the inequality k ≤ n we take the n-dimensional manifold
M̃/Zπ1(M), where M̃ is the universal cover of M. Since M̃ is contractible, we have that
H∗(M̃/Zπ1(M)) ∼= H∗(Tk, Z). The fact that M̃/Zπ1(M) has dimension n implies that
Hi(M̃/Zπ1(M), Z) = 0 for i > n, hence k ≤ n.

Finally, we prove that disc-sym(M) = n if and only if M ∼= Tn. Clearly, disc-sym(Tn) = n
since Out(Zn) = GL(n, Z) is Minkowski. Conversely, assume that disc-sym(M) = n. Since
the top cohomology Hn(M̃/Zπ1(M), Z) is non-zero, we can conclude that M̃/Zπ1(M) is
a closed connected manifold and that the map M̃/Zπ1(M) −→ M is a regular finite cover.
In consequence, [π1(M) : Zπ1(M)] < ∞ and [π1(M), π1(M)] is trivial, by lemma 2.1.2 and
the fact that π1(M) is torsion-free. Thus π1(M) ∼= Zn and M ∼= Tn, because the Borel
conjecture holds for Tn.

For the third part we need the following result:

Lemma 2.1.3. [Got65, Theorem IV.1.] Let X be a topological space with the homotopy type of a
compact connected aspherical CW-complex. If χ(X) ̸= 0, then rankZπ1(X) = 0.

Proof of part 3. of theorem 2.0.1. The manifold M has the homotopy type of a compact con-
nected aspherical CW-complex, since M is a closed connected aspherical manifold. If
χ(M) ̸= 0 then disc-sym(M) ≤ rankZπ1(M) = 0. In consequence disc-sym(M) = 0
and M is almost asymmetric.

Finally, to prove the last part is a consequence of lemma 1.1.65:

Proof of part 4. of theorem 2.0.1. We have already seen that Homeo(M) is Jordan. Since a
finite group G acting on M with a fix point is a subgroup of Aut(π1(M)) and Aut(π1(M))

is Minkowski, M has the small stabilizers property. Thus, part 4 is a consequence of
lemma 1.1.65.

This ends the proof of theorem 2.0.1. There are some interesting and natural questions that
we summarise in the next remarks.

Remark 2.1.4. (The hypothesis on the fundamental group) When are the two hypothesis on the
fundamental group satisfied? No closed aspherical manifold with Zπ1(M) not finitely generated is
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known (see [LR10, Remark 3.1.19.]). However, there exists a finitely presented group G such that
ZG ∼= (Q,+), which is not finitely generated (see [Hou07, Theorem II]).

It is an interesting problem to find which closed connected aspherical manifolds M satisfy that
Out(π1(M)) is Minkowski (see [Gol23, Remark 7.1]). The next examples show some case where
Out(π1(M)) is Minkowski:

1. In this thesis we prove that aspherical locally homogeneous spaces (or classical aspherical
manifolds following the terminology on [FJ90]) satisfy that Out(π1(M)) is Minkowski.

2. Another source of closed connected aspherical manifolds is the strict hyperbolization processes
(see [CD95] and references therein). Given a closed oriented manifold M′ of dimension n ≥ 3
we can construct a closed oriented aspherical manifold M and a non-zero degree map f :
M −→ M′ such that π1(M) is a hyperbolic group. These groups satisfy that Out(π1(M))

is finite (see [Gro87, 5.4.A] or [Pau91]). Moreover Zπ1(M) = 0 and therefore M′ is almost-
asymmetric.

3. If M is a closed connected aspherical 3-dimensional manifold, then Out(π1(M)) is Minkowski
(see [Koj84]). This fact was used in [Zim14] to prove that Diff(M) is Jordan when M is a
closed smooth 3-manifold.

4. If Out(π1(M)) is a finitely generated virtually abelian group then it is Minkowski. This is
the case for piecewise linear locally symmetric spaces, a new type of closed aspherical manifold
defined in [TNP11] by compactifying non-compact symmetric spaces and using the reflection
trick on its corners. If M is a piecewise linear locally symmetric space then Out(π1(M)) is
finitely generated and virtually abelian by [TNP11, Theorem 4]. Moreover, Zπ1(M) = {e}
by [TNP11, Lemma 7], hence piecewise linear locally symmetric spaces are almost asymmetric.

Remark 2.1.5. (Groups whose (outer) automorphism group is not Minkowski) There exist groups
Γ such that BΓ is a finite CW-complex and Out(Γ) is not Minkowski. For example, let Γ be the
Baumslag-Solitar group B(m, ml) = ⟨a, b|bamb−1 = aml⟩ with m, l ≥ 2. The space BB(m, ml)
is a finite aspherical 2-dimensional CW-complex since it is a torsion-free one relator group (see
[LSLS77]). Moreover Out(B(m, ml)) and Aut(B(m, ml)) have elements of order lt(l − 1) for
arbitrarily large t (see [CL83, Lemma 3.8] or [Lev07]) and thus they are not Minkowski.

Remark 2.1.6. (The discrete degree of symmetry versus the toral degree of symmetry) The question
of when tor-sym(M) is equal to rankZπ1(M) has been extensively studied for closed connected
aspherical manifolds M. We also note that any effective torus action on a closed aspherical manifold
M is almost-free (see [LR10, Corollary 3.1.12]), therefore tor-sym(M) = rank(M).

If Out(π1(M)) is Minkowski and tor-sym(M) = rankZπ1(M) then we have disc-sym(M) =

rankZπ1(M), since tor-sym(M) ≤ disc-sym(M) ≤ rankZπ1(M). The equality is known
to hold for infra-solvmanifolds or some aspherical locally homogeneous spaces (see [LR10, Section
11.7]). In theorem 2.0.4 we prove that the equality is valid for closed aspherical locally homogeneous
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spaces. On the other hand, there exist closed aspherical manifolds such that tor-sym(M) = 0
and disc-sym(M) ≥ 1 (see [CWY13, MiR24a]). It is an interesting question whether all closed
connected aspherical manifolds satisfy disc-sym(M) = rankZπ1(M).

Remark 2.1.7. (Euler characteristic and asymmetry) The converse of part 3 of theorem 2.0.1 is not
true. There exist asymmetric flat manifolds (see [Szc12]). The fundamental group of a closed flat
manifold satisfies the hypothesis of theorem 2.0.1 and the manifold Euler characteristic is 0 since
they are finitely covered by a torus.

Remark 2.1.8. (Non-compact aspherical manifolds) If M is a non-compact connected aspherical
manifold then Homeo(M) is not necessarily Jordan, even when Out(π1(M)) is Minkowski. For ex-
ample, since R3 admits effective actions by SO(3) then Homeo(T2×R3) is not Jordan by [MiR17,
Theorem 1].

Remark 2.1.9. (Large finite group actions on very good aspherical orbifolds) Note that we can use
theorem 1.5.24 to replace closed connected aspherical manifold on theorem 2.0.1 by closed connected
very good aspherical orbifold in parts 1,2 and 4.

We end this section by exposing some facts on the relation between large finite group
actions on manifolds and covering maps.

Lemma 2.1.10. Let M and M′ be closed connected manifolds and p : M′ −→ M be a finite
covering. Then:

1. If Homeo(M′) is Jordan, then Homeo(M) is Jordan.

2. disc-sym(M′) ≥ disc-sym(M).

3. Assume that there exists a constant D′ such that any finite group G′ acting effectively on M′

with a fix point satisfies |G′| ≤ D′. Then there exists a constant D such that any finite group
G acting effectively on M with a fix point satisfies |G| ≤ D

Proof. The first two parts are proven in [MiR10, §2.3] and [MiR24a, Theorem 1.12]. The
proof of the third part follows the same arguments as the proofs of the first two parts.

Assume that p : M′ −→ M is a n-sheeted covering and G is a finite group acting effectively
on M. Then G also acts on Covn(M), the set of n-sheeted coverings of M, by pull-backs.
On the other hand Covn(M) ∼= Hom(π1(M), Sn)/ ∼ where Sn is the n-th symmetric group
and the equivalence relation is given by conjugation of elements of Sn. Therefore Covn(M)

is finite, which implies that there exists a constant C only depending on M and n such
that any finite group G acting effectively on M has a subgroup G0 which acts trivially on
Covn(M) and [G : G0] ≤ C. Then there exists a finite group G′0 acting effectively on M′ and
a surjective group morphism π : G′0 −→ G0 which makes the covering map p : M′ −→ M
π-equivariant and |Ker π| ≤ n!.
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Let G be a finite group acting effectively on M with a fix point x ∈ M. Then x is also
fixed by the action of G0 and G′0 acts on p−1(x). Given x′ ∈ p−1(x), the orbit of x′ by G′0
is G′0/G′0x′ ⊆ p−1(x), which implies that |G′0/G′0x′ | ≤ n. Finally, G′0x′ acts effectively on M′

with a fixed point, therefore |G′0x′ | ≤ D′. Since π is surjective, we can take D = C ·D′ ·n.

In consequence, if p : M′ −→ M is a covering of closed connected aspherical manifolds and
M′ satisfies the hypothesis of theorem 2.0.1 then all the conclusions of theorem 2.0.1 also
hold for M. This fact can also be deduced for regular coverings using lemma 1.2.24.

Given a regular covering p : M′ −→ M, it is an interesting question to determine when
disc-sym(M) = disc-sym(M′). The next proposition will be used to give a partial answer
to this question for the case of closed connected aspherical manifolds, which will be given
in corollary 2.1.12.

Proposition 2.1.11. Let M be a closed connected aspherical manifold such that Zπ1(M) is finitely
generated. Assume that G is a finite group acting freely on M. Then rank(Zπ1(M)) and
rank(Zπ1(M/G)) are equal if and only if the map ψ′ : G −→ Out(Zπ1(M)) is trivial.

Proof. Recall that the free action of G on M induces a commutative diagram

1 1 1

1 Zπ1(M) CG̃(π1(M)) Ker ψ 1

1 π1(M) G̃ G 1

1 Inn π1(M) ψ̃(G̃) ψ(G) 1

1 1 1

ψ̃

p

ψ

where ψ̃(G̃) ≤ Aut(π1(M)) and ψ(G) ≤ Out(π1(M)). We also note that Z G̃ ⊴ CG̃(π1(M))

and G̃ = π1(M/G) is torsion-free. Recall also that ψ̃(g̃) = cg̃|π1(M) and that ψ(g) =

[cσg|π1(M)] where σ : G −→ G̃ is a set-theoretic section of p.

Let k = rank(Zπ1(M)). Since Zπ1(M) is a characteristic subgroup of π1(M), we have
maps ψ̃′ : G̃ −→ GL(k, Z) and ψ′ : G −→ GL(k, Z) by restricting (outer) automorphisms to
Zπ1(M). Moreover, ψ̃′ = ψ′ ◦ p and since p is surjective we can conclude that ψ̃′ is trivial
if and only if ψ′ is trivial.
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Assume now that ψ′ is trivial and hence ψ̃′ is trivial too. This implies that [g̃, z] = e for any
g̃ ∈ G̃ and any z ∈ Zπ1(M). Thus Zπ1(M) ⊴ Z G̃ ⊴ CG̃(π1(M)). But rank(Zπ1(M)) =

rank(CG̃(π1(M))) since the first row of the commutative diagram is a central exact se-
quence and CG̃(π1(M)) is torsion-free. In consequence, rank(Zπ1(M)) = rank(Z G̃).

If rank(Zπ1(M)) = rank(Z G̃) then [CG̃(π1(M)) : Z G̃] < ∞. This implies that ψ̃′(G̃) ≤
GL(k, Z) fixes a sublattice of Zπ1(M) and therefore ψ̃′ is trivial. Thus ψ′ is also trivial, as
desired.

Corollary 2.1.12. Let M be a closed connected aspherical manifold such that Zπ1(M) is finitely
generated, Out(π1(M)) is Minkowski and disc-sym(M) = rankZπ1(M). Assume that G is a
finite group acting freely on M such that ψ′ is not trivial. Then disc-sym(M/G) < disc-sym(M).

See remark 2.1.6 for examples where the hypothesis of the corollary holds true.

2.2 Nilmanifolds and solvmanifolds

In this section we study finite group actions on nilmanifolds and solvmanifolds.

Theorem 2.2.1. [Weh94] Let Γ be a virtually polycyclic group, then Out(Γ) is isomorphic to a
subgroup of GL(n, Z) for some n.

The proof of this theorem uses the analogue statement for the automorphism group.

Theorem 2.2.2. [Mer70] Let Γ be a virtually polycyclic group, then Aut(Γ) is isomorphic to a
subgroup of GL(n, Z) for some n.

Hence, if Γ is virtually polycyclic, then Out(Γ) and Aut(Γ) are Minkowski. In conse-
quence, by using theorem 2.0.1 we can conclude that a closed solvmanifold M has Jor-
dan homeomorphism group, disc-sym(M) ≤ rank(Zπ1(M)) (and indeed disc-sym(M) =

rank(Zπ1(M)) by the results in [LR10, Section 11.7]) and M has few stabilizers. These
properties are also satisfied by any manifold finitely covered by a solvmanifold. This in-
cludes flat manifolds, almost-flat manifolds and infra-solvmanifolds.

Example 2.2.3. Let us show a low dimensional example in order to illustrate some consequences of
theorem 2.0.1 on nilmanifolds. Recall that the 3-dimensional Heisenberg group

H = {(x, y, z) =

 1 x z
0 1 y
0 0 1

 : x, y, z ∈ R}

, which is a simply connected nilpotent Lie group. Any lattice of H is isomorphic to a lattice of the
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form

Γk = {(x, y, z) =

 1 x 1
k z

0 1 y
0 0 1

 : x, y, z ∈ Z}

where k is a positive integer. Recall that ZΓk = ⟨(0, 0, 1)⟩ and two lattices Γk
∼= Γl are isomorphic if

and only if k = l. A possible presentation of these lattices is Γk = ⟨a, b, c|[c, a] = [c, b] = 1, [a, b] =
ck⟩ where a = (1, 0, 0), b = (0, 1, 0) and c = (0, 0, 1). Thus ZΓk = ⟨c⟩ ∼= Z for all k.

The automorphism group Aut(Γk) has been studied in [CR06, §8] and in [Osi15, LL20]. We
briefly recall the structure of Aut(Γk). First, since H is a simply connected nilpotent Lie group the
exponential map exp : h −→ H is bijective, so Aut(H) ∼= Aut(h). More explicitly, if

h = {[x, y, z] =

 0 x z
0 0 y
0 0 0

 : x, y, z ∈ R}.

and we choose a basis e1 = [1, 0, 0], e2 = [0, 1, 0] and e3 = [0, 0, 1] then the automorphism group of
h is

Aut(h) = {ϕ =

 a b 0
c d 0
u v ad− bc

 : a, b, c, d, u, v ∈ R, ad− bc ̸= 0}.

If f ∈ Aut(H) with differential is d f = ϕ then

f (x, y, z) = (ax + by, cx + dy, (ad− bc)z + 1
2 acy2 + uy + bcxy + vx + 1

2 bdx2).

An element f ∈ Aut(H) is in Aut(Γk) if and only if it preserves Γk. A straightforward computation
shows that

Aut(Γk) = { f ∈ Aut(H) : d f =

 a b 0
c d 0
u v ad− bc

 , a, b, c, d ∈ Z, 1
2 ac + u, 1

2 bd + v ∈ 1
k Z}.

Note that Γk/ZΓk
∼= Z2. Since ZΓk is a characteristic subgroup there exists a group morphism

θ : Aut(Γk) −→ Aut(Z2) = GL(2, Z) such that

θ( f ) =

(
a b
c d

)
.

It is clear that θ is surjective and that

Ker θ = { f ∈ Aut(H) : d f =

 1 0 0
0 1 0
u v 1

 , u, v ∈ 1
k Z}.

In addition θ has a section GL(2, Z) −→ Aut(Γk). In conclusion:
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Proposition 2.2.4. [LL20, §2] The group morphism θ : Aut(Γk) −→ GL(2, Z) is surjective,
Ker θ ∼= Z2 and it has a section. In consequence,

Aut(Γk) ∼= Z2 ⋊ GL(2, Z)

where GL(2, Z) acts on Z2 in the usual way.

In particular, Aut(Γk) does not depend on k. Now we want to describe inner automorphisms.
Given (x, y, z), (u, v, w) ∈ H, then (u, v, w)(x, y, z)(u, v, w)−1 = (x, y, z + xv + uy). Thus the
conjugation morphism c(a,b,c) : H −→ H satisfies that

dc(u,v,w) =

 1 0 0
0 1 0
u v 1

 .

If (u, v, w) ∈ Γk then

Inn Γk = { f ∈ Aut(Γk) : d f =

 1 0 0
0 1 0
u v 1

 , u, v ∈ Z}.

Note that Inn Γk ⊴ Ker θ and Ker θ/ Inn Γk
∼= (Z/k)2. Moreover, the non-trivial elements of

Ker θ/ Inn Γk represent the automorphisms f ∈ Aut(Γk) such that f /∈ Inn Γk but f ∈ Inn H.
This discussion leads to the following conclusion.

Lemma 2.2.5. The outer automorphism group of Γk is Out(Γk) ∼= (Z/k)2 ⋊ GL(2, Z).

Note that Out(Γk) does depend on k. Both of them are Minkowski and therefore the conclusions of
theorem 2.0.1 are valid for H/Γk. In particular, Homeo(H/Γk) is Jordan and disc-sym(H/Γk) =

1. However, not all finite subgroups of Out(Γk) can be realized by a group action on H/Γk (see
[RS77]). See also [LL20] for more information on the structure of the automorphism group of lattices
of simply connected nilpotent groups of dimension 3 and 4.

If a n-dimensional flat manifold such that disc-sym(M) = n = disc-sym(Tn) then M is home-
omorphic to Tn. On the other hand, an almost-flat manifold M finitely covered by a nilmanifold
N/Γ satisfying that disc-sym(M) = disc-sym(N/Γ) is not necessarily isomorphic to N/Γ. The
3-dimensional Heisenberg manifold can be used to construct an almost-flat manifold M which is
finitely covered by H/Γ2 and disc-sym(M) = disc-sym(H/Γ2) = 1 but M is not homeomor-
phic to H/Γ2 (M is not even a nilmanifold). There is a free action of Z/2 on H/Γ2 such that
its orbit space M is an almost-flat manifold with fundamental group π1(M) = ⟨a, b, c, α|[c, α] =

[c, a] = [c, b] = 1, [a, b] = c2, αa = a−1α, αb = b−1α, α2 = c⟩ (see [Dek06, pg. 160]). It is clear
that ⟨c⟩ ≤ Zπ1(M) and therefore 1 ≤ disc-sym(M) ≤ disc-sym(H/Γ2) = 1. In consequence,
we have an equality disc-sym(M) = disc-sym(H/Γ2) = 1. Note that αcα−1 = c, hence the
morphism ψ′ : Z/2 −→ Out(ZΓ2) is trivial, as we expected from corollary 2.1.12.
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Let M be a closed aspherical manifold satisfying the hypothesis of theorem 2.0.1. The fact that
disc-sym(M) = rank(Zπ1(M)) does not imply that there are no effective actions of (Z/k)r with
r > disc-sym(M) for some k. Indeed, if M is a compact solvmanifold R/Γ then [JL10, Corollary
3.3] asserts that if (Z/p)r acts freely on R/Γ then r ≤ dim R/Γ. This bound is sharp even when
R/Γ is not a torus. For an integer k ≤ 2 we consider the subgroup

Γ′k = {(x, y, z) =

 1 1
k x 1

k3 z
0 1 1

k y
0 0 1

 : x, y, z ∈ Z}

which is a lattice of H isomorphic to Γk. An straightforward computation shows that Γk2 is a
normal subgroup of Γ′k and Γ′k/Γk2 ∼= (Z/k)3. Therefore (Z/k)3 acts freely on H/Γk2 even
though disc-sym(H/Γk2) = 1 (see [CS05] for a classification of all finite abelian group actions
on Heisenberg manifolds). Therefore the bound of [JL10, Corollary 3.3] is sharp.

2.3 Locally symmetric spaces

The aim of this section is to prove the following proposition.

Proposition 2.3.1. Let Γ be a lattice of a connected semisimple Lie group G without compact factors.
Then Out(Γ) Minkowski.

First, let us state the following well-known result and give a proof of it for the sake of
completeness.

Lemma 2.3.2. Let G be connected linear semisimple Lie groups with trivial center and no compact
factors, let Γ be a lattice of G and assume that there does not exist any simple factor H of G such
that H ∼= PSL(2, R) and H ∩ Γ1 is a lattice in H. Then the group Out(Γ) is finite.

Proof. Let F : Aut(Γ) −→ Aut(G) be the morphism sending an automorphism of Γ to its
unique extension on G by theorem 1.3.78. Clearly, F(Inn(Γ)) ≤ Inn(G), so F descends to a
group morphism f : Out(Γ) −→ Out(G). Then, the claim follows from the fact that Out(G)

is finite (see lemma 1.3.81) and that Ker f = NG(Γ)/Γ is also finite by corollary 1.3.69.

Lemma 2.3.3. Let G be a connected semisimple Lie groups without compact factors and let Γ be a
lattice of G. If Out(Γ/ZΓ) is Minkowski then Out(Γ) is Minkowski.

Proof. We consider the central short exact sequence 1 −→ ZΓ −→ Γ −→ Γ/ZΓ −→ 1. The
center is a characteristic subgroup, hence Out(Γ) = Out(Γ,ZΓ).

On the other hand, Out(Γ/ZΓ) is Minkowski by hypothesis, Out(ZΓ) is Minkowski since
ZΓ is a finitely generated abelian group and H1

(Γ/ZΓ,ZΓ) is Minkowski since it is finitely
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generated and abelian. Therefore by theorem 1.2.21 we obtain that Out(Γ) is Minkowski.

In view of the preceding lemma, to prove proposition 2.3.1 it only remains to show that
Out(Γ/ZΓ) is Minkowski. Note that Γ/ZΓ is a lattice in G/ZG which is a centreless
connected semisimple linear Lie group without compact factors. By theorem 1.3.67 and
proposition 1.3.74, G/ZG = G1 × · · · × Gn and Γ/ZΓ has a normal torsion-free finite
index subgroup Λ of the form Λ = Λ1 × · · · × Λn where each Λi is an irreducible lattice
of Gi. Note that each of this groups is centreless. We will use the decomposition Λ =

Λ(1)×Λ(≥2) where Λ(1) is the product of all lattices of real rank 1 and Λ(≥2) is the product
of all lattices of real rank greater or equal than 2. After reordering we can assume that
Λ(1) = Λ1 × · · ·Λm and Λ(≥2) = Λm+1 × · · ·Λn.

Lemma 2.3.4. The group Λ(≥2) is characteristic in Λ.

Proof. We will prove that given any f ∈ Aut(Λ) and any m + 1 ≤ j ≤ n we have f (Λj) ≤
Λ(≥2).

Let πi : Λ −→ Λi and ιi : Λi −→ Λ denote the natural projection and inclusion morphisms.
We take the group morphism πi ◦ f ◦ ιj : Λj −→ Λi with 1 ≤ i ≤ m and m + 1 ≤ j ≤ n.
By Margulis normal subgroup theorem (see theorem 1.3.80), N = Ker(πi ◦ f ◦ ιj) ⊴ Λj is
either finite or has finite index in Λj. If N is finite then it is trivial since Λj is torsion-free
and πi ◦ f ◦ ιj is injective. If it has finite index then Λj/N is a finite subgroup of Λi and
therefore it is trivial since Λi is torsion-free. In this case, πi ◦ f ◦ ιj is trivial.

The morphisms πi ◦ f ◦ ιj : Λj −→ Λi cannot be injective for any i and j. Indeed, since Gi is
centreless (hence Gi ≤ GL(ni, R) for some i), we can construct a representation ρ : Λj −→
GL(ni, R) given by the composition πi ◦ f ◦ ιj with the inclusions Λi ≤ Gi ≤ GL(ni, R). By
Margulis superrigidity (see theorem 1.3.79) there exists a finite index subgroup Λj0 ≤ Λj

and a representation ρ̃ : Gj −→ ρ(Λj)
o

such that ρ̃|Λj0
= ρ|Λj0

. Since ρ(Λj)
o ≤ Gi, ρ̃ induces

a group morphism Gj −→ Gi, which is trivial since Gi and Gj are simple, rankR Gj ≥ 2 and
rankR Gi = 1. Therefore Λj0 ≤ Ker πi ◦ f ◦ ιj. Since πi ◦ f ◦ ιj is not injective then πi ◦ f ◦ ιj

is trivial, as desired.

Note that Out(Λ(≥2)) is finite by lemma 2.3.2.

Lemma 2.3.5. The group Out(Λ(1)) is Minkowski.

Proof. Let H = { f ∈ Aut(Λ(1)) : f (Λi) = Λi for all i}. Firstly, we will show that H has finite
index in Aut(Λ(1)). Since Inn(Λ(1)) ⊴ H, this will imply that [Out(Λ(1)) : H/ Inn(Λ(1))] <

∞.
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We denote by r(λ) the number of non-trivial entries of an element λ ∈ Λ(1). Let S be the
set of elements of Λ(1) whose centralizer CΛ(1)(λ) is isomorphic as an abstract group to
Z× Λλ, where Λλ is a product of lattices in R-rank one semisimple Lie groups (which
depend on the element λ ∈ Λ).

Firstly, we note that if λ ∈ S then r(λ) = 1. Given λ = (λ1, . . . , λm) ∈ Λ(1), its centralizer
is CΛ(1)(λ) = ∏m

i=1 CΛi(λi). In addition, CΛi(λi) = Λi if and only if λi = ei. If λi is not
trivial then CΛi(λi) is virtually nilpotent. Indeed, if λi is hyperbolic then CΛi(λi) ∼= Z by
lemma 1.3.87(1) and if λi is parabolic then CΛi(λi) is virtually nilpotent by corollary 1.3.88
and theorem 1.3.86. If r(λ) ̸= 1 and λ ∈ S then CΛ(1)(λ) would contain at least two
virtually nilpotent factors and one of this factors would be a normal subgroup of a lattice in
a centreless semisimple Lie group. This contradicts corollary 1.3.71. Thus, we can conclude
that λ is not in S. However, note that it is possible for an element λ with r(λ) = 1 to not be
in S. If λ = (e1, . . . , λi, . . . , em), then CΛ(1)(λ) ∼= CΛi(λi)×Λλ and CΛi(λi) is not necessarily
isomorphic to Z if λi is not hyperbolic.

Clearly S is preserved by automorphisms of Λ(1). Since S contains all elements whose only
non-trivial entry is hyperbolic, the set S generates Λ(1) by lemma 1.3.87(2). Consequently,
any f ∈ Aut(Λ(1)) permutes the factors of Λ(1) and we can construct a group morphism
ϕ : Aut(Λ(1)) −→ Sm such that H = Ker ϕ. Consequently, [Aut(Λ(1)) : H] < m!.

We are ready to prove that Out(Λ(1)) is Minkowski. We proceed by induction on the
number of factors m. If m = 1 then Λ(1) is an irreducible lattice in a centreless semisimple
Lie group G1. If G1 ≇ PSL(2, R) then we can use lemma 2.3.2 to conclude that Out(Λ(1)) is
finite. If G1

∼= PSL(2, R) then Λ(1) is a Fuchsian group and therefore Out(Λ(1)) is virtually
torsion-free [MS06, Corollary 2.6] and hence Minkowski.

Assume now that Out(Λ1 × · · · × Λm−1) is Minkowski. By theorem 1.2.21, if Out(Λm),
Out(Λ1 × · · · ×Λm−1) and H1(Λ1 × · · · ×Λm−1,ZΛm) are Minkowski then Out(Λ(1), Λm)

is Minkowski. They are Minkowski by induction hypothesis and the fact that ZΛm is
trivial. Since H ≤ Aut(Λ(1), Λm) ≤ Aut(Λ(1)) and [Aut(Λ(1)) : H] < ∞ we have that
[Out(Λ(1)) : Out(Λ(1), Λm)] < ∞, which implies that Out(Λ(1)) is Minkowski.

We are ready to prove that Out(Γ/ZΓ) is Minkowski and finish the proof of proposi-
tion 2.3.1.

Lemma 2.3.6. The group Out(Γ/ZΓ) is Minkowski.

Proof. Since [Γ/ZΓ : Λ] < ∞, by lemma 1.2.24 it is enough to prove that Out(Λ) is
Minkowski. We have seen that the groups Out(Λ(≥2)), Out(Λ(1)) and H1(Λ(1),ZΛ(≥2))

are Minkowski. Thus, by theorem 1.2.21 Out(Λ) is Minkowski, as we wanted to see.

The rest of this section is devoted to prove proposition 2.0.3. Recall that if H is a torsion-free
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hyperbolic group, then CH(h) is cyclic for all non-trivial h ∈ H. In addition, if H contains
a normal abelian subgroup then H is cyclic (see [BH13, Part III Γ.3]). Finally, if M is a
closed connected aspherical manifold of dimension n ≥ 3 and π1(M) is hyperbolic then
Out(π1(M)) is finite (see remark 2.1.4(2)).

The arguments used in lemma 2.3.5 can be used to prove the next statement.

Proposition 2.3.7. Let M = M1 × · · · ×Mm, where Mi are closed aspherical manifolds such that
π1(Mi) is hyperbolic and dim(Mi) ≥ 3. Then Out(π1(M)) is finite.

Proof. Note that π1(M) = π1(M1) × · · · × π1(Mm). Like in lemma 2.3.5, let H = { f ∈
Aut(π1(M)) : f (π1(Mi)) = π1(Mi) for all i}. We will show that H has finite index in
Aut(π1(M)). Since Inn(π1(M)) ⊴ H, this will imply that [Out(π1(M)) : H/ Inn(π1(M))] <

∞.

Let ei denote the trivial element of π1(Mi). We know that for every λ = (λ1, . . . , λm) ∈
π1(M) we have Cπ1(M)(λ) = ∏m

i=1 Cπ1(Mi)
(λi). In addition, Cπ1(Mi)

(λi) = π1(Mi) if λi = ei

and Cπ1(Mi)
(λi) = Z otherwise. As before, let r(λ) denote the number of non-trivial entries

of λ. We claim that that if r(λ) = 1 and f ∈ Aut(π1(M)) then r( f (λ)) = 1.

Assume on the contrary, that λ = (e1, . . . , λi, . . . , em) and that r( f (λ)) > 1. Since we have
f (Cπ1(M)(λ)) = Cπ1(M)( f (λ)), we can take the inverse morphism f−1 : Cπ1(M)( f (λ)) −→
Cπ1(M)(λ) and restrict it to Zr( f (λ)) ≤ Cπ1(M)( f (λ)). The map πi ◦ f−1

|Zr( f (λ)) : Zr( f (λ)) −→ Z

cannot be injective. If a is a non trivial element of Ker πi ◦ f−1
|Zr( f (λ)) , then there exists a

j ̸= i such that πj ◦ f−1
|⟨a⟩ : ⟨a⟩ −→ Λj is injective. Since ⟨a⟩ ⊴ Cπ1(M)( f (λ)) and πj :

Cπ1(M)(λ) −→ π1(Mj) is surjective we can conclude that Z ∼= πj ◦ f−1
|⟨a⟩(⟨a⟩) ⊴ π1(Mj). But

π1(Mj) is hyperbolic, so from the fact that it contains an abelian normal subgroup we can
conclude π1(Mj) ∼= Z. This is a contradiction with the fact that π1(Mj) is the fundamental
group of a closed aspherical manifold of dimension dim(Mj) ≥ 3.

In conclusion, any f ∈ Aut(π1(M)) permutes the factors of π1(M) and thus we can con-
struct a group morphism to the permutation group of m letters, ϕ : Aut(π1(M)) −→ Sm

such that H = Ker ϕ. Consequently, [Aut(π1(M)) : H] < m!.

We are now ready to prove that Out(π1(M)) is finite. We proceed by induction on the
number of factors m. If m = 1 then Out(π1(M)) is finite (remark 2.1.4(2)). Assume
now that Out(π1(M1) × · · · × π1(Mm−1)) is finite. By theorem 1.2.21, if Out(π1(Mm)),
Out(π1(M1) × · · · × π1(Mm−1)) and H1(π1(M1) × · · · × π1(Mm−1),Zπ1(Mm)) are finite
then Out(π1(M), π1(Mm)) is finite. They are finite by induction hypothesis and the fact that
Zπ1(Mm) is trivial. Since H ≤ Aut(π1(M), π1(Mm)) ≤ Aut(π1(M)) and [Aut(π1(M)) :
H] < ∞, we have [Out(π1(M)) : Out(π1(M), π1(Mm))] < ∞. Therefore, Out(π1(M)) is
finite.
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Note that torsion-free non-cyclic hyperbolic groups are centreless. Consequently, Zπ1(M)

is trivial, which implies that M is almost asymmetric by theorem 2.0.1 and proposition 2.3.7.
In addition:

Corollary 2.3.8. The group Aut(π1(M)) is Minkowski.

Proof. Note that Zπ1(M) is trivial, therefore there is a short exact sequence

1 −→ π1(M) −→ Aut(π1(M)) −→ Out(π1(M)) −→ 1.

Since Out(π1(M)) is finite and π1(M) is torsion-free, we conclude that Aut(π1(M)) is
virtually torsion-free and hence Minkowski.

2.4 Combining the two cases: Aspherical locally homoge-
neous spaces

The aim of this section is to finish the proof of theorem 2.0.2 and to prove theorem 2.0.4. For
the first task, the strategy is to combine the results on solvable Lie groups and semisimple
Lie groups obtained in the previous sections in a similar way we proved lemma 2.3.3.

We have the short exact sequence

1 −→ Γ ∩ A −→ Γ −→ Γ/Γ ∩ A −→ 1,

where the group Γ ∩ A is a lattice in the amenable radical A and Γ/Γ ∩ A is a lattice
in the semisimple Lie group without compact factors Snc. We write Γ ∩ A = ΓA and
Γ/Γ ∩ A = Γnc.

Our first goal is to see that ΓA is virtually polycyclic. Lemma 2.4.1 is probably well-known
to experts, but it is difficult to find a proof in the literature. Hence, we provide a proof for
the sake of completeness.

Lemma 2.4.1. Let Γ be a lattice in an amenable group A. Then Γ is virtually polycyclic.

Proof. Denote by πA/R : A −→ A/R the quotient map and define L = πA/R(Γ)
o
. It is

connected solvable Lie group by [Rag12, 8.24]. Moreover, L is abelian since it is a connected
solvable Lie subgroup of the compact Lie group A/R. Then, R̃ = π−1

A/R(L) is a connected
solvable group since R̃/R is abelian and R is connected.

R̃ ∩ Γ is a lattice in R̃ (see [GS20, Claim 2.2]). We claim that R̃ ∩ Γ is polycyclic. Indeed,
R̃/R̃ ∩ Γ is a compact solvmanifold. Then R̃/R̃ ∩ Γ ∼= R′/Γ′, where R′ is the universal
cover of R̃ and Γ′ is a lattice in a simply connected solvable Lie group thus it is polycyclic.
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Moreover, using the long exact sequence of homotopy groups for a fibration we obtain the
short exact sequence

1 −→ π1(R̃) ∼= Zn −→ Γ′ −→ R̃ ∩ Γ −→ 1.

Since R̃ ∩ Γ ∼= Γ′/Zn we can conclude that R̃ ∩ Γ is polycyclic.

We want to show that [Γ : R̃ ∩ Γ] < ∞. Let H = NA(R̃) and let Ho be its connected
component (then R ≤ R̃ ≤ Ho ≤ H ≤ A). Thus Γ ≤ H and |H/Ho| is bounded by [GS20,
Corollary 2.6]. In addition, Ho/R̃ is a compact Lie group.

In consequence, [Γ : Γ ∩ R̃] = [Γ : Γ ∩ Ho][Γ ∩ Ho : Γ ∩ R̃]. The first term is finite because
Γ ≤ H and |H/Ho| is bounded. The second term is finite because Γ/Γ ∩ R̃ ∼= ΓR̃/R̃ =

πHo/R̃(Γ) is a discrete subgroup in a compact Lie group and thus it is finite.

Now that we know the structure of ΓA we are interested in the relation between ΓA and Γ.
Since we want to study the automorphisms and outer automorphisms of Γ, it is natural to
study whether ΓA is a characteristic subgroup of Γ.

If ZSnc ̸= {e} then we consider the subgroup π−1(ZΓnc) = Γ′A, which is a virtually poly-
cyclic group since it fits in the short exact sequence 1 −→ ΓA −→ Γ′A −→ ZΓnc −→ 1. In
consequence, there is a short exact sequence 1 −→ Γ′A −→ Γ −→ Γnc −→ 1, where Γnc is
a lattice of the centreless connected semisimple Lie group Snc/ZSnc. By theorem 1.3.67,
there exists a normal finite index torsion-free lattice Γ′nc ≤ Γnc. Then we can consider the
short exact sequence 1 −→ Γ′A −→ Γ′ −→ Γ′nc −→ 1. We will later prove that Out(Γ′)
is Minkowski. This fact, together with the previous short exact sequence, will imply that
Out(Γ) is Minkowski by lemma 1.2.24.

Lemma 2.4.2. Γ′A is a characteristic subgroup of Γ′.

Proof. Assume that Γ′A is not characteristic. Thus, there exists f ∈ Aut(Γ′) such that f (Γ′A)
has a non trivial projection Λ in Γ′nc. The group Λ is a torsion-free virtually polycyclic
subgroup and hence it has a characteristic subgroup Λ′ which is polycyclic (see [LR10,
§9.5]). In particular, Λ′ is solvable and normal in the semisimple centreless lattice Γ′nc,
contradicting corollary 1.3.71. Consequently, Γ′A is characteristic.

In consequence, Out(Γ′) = Out(Γ′, Γ′A). Theorem 1.2.21 shows that to prove that Aut(Γ′)
and Out(Γ′) are Minkowski it is enough to prove that Aut(Γ′A), Aut(Γ′nc), Z1

ψ(Γ
′
nc,ZΓ′A),

Out(Γ′A), Out(Γ′nc) and H1
ψ(Γ′nc,ZΓ′A) are Minkowski. We already know that Aut(Γ′A) and

Out(Γ′A) are Minkowski because Γ′A is virtually polycyclic (theorem 2.2.1), and Out(Γ′nc)

is Minkowski by lemma 2.3.3. Thus we only need to check that Aut(Γ′nc), Z1
ψ(Γ
′
nc,ZΓ′A),

Out(Γ′A) and H1
ψ(Γ′nc,ZΓ′A) are Minkowski.

Lemma 2.4.3. The group Aut(Γ′nc) is Minkowski.
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Proof. Since Γ′nc is centreless, we have a short exact sequence

1 −→ Γ′nc −→ Aut(Γ′nc) −→ Out(Γ′nc) −→ 1.

Since Γ′nc is virtually torsion-free and Out(Γ′nc) is Minkowski, then Aut(Γ′nc) is Minkowski.

Lemma 2.4.4. The group H1
ψ(Γ′nc,ZΓ′A) is Minkowski.

Proof. Since H1
ψ(Γ
′
nc,ZΓ′A) is a finitely generated abelian group and there is a surjection

H1
ψ(Γ
′
nc,ZΓ′A) −→ H1

ψ(Γ′nc,ZΓ′A), the group H1
ψ(Γ′nc,ZΓ′A) is finitely generated and abelian,

hence it is Minkowski.

Lemma 2.4.5. The group Z1
ψ(Γ
′
nc,ZΓ′A) is Minkowski.

Proof. There is a short exact sequence

1 −→ B1
ψ(Γ
′
nc,ZΓ′A) −→ Z1

ψ(Γ
′
nc,ZΓ′A) −→ H1

ψ(Γ
′
nc,ZΓ′A) −→ 1.

We have B1
ψ(Γ′nc,ZΓ′A)

∼= ZΓ′A/ZΓ′ (see theorem 1.2.21), therefore B1
ψ(Γ′nc,ZΓ′A) is a finitely

generated abelian group and hence it is Minkowski. Since H1
ψ(Γ′nc,ZΓ′A) is also a finitely

generated abelian group, we use lemma 1.1.54 to conclude that Z1
ψ(Γ
′
nc,ZΓ′A) is Minkowski.

These three lemmas complete the proof of theorem 2.0.2.

Remark 2.4.6. Note that we can use the proof of theorem 2.0.2 to conclude that if Γ is a group which
fits in a short exact sequence 1 −→ ΓA −→ Γ −→ Γnc −→ 1 where ΓA is virtually polycyclic
and Γnc is a lattice in a centreless semisimple Lie group then Out(Γ) is Minkowski. Not all groups
of this form are lattices in connected Lie groups, see [BK23a, Theorem 7.5]. Baues and Kamishima
introduced in [BK23a] the notion of the closed aspherical manifolds with large symmetry. From the
definition of these manifolds [BK23a, Definition 1.1] one can deduce that their fundamental group
satisfies the hypothesis of this remark and hence the outer automorphism group of their fundamental
group is Minkowski.

Remark 2.4.7. The homeomorphism group of a coset space G/Γ where G is a connected Lie group
and Γ is a cocompact lattice is not necessarily Jordan. Indeed, we can take a non-compact semisim-
ple Lie group G′ and a cocompact lattice Γ′ such that a connected compact maximal subgroup K′

containing SU(2) acts effectively on G′/Γ′. By [MiR17] we know that Homeo(G′/Γ′ × T2) is
not Jordan. Hence, taking G = G′ ×R2 and Γ = Γ′ ×Z2 we obtain a coset space G/Γ whose
homeomorphism group is not Jordan. On the other hand, A. Golota proved in [Gol23] that if G is
a complex Lie group and Γ is a cocompact lattice, then the group of automorphisms Aut(G/Γ) is
Jordan.
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The end of this section is devoted to prove theorem 2.0.4.

Proof of theorem 2.0.4. Note that Out(Γ) is Minkowski by theorem 2.0.2, hence disc-sym(H \
G/Γ) ≤ rankZΓ by theorem 2.0.1. On the other hand, it is clear that tor-sym(H \ G/Γ) ≤
disc-sym(H \ G/Γ). Therefore, it suffices to show that tor-sym(H \ G/Γ) = rankZΓ to
conclude that disc-sym(H \ G/Γ) = rankZΓ.

By lemma 2.4.1 Γ satisfies the conditions of theorem 1.3.105, hence there exists a closed
connected aspherical manifold M′ which is homotopically equivalent to H \ G/Γ and sat-
isfies that tor-sym(M′) = rankZΓ. On the other hand, the Farrel-Jones conjecture is true
for cocompact lattices in connected Lie groups (see [BL12, KLR16]), which implies the
Borel conjecture for closed aspherical locally homogeneous space of dimension equal or
greater than 5 (see [BL12, Proposition 0.3 (ii)]). In consequence, if dim(H \ G/Γ) ≥ 5 then
H \G/Γ ∼= M′ and hence tor-sym(H \G/Γ) = rankZΓ. Thus, it remains to study the cases
where dim(H \ G/Γ) ≤ 4.

If dim(H \ G/Γ) = 1 or 2 then tor-sym(H \ G/Γ) = rankZΓ by classical results and if
dim(H \ G/Γ) = 3 then tor-sym(H \ G/Γ) = rankZΓ by [Gab92, Corollary 8.3] and [CJ94,
Theorem 1.1]. Thus, it only remains to study the case where dim(H \ G/Γ) = 4.

First, assume that the noncompact semisimple part Snc of G is trivial. Then Γ is virtually
polycyclic. Virtually polycyclic groups are Freedman good (this property was called "good"
and it was introduced in [Fre83]). If the fundamental group is Freedman good, the Farrel-
Jones conjecture implies the Borel conjecture in dimension 4 (see [BL12, Proposition 0.3
(ii)]) and hence tor-sym(H \ G/Γ) = rankZΓ.

In consequence, it only remains to study the case where Snc ̸= {e}. We can assume two
extra hypothesis without losing generality. Firstly, let q : G̃ −→ G be the universal cover of
G. Let H̃ be a maximal compact connected subgroup of G̃ inside q−1(H). Then q−1(Γ) = Γ̃
is a cocompact lattice of G̃ and H \ G/Γ ∼= H̃ \ G̃/Γ̃. Thus, we can assume that G is
simply connected and hence its solvable radical R and its semisimple part S are also simply
connected. Secondly, note that if K is a compact connected normal subgroup of G and
p : G −→ G/K is the quotient map then Γ ∩ K = {e} since Γ is torsion-free. This implies
that H \ G/Γ ∼= p(H) \ p(G)/Γ. Therefore, we can assume that G has no compact factors.

Note that dim(R) +dim(S)−dim(H) = 4 and since Snc ̸= {e} then dim(S)−dim(H) ≥ 2.
Hence, dim(R) ≤ 2. There are four simply connected solvable groups of dimension less
or equal than 2: dim(R) = 0 and R = {e}, dim(R) = 1 and R ∼= R, and dim(R) = 2
and R ∼= R2 or R ∼= Aff(R)0 ∼= R ⋊ R. To construct the desired torus action on H \ G/Γ
with R belonging to one of this four cases we will use theorem 1.3.106. We need to check
that the hypothesis of theorem 1.3.106 are satisfied in these four cases. Note that in all the
cases the exponential map is surjective and any lattice automorphism extends uniquely to
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an automorphism of the group. This is because R is either abelian or solvable of type (R)
(see [LR10, §6.3]). It only remains to see that Γ ∩ R is a lattice in R.

Assume that R is abelian, then if C is a compact factor of S acting trivially on R then C
is normal on G and therefore C = {e}. Therefore no compact factor of S acts trivially on
R. This implies by [Gen15, Theorem 1.3 (i)] that R ∩ Γ is a lattice in R. Thus, tor-sym(H \
G/Γ) = rankZΓ by theorem 1.3.106.

If R ∼= Aff(R)0 then Aut(R) ∼= R and hence any compact factor C of S needs to act trivially
on R. Consequently, C ⊴ G and therefore C = {e}. By [Gen15, Theorem 1.3 (i)] if Γ were a
lattice of G then R∩ Γ would be a lattice of R. But R does not admit any lattice (see [Boc16,
pg. 82]). Thus, a closed aspherical locally homogeneous 4-manifold with solvable radical
R does not exist.

Recall that if M is a closed connected aspherical manifold, then rank(M) = tor-sym(M).
We finish the section with the following remark on the toral rank conjecture and the Carls-
son conjecture on closed aspherical manifolds.

Lemma 2.4.8. Let M be a closed aspherical connected manifold such that Zπ1(M) is finitely
generated, Out(π1(M)) is Minkowski and tor-sym(M) = rankZπ1(M). Then the toral rank
conjecture holds for M if and only if the stable Carlsson conjecture holds for M.

Proof. Since H∗(M, Z) is finitely generated, we can use the universal coefficients theo-
rem to conclude that there exists a constant C1 such that for all prime p > C1 we have
dim H∗(M, Q) = dim H∗(M, Z/p). Let C2 be the Minkowski constant of Out(π1(M)).

Set C = max{C1, C2}. Moreover, assume that the toral rank conjecture holds for M, then
dim H∗(M, Q) ≥ 2rank(M) = 2rank(Zπ1(M)). On the other hand, for all p > C we have
rankp(M) ≤ rankZπ1(M). Consequently, dim H∗(M, Z/p) = dim H∗(M, Q) ≥ 2rank(M) =

2rank(Zπ1(M)) ≥ 2rankp(M) and the Carlsson conjecture holds for p > C.

Conversely, we have rankp(M) ≥ rank(M) for all primes p. By hypothesis, we have
dim H∗(M, Z/p) ≥ 2rankp(M) for all primes p > C. Thus, by choosing a prime p > C
we have dim H∗(M, Q) = dim H∗(M, Z/p) ≥ 2rankp(M) ≥ 2rank(M) and hence the toral
rank conjecture holds for M. Note that this implication does not need the asphericity
assumption or any hypothesis on the fundamental group of M.

The toral rank conjectures has been proved for closed flat manifolds in [KN12]. Thus,
lemma 2.4.8, theorem 2.0.2 and theorem 2.0.4 imply:

Corollary 2.4.9. Let M be a closed flat manifold, then there exists a constant C such that the
inequality dim H∗(M, Z/p) ≥ 2rankp(M) holds for all p > C.
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2.5 Jordan property and cohomology

This section is devoted to proving proposition 2.0.5. We start with the following general
lemma.

Lemma 2.5.1. Let Γ be a finitely generated group and let ZiΓ be the i-th term of the upper central
series. Assume that Γ/ZiΓ is finitely generated, centreless and that Out(Γ/ZiΓ) is Minkowski for
some i. Then Out(Γ) is Minkowski.

Proof. Recall that the upper central series {e} = Z0Γ ⊴ Z1Γ ⊴ Z2Γ ⊴ · · · of a group Γ is a
series where ZiΓ/Zi−1Γ ∼= Z(Γ/Zi−1) for all i ≥ 0. The group Γ is nilpotent if and only if
Γ ∼= ZiΓ for some i. Moreover, the groups ZiΓ are characteristic and each group morphism
ψi : Γ/ZiΓ −→ Out(ZiΓ) is trivial.

Consequently, Out(Γ) is Minkowski if Out(ZiΓ), Out(Γ/ZiΓ) and H1(Γ/ZiΓ,ZΓi/ZΓi−1)

are Minkowski. But they are Minkowski by hypothesis and theorem 2.2.1, obtaining the
desired conclusion.

If we assume that Γ is torsion-free and Γ/ZiΓ acts properly on a contractible manifold
X̃ then we can use the Seifert fiber construction in [LR10, Chapter 7] to construct closed
connected aspherical manifolds M such that π1(M) ∼= Γ. In addition, if X̃/(Γ/ZiΓ) is a
closed aspherical manifold, then M can be seen as an iterated principal torus bundle over
X̃/(Γ/ZiΓ). A special case of lemma 2.5.1 and theorem 2.0.1 is the next corollary.

Corollary 2.5.2. If M is a closed connected aspherical manifold such that Zπ1(M) is trivial and
Out(π1(M)) is Minkowski, then Homeo(M× Tn) is Jordan.

Finally, there exists closed hyperbolic 3-manifolds N which are integral homology spheres
[BP92, Thu22]. The group Zπ1(N) is trivial and Out(π1(N)) is finite by [Gro87, 5.4
A]. Thus, H∗(N × T2) ∼= H∗(S3 × T2), Homeo(N × T2) is Jordan by corollary 2.5.2 and
Homeo(S3 × T2) is not Jordan by [MiR17]. This completes the proof of proposition 2.0.5.

Another example can be produced using Brieskorn manifolds Σ(p, q, r). Recall that

Σ(p, q, r) = {(z1, z2, z3) ∈ C3 : zp
1 + zq

2 + zr
3 = 0,

3

∑
i=1
|zi|2 = 1}.

If p, q and r are relatively prime and 1
p +

1
q +

1
r < 1 then Σ(p, q, r) is a closed connected as-

pherical integral homology 3-sphere (see [Mil75]). Moreover, Σ(p, q, r) are Seifert manifolds
with Zπ1(Σ(p, q, r)) ∼= Z (see [LR10, §14.11]), hence there exists a S1-action on Σ(p, q, r)
inducing the short exact sequence

1 −→ Z −→ π1(Σ(p, q, r)) −→ Inn π1(Σ(p, q, r)) −→ 1
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where Inn π1(M) is centreless. In addition, Inn π1(M) is a subgroup of isometries of the
hyperbolic plane. Hence, it contains a centreless torsion-free Fuchsian subgroup Q of finite
index. Since Out(Q) is virtually torsion-free then Out(Inn π1(M)) is also virtually torsion-
free (see [MS06, Lemma 2.4, Corollary 2.6 ]) and therefore Out(Inn π1(M)) is Minkowski.

The manifold Σ(p, q, r)× T2 is a closed connected aspherical manifold and its cohomology
satisfies that H∗(Σ(p, q, r)× T2) ∼= H∗(S3× T2). Moreover, since Zπ1(Σ(p, q, r)× T2) ∼= Z3

we have a central extension

1 −→ Z3 −→ π1(T2 × Σ(p, q, r)) −→ Inn π1(Σ(p, q, r)) −→ 1.

By lemma 2.5.1, Out(π1(T2 × Σ(p, q, r))) is Minkowski. Therefore, theorem 2.0.1 implies
that Homeo(T2 × Σ(p, q, r))) is Jordan.

Remark 2.5.3. A lot of the results about the Jordan property on Homeo(M) of a closed connected
manifold M rely on the cohomology of M, for example in [MiR19] its is proven that Diff(M) is
Jordan if M is an integral homology sphere or χ(M) ̸= 0. However, proposition 2.0.5 shows that
the Jordan property on Homeo(M) and Diff(M) does not only depend on the cohomology of M in
general.

Remark 2.5.4. We also note that all three manifolds have different discrete degree of symmetry.

We have disc-sym(N × T2) = 2, since disc-sym(N × T2) ≤ 2 by theorem 2.0.1 and N × T2

admits a T2 free action. Similarly, disc-sym(Σ(p, q, r) × T2) = 3, since disc-sym(Σ(p, q, r) ×
T2) ≤ 3 by theorem 2.0.1 and Σ(p, q, r)× T2 admits an action of T3. Finally, T4 acts effectively on
S3× T2, hence disc-sym(S3× T2) ≥ 4. Consequently disc-sym(N× T2) ̸= disc-sym(S3× T2).

The two examples from above are in dimension 5, and they can be generalized for di-
mension n ≥ 5 if we consider the aspherical manifolds Tn−3 × N or Tn−3 × Σ(p, q, r).
Nevertheless, there are closed connected 4-manifolds whose homeomorphism group is not
Jordan, like T2× S2. We will construct closed aspherical manifolds whose homeomorphism
group is Jordan and their rational cohomology is isomorphic to the rational cohomology of
T2 × S2.

Let Cg be a hyperelliptic curve of genus g. The product T2 × Cg is a closed connected
aspherical manifold and Homeo(M) is Jordan by corollary 2.5.2. Consider the free action
Z/2 on T2 × Cg given by a rotation on a S1-direction in T2 and the hyperelliptic invo-
lution in Cg. Then the quotient (T2 × Cg)/(Z/2) is a closed connected aspherical mani-
fold and Homeo((T2 × Cg)/(Z/2)) is Jordan. We claim that H∗((T2 × Cg)/(Z/2), Q) ∼=
H∗(T2 × S2, Q). Indeed, H∗((T2 × Cg)/(Z/2), Q) ∼= H∗(T2 × Cg, Q)Z/2 ∼= (H∗(T2, Q) ⊗
H∗(Cg, Q))Z/2. The action of Z/2 on H∗(T2, Q) ⊗ H∗(Cg, Q)) is the diagonal action in-
duced by the actions of Z/2 on H∗(T2, Q) and H∗(Cg, Q) respectively. The action of Z/2
on H∗(T2, Q) is trivial and the action of Z/2 on H∗(Cg, Q) is trivial on H0(Cg, Q) and
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H2(Cg, Q) and the multiplication by −1 in H1(Cg, Q). Thus, a straightforward computa-
tion shows that H∗((T2 × Cg)/(Z/2), Q) ∼= H∗(T2 × S2, Q).

2.6 When the discrete degree of symmetry is close to the
dimension of the aspherical manifold

We have seen that if M is a closed n-dimensional aspherical manifold with Zπ1(M) finitely
generated and Out(π1(M)) Minkowski then disc-sym(M) = n if and only if M ∼= Tn. An
interesting question is whether there exist similar rigidity results when disc-sym(M) is
close to n, for example disc-sym(M) = n − 1. The aim of this section is to answer this
question provided we have an additional hypothesis on π1(M).

We start by recalling what happens in low dimensions. Let M be a 2-dimensional closed
connected aspherical manifold. If M is orientable then M is either a torus T2 and therefore
tor-sym(M) = 2, or M is a surface Σg of genus g ≥ 2 and tor-sym(M) = 0. If M is not
orientable, then M is either the Klein bottle K and tor-sym(M) = 1 or M has a surface Σg

of genus g ≥ 2 as an orientable 2-cover, hence tor-sym(M) = 0.

If M is a closed connected 3-dimensional aspherical manifold with an effective S1 action,
then M falls in one of the following 4 cases (see [LR10, §14.4]):

1. M ∼= T3.

2. M is homeomorphic to K× S1 or SK, the non-trivial principal S1-bundle over K.

3. M ∼= H/Γ, where H is the 3-dimensional Heisenberg group and Γ is a lattice of H.

4. Zπ1(M) ∼= Z and Inn π1(M) ∼= π1(M)/Zπ1(M) is centreless.

Note that in all cases, we have a central extension

1 −→ Z −→ π1(M) −→ Q −→ 1

where Q acts effectively, properly and cocompactly on R2.

In the first case tor-sym(M) = 3 and in the third and fourth cases tor-sym(M) = 1. In
the second case, it is clear that tor-sym(K × S1) = 2, so we focus on SK. One can see that
π1(SK) ∼= Z2 ⋊ϕ Z, where ϕ : Z −→ GL(2, Z) satisfies that

ϕ(1) =

(
0 1
1 0

)
.

Since ϕ(1)2 = Id, SK is a flat solvmanifold and therefore tor-sym(SK) = rankZπ1(SK).
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Lemma 2.6.1. Let ϕ : Z −→ GL(n, Z) be group morphism such that ϕ(1) has finite order a. Then
Z(Zn ⋊ϕ Z) = Fix(ϕ)× aZ, where Fix(ϕ) = {v ∈ Zn : ϕ(1)v = v}.

Proof. A straightforward computation shows that given (v, t), (w, s) ∈ Zn ⋊ϕ Z we have
(v, t)(w, s) = (w, s)(v, t) if and only if (Id− ϕ(s))v = (Id− ϕ(t))w. If (v, t) ∈ Z(Zn ⋊ϕ Z)

then we have (Id− ϕ(t))w = 0 for all w ∈ Zn, by taking s = 0. Thus, ϕ(t) = Id and hence
t ∈ aZ.

If we assume that w = 0, then (Id − ϕ(s))v = 0 for all s ∈ Z. Thus, v ∈ Fix(ϕ). Con-
sequently, Z(Zn ⋊ϕ Z) ⊆ Fix(ϕ) × aZ. The other inclusion follows from the fact that if
(v, t) ∈ Fix(ϕ)× aZ then (Id− ϕ(s))v = 0 = (Id− ϕ(t))w for any s ∈ Z and w ∈ Zn.

Applying the previous lemma to π1(SK), we obtain Fix(ϕ) = ⟨(1, 1)⟩, hence Zπ1(SK) ∼= Z2

and tor-sym(SK) = 2. Thus, K and SK are the two only 3-dimensional aspherical manifolds
such that where tor-sym(M) = dim(M)− 1. The next proposition generalizes the previous
fact to arbitrary dimension. It is probably well-known to experts but we could not find a
proof in the literature, so we provide it for the sake of completeness.

Proposition 2.6.2. Let M be a closed aspherical manifold of dimension n. If tor-sym(M) =

n− 1 then M ∼= K × Tn−2 or M ∼= Tn−3 × SK. In particular, M is always a non-orientable flat
solvmanifold.

Proof. Let H ≤ Tn−1 be the isotropy subgroup of the principal orbit of the action. Since
Tn−1 is abelian and its action on M is effective we can conclude that H is trivial. Therefore,
the principal orbits of the action have dimension n− 1. In this case we say that we have a
cohomogenity one action. The next theorem describes the cohomogenity one actions.

Theorem 2.6.3. [GGZ18, Theorem A] Let M be a n-dimensional closed connected manifold with a
cohomogenity one action of a compact Lie group G. Let H be the isotropy subgroup of a principal
orbit. Then we have one of these two options:

1. The quotient M/G ∼= S1. Then M is equivariantly homeomorphic to the total space of a fiber
bundle π : M −→ S1 is a fiber bundle with fiber G/H. The action does not have exceptional
orbits.

2. The quotient M/G ∼= [−1, 1]. Then M is the union of two fiber bundles over the two singular
orbits with isotropy subgroups K+ and K− whose fibers are cones over spheres or the Poincaré
homology sphere. More explicitly,

M = G×K− C(K−/H) ∪G/H G×K+ C(K+/H)

where C(K±/H) denotes the cone over K±/H, which are spheres or Poincaré homology
spheres. The exceptional orbits G/K± correspond to the preimages of ±1 ∈ [−1, 1].
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If the cohomogenity one action of Tn−1 on M does not have exceptional orbits, then the
action is free and the orbit map π : M −→ S1 is a principal Tn−1-bundle. Since the base is
S1 the principal bundle is trivial and therefore M ∼= Tn and tor-sym(M) = n, which is not
possible. Therefore the action has exceptional orbits.

Since M is aspherical, the evaluation map evx : Tn−1 −→ M such that evx(g) = gx for all
g ∈ Tn−1 induces an injective group morphism evx∗ : π1(Tn−1) −→ π1(M) for any x ∈ M
([LR10, Lemma 3.1.11]). Consequently, all the isotropy subgroups of the action are discrete.
The quotients K±/H ∼= K± are homeomorphic to a sphere or a Poincaré homology sphere.
Since they are also discrete we obtain that K± ∼= S0 ∼= Z/2. Then

M = Tn−1 ×Z/2 I+ ∪Tn−1 Tn−1 ×Z/2 I−,

where I+ = [0, 1] and I− = [−1, 0]. Let Z+ = π1(Tn−1 ×Z/2 I+) and Z− = π1(Tn−1 ×Z/2

I−). The principal Z/2-bundles Tn−1 × I± −→ Tn−1 ×Z/2 I± induce two short exact se-
quences of fundamental groups

1 −→ Zn−1 i±−→ Z± −→ Z/2 −→ 1.

Note that Z+ and Z− are isomorphic to Zn−1. By the Seifert-van Kampen theorem,
π1(M) = Z+ ∗Zn−1 Z− where the amalgamated product is induced by the inclusions i± :
Zn−1 −→ Z±, which we are going to describe explicitly.

Firstly, there exist primitive elements α± ∈ Z± such that α± /∈ i±(Zn−1). Furthermore,
there exist two x± ∈ Zn−1 such that i±(x±) = 2α±. We have two possibilities, that x+ = x−
or that x+ ̸= x−.

Firstly, assume that x+ = x−. If we denote x+ = x− = x then we can choose a gen-
erator set {x, y1, . . . , yn−2} of Zn−1 such that {α+, i+(y1), . . . , i+(yn−2)} generates Z+ and
{α−, i−(y1), . . . , i−(yn−2)} generates Z−. Thus,

π1(M) ∼= ⟨α+, α−|α2
+ = α2

−⟩ ×Zn−2 ∼= π1(K)×Zn−2 = π1(K× Tn−2).

Since π1(M) is the fundamental group of a flat manifold and the Borel conjecture holds for
these groups (see [BL12]) we conclude that M ∼= K× Tn−2.

We now assume that x+ ̸= x−. We can choose a generator set {x+, x−, y1, . . . , yn−3} of Zn−1

such that {α+, i+(x−), i+(y1), . . . , i+(yn−3)} and {i−(x+), α−, i−(y1), . . . , i−(yn−3)} generate
Z+ and Z− respectively. Thus,

π1(M) ∼= ⟨α+, i+(x−), i−(x+), α−|
α2
+ = i−(x+), α2

− = i+(x−), [α+, i+(x−)] = 1, [α−, i−(x+)] = 1⟩ ×Zn−3.
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The presentation of the first factor Λ can be rearranged to obtain a new presentation

Λ ∼=⟨a, b|[a, b2] = 1, [a2, b] = 1⟩
∼=⟨a, b, c, d|c = ab, d = ba, ac = bd, cb = da⟩
∼=⟨a, c, d|[c, d] = 1, aca−1 = d, ada−1 = c⟩.

With the last presentation, we can define an isomorphism f : Λ −→ Z2 ⋊ϕ Z such that
f (a) = (0, 0, 1), f (b) = (1, 0, 0) and f (c) = (0, 1, 0). Consequently, π1(M) ∼= π1(SK ×
Tn−3). Since π1(M) is the fundamental group of a flat manifold and the Borel conjecture
holds for these groups we conclude that M ∼= SK× Tn−3.

Corollary 2.6.4. Let M be a closed connected aspherical manifold of dimension n. If M ≇ Tn and
M is orientable then tor-sym(M) ≤ n− 2.

Remark 2.6.5. The hypothesis of M being aspherical is essential. For example tor-sym(S2) = 1
and S2 ≇ K× Tn−2, Tn−3 × SK.

Theorem 2.6.6. Let M be a closed connected aspherical manifold such that Zπ1(M) is finitely
generated and Out(π1(M)) is Minkowski. Assume that Inn(π1(M)) has an element of infinite
order. Then disc-sym(M) = n− 1 if and only if M ∼= K× Tn−2 or M ∼= Tn−3 × SK.

Proof. Because of the hypothesis on π1(M) we know that Zπ1(M) ∼= Zn−1. Let x ∈
Inn π1(M) be an element of infinite order and consider the commutative diagram

1 Zπ1(M) p−1(⟨x⟩) ⟨x⟩ 1

1 Zπ1(M) π1(M) Inn π1(M) 1

Id
p

where the vertical arrows are inclusion maps. The upper short exact sequence is also
central and therefore it is classified by H2(Z, Zn−1) = 0. In consequence, p−1(⟨x⟩) ∼= Zn.
We consider now the covering q : M̃/p−1(⟨x⟩) −→ M. Note that H∗(M̃/p−1(⟨x⟩), Z) ∼=
H∗(Zn, Z) and therefore Hn(M̃/p−1(⟨x⟩), Z) is not trivial. Consequently, M̃/p−1(⟨x⟩) is
a closed connected aspherical manifold and M̃/p−1(⟨x⟩) ∼= Tn. Since M and M̃/p−1(⟨x⟩)
are compact, we obtain that q is a finite covering map and therefore p−1(⟨x⟩) ≤ π1(M) has
finite index and π1(M) is the fundamental group of a flat manifold. Thus, disc-sym(M) =

tor-sym(M) by theorem 2.0.4 and the result follows from proposition 2.6.2.

It is an interesting question to know whether Inn π1(M) always has an element of infinite
order when M is closed aspherical manifold not homeomorphic to a torus and such that
Zπ1(M) is finitely generated. Note that Inn π1(M) cannot be finite by lemma 2.1.2 unless
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M is homeomorphic to a torus. Thus, if Inn π1(M) does not contain elements of infinite
order then π1(M) is abelian or Inn π1(M) is infinite periodic.

We present some evidences that support that the answer to the question is affirmative.
Firstly, let Γ and Λ be two groups. Assume that we have a surjective group morphism
p : Γ −→ Λ. Then there is an induced surjective group morphism p′ : Inn Γ −→ Inn Λ
which sends a conjugation cγ to cp(γ). Thus, if Inn Λ has an element of infinite order, then
Inn Γ also has an element of infinite order.

Assume now that we have an inclusion i : Γ −→ Λ instead. Then there is an induced
injective group morphism i′ : Inn Γ −→ Inn Λ which sends a conjugation cγ to ci(γ). In
particular, if Inn Γ has an element of infinite order, then Inn Γ also has an element of infinite
order. We can deduce the following corollary from these observations:

Corollary 2.6.7. Let M be a closed aspherical manifold, then:

(1) If M′ −→ M is a covering and Inn π1(M′) has an element of infinite order then Inn π1(M)

has an element of infinite order.

(2) Suppose that we have a fibration of closed connected aspherical manifolds M′ −→ M −→ M′′.
If Inn π1(M′) or Inn π1(M′′) have an element of infinite order, then Inn π1(M) has an
element of infinite order.

Proof. In the first case, we use that π1(M′) ≤ π1(M) and in the second case the short exact
sequence 1 −→ π1(M′) −→ π1(M) −→ π1(M′′) −→ 1 together with the observations
above.

Note that if Γ is a non-abelian polycyclic group or Γ is torsion-free centreless then Inn Γ has
elements of infinite order. Thus, closed aspherical locally homogeneous spaces and closed
aspherical manifolds whose fundamental group is hyperbolic have an infinite order ele-
ment in the inner automorphism group of their fundamental group. Moreover, any closed
aspherical manifold M not homeomorphic to a torus constructed using fibrations of these
two classes of aspherical manifolds will have an element of infinite order in Inn π1(M).

There are cohomological restrictions to Inn π1(M) being infinite periodic. Assume that M
is a closed connected aspherical manifold such that Inn π1(M) is infinite periodic. Then
H1(Inn π1(M), Z) = Hom(Inn π1(M), Z) is trivial and the inflation-restriction exact se-
quence becomes

1 −→ H1(π1(M), Z) −→ H1(Zπ1(M), Z) −→ H2(Inn π1(M), Z) −→ H2(π1(M), Z)

where we see Z as a trivial π1(M)-module. In particular, if rank H1(M, Z) > rankZπ1(M)

then Inn π1(M) has elements of infinite order.
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Moreover, since H2(π1(M), Z) ∼= H2(M, Z) and H1(Zπ1(M), Z) ∼= H1(TrankZπ1(M), Z),
the group H2(Inn π1(M), Z) needs to be finitely generated. Using the results in [AA18],
we can conclude that Inn π1(M) cannot be isomorphic to a free Burnside group B(a, b) with
b ≥ 665 odd. The results in [Che21] imply that Inn π1(M) cannot be an infinite periodic 2-
group of bounded exponent. Finally, we note that Inn π1(M) is a finitely presented group
and it is an open question if there exists finitely presented infinite periodic groups (this
question is the Burnside problem for finitely presented groups, see [Sap07, pg. 3])



Chapter 3

Large finite group actions and non-zero
degree maps

The aim of this chapter is to generalize the following theorem:

Theorem 3.0.1. [MiR24a, Theorem 1.3, Theorem 1.14] Let M be a closed connected orientable
n-dimensional manifold which admits a non-zero degree map f : M −→ Tn. Then:

1. Homeo(M) is Jordan.

2. If disc-sym(M) = n then there is an isomorphism of rings H∗(M, Z) ∼= H∗(Tn, Z).

3. If χ(M) ̸= 0 then M is almost asymmetric.

4. M has few stabilizers.

We generalize this result by assuming that M admits a non-zero degree map to a nilmani-
fold.

Theorem 3.0.2. Let M be a closed oriented connected n-dimensional manifold and f : M −→ N/Γ
a non-zero degree map to a closed nilmanifold. Then:

1. Homeo(M) is Jordan.

2. disc-sym(M) ≤ rankZΓ and if disc-sym(M) = n then H∗(M, Z) ∼= H∗(Tn, Z).

3. If χ(M) ̸= 0 then M is almost asymmetric.

4. M has few stabilizers.

However, we note that there exists a closed connected oriented manifold which admits a
non-zero degree map to a nilmanifold N/Γ such that disc-sym(M) = disc-sym(N/Γ) but
H∗(M, Q) ≇ H∗(N/Γ, Q) (see proposition 3.3.13).

The proof of theorem 3.0.2 is divided in two parts, which will be explained in sections

108
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2 and 3 of this chapter. In the second section of this chapter we introduce some new
properties of non-zero degree maps between manifolds f : M −→ N and we use them to
study the relation between finite a groups acting on M and N. In the third section we prove
theorem 3.0.2 using the results in section 3.2. In the first section we prove a generalization
of theorem 2.0.1 for admissible manifolds and discuss some of its applications.

3.1 Large finite group actions on admissible manifolds

Note that closed connected oriented manifolds admitting a non-zero degree map to a torus
or a nilmanifold are admissible (see definition 1.3.107). One could use the same arguments
used in chapter 2 together with theorem 1.3.109 to obtain:

Theorem 3.1.1. Let M be a closed connected admissible manifold. Assume that Out(π1(M)) is
Minkowski and that Zπ1(M) is finitely generated. Then:

1. Homeo(M) is Jordan.

2. disc-sym(M) ≤ rank(Zπ1(M)/ Torsion(Zπ1(M))).

3. If χ(M) ̸= 0 and Aut(π1(M)) is Minkowski then M is almost asymmetric.

4. If Aut(π1(M)) is Minkowski then M has few stabilizers.

Proof. The proofs of items 1, 2 and 4 are the same as in theorem 2.0.1. Note that we cannot
use lemma 2.1.3 to prove item 3 of theorem 3.1.1 in the same way as in theorem 2.0.1. If
we have the extra assumption that Aut(π1(M)) is Minkowski then item 3 follows from
theorem 1.1.63 and lemma 1.1.64.

An application of theorem 3.1.1 is the following. Suppose that M is a closed connected
oriented aspherical manifold satisfying the hypothesis of theorem 2.0.1 and M′ is a closed
simply-connected manifold of the same dimension as M, then M#M′ is a closed admissible
manifold such that Homeo(M#M′) is Jordan, disc-sym(M#M′) ≤ rankZπ1(M) and M#M′

has few stabilizers. The discrete degree of symmetry inequality is usually strict. For ex-
ample, assume that M′ is a closed simply-connected even dimensional manifold such that
χ(M′) ̸= 2. Then χ(Tn#M′) = χ(M′) − 2 ̸= 0 and hence disc-sym(Tn#M′) = 0 < n =

rankZπ1(Tn#M′), by theorem 3.1.1(3).

Theorem 3.1.1 and theorem 3.0.2 have a non-trivial overlap, but neither is more general
than the other. On one hand, not all admissible manifolds admit a non-zero degree maps
to a nilmanifold. On the other hand, there exist closed connected orientable manifolds
admitting anon-zero degree map to a torus such that the outer automorphism group of
their fundamental group is not Minkowski. In [Blo75, Theorem 1.1.1] it is proved that if
Γ and Λ are isomorphic neither to a non-trivial free product nor to a infinite cyclic group
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then Out(Γ ∗Λ) ∼= Aut(Γ)×Aut(Λ) if Γ ≇ Λ and Out(Γ ∗Λ) ∼= (Aut(Γ)×Aut(Λ))×Z/2
if Γ ∼= Λ. In particular, if M is a closed connected 4-manifold with fundamental group the
Baumslag-Solitar group B(m, ml) = ⟨a, b|bamb−1 = aml⟩ with m, l ≥ 2. Note that B(m, ml)
is not a proper free product of groups (see [LSLS77, II.5.13] or) Then Out(π1(M#T4)) ∼=
Aut(B(m, ml))×GL(4, Z) is not Minkowski (see remark 2.1.5), but M#T4 is hypertoral and
hence Homeo(M#T4) is Jordan by theorem 3.0.1.

3.2 Exporting and importing maps

A key result to prove [MiR24a, Theorem 1.3] is the following theorem.

Theorem 3.2.1. [MiR24a, Theorem 4.1] Let M be a closed oriented manifold of dimension n which
admits a continuous map f : M −→ Tn of non-zero degree and let G be a finite group acting
effectively on M and trivially on H1(M, Z), then there exist a group action of G on Tn and a
continuous map fG : M −→ Tn which is G-equivariant and homotopic to f .

Remark 3.2.2. The constructed action of G on Tn is not necessarily effective. If K denotes the kernel
of ineffectiveness, then |K| ≤ deg f and the effective action of G/K on Tn is free and by rotations.
Thus the induced group morphism G/K −→ GL(n, Z) is trivial.

Theorem 3.2.1 inspires the following definition:

Definition 3.2.3. Let M and M′ be closed oriented manifolds of the same dimension and let f :
M −→ M′ be a continuous map. We say that f exports group actions, or f is an exporting map,
if there exists a constant C such that every finite group G acting effectively on M (which we denote
by ϕ : G −→ Homeo(M)) has a subgroup H ≤ G such that:

1. [G : H] ≤ C

2. There exists an action H on M′ (denoted by ϕ′ : H −→ Homeo(M′)).

3. There exists an H-equivariant map fH : M −→ M′ homotopic to f .

By Minkowski lemma, given a closed connected manifold M there exists a constant C such
that any finite group G acting effectively on M has a finite index subgroup H of index
[G : H] ≤ C such that H acts trivially on H1(M, Z). Thus, theorem 3.2.1 states that any
non-zero degree map f : M −→ Tn is an exporting map. Another example of this property
in the smooth setting is provided by the following theorem of R.Schoen and S.T.Yau.

Theorem 3.2.4. [SY79, Theorem 8] Let M and M′ be closed connected orientable smooth manifolds
of the same dimension. Assume that M′ has a Riemannian metric of non-positive curvature and there
is a non-zero degree smooth map f : M −→ M′ such that f∗ : π1(M) −→ π1(M′) is surjective.
Let A(M′) denote the group of affine transformations on M′ (that is, the group of diffeomorphisms
preserving the Levi-Civita connection) and let A(M′) denote the subgroup of the identity component
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of A(M′) generated by the parallel vector fields of M′. Given a finite group G acting effectively and
smoothly on M, suppose that for each g ∈ G there exists an element g′ ∈ A(M′) such that f ◦ g
is freely homotopic to g′ ◦ f (g′ is not necessarily unique or non-trivial). Then there exist a group
morphism γ : G −→ A(M′) and a γ-equivariant smooth map fG : M −→ M′ homotopic to f .
Moreover, |Ker γ| ≤ deg( f ).

If there exists a constant C such that every finite group G acting smoothly and effectively
on M has a subgroup H ≤ G satisfying the conditions of theorem 3.2.4 and [G : H] ≤ C
then f is an exporting map. Some examples can be found in [SY79, Theorem 11, Theorem
13].

Theorem 3.2.5. [SY79, Theorem 11, Theorem 13] Let M and M′ be closed connected orientable
smooth manifolds of the same dimension. Assume that there is a degree one map f : M −→ M′

such that f∗ : π1(M) −→ π1(M′) is surjective. Furthermore, assume that M′ satisfy one of the
following set of conditions:

1. M′ is diffeomorphic to a locally symmetric space Γ \G/H, where all the factors of G have real
rank equal or greater than 2.

2. M′ is flat and Zπ1(M′) is trivial.

Then for any finite group G acting effectively and smoothly on M there exist a smooth effective
action of G on M′ and a G-equivariant map fG : M −→ M′ homotopic to f .

Note that in theorem 3.2.5 we do not need to replace the finite group by a suitable subgroup
of bounded index.

The aim of this section is to study exporting maps.

Lemma 3.2.6. Let f : M −→ M′ be a non-zero degree exporting map. With the notation as in
definition 3.2.3, we have |Ker ϕ′| ≤ deg( f ).

The proof of the lemma is a consequence of the next fact.

Lemma 3.2.7. [MiR24a, Lemma 4.4] Let M be a closed oriented n-manifold and suppose that G is
a finite group acting on M effectively and preserving the orientation. If we denote by π : M −→
M/G the quotient map and by d the cardinal of G then π∗(Hn(M/G, Z)) ⊆ dHn(M, Z).

Proof of lemma 3.2.6. Since fH is H-equivariant, we can restrict the action of H on M to the
subgroup Ker ϕ′ ≤ H, obtaining a commutative diagram

M M′

M/ Ker ϕ′

fH

π
f H
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In consequence, π∗ ◦ f
∗
H. Furthermore, since f and fH are homotopic, we have f ∗H = f ∗ :

Hn(M′, Z) −→ Hn(M, Z). By lemma 3.2.7, we obtain that |Ker ϕ′| divides deg( f ). In
particular |Ker ϕ′| ≤ deg( f ).

The next lemma studies the composition of two exporting maps.

Lemma 3.2.8. Let M, M′ and M′′ be closed oriented manifolds and let f : M −→ M′ and
g : M′ −→ M′′ be exporting non-zero degree maps with constants C and D respectively. Then
g ◦ f : M −→ M′′ exports group actions with constant C · D.

Proof. Assume that G is a finite group acting effectively on M and take the subgroup
H ≤ G of definition 3.2.3. Thus, there exists an action of H on M′, denoted by ϕ′ :
H −→ Homeo(M′), a H-equivariant map fH : M −→ M′ homotopic to f and [G : H] ≤ C.
Since ϕ′(H) acts effectively on M′, there exist a subgroup K ≤ ϕ′(H), an action ϕ′′ : K −→
Homeo(M′′) satisfying [ϕ′(H) : K] ≤ D, and a K-equivariant map gK : M′ −→ M′′ ho-
motopic to g. We can consider the subgroup H′ = ϕ′−1(K) ≤ H and the action of H′ on
M′′ given by the group morphism ϕ′′ ◦ ϕ′ : H′ −→ K ≤ Homeo(M′′). The map gK ◦ fH is
H′-equivariant and homotopic to g ◦ f . In addition, [G : H′] ≤ C ·D and hence the claim is
proved.

The main result of this section is that properties introduced in section 1.1.3 behave well
with respect exporting maps. It is one of the main ingredients to prove theorem 10.

Theorem 3.2.9. Let M and M′ closed oriented manifolds which admit a non-zero degree exporting
map f : M −→ M′. Then:

1. If Homeo(M′) is Jordan, then Homeo(M) is Jordan.

2. disc-sym(M) ≤ disc-sym(M′).

3. If M′ has the small stabilizer property then M has the small stabilizer property.

4. If M′ is almost asymmetric, then M is almost asymmetric.

In order to prove this theorem we need the three following group-theoretic lemmas.

Lemma 3.2.10. [MiR10, Lemma 2.2] Let d and r be natural numbers. There exists a natural
number C(d, r) such that if we have a short exact sequence of groups

1 −→ K −→ G −→ A −→ 1

where |K| ≤ d and A is abelian and generated by r elements, then G has an abelian subgroup of
index at most C(d, r).

Lemma 3.2.11. [MiR24a, Lemma 2.1] Let a,b and C be natural numbers and suppose that G′ is a
subgroup of (Z/a)b satisfying [(Z/a)b : G′] ≤ C. Then there exist a number a′ and a subgroup
G′′ ≤ G′ such that G′′ ∼= (Z/a′)b and C!a′ ≥ a.
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To state the last lemma we need to introduce two new invariants:

Definition 3.2.12. Let M be a manifold. We define

P disc-sym(M) = max{{0} ∪ {r : (Z/p)r acts effectively on M for arbitrarily large prime p}}.

For a fixed prime p, we define

disc-symp(M) = max{{0} ∪ {r : (Z/ps)r acts effectively on M for arbitrarily large s}}.

If M is a closed connected manifold then P disc-sym(M) and disc-symp(M) are bounded
theorem 1.1.32.

Lemma 3.2.13. Let M be a closed manifold, then

disc-sym(M) = max({P disc-sym(M)} ∪ {disc-symp(M) : p prime}).

Proof. Clearly, P disc-sym(M) ≤ disc-sym(M) and disc-symp(M) ≤ disc-sym(M) for every
prime p. Conversely, assume that disc-sym(M) = b and therefore there exists a sequence
of natural numbers {ai}i∈N such that (Z/ai)

b acts effectively on M for all i and ai −→ ∞
when i −→ ∞. Let P be the set of primes which divide ai for some i.

If |P| = ∞ then there exists a subsequence {ak}k∈N of {ai}i∈N such that each ak is divided
by a prime pk satisfying that pk < pk+1. Thus, by taking (Z/pk)

b ≤ (Z/ak)
b we have an

effective action of (Z/pk)
b on M. Consequently, b ≤ P disc-sym(M).

If |P| < ∞ then there exist m primes p1,. . . , pm such that ai = px1,i
1 . . . pxm,i

m for all i. Since
ai −→ ∞ when i −→ ∞, by the pigeonhole principle there exists a subsequence {ak}k∈N

and a number l ∈ {1, . . . , m} such that xl,k −→ ∞ when k −→ ∞. Thus, we have effective
group actions of (Z/pxl,k

l )b on M. Consequently, b ≤ disc-sympl
(M).

By combining these two cases we obtain the desired result.

We are almost ready to give the proof of theorem 3.2.9. The last result we need is a corollary
of a theorem by L.N.Mann and J.C.Su (see theorem 1.1.32).

Corollary 3.2.14. Let M be a closed manifold of dimension n. There exists a number r such that if
A is a finite abelian group acting effectively on M then rank(A) ≤ r.

Proof of theorem 3.2.9. For the first statement of the theorem assume that G is a finite group
acting effectively on M. Then there exist a subgroup H of G such that [G : H] ≤ C, an
action of H on M′ and a continuous map fH : M −→ M′ which is H-equivariant and
homotopic to f . Let H0 = Ker ϕ′. By lemma 3.2.6, we known that |H0| ≤ deg( f ). The
group ϕ′(H) acts effectively on M′. Thus there exists an abelian subgroup A′ ≤ ϕ′(H) such
that [ϕ′(H) : A′] ≤ C′, where C′ is the Jordan constant of Homeo(M′). By corollary 3.2.14,
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there exists a constant r′ such that any abelian finite group acting effectively on M′ has
rank at most r′.

We consider the commutative diagram

1 H0 ϕ′−1(A′) A′ 1

1 H0 H ϕ(H) 1

Id

ϕ′

ϕ

Note that [H : ϕ′−1(A′)] ≤ C′. We can use lemma 3.2.10 on the upper short exact sequence
to find a constant D, which only depends on d and r′, and an abelian subgroup A of
ϕ′−1(A′) such that [ϕ′−1(A′) : A] ≤ D. In conclusion, we have found a subgroup A of G
such that [G : A] ≤ C · C′ · D and we can conclude that Homeo(M) is Jordan.

We note that by lemma 3.2.11 we can assume that given an increasing sequence {ai}i∈N

such that ai −→ ∞ and groups (Z/ai)
b acting effectively on M then (Z/ai)

b also act on M′

for all i and that we can replace f by an homotopic equivariant map for each i.

By lemma 3.2.13 we can divide the prove in two parts. Firstly assume that we have an
increasing sequence of primes {pk}k∈N and groups (Z/pk)

b acting effectively on M. Like
in the first part of the proof, we consider the group action ϕ′pk,b : (Z/pk)

b −→ Homeo(M′)
and the exact sequence

1 K(pk,b) (Z/pk)
b ϕ′pk,b((Z/pk)

b) 1
ϕ′pk ,b

for each k, where K(pk,b) = Ker ϕ′pk,b. Since K(pk,b) is a subgroup of (Z/pk)
b, there exists

x(k) ∈N such that |K(pk,b)| = px(k)
k . On the other hand, |K(pk,b)| ≤ d. Since pk −→ ∞ when

k −→ ∞, there exist k0 such that pk > d for all k ≥ k0. This implies that x(k) = 0 for k ≥ k0

and that (Z/pk)
b acts effectively on M′ for k ≥ k0. Thus, P disc-sym(M) ≤ disc-sym(M′).

We fix a prime number p and denote by c ∈ N the largest number such that pc ≤ d.
Assume that we have an increasing sequence {ak}k∈N such that (Z/pak)b acts effectively
on M. Since a(k) −→ ∞ when k −→ ∞, there exists a k0 such that ak0 > c for all k ≥ k0.
Then K(pak ,b) is a subgroup of (Z/pc)b ≤ (Z/pak)b and

(Z/pak−c)b ∼= (Z/pak)b/(Z/pc)b ≤ (Z/pak)b/K(pak ,b)
∼= ϕ′pak ,b((Z/pak)b)

for k ≥ k0. Hence, (Z/pak−c)b acts effectively on M′ for k ≥ k0. Thus, disc-symp(M) ≤
disc-sym(M′).
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Joining the two cases we obtain that disc-sym(M) ≤ disc-sym(M′).

To prove the third part assume that G is a finite group acting effectively on M with a
fix point x. Let C be the constant provided by the exporting map property and let H,
ϕ′ : H −→ Homeo(M′) and fH be respectively the subgroup of G, the action on M′ and the
continuous map homotopic to f given by the assumptions. Since x is a fixed point of the
action of H on M, fH(x) is a fixed point of the action of the effective ϕ′(H) on M′. If C′ is
the small stabilizer constant on M′, then |ϕ′(H)| ≤ C′. We obtain the exact sequence

1 H0 H ϕ′(H) 1
ϕ′

where |H0| ≤ d = deg( f ) and |ϕ′(H)| ≤ C′. In consequence, |H| ≤ C′ · d and |G| ≤
C · C′ · d.

The proof of the fourth part is analogous to the proof of the third part. If C′ denotes now
the constant provided by the almost-asymmetric property of M′, then we have |ϕ′(H)| ≤ C′

and hence |G| ≤ C · C′ · d.

Since Homeo(S4) is Jordan and Homeo(T2 × S2) is not Jordan, we can deduce:

Corollary 3.2.15. Any non-zero degree map f : T2 × S2 −→ S4 is not an exporting map.

Note also that disc-sym(T2 × S2) ≥ 3 > disc-sym(S4) = 2.

The next definition is the converse of the exporting map property.

Definition 3.2.16. Let M and M′ be closed oriented manifolds of the same dimension and let
f : M −→ M′ be continuous map. We say that f imports group actions, or it is an importing map,
if there exists a constant C such that any finite group G acting on M′ has a subgroup H ≤ G such
that:

1. [G : H] ≤ C.

2. There exists a finite group H̃ acting effectively on M and a surjective group morphism ρ :
H̃ −→ H.

3. There exists a ρ-equivariant map fH : M −→ M′ homotopic to f .

Remark 3.2.17. The property of importing group actions is similar to the property of propagating
of group actions (see [AD02, Definition 3.1]). Given a continuous map between closed manifolds
f : M −→ M′ and a finite group G acting effectively on M′, we that the action of G on M′

propagates to M across f if there exists an effective action of G on M and an equivariant map
fG : M −→ M′ homotopic to f . Propagation of group actions was used to study group actions on
homology spheres (see [AD02, §3.2.2] and references therein).

Importing and exporting maps have similar properties. The next lemma has an analogous
proof to lemma 3.2.8.
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Lemma 3.2.18. Let M, M′ and M′′ be closed oriented manifolds and let f : M −→ M′ and
g : M′ −→ M′′ be importing maps with constants C and D respectively. Then g ◦ f : M −→ M′′

imports group actions with constant C · D.

Proof. Let G be a finite group acting effectively on M′′. Then there exist a subgroup H ≤
G satisfying that [G : H] ≤ D, a group H̃ acting effectively on M′, a surjective group
morphism ρ′ : H̃ −→ H and a ρ-equivariant map gH : M′ −→ M′′. Since H̃ acts effectively
on M′, there exist a subgroup K ≤ H̃ satisfying that [H̃ : K] ≤ C, a group K̃ acting
effectively on M, a surjective group morphism ρ : K̃ −→ K and a ρ-equivariant map
fK : M −→ M′.

We consider now the subgroup ρ′(K) ≤ G. We note that [G : ρ′(K)] ≤ C× D, that ρ′|K ◦ ρ :
K̃ −→ ρ′(K) is a surjective group morphism and that gH ◦ fK is ρ′|K ◦ ρ-equivariant and
homotopic to g ◦ f . Consequently, g ◦ f is an importing map.

Lemma 3.2.19. Let M and M′ be closed oriented manifolds and f : M −→ M′ a non-zero degree
importing map. Then |Ker ρ| ≤ deg( f ).

Proof. Since fH is ρ-equivariant, we have a commutative diagram

M M′

M/ Ker ρ

fH

π
f H

By lemma 3.2.7, π∗(Hn(M/ Ker ρ, Z)) ⊆ deg( f )Hn(M, Z). Therefore, |Ker ρ| divides
deg( f ). Thus, |Ker ρ| ≤ deg( f ).

The main example of importing maps are coverings of manifolds.

Lemma 3.2.20. Let p : M −→ M′ be a finite covering between closed oriented manifolds. Then p
imports group actions.

Proof. Assume that p : M −→ M′ is a n-sheeted covering and G is a finite group acting
effectively on M. Then G also acts on Covn(M′), the set of n-sheeted coverings of M′ by
pull-backs. On the other hand Covn(M′) ∼= Hom(π1(M′), Sn)/ ∼ where Sn is the n-th
symmetric group and the equivalence relation is given by conjugation of elements of Sn.
Therefore Covn(M′) is finite, which implies that there exists a constant C only depending
on M′ and n such that any finite group G acting effectively on M has a subgroup H which
acts trivially on Covn(M′) and [G : H] ≤ C. Then we can lift the action of H on M′ to an
effective action of a group H̃ on M. In addition, there exists a surjective group morphism
ρ : H̃ −→ H which makes the covering map p : M −→ N ρ-equivariant.



3.3 Large finite group actions and non-zero degree maps to nilmanifolds 117

We have the analogous result to theorem 3.2.9 for importing maps.

Theorem 3.2.21. Let M and M′ closed oriented manifolds which admit an importing map f :
M −→ M′. Then:

1. If Homeo(M) is Jordan, then Homeo(M′) is Jordan.

2. disc-sym(M′) ≤ disc-sym(M).

3. If M has the almost fixed point property, then M′ has the almost fixed point property.

4. If M is almost asymmetric, then M′ is almost asymmetric.

Proof. The proof of items 1. and 2. are the same as in the case of finite coverings (see
[MiR10, MiR24a]). We prove the third part in detail.

Let G be a group acting effectively on M′. Let C be the constant of the definition of the
importing map f and H ≤ G, fH : M −→ M′ and ρ : H̃ −→ H the data provided by the
definition. Recall that [G : H] ≤ C and ρ is surjective. The group H̃ acts effectively on M.
Since M has the almost fixed point property with constant D there exists x ∈ M such that
[H̃ : H̃x] ≤ D. We use now that fH is ρ-equivariant, therefore ϕ(H̃x) ≤ H fH(x). Since ρ is
surjective, [H : H fH(x)] ≤ [H : ρ(H̃x)] ≤ D. Finally. we have [G : G fH(x)] ≤ [G : H fH(x)] ≤
C · D. We have seen that M′ has the almost fixed point property with constant C · D.

The proof of the fourth part is analogous to the third part.

With theorem 3.2.21 it is straightforward to find example of maps which are not importing.
For example, since Homeo(T4) is Jordan and Homeo(T2 × S2) is not Jordan, we have:

Corollary 3.2.22. Any non-zero degree map f : T4 −→ T2 × S2 is not an importing map.

Corollary 3.2.23. Let M and M′ be closed oriented manifolds and f : M −→ M′ a map which
exports and imports group actions. Then disc-sym(M) = disc-sym(M′) and Homeo(M) is
Jordan if and only if Homeo(M′) is Jordan.

We will see that finite coverings between nilmanifolds are an example of importing and
exporting map.

3.3 Large finite group actions on manifolds admitting a non-
zero degree map to a nilmanifold

The goal of this section is to prove theorem 3.0.2. To do so, we will use the following
theorem:
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Theorem 3.3.1. Let M be a closed oriented connected manifold and f : M −→ N/Γ a non-zero
degree map to a nilmanifold N/Γ. Then f is an exporting map.

We divide the proof of theorem 3.3.1 in three parts.

Part 1: In the first part we reduce the proof of theorem 3.3.1 to the case where f : M −→
N/Γ induces a surjective map between fundamental groups.

First, we note that f∗(π1(M)) is a finite index subgroup of Γ. Indeed, consider the diagram

X

M N/Γ

p
f ′

f

where X is the covering space of N/Γ associated to the subgroup f∗(π1(M)) ≤ Γ and f ′

is a lift of f (which exists by general properties of covering spaces). Since f = p ◦ f ′, the
non-zero map f ∗ : Hn(N/Γ, Z) −→ Hn(M, Z) factors through Hn(X, Z). This implies that
Hn(X, Z) is not zero and therefore X is a compact manifold. Since p : X −→ N/Γ is a
covering between compact manifolds, p is a finite covering and [Γ : f∗(π1(M))] is finite.

Consequently, f∗(π1(M)) = Γ′ is also a lattice of N and X ∼= N/Γ′. By lemma 3.2.8, if we
prove that f ′ and p are exporting maps then f will be an exporting map.

Lemma 3.3.2. The covering p is an exporting map.

Proof. By theorem 1.3.96 and theorem 2.0.2, there exists a constant C depending only on Γ′

satisfying that, if G is a finite group acting effectively on N/Γ′ and H is the kernel of the
group morphism ψ : G −→ Out(Γ′), then [G : H] ≤ C. Moreover, H is isomorphic to a
subgroup of the torus ZN/ZΓ′, and hence it is abelian.

Let G be a finite group acting effectively on N/Γ′ and H = Ker(ψ : G −→ Out(Γ′)).
We claim that the action of H on N/Γ′ is free. Given a point x ∈ N/Γ′, the isotropy
subgroup Hx injects into Aut(Γ′). Since the action of H on N/Γ′ is inner, Hx is a subgroup
of Inn(Γ′) = Γ′/ZΓ′. Since Γ′ is a finitely generated torsion-free nilpotent group, Inn(Γ′) is
torsion-free and therefore Hx is trivial, as claimed.

The action of H can be conjugated to an action of H ≤ ZN/ZΓ′ obtained by restricting
the standard torus action of ZN/ZΓ′ on N/Γ′ (see [LR10, Remark 11.7.18.2]). Thus, we
can assume without loss of generality that H ≤ ZN/ZΓ′ and the action of H on N/Γ′ is
induced by the restriction of the torus action ZN/ZΓ′ on N/Γ′.

The covering p : N/Γ′ −→ N/Γ is given by p(nΓ′) = nΓ for n ∈ N and hence it is N-
equivariant. Since ZΓ′ = ZN ∩ Γ′ and ZΓ = ZN ∩ Γ, we have that ZΓ′ ≤ ZΓ ≤ ZN.
Consequently, we have a group morphism ρ : ZN/ZΓ′ −→ ZN/ZΓ between tori of the
same dimension.
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We note that p : N/Γ′ −→ N/Γ is ρ-equivariant. Since H ≤ ZN/ZΓ′, we have an action
of H on N/Γ given by h(nΓ) = ρ(h)(nΓ). This implies that p is an exporting map, as we
wanted to prove.

In particular, p : N/Γ′ −→ N/Γ is an exporting map. It remains to prove that f ′ is also an
exporting map.

Thus, from now on we will assume that f : M −→ N/Γ induces a surjective map f∗ :
π1(M) −→ Γ.

Part 2: Let i : Γ ↪→ N denote the inclusion of the lattice Γ in N. For this part of
the proof we consider the set of isomorphism classes N-local systems X(π1(M), N) =

Hom(π1(M), N)/∼, where ∼ denotes the equivalence relation given by the conjugation
by elements of N. An effective action of a finite group G on M induces an action of G on
X(π1(M), N) (this action is described explicitly in the proof of lemma 3.3.4). Our goal is
to prove that if G fixes the class [i ◦ f∗] ∈ X(π1(M), N) then there exists an action of G
on N/Γ and a G-equivariant map fG : M −→ N/Γ which is homotopic to f . We will use
induction on the dimension of N.

We start with the following lemma, which is a generalization of [MiR24a, Lemma 4.2] to
non-compact manifolds. The arguments used to prove lemma 3.3.3 and [MiR24a, Lemma
4.2] are essentially the same.

Lemma 3.3.3. Let M be a connected manifold, let f : M −→ S1 be a continuous map and let θ

be a generator of H1(S1, Z). Suppose that H is a finite group of cardinal r acting effectively on M
fixing f ∗θ. Consider the group extension

1 −→ π1(M) −→ H̃ −→ H −→ 1,

where the group H̃ acts effectively on the universal cover M̃. Then there exists a group morphism
µ̃ : H̃ −→ R and a µ̃-equivariant map f̃H : M̃ −→ R such that µ̃|π1(M) = f∗.

Proof. Define F : M → S1 by ζ(x) = ∑h∈H f (h · x) for every x ∈ M. Then F is continuous
and constant on the orbits of the action of H. Let ϕh : M → M be the homeomorphism
induced by the action of h ∈ H. By assumption, ϕ∗h f ∗θ = f ∗θ for every h ∈ H. We have
F∗θ = ∑h∈H ϕ∗h( f ∗θ) = r f ∗θ.

Consider the Z/r-covering pr : S1 −→ S1 defined as pr(t) = rt. Let qr : Mr −→ M the
pull-back of pr by F. Recall that Mr = {(x, t) ∈ M× S1 : F(x) = rt} and qr : Mr −→ M
satisfies qr(x, t) = x for (x, t) ∈ Mr. Moreover, qr : Mr −→ M has a structure of principal
Z/r given by the action (x, t) · α = (x, tα) for (x, t) ∈ Mr and α ∈ Z/r.

We claim that qr is a trivial principal bundle. This is equivalent to the triviality of the
monodromy of qr, which we denote by ν : π1(M, x0)→ Z/r, where x0 ∈ M is an arbitrary
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base point. If there existed some γ ∈ π1(X, x0) such that ν(γ) ̸= 0, then the pairing
of f ∗θ with [γ] ∈ H1(X, Z) would not be divisible by r, which contradicts F∗θ = r f ∗θ.
Hence ν is trivial and consequently, the bundle qr is a trivial, so we may choose a section
σ : M −→ Mr.

Define fH : M −→ S1 by the condition that σ(x) = (x, fH(x)). Then fH is continuous and
we haver fH(x) = F(x) for every x ∈ M. For any h ∈ H, define χh : M→ S1 by

χh(x) = fH(h · x)− fH(x).

We have
rχh(x) = r fH(h · x)− r fH(x) = F(h · x)− F(x) = 0

because F is H-invariant. Hence χh takes values in Z/r ≤ S1. Consequently, since χh is
continuous, it is a constant map. We may thus define a map µ : H −→ Z/r by the condition
that µ(h) = χh(x) for every x ∈ X.

Let h, h′ ∈ H and let x ∈ X. We have

χhh′(x) = fH(hh′ · x)− fH(x) = fH(hh′ · x)− fH(h′ · x)+ fH(h′ · x)− fH(x) = χh(h′ · x)+χh′(x),

which proves that µ(hh′) = µ(h) + µ(h′), so µ is a morphism of groups. From the definition
of µ, it is immediate that fH is µ-equivariant.

To conclude the proof, note that r f ∗Hθ = F∗θ = r f ∗θ. Since H1(X; Z) has no torsion, we
conclude that f ∗Hθ = f ∗θ. Thus, f∗ : π1(M) −→ Z and fH∗ : π1(M) −→ Z are equal.
We can lift fH to a map between the universal coverings f̃H : M̃ −→ R. Since fH is
µ-equivariant, we have a commutative diagram

1 π1(M) H̃ H 1

1 Z Z Z/r 1.

fH∗ µ̃ µ

π̃

Lemma 3.3.4. Let M be a closed connected oriented manifold and let f : M −→ N/Γ be a map
such that f∗(π1(M)) = Γ. Assume that H is a finite group acting effectively on M which fixes the
local system [i ◦ f∗] ∈ X(π1(M), N). Consider the group extension

1 −→ π1(M) −→ H̃ −→ H −→ 1,

where the group H̃ acts effectively on the universal cover M̃. Then there exists a group morphism
µ̃ : H̃ −→ N and a µ̃-equivariant map f̃H : M̃ −→ N such that µ̃|π1(M) = f∗.

Before proving lemma 3.3.4, we deduce the next corollary.
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Corollary 3.3.5. Let M be a closed connected oriented manifold and f : M −→ N/Γ be a non-zero
degree map such that f∗(π1(M)) = Γ. Assume that H is a finite group acting effectively on M
which fixes the local system [i ◦ f∗] ∈ X(π1(M), N). Then there exists a group action of H on N/Γ
and an equivariant map fH : M −→ N/Γ homotopic to f .

Proof. Since µ̃|π1(M) = i ◦ f∗, the map f̃H : M̃ −→ N induces a map fH : M −→ N/Γ.
Moreover, µ̃ : H̃ −→ N induces a surjective group morphism µ′ : H̃/π1(M) = H −→
µ̃(H̃)/Γ such that fH is µ′-equivariant. Thus, we have an action H −→ µ̃(H̃)/Γ −→
Homeo(N/Γ) and fH is H-equivariant. Finally, since N/Γ is a model of the Eilenberg-
MacLane space K(Γ, 1) and [µ̃|π1(M)] = [i ◦ f∗], the maps f and fH are homotopic.

Remark 3.3.6. Note that the action of µ̃(H̃)/Γ is free and the quotient (N/Γ)/(µ̃(H̃)/Γ) is the
nilmanifold N/µ̃(H̃).

Proof of lemma 3.3.4. We proceed by induction on the dimension of the nilmanifold N/Γ. If
dim(N/Γ) = 1 then N/Γ ∼= S1 and the statement is a consequence of lemma 3.3.3. For the
induction step, using theorem 1.3.39, we can take central exact sequences

1 R N N′ 1π̃

and
1 R∩ Γ ∼= Z Γ Γ′ 1,

π∗

where π∗ = π̃|Γ. They induce a principal S1-bundle, π : N/Γ −→ N′/Γ′. Since the short
exact sequences are central, we can choose a normalized 2-cocycle c : N′ × N′ −→ R such
that N ∼= R×c N′ and Γ ∼= Z×c|Γ′×Γ′ Γ′. Note that dim(N′/Γ′) = dim(N/Γ)− 1.

We denote µ = i ◦ f∗. Note the we have an action of H̃ on X(π1(M), N) satisfying that
h̃[ν] = [ν ◦ ch̃|π1(M)] for all h̃ ∈ H̃ and [ν] ∈ X(π1(M), N). If the action of H on X(π1(M), N)

fixes [µ] then the action of H̃ also fixes [µ]. This is a consequence of the fact that the action
of H̃ on X(π1(M), N) factors through the action of H on X(π1(M), N), since the restriction
to π1(M) of the action of H̃ on X(π1(M), N) is trivial.

This condition implies that there exists a map (which is not a group morphism in general)
a : H̃ −→ N such that µ ◦ ch̃|π1(m) = ca(h̃) ◦ µ. Note that a : H̃ −→ N is not unique. If we
have another map a′ : H̃ −→ N with the same property, then ca′(h̃) ◦ µ = µ ◦ ch̃|π1(M) =

ca(h̃) ◦ µ and hence ca(h̃)−1a′(h̃) ◦ µ = µ. Therefore, a(h̃)−1a′(h̃) centralizes the lattice Γ and
hence a(h̃)−1a′(h̃) ∈ ZN for all h̃ ∈ H̃.

The action of H̃ fixes [π̃ ◦ µ] ∈ X(π1(M), N′). Since π∗ : Γ −→ Γ′ is surjective, the group
morphism π∗ ◦ f∗ : π1(M) −→ Γ′ is surjective and, by induction, there exists a group
morphism µ̃B : H̃ −→ N′ and a µ̃B-equivariant map f̃ ′B : M̃ −→ N′ such that µ̃B|π1(M) =

π̃ ◦ µ.
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Consequently, we have a surjective group morphism µB : H̃/π1(M) ∼= H −→ µ̃B(H̃)/Γ′.
Thus, we can define an action of H on N′/Γ′ (which may not be effective) given by h(nΓ′) =
µB(h)(nΓ′). The map f̃ ′B : M̃ −→ N′ induces an H-equivariant map f ′B : M −→ N′/Γ′

homotopic to π ◦ f . Since f ′B∗ : π1(M) −→ Γ′ factors through π∗ : Γ −→ Γ′, there exists
a map fB : M −→ N/Γ homotopic to f such that π ◦ fB = f ′B. We can lift fB to a map
f̃B : M̃ −→ N ∼= R×c N′. Note that f̃B is µ-equivariant and π̃ ◦ f̃B is µ̃B-equivariant.

We now consider the group H̃0 = Ker µ̃B and Z0 = µ−1(Ker π̃) ≤ π1(M) (recall that
Ker π̃ ∼= R). Notice that Z0 = H̃0 ∩ π1(M). Let g ∈ H̃0 ∩ π1(M). Then µ̃B(g) = π̃(µ(g)) =
0, which implies that g ∈ Z0. Conversely, if g ∈ Z0, then g ∈ π1(M). Therefore, µ̃B(g) =
π̃(µ(g)) = 0, which implies that g ∈ H̃0. Consequently, g ∈ H̃0 ∩ π1(M). In conclusion,
Z0 = µ−1(Ker π̃) ≤ π1(M). Therefore Z0 is a normal subgroup of H̃0. Moreover, H0 =

H̃0/Z0 is a subgroup of H and hence Z0 is a finite index subgroup of H̃0.

Since Z0 ≤ π1(M), f̃B : M̃ −→ N induces a map M̃/Z0 −→ N/Z ∼= S1 ×c N′. We obtain
a map fZ : M̃/Z0 −→ S1 by composing it with the projection to the S1 factor. We also get
an effective action of the finite group H0 on M̃/Z0. We consider µZ : Z0 −→ R, which is
the composition fZ∗ : Z0 −→ Z and the inclusion iZ = i|Z : Z −→ R ≤ ZN. The group
morphism µZ is the restriction of the map µ to Z0, µZ = µ|Z0

.

The action of H0 on X(Z0, R) = Hom(Z0, R) induces an action of H̃0 on X(Z0, R) satisfying
h̃ · ν = ν ◦ ch̃|Z0

for ν ∈ X(Z0, R) and h̃ ∈ H̃0. This action satisfies

h̃ · µZ = µ|Z0
◦ ch̃|Z0

= ca(h̃) ◦ µ|Z0
= µ|Z0

where the last equality holds because the image of µ|Z0
lies on the center of N. Conse-

quently, the group H̃0 (and hence H0) fixes µZ ∈ X(Z0, R). We can use lemma 3.3.3 to
conclude that there exists a group morphism µ̃Z : H̃0 −→ R satisfying µ̃Z|Z0

= µZ and a
µ̃Z-equivariant map f̃Z : M̃ −→ R.

Summarizing the proof until this point, we have obtained two group morphisms µ̃B and
µ̃Z satisfying

1 H̃0 H̃ H̃/H̃0 1

1 R N N′ 1

µ̃Z

π̃

µB

π̃

where µB : H̃/H̃0 −→ N′ is an injective group morphism induced by µ̃B. We also have a
map f̃ : M̃ −→ N of the form f̃ = ( f̃Z, f̃ ′B). Our goal is to construct a group morphism
µ̃ : H̃ −→ N making the above diagram commutative.

Firstly, we note that Ker µ is a normal subgroup of H̃, since the action of H̃ fixes [µ]. Let
Γ̃ = H̃/ Ker µ, let Γ̃0 = H̃0/ Ker µ and let ν̃Z : Γ̃0 −→ R be the group morphism induced by
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µ̃Z. We have a commutative diagram

1 Γ̃0 Γ̃ H̃/H̃0 1

1 R N N′ 1

ν̃Z

π̃

µB

π̃

Let K denote Ker ν̃Z = Ker µ̃Z/ Ker µ. We note that K injects in H0 and therefore it is finite.
Since ν̃Z(Γ̃0) is torsion-free, the subgroup K is characteristic in Γ̃0. Thus, K is a normal
subgroup of Γ̃. Let Λ = Γ̃/K, Λ0 = Γ̃0/K ∼= Z and Λ′ = H̃/H̃0. We also denote by
µB : Λ0 −→ R the group morphism induced by ν̃Z. We have a commutative diagram

1 Λ0 Λ Λ′ 1

1 R N N′ 1

µZ

π̃

µB

π̃

Moreover, note that Γ ∩ K is the identity element, therefore Γ is a finite index subgroup of
Λ. Note also that Λ is torsion-free, finitely generated and nilpotent, hence Λ is a lattice
of N. Using the inclusion i : Γ −→ N, we can define inclusions iB : Γ′ −→ N′ and
iZ : Γ0

∼= Z −→ R, obtaining the following commutative diagram

1 Γ0 Γ Γ′ 1

1 Λ0 Λ Λ′ 1

1 R N N′ 1

iZ i iB

µZ

π̃

µB

π̃

The inclusion Γ ≤ Λ induces the identity map between the real Mal’cev completions ΓR

and ΛR. Consequently, we have a commutative diagram

1 (Γ0)R ΓR Γ′R 1

1 (Λ0)R ΛR Λ′R 1

1 R N N′ 1

Id

(iZ)R

Id

iR

Id

(iB)R

(µZ)R

π̃

(µB)R

π̃

Therefore, if we set µ = iR|Λ : Λ −→ N, we obtain a commutative diagram

1 Λ0 Λ Λ′ 1

1 R N N′ 1

µZ

π̃

µ µB

π̃
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The desired group morphism µ̃ : H̃ −→ N is obtained by composing the µ with the
projection H̃ −→ Λ. By construction, the map f̃ : M̃ −→ N is µ̃-equivariant and µ̃|π1(M) =

µ, as we wanted to see.

Part 3: The last step of the proof of [MiR24a, Theorem 4.1] is a consequence of Minkowski’s
lemma.

Lemma 3.3.7. Let M be a closed connected oriented manifold and let f : M −→ N/Γ be a non-
zero degree map such that f∗(π1(M)) = Γ. There exists a constant C such that any finite group G
acting effectively on M has a finite subgroup H ≤ G such that [G : H] ≤ C and H acts trivially on
X(π1(M), N).

Proof. As usual, we denote by π1(M)j the j-th element of the lower central series (see defi-
nition 1.3.19). Assume that the nilpotency class of N is c, then for any ν ∈ Hom(π1(M), N)

we have π1(M)c ≤ Ker ν. In consequence, the projection π1(M) −→ π1(M)/π1(M)c in-
duces a bijection Hom(π1(M)/π1(M)c, N) −→ Hom(π1(M), N). This bijection descends
to a bijection between X(π1(M), N) and X(π1(M)/π1(M)c, N).

Since π1(M)c is a characteristic subgroup of π1(M), any automorphism ϕ : π1(M) −→
π1(M) induces and automorphism ϕ : π1(M)/π1(M)c −→ π1(M)/π1(M)c given by
ϕ(γπ1(M)c) = ϕ(γ)π1(M)c. Hence there is a group morphism ρ : Out(π1(M)) −→
Out(π1(M)/π1(M)c) which sends [ϕ] to [ϕ].

Notice that the bijection between X(π1(M), N) and X(π1(M)/π1(M)c, N) is ρ-equivariant.
If ψ : G −→ Out(π1(M)) is the map induced by the action of G on M, then we have an
action of G on X(π1(M)/π1(M)c, N) given by [ f ]g = [ f ](ρ ◦ ψ)(g). Since π1(M)/π1(M)c

is finitely generated and nilpotent, we can use theorem 2.2.1 to conclude that there exists
a constant C such that any finite subgroup of Out(π1(M)/π1(M)c) is at most of order C.
Thus, H = Ker(ρ ◦ ψ) is a subgroup of G such that [G : H] ≤ C which acts trivially on
X(π1(M)/π1(M)c, N) and hence it also acts trivially on X(π1(M), N).

By combining lemma 3.3.4, lemma 3.3.7 and lemma 3.3.2 we complete the proof of theo-
rem 3.3.1.

Finally, we prove theorem 3.0.2.

Proof of theorem 3.0.2. Recall that, by theorem 2.0.1 and theorem 2.0.2, the nilmanifold N/Γ
satisfies:

1. Homeo(N/Γ) is Jordan.

2. disc-sym(N/Γ) ≤ rankZΓ.

3. N/Γ has small stabilizers.
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Thus, the first part of theorem 3.0.2 is a direct consequence of theorem 3.2.9 and theo-
rem 3.3.1. For the second part, the bound of the discrete degree of symmetry is also a
consequence of theorem 3.2.9 and theorem 3.3.1. If we assume disc-sym(M) = n, then
rankZΓ ≥ n. This implies that Γ ∼= Zn and N/Γ ∼= Tn. In consequence, the theorem
follows from theorem 3.0.1.

For the third part, note that M has the almost fixed point property by theorem 1.1.63. Since
M has the small stabilizers property (by theorem 3.2.9 and theorem 3.3.1) and the almost
fixed point property, M is almost asymmetric, by lemma 1.1.64.

The fourth part is a consequence of M having the small stabilizers property and Homeo(M)

being Jordan, as seen in lemma 1.1.65.

Corollary 3.3.8. Let M be a closed connected oriented manifold and f : M −→ N/Γ a non-zero
degree map to a nilmanifold. Assume that the toral rank conjecture holds for N/Γ. Then the toral
rank conjecture and the stable Carlsson conjecture holds for M.

Proof. Note that rank(M) ≤ disc-sym(M) ≤ rankZΓ. Since f has non-zero degree, the
induced morphism f ∗ : H∗(N/Γ, Q) −→ H∗(M, Q) is injective and therefore

dim H∗(M, Q) ≥ dim H∗(N/Γ, Q) ≥ 2rank(ZΓ) ≥ 2rank(M),

as we wanted to see.

Similarly, note that if (Z/p)r acts freely on M with p ≥ max{D, deg( f )}, where D is the
exporting map constant of f , then (Z/p)r acts freely on N/Γ. In particular, rankp(M) ≤
rankp(N/Γ) for p > max{D, deg( f )}. Let D′ be constant given by the stable Carlsson
conjecture of N/Γ, which exists since the toral rank conjecture and the stable Carlsson
conjecture are equivalent for nilmanifolds, see lemma 2.4.8. Moreover, rankp(N/Γ) =

rankZΓ for all p > D′. Let C = max{D, deg( f ), D′}. Then for all p > C we have

dim H∗(M, Z/p) ≥ dim H∗(N/Γ, Z/p) ≥ 2rank(ZΓ) ≥ 2rankp(M),

as we wanted to see.

Corollary 3.3.8 can be used when N/Γ is a 2-step nilmanifold, by [DS88]. For other nil-
manifolds where corollary 3.3.8 applies see [CJP97, CJ97].

The conclusion of [MiR24a, Corollary 1.6] also holds for closed connected oriented mani-
folds admitting a non-zero degree map to a nilmanifold.

Corollary 3.3.9. Let M be a closed connected oriented n-dimensional manifold admitting a non-
zero degree map to a nilmanifold f : M −→ N/Γ. If disc-sym(M) = n and π1(M) is virtually
solvable then M is homeomorphic to Tn.
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Lemma 3.3.2 is false if we replace nilmanifold by solvmanifold. In order to give an example
of a non-zero degree map between solvmanifolds which does not export group actions we
need the following elementary group theoretic lemma.

Lemma 3.3.10. Let G1 and G2 be groups and let ϕ : G2 −→ Aut(G1) be a group morphism. Then

Z(G1 ⋊ϕ G2) = {(g1, g2) ∈ G1 ⋊ϕ G2 : g2 ∈ ZG2, g1 ∈ Fix(ϕ) and ϕ(g2) = cg1},

where Fix(ϕ) = {g1 ∈ G1 : ϕ(g2)(g1) = g1 for all g2 ∈ G2}.

Proof. Let (g1, g2) ∈ Z(G1 ⋊ϕ G2). For any (g′1, g′2) ∈ G1 ⋊ϕ G2 we have (g1, g2)(g′1g′2) =

(g1ϕ(g2)(g′1), g2g′2) is equal to (g′1, g′2)(g1g2) = (g′1ϕ(g′2)(g1), g′2g2). Hence g1ϕ(g2)(g′1) =

g′1ϕ(g′2)(g1) and g2g′2 = g′2g2 for all g′1 ∈ G1 and g′2 ∈ G2.

By the second condition, g2 ∈ ZG2. If we set g′1 = e, then g1 = ϕ(g′2)(g1) for all g′2 ∈ G2 and
therefore g1 ∈ Fix(ϕ). Finally, by using that g1 = ϕ(g′2)(g1), we obtain that g1ϕ(g2)(g′1) =
g′1g1, which implies that ϕ(g2)(g′1) = g−1

1 g′1g1 and ϕ(g2) = cg1 .

We consider a non-trivial group morphism ϕ : Z −→ GL(n, Z) such that ϕ(1) and has finite
order a. The group morphism ϕ(1) induces a finite order homeomorphism f : Tn −→ Tn

which we use to construct the mapping torus Tn
f . We claim that:

1. Tn
f is a compact solvmanifold. This is a consequence of the fact that Tn

f is the total
space of a fibration Tn −→ Tn

f −→ S1. In particular, π1(Tn
f ) = Zn ⋊ϕ Z is polycyclic.

2. Tn
f is finitely covered by the torus Tn+1. This is because the subgroup Zn ⋊ϕ aZ ∼=

Zn+1 is a normal subgroup of index a. Therefore, we have a regular covering p :
Tn+1 −→ Tn

f . In particular Tn
f is a flat manifold.

Proposition 3.3.11. We have disc-sym(Tn
f ) ≤ n.

Proof. Since Tn
f is a flat manifold, we know that disc-sym(Tn

f ) = rankZ(Zn ⋊ϕ Z) by
lemma 3.2.13. By lemma 3.3.10, Z(Zn ⋊ϕ Z) = Fix(ϕ)× aZ. Since ϕ(1) ̸= Id, we obtain
that rank Fix(ϕ) ≤ n− 1 and therefore disc-sym(Tn

f ) = rankZ(Zn ⋊ϕ Z) ≤ n.

Corollary 3.3.12. The map p : Tn+1 −→ Tn
f does not export group actions.

Now we present examples of closed orientable manifolds M admitting a non-zero de-
gree map to a nilmanifold f : M −→ N/Γ such that disc-sym(M) = disc-sym(N/Γ) but
H∗(M, Z) ≇ H∗(N/Γ, Z).

Firstly, let H be the Heisenberg group and Γ1 and Γ2 lattices of H (see example 1.3.26).
Note that the covering map p : H/Γ1 −→ H/Γ2 is a non-zero degree map between and
disc-sym(H/Γ1) = disc-sym(H/Γ2) = 1. However, H1(H/Γ, Z) ∼= Z2 and H1(H/Γ2, Z) ∼=
Z2 ⊕Z/2.
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Note that H∗(H/Γ1, Q) ∼= H∗(H/Γ2, Q). Our next goal is to prove the next proposition:

Proposition 3.3.13. There exists a closed orientable manifold M admitting a map to a nilmanifold
f : M −→ N/Γ satisfying deg( f ) = 1, disc-sym(M) = disc-sym(N/Γ) = 1 and H∗(M, Q) ≇
H∗(N/Γ, Q).

Firstly, we recall some facts on principal S1-bundles.

Lemma 3.3.14. Let p : E −→ B be a principal S1-bundle, then p∗ : H1(B, Q) −→ H1(E, Q) is
injective. It is an isomorphism if and only if the first Chern class c1(E) ̸= 0.

Lemma 3.3.15. Let M be a closed manifold of dimension n ≥ 4 and let D ⊆ M be a disk. Then the
inclusion i : M \ D −→ M induces an isomorphism i∗ : H2(M, Q) −→ H2(M \ D, Q).

The first lemma is a consequence of the Gysin exact sequence and the second lemma is a
consequence of the Mayer-Vietoris sequence.

Given a principal bundle p : E −→ B, then we have a principal S1-bundle p′ : E \
p−1(D) −→ B \ D. Then c1(E \ p−1(D)) = i∗c1(E).

Note that ∂(E \ p−1(D)) ∼= Sn−1 × S1 has a right S1 action induced by the action of the
principal S1-bundle.

Given principal S1-bundles pi : Ei −→ Bi with i = 1, 2, we can construct a S1-equivariant
homeomorphism f : ∂(E1 \ p−1

1 (D1)) −→ ∂(E2 \ p−1
2 (D2)). There is a principal S1-bundle

p : E1 \ p−1
1 (D1) ∪ f E2 \ p−1

2 (D2) −→ B1#B2.

Lemma 3.3.16. If dim(Bi) ≥ 4 then

c1(E1 \ p−1
1 (D1) ∪ f E2 \ p−1

2 (D2) −→ B1#B2) = (c1(E1), c1(E2)) ∈ H2(B1, Q)⊕ H2(B2, Q)

.

Finally note that we have S1-equivariant maps of degree one, fi : E −→ Ei for i = 1, 2. We
are ready to prove proposition 3.3.13.

Proof of proposition 3.3.13. Now we consider the Heisenberg manifold of dimension 5, H5/Γ,
which is the total space of a principal S1-bundle over a torus T4. We also consider the fil-
iform nilmanifold of dimension 5, F5/Λ, which is the total space of a principal S1-bundle
over a filiform nilmanifold of dimension 4, F4/Λ′ (see example 1.3.26). Note that the dis-
crete degree of symmetry of both nilmanifolds is 1. Let E = H5/Γ \ p−1

1 (D1) ∪ f F5/Λ \
p−1

2 (D2) and consider the degree one maps f1 : E −→ H5/Γ and f2 : E −→ F5/Λ. Ob-
serve that p : E −→ T4#F4/Λ′ is a principal S1-bundle and therefore disc-sym(E) ≥ 1.
On the other hand, disc-sym(E) ≤ 1, since the maps fi export group actions. In con-
clusion, disc-sym(E) = 1. However, since c1(E) ̸= 0, one can compute that H1(E, Q) ∼=
H1(T4#F4/Λ′, Q) ∼= Q5. On the other hand, we have H1(H5/Γ, Q) ∼= H1(T4, Q) ∼= Q4 and
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H1(F5/Λ, Q) ∼= H1(F4/Λ′, Q) ∼= Q2, therefore H∗(E, Q) ≇ H∗(H5/Γ, Q) and H∗(E, Q) ≇
H∗(F5/Λ, Q).



Chapter 4

Iterated group actions

To establish a rigidity result for closed oriented manifolds admitting non-zero degree maps
to nilmanifolds, we must refine the discrete degree of symmetry of a manifold. Since
nilmanifolds arise as iterated principal S1-bundles (see theorem 1.3.39), this naturally leads
us to study iterated group actions.

Definition 4.0.1. Let G = {Gi}i=1,...,n be a collection of groups and let X be a topological space.
An iterated action of G on X (denoted by G ↷ X) is:

1. A sequence of surjections of topological spaces

X = X0 X1 X2 · · · Xn,
p1 p2 p3 pn

2. and a collection of group actions {Φi : Gi −→ Homeo(Xi−1)}i=1,...,n,

satisfying the property that the maps pi : Xi−1 −→ Xi are the orbit maps of the action of Gi on
Xi−1.

Notation 4.0.2. Assume that X has an iterated action of G = {Gi}i=1,...,n. Then:

1.

1. We define the length of G to be l(G) = n.

2. We denote the composition of all orbit maps by p : X −→ X/G.

3. Given x ∈ X, the iterated image of x is the collection of points {xi}i=0,...,n, where x0 = x and
xi = pi(xi−1) for all 1 ≤ i ≤ n.

4. The action of Gi on Xi−1 will be called the i-th step of the iterated action.

From now on, unless stated the contrary, all iterated actions will be assumed to be of finite
groups.
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Given an action of a finite group G on a topological space X, we can construct an iterated
action as follows.

Example 4.0.3. Let G be a finite group. We consider a normal series G0 = {e} ⊴ G1 ⊴ · · · ⊴
Gn = G. Define Gi = Gi/Gi−1 for all 1 ≤ i ≤ n and let G = {Gi}i=1,...,n.

Let X be a topological space and suppose that G acts on X. Then we can construct an iterated action
G ↷ X as follows. Set X0 = X and Xi = X/Gi for 1 ≤ i ≤ n. Given an orbit Gi−1(x) ∈ Xi,
we define the surjective maps pi : Xi−1 −→ Xi as pi(Gi−1(x)) = Gi(x). We define an action of Gi

on Xi−1 satisfying (gGi−1)(Gi−1(x)) = Gi−1(gx) for all gGi−1 ∈ Gi and Gi−1(x) ∈ Xi−1. Note
that these actions are well defined because Gi−1 is normal in Gi for all i. The orbit maps of these
actions are precisely pi : Xi−1 −→ Xi. Thus, we have an iterated action G ↷ X. Note that the
composition of all the surjections pi is the orbit map p : X −→ X/G.

Recall that if f : X −→ Y is an equivariant map between G-spaces, then we can induce
a continuous map f : X/G −→ Y/G which satisfies pY ◦ f = f ◦ pX, where pX : X −→
X/G and pY : Y −→ Y/G are the orbit maps. This observation leads to the definition of
equivariant maps of iterated actions.

Definition 4.0.4. Let X and Y be topological spaces and f : X −→ Y a continuous map. Assume
that we have iterated actions of G = {Gi}i=1,...,n on X and Y. Then f is G-equivariant if the maps
fi : Xi −→ Yi are Gi+1-equivariant for all 0 ≤ i ≤ n− 1, where f0 = f and fi : Xi −→ Yi is the
map induced by the Gi-equivariant map fi−1 : Xi−1 −→ Yi−1.

Definition 4.0.5. Let G = {Gi}i=1,...,n be a collection of finite groups and let G ↷ X be an iterated
action. We say that G ↷ X is simplifiable if there exist:

1. A group G with a normal series of subgroups G0 = {e} ⊴ G1 ⊴ · · · ⊴ Gn = G such that
Gi/Gi−1 ∼= Gi for all 1 ≤ i ≤ n.

2. An action of G on X. This action induces an iterated action of G on X as seen in example 4.0.3.
We denote this iterated action by GG ↷ X.

3. A G-equivariant homeomorphism f : X −→ X between the iterated action G ↷ X and
GG ↷ X.

In this case, we will say that G ↷ X is simplifiable by an action of G on X.

In particular, if the iterated action G ↷ X is simplifiable, then X/G ∼= X/G.

Recall that if M is a manifold and G is a finite group acting freely on M then the quotient
map M/G is a manifold. Hence, we will start developing a theory of iterated actions where
each action is free. Our first goal is to study free finite group actions on manifolds. To do
so, we introduce the following definition:

Definition 4.0.6. Let G = {Gi}i=1,...,n and G ′ = {G′i}i=1,...,n′ be two collections of finite groups
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which act freely on M. Let p = pn ◦ · · · ◦ p1 and p′ = p′n′ ◦ · · · ◦ p′1 = p′. We say that the iterated
actions G ↷ M and G ′ ↷ M are equivalent (and we denote it by G ↷ M ∼ G ′ ↷ M) if:

1. There exists a homeomorphism f : Mn −→ Mn′ .

2. The coverings p : M −→ M/G and f ∗p′ : M −→ M/G are isomorphic. That is, there exists
a homeomorphism f : M −→ M satisfying p′ ◦ f = f ◦ p.

The equivalence class will be denoted by [G ↷ M].

Remark 4.0.7. Following the notation in definition 4.0.5, if G ↷ M is simplifiable by an action of
G on M, then G ↷ M ∼ GG ↷ M.

Our first result describes the structure of free finite iterated actions on nilmanifolds.

Theorem 4.0.8. Let N/Γ be a closed nilmanifold. There exists a constant C only depending on Γ
such that any free iterated action G ↷ N/Γ is equivalent to a free iterated action G ′ ↷ N/Γ where
G ′ = {A1, . . . , Ac, G′}, Ai are finite abelian groups and |G′| ≤ C.

To study rigidity using free iterated actions we develop two new invariants, the length of
free iterated actions on manifolds and the iterated discrete degree of symmetry.

Definition 4.0.9. Given a free iterated action G ↷ M, the length of the iterated action is

l(G ↷ M) = min{l(G ′) : G ′ ↷ M ∈ [G ↷ M]}.

The iterated length of a manifold M is

l(M) = max{l(G ↷ M) : free iterated action G ↷ M}.

Given a free iterated action A↷ M of finite abelian groups, the rank of the iterated action is

rankab(A↷ M) = min{
n

∑
i=1

rank A′i : {A′1, · · · , A′n}↷ M ∈ [A↷ M] A′i abelian for all i}.

We define µ2(M) as the set of all pairs ( f , b) ∈N2 which satisfy:

1. There exist an increasing sequence of prime numbers {pi}, a sequence of natural numbers
{ai} and a collection of free iterated actions {(Z/pai

i )
f , (Z/pi)

b}↷ M for each i ∈N.

2. rankab({(Z/pai
i )

f , (Z/pi)
b}↷ M) = f + b for each i ∈N.

Consider the lexicographic order in N2, that is (a, b) ≥ (c, d) if a > c, or a = c and b ≥ d. Define
the iterated discrete degree of symmetry of M as

disc-sym2(M) = max{(0, 0) ∪ µ2(M)}.

A first natural question is whether we can bound l(M) and disc-sym2(M) when M is a
closed connected manifold. For l(M), we have the following two results:
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Theorem 4.0.10. (Cases where l(M) is bounded)

1. If N/Γ is a c-step nilmanifold, then l(N/Γ) ≤ c + 1.

2. Given a locally symmetric space H \ G/Γ, there exists C depending on Γ such that l(H \
G/Γ) ≤ C.

Theorem 4.0.11. (Cases where l(M) is not bounded)

1. There exists a closed solvmanifold M such that l(M) = ∞.

2. There exists a closed connected aspherical locally homogeneous space H \ G/Γ such that the
solvable radical of G is abelian and l(H \ G/Γ) = ∞.

We can generalize theorem 1.1.32 to free iterated actions of p-groups on closed connected
manifolds M. As a consequence, we can bound disc-sym2(M) as follows:

Theorem 4.0.12. Let M a closed connected manifold, then there exists a constant C such that if
disc-sym2(M) = (d1, d2) then d1 ≤ C and d2 ≤ C.

We want to generalize part 2 of theorem 2.0.1 and theorem 3.0.2 using the iterated discrete
degree of symmetry.

Theorem 4.0.13. Let M a closed connected aspherical manifold of dimension n such that Zπ1(M)

and Z(Inn π1(M)) are finitely generated are finitely generated and the groups Aut(Inn π1(M))

and Out(Inn π1(M)) are Minkowski. If disc-sym2(M) = ( f , b) with f + b = n then M ∼= N/Γ,
where N/Γ is a 2-step nilmanifold which is a principal T f -bundle over Tb.

Theorem 4.0.14. Let M be a closed connected manifold admitting a non-zero degree map f :
M −→ N/Γ to a 2-step nilmanifold, which is the total space of a principal T f -bundle over Tb.
Then disc-sym2(M) ≤ ( f , b) and if disc-sym2(M) = ( f , b) then H∗(M, Q) ∼= H∗(N/Γ, Q).

We also compute the iterated discrete degree of symmetry for closed connected aspherical
3-manifolds. For the next result K will denote the Klein bottle and SK will denote the
non-trivial principal S1-bundle over K.

Theorem 4.0.15. Let M be a 3-dimensional closed connected aspherical manifold. Then:

1. disc-sym2(M) = (3, 0) if M ∼= T3.

2. disc-sym2(M) = (2, 0) if M ∼= K× S1 or M ∼= SK.

3. disc-sym2(M) = (1, 2) if M ∼= H/Γ.

4. disc-sym2(M) = (1, 0) if Zπ1(M) ∼= Z and Inn π1(M) is centreless.

5. disc-sym2(M) = (0, 0) if M does not belong to one of the previous 4 cases.

Lastly, we introduce a new property of finite iterated actions on actions with the aim to
replace the freeness hypothesis with a weaker condition.
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Definition 4.0.16. Assume that we have an iterated action of a collection of finite groups G on a
topological space X. An open subset U ⊆ X is said to be G-invariant if there exists a connected
open subset V ⊆ X/G such that p−1(V) = U, where p : X −→ X/G is the orbit map.

An iterated action of G ↷ X is said to be locally simplifiable if for every x ∈ X there exists an open
G-invariant neighbourhood U of x such that the iterated action of G on U is simplifiable.

We need to use orbifolds to obtain results on locally simplifiable actions.

Theorem 4.0.17. Assume that we have a locally simplifiable iterated action of G on a manifold M.
Then M/G is an orbifold and p : M −→ M/G is an orbifold covering.

Theorem 4.0.17 enables us to work as if the iterated action were free, but using the orbifold
fundamental group. Thus, we can define the iterated discrete degree of symmetry for
locally simplifiable actions.

Definition 4.0.18. We define µls
2 (M) as the set of all pairs ( f , b) ∈N2 which satisfy:

1. There exist an increasing sequence of prime numbers {pi}, a sequence of natural numbers
{ai} and a collection of locally simplifiable iterated actions {(Z/pai

i )
f , (Z/pi)

b} ↷ M for
each i ∈N.

2. rankab({(Z/pai
i )

f , (Z/pi)
b}↷ M) = f + b for each i ∈N.

Consider the lexicographic order in N2. Define the locally simplifiable iterated discrete degree of
symmetry of M as

disc-symls
2 (M) = max{(0, 0) ∪ µls

2 (M)}.

Theorem 4.0.13, theorem 4.0.15 and theorem 4.0.14 also hold for locally simplifiable actions,
since all manifolds appearing in the theorems satisfy that if a finite p-group acts on them
for p a prime large enough, then the action is free. An example where disc-symls

2 (M) ̸=
disc-sym2(M) is the following:

Proposition 4.0.19. We have disc-symls
2 (S

n) = ([n+1
2 ], 0) and disc-sym2(S

n) = ( (−1)n+1+1
2 , 0),

where [x] denotes the integer part of x.

This chapter is divided as follows. In the first section we give some definitions and re-
sults which are straightforward generalizations of some concepts of the theory of compact
transformation groups. In the second section we start the study of free finite iterated ac-
tions. Third section is devoted to the length of iterated actions on a manifold. We prove
theorem 4.0.10, theorem 4.0.11 and theorem 4.0.8. We introduce the iterated discrete degree
of symmetry and prove theorem 4.0.12 in section five. Sections six, seven and eight are
devoted to prove theorem 4.0.13, theorem 4.0.15 and theorem 4.0.14 respectively. In section
eight we introduce locally simplifiable actions and we prove proposition 4.0.19.
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4.1 Basic definitions and properties

Most of the basic definitions of the theory of transformation groups have straightforward
generalizations to iterated group actions.

Definition 4.1.1. Assume that we have an iterated action of finite groups G = {Gi}i=1,...,n on X
and let x ∈ X. Then:

1. The cardinal of G is |G| = ∏n
i=1 |Gi|.

2. The iterated stabilizer of x is the collection of subgroups Gx = {(Gi)xi−1
}i=1,...,n.

3. The iterated orbit of x is the collection of points G(x) = {y ∈ X : p(y) = p(x)} =

p−1(p(x)).

4. We say that the the iterated action is effective if all the actions Gi on Xi−1 are effective. The
iterated action is free if all the actions Gi on Xi−1 are free.

5. A point x ∈ X is fixed by G if G(x) = {x}. We denote the set of fix points by XG .

We will implicitly assume that all iterated actions are effective. The existence of a G-
equivariant homeomorphism in the definition of an iterated action being simplifiable im-
plies:

Lemma 4.1.2. Let G ↷ X be a simplifiable iterated action by an action of G on X. Then:

1. G ↷ X is free if and only if the action of G on X is free.

2. XG ∼= XG.

Proof. Assume that G ↷ X is simplifiable and let f : X −→ X and G be as in definition 4.0.5.
By definition |G| = ∏n

i=1 |Gi| = |G|. Since f is a G-equivariant homeomorphism, the
cardinal of the orbit G(x) is equal to the cardinal of the orbit G( f (x)) for any x ∈ X.

If G ↷ X is free then we have |G(x)| = |G| = |G| = |G( f (x))| for all x ∈ X. In particular,
the isotropy subgroup G f (x) is trivial for all x ∈ X. This implies that the action of G on X
is free.

Similarly, x ∈ XG if and only if f (x) ∈ XG. Thus, f|XG is a homeomorphism between XG

and XG.

Most of the basic results of the theory of finite transformation groups also generalize to the
context of iterated actions.

Lemma 4.1.3. Assume that we have an iterated action of finite groups G ↷ X. Then:

1. If X is Hausdorff, then Xi is Hausdorff for all i.
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2. The maps pi : Xi−1 −→ Xi are open, closed and proper. In particular, all of the compositions
Xi −→ Xj are open, closed and proper.

3. X is compact if and only if X/G is compact.

Proof. The lemma is true for group actions, see proposition 1.1.9. In the general case, we
only need to apply recursively proposition 1.1.9 at each step of the iterated action.

The slice theorem for finite groups can also be generalized.

Definition 4.1.4. Let X be a Hausdorff topological space with an iterated action of finite groups
G ↷ X. Given x ∈ X, recall that we denote xi = pi(xi) for 0 ≤ i ≤ n− 1, where x = x0. An
iterated slice S at x ∈ X is a collection of subspaces S = {Si}i=0,...,n−1 satisfying:

1. Si ⊆ Xi is a slice at xi of the action of Gi+1 on Xi for all 0 ≤ i ≤ n− 1.

2. pi+1(Si) = Si+1 for all 0 ≤ i ≤ n− 1.

The set p−1(p(S0)) will be called a tube around the orbit G(x).

Theorem 4.1.5. (Slice theorem for iterated action) Let X be a Hausdorff topological space with an
iterated action of finite groups G ↷ X. There exists an iterated slice S at every point x ∈ X.

Proof. We construct the slice recursively. For the first iteration, the classical slice theorem
for finite group actions (theorem 1.1.18) gives us a slice S′0 at x0 for the action of G1. Since
X1 is Hausdorff and p1(S′0) is open, we can find a slice S1 ⊆ X1 at x1 for the action of G2

such that S1 ⊆ p1(S′0). Thus, S′0 ∩ p−1
1 (S1) = S0 is a slice at x0 for the action of G1 such that

p1(S0) = S1. Thus we have constructed an iterated slice for the action of {G1, G2}↷ X. We
can repeat this process recursively to obtain an iterated slice for the iterated action of G on
X of any length.

Remark 4.1.6. Let X be a topological space with an iterated action of finite group G ↷ X and let S
be an iterated slice at x ∈ X. For each i, the isotropy subgroup Gixi−1

acts on Si−1 and pi(Si−1) =

Si−1/Gxi = Si. Thus, we have an iterated action of Gx on S0 satisfying Si = Si−1/Gixi−1
.

4.2 Free iterated actions

Recall that if G is a finite group acting freely on a manifold M then M/G is also a manifold
and p : M −→ M/G is a regular covering. Moreover, we have a short exact sequence
1 −→ π1(M) −→ π1(M/G) −→ G −→ 1. Therefore, if we have an iterated free action
of G = {Gi}i=1,..,n on a manifold M, then every Mi is a manifold, pi : Mi−1 −→ Mi is a
regular cover and the map p : M −→ Mn is a covering on M. A free iterated action of
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G = {Gi}i=1,...,n on M induces a series of groups

π1(M) = π1(M0) ⊴ π1(M1) ⊴ · · · ⊴ π1(Mn)

where π1(Mi)/π1(Mi−1) ∼= Gi.

Lemma 4.2.1. Let G ↷ M and G ′ ↷ M be a free iterated actions of finite groups inducing
coverings p : M −→ M/G and p′ : M −→ M/G ′ respectively. If G ↷ M ∼ G ′ ↷ M then there
exists an isomorphism ϕ : π1(M/G) −→ π1(M/G ′) satisfying ϕ(p∗(π1(M))) = p′∗(π1(M)).

Proof. Let f : M/G −→ M/G ′ be the homeomorphism provided by definition 4.0.6. By
construction, the coverings f ◦ p : M −→ M/G ′ and p′ : M −→ M/G ′ are isomorphic.
Therefore, there exists γ ∈ π1(M/G ′) such that f∗(p∗(π1(M)))) = cγ(p′∗(π1(M))). We can
write ϕ(p∗(π1(M))) = p′∗(π1(M)), where ϕ = cγ−1 ◦ f∗.

Lemma 4.2.1 shows that to study free iterated actions up to equivalence, we can focus on
the inclusion p∗ : π1(M) −→ π1(M/G) induced by the covering. For example:

Corollary 4.2.2. Let G ↷ M and G ′ ↷ M be equivalent free iterated actions of finite groups
inducing coverings p : M −→ M/G and p′ : M −→ M/G ′ respectively. Then p∗(π1(M)) ⊴

π1(M/G) if and only if p′∗(π1(M)) ⊴ π1(M/G ′).

From definition 4.0.6 and definition 4.0.5, a free iterated action G ↷ M is simplifiable if
and only if the covering p : M −→ M/G is regular. Therefore:

Lemma 4.2.3. A free iterated action of a collection of finite groups G = {Gi}i=1,..,n on M is
simplifiable if and only if π1(M) ⊴ π1(M/G).

Corollary 4.2.4. A free iterated action on a simply connected manifold M is simplifiable.

However, M being simply connected is not a necessary condition to have simplifiability of
all free iterated actions on M.

Lemma 4.2.5. Any free iterated action on S1 or T2 is simplifiable.

Proof. Let G ↷ S1 be a free iterated group action. Then S1/G is a closed 1-dimensional
manifold and hence S1/G ∼= S1. This implies that π1(M) ∼= Z ⊴ π1(S1/G) ∼= Z and
hence the free iterated group action is simplifiable. All the groups of G are cyclic and the
simplification is given by group action of a cyclic group of order |G|.

The proof for the second case is similar. Assume that we have a free iterated group action
G ↷ T2. Then T2/G is homeomorphic to T2 or the Klein bottle K. Then the result follows
from the fact that any subgroup of π1(T2) ∼= Z2 or π1(K) ∼= Z ⋊ Z isomorphic to Z2 is
normal, hence the action is simplifiable.
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Remark 4.2.6. Lemma 4.2.5 cannot be extended to Tn for n ≥ 3. Consider the Bieberbach group
with presentation

Γ = ⟨t1, t2, t3, α|[ti, tj] = e ∀i, j, α3 = t1, αt2α−1 = t3, αt3α−1 = t−1
2 t−1

3 ⟩.

The group generated by t1, t2 and t3 is normal and isomorphic to Z3, which we denote by Z. Note
that Γ/Z ∼= Z/3. Let Z′ be the subgroup generated by t1, t2 and t2

3, which is also isomorphic to
Z3. We have a normal series Z′ ⊴ Z ⊴ Γ with Γ/Z ∼= Z/3 and Z/Z′ ∼= Z/2. On the other
hand, Z′ is not normal in Γ, since αt2α−1 = t3 /∈ Z′. Now we can define a free iterated action
{Z/2, Z/3} ↷ T3 such that π1(T3) ∼= Z′, π1(T3/Z/2) ∼= Z and π1((T3/Z/2)/Z/3) ∼= Γ.
This free iterated action is not simplifiable.

We have seen that free iterated actions produce a covering map that is not necessarily
regular. Conversely, given a finite covering map q : M −→ M′ we can ask whether there
exists an iterated action G on M such that p : M −→ M/G is isomorphic to q : M −→ M′.
The next example shows that this does not happen in general.

Example 4.2.7. Let M be a closed flat manifold with holonomy group the alternate group A5 (it
exists by theorem 1.3.54) and let n = dim M. We take the short exact sequence

1 Zn π1(M) A5 1
ρ

Take a non-trivial subgroup G ≤ A5 and consider the finite covering of closed flat manifold q :
M′ −→ M, where π1(M′) = ρ−1(G). If q were induced by a free iterated action, then there would
exist a group Γ such that π1(M′) ≤ Γ ⊴ π1(M). This would imply that G ≤ Γ/Zn ⊴ A5, which
is not possible since A5 is simple.

Let k be a natural number and let Covk(M) be the set of all coverings of M of k-sheets up
to equivalence of coverings. Let p : M̃ −→ M be a k-covering and pick x ∈ M. We can
enumerate the points of the fiber p−1(x) = {x1, . . . , xk}. Given α ∈ π1(M, x) there is a
unique lift ai : I −→ M̃ such that ai(0) = xi. Thus, we can define an element in the group
of permutations of k letters σα such that xi goes to ai(1). If we remove the choice of the
base point x, then Covk(M) ∼= Hom(π1(M), Sk)/ ∼, where Sk is the permutation group of
k elements acting by conjugations on Hom(π1(M), Sk).

Assume that a finite group G acts effectively on M, then we have an action of G on Covk(M)

given by the pull-back of each element of G. Explicitly, g[M̃ −→ M] = [g∗M̃ −→ M] for all
g ∈ G and [M̃ −→ M] ∈ Cov(M)k. The induced action of G on Hom(π, Sk)/Sk is given by
g[ f : π −→ Sk] = [ f ◦ g∗ : π −→ Sk], where g∗ : π1(M) −→ π1(M) is the group morphism
induced by g on the fundamental group.

We also recall the lifting condition of continuous maps. Assume that we have f : M′ −→ M
a continuous map such that f (y) = x for some y ∈ M′. Then, there exists f̃ : M′ −→ M̃
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such that f = p ◦ f̃ if and only if f∗(π1(M′, y)) ≤ p∗(π1(M̃, x̃)). In particular, a homeo-
morphism f : M −→ M can be lifted to a homeomorphism f̃ : M̃ −→ M̃ if and only if
f∗(p∗(π1(M̃, ỹ))) ≤ p∗(π1(M̃, x̃)).

Lemma 4.2.8. Assume that we have a free iterated action of G = {G1, G2} on a manifold M. Then,
the following statements are equivalent:

(1) G is simplifiable

(2) We can lift g2 : M/G1 −→ M/G1 to a homeomorphism g̃2 : M −→ M for all g2 ∈ G2.

(3) The action of G2 on Cov|G1|(M/G1) fixes [p1 : M −→ M/G1].

Proof. We will prove the chain of implications (1) =⇒ (2) =⇒ (3) =⇒ (1). If
the action of G is simplifiable then there exists a group G fitting in the exact sequence
1 −→ G1 −→ G −→ G2 −→ 1 which acts freely on M and p : M −→ M/G = p2 ◦ p1.
Given any g2 ∈ G2 we choose an element g̃2 ∈ G which inside the preimage of G −→ G2.
The induced homeomorphism g̃2 : M −→ M is a lift of g2 : M/G1 −→ M/G1.

We now prove the second implication. Note that if we can lift g2 : M −→ M, then p1 :
M −→ M/G1 and the pullback g∗2 M −→ M/G1 are isomorphic as regular G1-coverings. If
[p1] ∈ Cov|G1|(M/G1) denotes the class of the covering p1 : M −→ M/G1 then g2[p1] = [p1]

for all g2 ∈ G2.

Finally, if G2 fixes [p1] then there exists a group G of the form 1 −→ G1 −→ G −→ G2 −→ 1
acting freely on M. This action extends the action of G1 on M and it also covers the action
of G2 on M/G1. Therefore p : M −→ M/G = p2 ◦ p1 and the free iterated action is
simplifiable.

4.3 The length of a free iterated action

Recall the following definition (see definition 4.0.9).

Definition 4.3.1. Given a free iterated action G ↷ X, the length of the iterated action is

l(G ↷ X) = min{l(G ′) : G ′ ↷ X ∈ [G ↷ X]}.

The iterated length of the space X is

l(X) = max{l(G ↷ X) : free iterated action G ↷ X}.

With this notation, a free iterated action G ↷ X is simplifiable if and only if l(G ↷ X) = 1
and all free iterated actions on X are simplifiable if and only if l(X) = 1.

A natural question is whether for a closed manifold M, there exists a constant C such that
l(M) ≤ C. For example:
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Lemma 4.3.2. Let M be a closed manifold with χ(M) ̸= 0. Then l(M) ≤ log2 χ(M).

Proof. Recall that if G is a finite group acting freely on M then χ(M) = |G|χ(M/G). If we
have an iterated free action G ↷ M then χ(M) = ∏n

i=1 |Gi|χ(M/G). Since |Gi| ≥ 2 for all i,
then n ≤ log2 χ(M).

The first main result of this section bounds the iterated length of nilmanifolds. Let N/Γ
be a c-step nilmanifold and let {0} = Z0 ⊴ Z1 ⊴ · · · ⊴ Zc = Γ be the upper central
series. The groups Zi+1/Zi are finitely generated torsion-free and abelian, so we denote by
bi = rank(Zi+1/Zi). Then:

Theorem 4.3.3. There exists a constant C only depending on Γ such that any free iterated action
G ↷ N/Γ is equivalent to a free iterated action G ′ ↷ N/Γ where G ′ = {A1, . . . , Ac, G′}, Ai are
finite abelian groups such that rank(Ai) ≤ bi and |G′| ≤ C.

Corollary 4.3.4. If N/Γ is a c-step nilmanifold then l(N/Γ) ≤ c + 1.

We need some preliminary lemmas before proving theorem 4.3.3. Firstly, we study the case
where (N/Γ)/G is a nilmanifold.

Lemma 4.3.5. Let N be a c-step nilpotent Lie group and let Γ and Λ be lattices of N such that
Γ ≤ Λ. There exist subgroups Λ0, Λ1, . . . , Λc such that Λ0 = Γ, Λc = Λ and Λi ⊴ Λi+1 for all i.
Moreover, Ai = Λi+1/Λi is abelian and rank(Ai) ≤ bi for all i.

Proof. We prove the claim by induction on c. If c = 1 then N is abelian and therefore
Γ = Λ0 ⊴ Λ1 = Λ.

Assume that N is c-step nilpotent and let π : N −→ N/ZN be the quotient map to the
(c− 1)-step nilpotent Lie group N/ZN. Then π(Λ) and π(Γ) are lattices of N/ZN. Since
ZΛ = Λ ∩ ZN and ZΓ = Γ ∩ ZN, there are short exact sequences

1 ZΛ Λ π(Λ) 1
π|Λ

and

1 ZΓ Γ π(Γ) 1.
π|Γ

By induction hypothesis, there exists Λ′0 = π(Γ) ⊴ Λ′1 ⊴ · · · ⊴ Λ′c−1 = π(Λ). Then we
define Λi+1 = π−1

|Λ (Λ′i) for 0 ≤ i ≤ c− 1, which satisfy that Λi ⊴ Λi+1 for all 0 ≤ i ≤ c− 1.

Lastly, we take Λ0 = Γ. We have the commutative diagram where the rows are central
extensions
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1 ZΛ Λ1 π(Γ) 1

1 ZΓ Γ π(Γ) 1.

π|Λ

π|Γ

id

Consequently, Γ ⊴ Λ1.

Corollary 4.3.6. A free iterated action G ↷ N/Γ such that (N/Γ)/G is a nilmanifold is equivalent
to a free iterated action G ′ ↷ N/Γ where G ′ = {A1, . . . , Ac} and Ai are finite abelian groups such
that rank(Ai) ≤ bi.

For the general case we need theorem 1.3.61, proposition 1.3.64 to prove the following two
lemmas.

Lemma 4.3.7. Let G ↷ N/Γ be a free iterated action. Then π1((N/Γ)/G) = E is an AC-group
and Γ ≤ Fitt(E).

Proof. Since (N/Γ)/G is a closed aspherical manifold, then E is torsion-free and contains
Γ as a finite index subgroup. Using theorem 1.3.61, E is an AC-group. It only remains to
prove that Γ ≤ Fitt(E).

Consider the exact sequence

1 Fitt(E) E F 1
p

If G = p(Γ) and Λ = p−1(G) we obtain the commutative diagram

1 Fitt(E) ∩ Γ Γ G 1

1 Fitt(E) Λ G 1

p

i

p

where the vertical arrows are inclusions. Let σ : G −→ Γ be a set-theoretic section of p and
ψ : G −→ Out(Fitt(E) ∩ Γ) the induced group morphism such that ψ(g) = [cσ(g)| Fitt(E)∩Γ].
The map σ = i ◦ σ is a section for the second short exact sequence and it induces a group
morphism ψ̄ : G −→ Out(Fitt(E)) such that ψ̃(g) = [cσ(g)| Fitt(E)].

Since Γ and Fitt(E) have finite index inside E, then Fitt(E)∩ Γ has finite index inside Fitt(E)
and Γ and therefore ΓQ = Fitt(E)Q = (Fitt(E) ∩ Γ)Q. This implies that the maps ψ′ : G −→
Out(ΓQ) and ψ̄′ : G −→ Out(ΓQ) are the same. By proposition 1.3.64 the morphism ψ′ is
trivial since Γ is nilpotent. On the other hand ψ

′ is injective by proposition 1.3.64 and part
2. of theorem 1.3.61. Therefore, the only option is that G is trivial and Γ ≤ Fitt(E).

Lemma 4.3.8. There exists a constant C such that if G is a finite subgroup of Out(ΓQ) then
|G| ≤ C.
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Proof. Let ψ : G −→ Out(ΓQ) denote the inclusion of the finite group. We have H2
ψ(G, Qn) =

0, since G is finite and Qn is divisible and therefore there is an injective lift ψ̃ : G −→
Aut(ΓQ) of ψ. We use the exponential map to identify Aut(ΓQ) with the group of automor-
phisms of the associated rational Lie algebra Aut(L(ΓQ)), which is a subgroup of GL(m, Q)

for some m. In consequence, G is conjugated to a finite subgroup of GL(m, Z) and therefore
the bound is a consequence of Minkowski lemma.

Proof of theorem 4.3.3. Assume that we have a free iterated action of G on a nilmanifold N/Γ.
Then (N/Γ)/G = M is a closed almost-flat manifold and π1(M) is an almost-Bieberbach
group. In consequence, π1(M) contains a maximal normal nilpotent group Λ, which has
Γ as a subgroup by maximality by lemma 4.3.7. Since [π1(M) : Γ] < ∞, [Λ : Γ] < ∞ and
therefore Λ is a lattice of N. By lemma 4.3.5, there exists a subnormal series Γ = Λ0 ⊴ Λ1 ⊴

· · · ⊴ Λc = Λ ⊴ π1(M). We have a free iterated action of {Λi/Λi−1, π1(M)/Λ}i=1,...,n on
N/Γ equivalent to G ↷ N/Γ. By lemma 4.3.5, rank(Λi/Λi−1) ≤ bi. Moreover, π1(M)/Λ ≤
Out(ΛQ) and ΛQ

∼= ΓQ. Therefore, by proposition 1.3.64 |π1(M)/Λ| ≤ C, where C is a
constant depending on ΓQ.

Remark 4.3.9. The bound of corollary 4.3.4 is sharp. For example, the free iterated action on T3

from remark 4.2.6 shows that 2 ≥ l(T3) and therefore l(T3) = 2. Consequently, l(Tn) = 2 for all
n ≥ 3. On the other hand, in lemma 4.2.5 we show that all free iterated actions on S1 and T2 are
simplifiable, which implies that l(Tn) = 1 for n = 1, 2. Thus, corollary 4.3.4 is not an equality in
general.

On the other hand, a bound for l(M) when M is a solvmanifold does not always exist.

Theorem 4.3.10. There exists a 3-dimensional solvmanifold M such that l(M) = ∞.

Proof. Consider the 3-dimensional solvable Lie group R = Sol3. Explicitly, R ∼= R2 ⋊ψ R,
where

ψ(t) =

(
e−t 0
0 et

)
.

Any lattice of R is isomorphic to a semi-direct Z2 ⋊ϕ Z, where ϕ : Z −→ SL(2, Z) satisfies
tr(ϕ(1)) > 2 (see [LT15, §2]). Two of these lattices Γ and Γ′ are isomorphic if and only if
ϕ′(1) is conjugate to ϕ(1) or ϕ(1)t.

We take the matrix

A =

(
5 2
2 1

)
and the lattice Γ = Z2 ⋊ϕ Z of R where ϕ(1) = A. We are going to see that the solvmanifold
M = R/Γ satisfies l(M) = ∞. We start by studying the lattice Γ and some of its sublattices.
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For an integer k ≥ 0 we define the group Γk = 2k(Z)2 ⋊ϕ Z. We have a series Γ = Γ0 ≥ Γ1 ≥
Γ2 ≥ . . . . Firstly, we note that the group morphism fk : Γ −→ Γk such that fk(v, t) = (2kv, t)
is an isomorphism for all k ≥ 0, which implies that R/Γ and R/Γk are diffeomorphic for
all k ≥ 0.

We claim now that the normalizer NΓ(Γk) = Γk−1. Firstly, a computation shows that:

1. If (v, t) ∈ Γ then (v, t)−1 = (−A−tv,−t).

2. If (v, t), (w, s) ∈ Γ then (v, t)(w, s)(v, t)−1 = ((Id− As)v + Atw, s).

Therefore, the normalizer takes the form

NΓ(Γk) = {(v, t) ∈ Γ : (Id− As)v ∈ 2kZ2 for all s}.

The matrix A is of the form A = Id + B with

B =

(
4 2
2 0

)
∈ M2×2(2Z)

which implies that Id− As = −∑s
i=1 (

s
i)Bs ∈ M2×2(2Z) for all s ≥ 1 (and we have a similar

form for A−s). Let (v, t) ∈ NΓ(Γk) with v = (v1, v2) ∈ Z2. Since (Id − As)v ∈ 2kZ2 for
all s, in particular −Bv = (Id− A)v ∈ 2kZ2. We obtain that 2v1, 2v2 ∈ 2kZ and therefore
v1, v2 ∈ 2k−1Z. Moreover, if v ∈ 2k−1Z2 then (Id− As)v ∈ 2kZ2 for all s. Thus, we have
seen that

NΓ(Γk) = {(v, t) ∈ Γ : v ∈ 2k−1Z2} = Γk−1.

In consequence, Γk ⊴ Γk−1 and Γk ⋬ Γk−i for i > 1. In addition, Γk−1/Γk
∼= Z/2⊕Z/2. If

πk : Γk−1 −→ Z/2⊕Z/2 denotes the quotient map, then we can define new lattices

Γ(1,0)
k = π−1

k (⟨(1, 0)⟩) = (2kZ× 2k−1Z)⋊ϕ Z,

Γ(0,1)
k = π−1

k (⟨(0, 1)⟩) = (2k−1Z× 2kZ)⋊ϕ Z,

Γ(1,1)
k = π−1

k (⟨(1, 1)⟩) = {((v1, v2), t) ∈ Γk−1 : v1 + v2 ∈ 2kZ}.

Analogous computations show that NΓ(Γ
(i,j)
k ) = Γ(i,j)

k−1 and Γ(i,j)
k /Γ(i,j)

k−1
∼= Z/2⊕Z/2 for all

(i, j) ∈ Z/2⊕Z/2, where we set Γ(0,0)
k = Γk−1.

We consider the regular Z/2⊕Z/2 self-covering p : R/Γ1
∼= M −→ R/Γ ∼= M. We can

obtain a tower of regular self-coverings pk : R/Γk
∼= M −→ R/Γ ∼= M, which has associated

a free iterated action of Gk = {Z/2⊕Z/2, . . . , Z/2⊕Z/2} with l(Gk) = k on M.

Let G ′ = {G′1, . . . , G′m}↷ M be a free iterated action equivalent to Gk ↷ M. Then we have
a subnormal series Γk = Λ0 ⊴ Λ1 ⊴ · · · ⊴ Λm = Γ such that Λi/Λi−1

∼= G′i . We have Λ1 ≤
NΓ(Γk) and therefore Λ1 = Γ(i,j)

k for some (i, j) ∈ Z/2⊕Z/2. In consequence, |G′1| ≤ 4.
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We can repeat the same process with Λ1 = Γ(i,j)
k , since NΓ(Γ

(i,j)
k ) = Γ(i,j)

k−1. Repeating this

process we find that all the subgroups of the subnormal series are of the form Γ(i,j)
a . This

implies that |G′i | ≤ 4 for all 1 ≤ i ≤ m.

Finally, if G ′ ↷ M satisfies that m = l(Gk ↷ M) then [Γ : Γk] = 4k = ∏m
i=1 |Gi| ≤ 4m, which

implies that l(Gk ↷ M) = k. Since k can be chosen to be arbitrarily large, we obtain that
l(M) = ∞.

Remark 4.3.11. The solvmanifold M of theorem 4.3.10 satisfies disc-sym(M) = 0. Indeed, since
M is aspherical and Γ is polycyclic, we have disc-sym(M) ≤ rankZΓ. Since Γ is isomorphic to the
semi-direct product Z2 ⋊ϕ Z, we can use lemma 3.3.10 to conclude that ZΓ is trivial. Consequently,
disc-sym(M) ≤ rankZΓ = 0 and therefore disc-sym(M) = 0.

We study now the iterated length of locally symmetric spaces.

Lemma 4.3.12. Let K \ G/Γ be a locally symmetric space where G is a connected semisimple
Lie group without compact factors, K is a maximal compact subgroup and Γ is a lattice. Then
l(K \ G/Γ) is bounded by a constant C depending on Γ.

Proof. Recall that if µ is the Haar measure of G then vol(G/Γ) = µ(F), where F is a
fundamental domain of Γ in G. By theorem 1.3.66, there exists a constant A such that
vol(G/Γ) > A for all lattices of G. Moreover, if Γ′ is another lattice containing Γ as a finite
index subgroup then vol(G/Γ) = [Γ′ : Γ] vol(G/Γ′).

Let G ↷ K \ G/Γ be a free iterated action with l(G) = l(G ↷ K \ G/Γ) = l. Then
(K \ G/Γ)/G ∼= K \ G/Γ′ where Γ′ is a lattice of G. Then

vol(G/Γ) = [Γ′ : Γ] vol(G/Γ′) =
l

∏
i=1
|Gi| vol(G/Γ′) ≥ 2n A.

In consequence l ≤ log2(
vol(G/Γ)

A ). The proof is finished by taking C = log2(
vol(G/Γ)

A ).

The dependence on the lattice cannot be removed. In order to give an example we need the
following result:

Proposition 4.3.13. [BBS01, Proposition 2.3] Let N0 −→ N1 −→ · · · −→ Ns be a tower of
coverings of closed 3-manifolds. There exists a tower of coverings M0 −→ M1 −→ · · · −→ Ms

of closed hyperbolic 3-manifolds and maps fi : Mi −→ Ni such that deg( fi) = 1 and the covering
Mi−1 −→ Mi is the pullback of Ni−1 −→ Ni by fi for all i.

Corollary 4.3.14. Assume that we are in the setting of proposition 4.3.13, π1(Mi) ⊴ π1(Mj) if
and only if π1(Ni) ⊴ π1(Nj) for all i < j.
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Now, we take Ni = M the solvmanifold from theorem 4.3.10 for all i and the covering
Ni−1 −→ Ni the self-covering of theorem 4.3.10. By proposition 4.3.13, for each action Gk =

{Z/2⊕Z/2, · · ·Z/2⊕Z/2}↷ M, there exists a closed hyperbolic 3-manifold M0,k (which
depends on k) such that we have a free iterated action Gk ↷ M0,k. By corollary 4.3.14,
we have l(Gk ↷ M0,k) = k. Since M0,k are hyperbolic manifolds for all k, the bound of
lemma 4.3.12 needs to depend on the lattice and not only the Lie group (in this example
SO+(3, 1)).

Question 4.3.15. Let K \ G/Γ be a locally symmetric space where G is connected semisimple
without compact factors and rankR G ≥ 2, K is a maximal compact subgroup and Γ is an irreducible
lattice. Does there exist a constant C only depending on G such that l(K \ G/Γ) ≤ C?

The solvmanifold of theorem 4.3.10 can be used to construct other closed aspherical locally
homogeneous space K \ G/Γ such that l(K \ G/Γ) = ∞.

Proposition 4.3.16. There exists a closed aspherical locally homogeneous space K \ G/Γ such that
the solvable radical of G is abelian and l(K \ G/Γ) = ∞.

Proof. Let Λ be the fundamental group of a closed hyperbolic manifold of dimension n ≥ 3
such that there exists an epimorphism f : Λ −→ Z and let ϕ : Z −→ GL(2, Z) be as in
the proof of theorem 4.3.10. Then we can define Γk = 2k(Z2)⋊ϕ◦ f Λ. Using the Seifert
construction (see [LR10, Theorem 11.7.29]) we can construct a closed aspherical locally
homogeneous space with fundamental group Γk for all k, which we denote by Mk.

The same arguments as in theorem 4.3.10 show that all Γk are isomorphic and since the
Borel conjecture is true for lattices in connected Lie groups (see [BL12, KLR16]) we can
conclude that Mk

∼= M for all k. The inclusion Γk −→ Γk−1 induces a regular self-covering
Mk −→ Mk−1. Finally, the tower of self-coverings Mk −→ Mk−1 −→ · · · −→ M0 induces
a free iterated group action Gk = {Z/2⊕Z/2, · · · , Z/2⊕Z/2} ↷ M such that l(Gk ↷
M) = k. Thus l(M) = ∞.

Question 4.3.17. Let K \ G/Γ be a closed aspherical locally homogeneous space where the solvable
radical R of G is nilpotent and G/R is semisimple without compact factors and rankR G/R ≥ 2.
Does there exist a constant C such that l(K \ G/Γ) ≤ C?

4.4 The iterated discrete degree of symmetry

Recall that if G is a finite group, then rank G is the minimum number of elements which
are needed to generate G. We want to extend this notion to iterated group action.
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Definition 4.4.1. Given a free iterated action G ↷ X, the rank of the iterated action is

rank(G ↷ X) = min{
n

∑
i=1

rank G′i : G ′ = {G′1, . . . , G′n}↷ X ∈ [G ↷ X]}.

The iterated rank of the space X is

rank(X) = max{rank(G ↷ X) : free iterated action G ↷ X}.

Lemma 4.4.2. Assume that we have a free iterated action of G = {G1, . . . , Gn} on X. If G ↷ X is
simplifiable with a group G, then rank(G ↷ X) = rank G.

Proof. By definition, rank(G ↷ X) ≤ rank G. Since G ↷ X is simplifiable there exists a
subnormal series G0 = {e} ⊴ G1 ⊴ · · · ⊴ Gn = G such that Gi/Gi−1 ∼= Gi. In particular,
rank Gi ≤ rank Gi−1 + rank Gi for all 1 ≤ i ≤ n. This implies that rank G = rank Gn ≤
∑n

i=1 rank Gi + rank G0 = rank(G ↷ X).

Note that rank(G ↷ X) depends on the free iterated group action, see remark 4.4.7 below.

We also note that l(X) ≤ rank(X) and therefore we cannot bound the iterated rank of a
closed manifold. To generalize the discrete degree of symmetry we will need a notion of
rank which only uses abelian groups.

Definition 4.4.3. Let G = {G1, . . . , Gn} act freely on X and assume that Gi is solvable for all i.
The abelian rank of the iterated action is

rankab(G ↷ X) = min{
m

∑
i=1

rank A′i : {A′1, . . . , A′m}↷ X ∈ [G ↷ X], A′i abelian for all i}.

Note that rank(G ↷ X) ≤ rankab(G ↷ X). We would like to define an invariant of free
iterated actions with similar properties to the discrete degree of symmetry. An essen-
tial property of the discrete degree of symmetry is that if M is a closed manifold, then
disc-sym(M) < ∞. The proof of this fact is a direct consequence of theorem 1.1.32. We
can generalize this theorem to the context of free iterated actions. Recall that given a
closed manifold M of dimension n, we define b(M) = ∑n

i=1 rank Hi(M, Z), where rank is
understood to be the minimum number of generators needed to generate Hi(M, Z) (note
that b(M) is not the Betti number of H∗(M, Z), since we also count the torsion part of
H∗(M, Z)). If p is a prime number, then bp(M) = ∑n

i=1 dim Hi(M, Z/p).

Theorem 4.4.4. Let M be a closed connected n-dimensional manifold. There exists a sequence of
numbers { fi}i∈N depending only on n and b(M) such that for any prime p and any free iterated
action {(Z/pki)ai}i=1,...,r ↷ M, where ki are arbitrary positive integers, the numbers ai satisfy
ai ≤ fi for all i.
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Proof. We construct the sequence fi recursively. For the first step, if (Z/pk1)a1 acts freely
on M then so it does the group (Z/p)a1 . Thus, we can take f1 = f (n, bp(M)), where f is
the function defined in theorem 1.1.32.

By lemma 1.1.36, if Z/pk1 acts freely on M, then

dim Hk(M/(Z/pk1), Z/p) ≤ ∑
i+j=k

dim Hi(BZ/pk1 , Z/p)dim Hj(M, Z/p)

for any k. Moreover, Hi(BZ/pk1 , Z/p) ∼= Z/p for all i ≥ 0 (see [Bro12, Chapter III,
§1]). Thus, dim Hk(M/(Z/pk1), Z/p) ≤ bp(M) for all k and therefore bp(M/(Z/pk1)) ≤
nbp(M). Using this inequality recursively, we obtain that bp(M/(Z/pk1)a1) ≤ na1bp(M) ≤
n f1bp(M).

We can use theorem 1.1.32 on M/(Z/pk1)a1 to deduce that a2 ≤ f (n, bp(M/(Z/pk1)a1)) ≤
f (n, n f1bp(M)). We set f2 = f (n, n f1bp(M)). Repeating the same argument as above, we
obtain fi = f (n, n f1+···+ fi−1bp(M)) for all 1 ≤ i ≤ r.

By the universal coefficients theorem, bp(M) ≤ 2b(M). Thus, by replacing bp(M) with
2b(M) we obtain a bound not depending on the prime p.

We are ready to define an iterated discrete degree of symmetry for free iterated actions of
length 2. In N2 we have a partial order relation called the lexicographic order defined as
follows: If (n, m), (n′, m′) ∈ N2 then (n, m) ≥ (n′, m′) if and only if n > n′ or n = n′ and
m ≥ m′.

Definition 4.4.5. We define µ2(M) as the set of all pairs ( f , b) ∈N2 which satisfy:

1. There exist an increasing sequence of prime numbers {pi}, a sequence of natural numbers
{ai} and a collection of free iterated actions {(Z/pai

i )
f , (Z/pi)

b}↷ M for each i ∈N.

2. rankab({(Z/pai
i )

f , (Z/pi)
b}↷ M) = f + b for each i ∈N.

We define the iterated discrete degree of symmetry of M as

disc-sym2(M) = max{(0, 0) ∪ µ2(M)}.

To understand better the definition of the iterated discrete degree of symmetry, let us
compute it for tori.

Lemma 4.4.6. We have disc-sym2(T
n) = (n, 0).

Proof. Let C be the Minkowski constant of GL(n, Z). Assume that disc-sym2(T
n) = (d1, d2).

Since Tn admits actions of (Z/p)n for any prime p and disc-sym(Tn) = n, we have
d1 = n. By hypothesis there exists an increasing sequence of prime numbers {pi}i∈N
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with pi > C and free iterated group actions of {(Z/pai
i )

n, (Z/pi)
d2} ↷ Tn such that

rankab({(Z/pai
i )

n, (Z/pi)
d2}↷ Tn) = n + d2.

The action of (Z/pai
i )

n on Tn is by rotations for all i, therefore Tn/(Z/pai
i )

n ∼= Tn. Since
pi > C the group (Z/pi)

d2 also acts by rotations on Tn, hence Tn/({(Z/pai
i )

n, (Z/pi)
d2}) is

homeomorphic to Tn. In consequence, the free iterated action {(Z/pai
i )

n, (Z/pi)
d2} ↷ Tn

is simplifiable for all i. The simplification gives a group Gi and a short exact sequence

1 −→ (Z/pai
i )

n −→ Gi −→ (Z/pi)
d2 −→ 1.

Moreover, we also have that a short exact sequence

1 −→ Zn −→ Zn −→ Gi −→ 1

induced by the regular covering p : Tn −→ Tn/{(Z/pai
i )

n, (Z/pi)
d2}. This implies that Gi

is abelian and rank Gi ≤ n. On the other hand,

rank Gi = rankab({(Z/pai
i )

n, (Z/pi)
d2}↷ Tn) = n + d2 ≤ n,

which implies that d2 = 0.

Remark 4.4.7. As an example, we consider two different free iterated actions of {Z/p, Z/p}↷ T2,
as shown in the Figure 4.1.

Z/p

Z/p

Z/p2

≃

Z/p

Z/p

(Z/p)2

≃

Figure 4.1: Free iterated actions on T2

Let us describe explicitly these two free iterated actions. The first step of both free iterated actions is
by rotations on the horizontal plane. More explicitly, given g ∈ Z/p and [x, y] ∈ T2 = R2/Z2,
we have g[x, y] = [x + g

p , y]. The quotient is T2/(Z/p) ∼= T2. The second step of the first
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iterated action is by rotations on the horizontal plane. The free iterated action is simplifiable by an
action of Z/p2 on T2 such that g[x, y] = [x + g

p2 , y] for g ∈ Z/p2 and [x, y] ∈ T2. Note that

rankab({Z/p, Z/p} ↷ T2) = 1 < 2. Hence, this free iterated action is not considered in the
definition of the iterated discrete degree of symmetry.

The second step of the second iterated actions is by rotations such that g[x, y] = [x, y + g
p ] for

g ∈ Z/p and [x, y] ∈ T2. The free iterated action is simplifiable by an action of (Z/p)2 on
T2 such that (g, h)[x, y] = [x + g

p , y + h
p ] for (g, h) ∈ (Z/p)2 and [x, y] ∈ T2. In this case

rankab({Z/p, Z/p}↷ T2) = 2, but it does not satisfy the maximality condition on the definition
of the iterated discrete degree of symmetry, since we have a free iterated action {(Z/p)2, {e}}↷ T2.

Corollary 4.4.8. Let M be a closed manifold. There exists ( f , b) ∈N2 such that disc-sym2(M) ≤
( f , b).

Proof. We can choose f = f1 and b = f2 from theorem 4.4.4.

Note that if disc-sym2(M) = (d1, d2) then d1 ≤ disc-sym(M). We want to investigate the
value d2.

Remark 4.4.9. If M is a manifold such that disc-sym(M) = 0 then disc-sym2(M) = (0, 0).

The next lemma shows a case where d2 = 0, so we do not have large iterated group actions.

Lemma 4.4.10. Let M be a closed manifold. Assume that l(M) = 1 and Homeo(M) is Jordan.
Then disc-sym2(M) = (d, 0).

Proof. Assume that C is the Jordan constant of Homeo(M) and that disc-sym2(M) =

(d1, d2). We have an increasing sequence of prime numbers {pi}i∈N and free iterated
group actions of {(Z/pai

i )
d1 , (Z/pi)

d2} on M such that rankab({(Z/pai
i )

d1 , (Z/pi)
d2} ↷

M) = d1 + d2. We may assume without loss of generality that pi > C. Since all actions are
simplifiable, for each i there exists a pi-group Gi acting freely on M which fits in the short
exact sequence

1 −→ (Z/pai
i )

d1 −→ Gi −→ (Z/pi)
d2 −→ 1.

Any proper subgroup H of Gi has index [G : H] > pi > C. Since Homeo(M) is Jor-
dan of constant C, we can conclude that Gi is abelian. Consequently, we have rank Gi =

rankab({(Z/pai
i )

d1 , (Z/pi)
d2} ↷ M) = d1 + d2. Therefore, Gi

∼= (Z/pai
i )

d1 ⊕ (Z/pi)
d2 . We

can take a subgroup (Z/pi)
d1+d2 ≤ Gi, which acts freely on M for all i. This implies that

(d1 + d2, 0) ≤ (d1, d2) and since d1, d2 ≥ 0, d2 = 0.

Proposition 4.4.11. Let p : M′ −→ M be a regular finite covering. Then disc-sym2(M′) ≥
disc-sym2(M).
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Proof. Firstly, we need to prove the following group theoretic fact. Let G be a finite group
and p a prime such that p > |G|!. If G′ is a group which fits in the short exact sequence
1 −→ G −→ G′ −→ (Z/pr)b −→ 1 then G′ ∼= G× (Z/pr)b.

The abstract kernel ψ : (Z/pr)b −→ Out(G) is trivial since |Out(G)| ≤ |G|! < p. This
leads to the following diagram

1 1

1 ZG H (Z/pr)b 1

1 G G′ (Z/pr)b 1

Inn G Inn G

1 1

Id

Id

where the above short exact sequence is central. Since (Z/pr)b is abelian, there is a cocycle
β : (Z/pr)b × (Z/pr)b −→ ZG which is a group morphism. More explicitly, β(x, y) =

[x̃, ỹ], where x̃, ỹ ∈ H are preimages of x and y respectively. We use that |ZG| < p to
conclude that β is trivial. This implies that the central short exact sequence is trivial and
H ∼= ZG× (Z/pr)b.

We can construct a group morphism (Z/pr)b −→ H −→ G which makes the short exact
sequence split. Therefore G′ ∼= G ⋊ϕ (Z/pr)b. The group morphism ϕ : (Z/pr)b −→
Aut(G) is trivial since |Aut(G)| ≤ |G|! < p. In conclusion, G′ ∼= G× (Z/pr)b.

Assume now that we have a regular G-covering p : M′ −→ M and disc-sym2(M) = (d1, d2).
There is an increasing sequence of prime numbers {pi}i∈N such that pi > |G|! for all i and
free iterated group actions of {(Z/pai

i )
d1 , (Z/pi)

d2}↷ M. They induce free iterated actions
of {G, (Z/pai

i )
d1 , (Z/pi)

d2}↷ M′.

Since pi > |G|!, the actions of (Z/pai
i )

d1 on Cov|G|(M) are trivial. By lemma 4.2.8 the
free iterated action {G, (Z/pai

i )
d1 , (Z/pi)

d2}↷ M′ is equivalent to a free iterated action of
{G′i , (Z/pk2

i )d2}↷ M′ for all i. For each i there exists a short exact sequence

1 −→ G −→ G′i −→ (Z/pai
i )

d1 −→ 1.

Since pi > |G|!, G′i
∼= G × (Z/pai

i )
d1 . Thus, {G′i , (Z/pk2

i )d2} ↷ M′ is equivalent to
{(Z/pai

i )
d1 , G, (Z/pi)

d2} ↷ M′ for all i. Repeating the same argument we can show that
{(Z/pai

i )
d1 , G, (Z/pi)

d2}↷ M′ is equivalent to {(Z/pai
i )

d1 , (Z/pi)
d2 , G}↷ M′ for all i.
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In conclusion, we have free iterated actions {(Z/pai
i )

d1 , (Z/pi)
d2} ↷ M′ for all i, thus

disc-sym2(M) = (d1, d2) ≤ disc-sym2(M′).

We start now the study of the iterated discrete degree of symmetry on nilmanifolds. We
start with 2 preliminary lemmas, which will also be used in section 4.5 and section 4.6.

Lemma 4.4.12. [LR10, Proposition 3.1.21] Let M be a closed aspherical manifold and let Zπ1(M)

be finitely generated. Assume that we have a free action of an abelian group A on M such that
ψ : A −→ Out(π1(M)) is trivial. Then Zπ1(M/A) = Cπ1(M/A)(π1(M)) and it is an extension
of Zπ1(M) by A. In particular, rank(Zπ1(M/A)) = rank(Zπ1(M)).

Lemma 4.4.13. Let {A, A′}↷ M be a free iterated action of abelian groups on a closed connected
aspherical manifold such that ψ : A −→ Out(π1(M)) and ψ′ : A′ −→ Out(π1(M/A)) are
trivial. Then {A, A′}↷ M is simplifiable by an abelian group.

Proof. We have a commutative diagram

1 1 1

Zπ1(M) Zπ1(M/A) Zπ1((M/A)/A′)

π1(M) π1(M/A) π1((M/A)/A′)

Inn π1(M) Inn π1(M) Inn π1(M)

1 1 1

p q q′

Id Id

Given γ ∈ π1(M) and g′ ∈ π1((M/A)/A′), we want to see that g′γg′−1 ∈ π1(M). Let γ′ ∈
π1(M) such that p(γ′) = q′(g′), then g′γg′−1 = (g′γ′−1)γ′′(g′γ′−1)−1 with γ′′ ∈ π1(M).
Since q′(g′γ′−1) is trivial then g′γ′−1 ∈ Zπ1((M/A)/A′) and therefore g′γg′−1 = γ′′ ∈
π1(M), as we wanted to see.

Note that π1((M/A)/A′)/π1(M) ∼= Zπ1((M/A)/A′)/Zπ1(M), which is abelian of rank
at most rankZπ1(M).

The next result shows that the definition of the iterated degree of symmetry is suitable to
study 2-step nilmanifolds.

Theorem 4.4.14. Let N/Γ be a nilmanifold of dimension n, f = rankZΓ and disc-sym2(N/Γ) =
(d1, d2). Then d1 = f and d2 ≤ n− f . If d2 = n− f then N/Γ is a 2-step nilmanifold. Conversely,
if N/Γ is a 2-step nilmanifold then disc-sym2(N/Γ) = ( f , n− f ).
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Proof. Let {pi}i∈N be the increasing sequence of primes and {(Z/pai
i )

d1 , (Z/pi)
d2}↷ N/Γ

be the free iterated actions provided by the condition disc-sym2(N/Γ) = (d1, d2). Let C be
the Minkowski constant of Out(Γ). Assume that all pi > C and hence the group morphism
ψi : (Z/pai

i )
d1 −→ Out(Γ) is trivial for all i. By lemma 1.3.95 and lemma 4.4.12, each action

induces a commutative diagram of fundamental groups

1 1

1 ZΓ ∼= Z f ZΓi
∼= Z f (Z/pai

i )
f 1

1 Γ Γi (Z/pai
i )

f 1

Γ′ Γ′

1 1

Id

Id

where Γi is the fundamental group of the nilmanifold (N/Γ)/(Z/pai
i )

f and the identity
map of the third row is induced by the inclusion Inn(Γ) −→ Aut(Γ). Moreover, notice that
rankZΓi = f for all i.

We claim that the group morphism ψ′i : (Z/pi)
d2 −→ Out(Γi) is injective for big enough

i. If not, there exists Z/pi ≤ Ker ψ′i such that the action Z/pi ↷ N/Γi is inner. The
first step of the iterated action is also inner. Thus, by lemma 4.4.13, the free iterated ac-
tion {(Z/pai

i )
f , Z/pi} ↷ N/Γ is equivalent to a free action of an abelian pi-group Gi

of rank Gi = f . The free iterated action {(Z/pai
i )

d1 , (Z/pi)
d2} ↷ N/Γ is equivalent to

{Gi, (Z/pi)
d2−1} ↷ N/Γ, which contradicts the fact that rankab({(Z/pai

i )
d1 , (Z/pi)

d2} ↷
N/Γ) = f + d2.
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In consequence, we have a commutative diagram

1 1

Z f Z f

1 Γi Γi2 (Z/pi)
d2 1

1 Γ′ Γ′i (Z/pi)
d2 1

1 1

Id

ϕ

where Γi2 is the fundamental group of the quotient (N/Γ)/{(Z/pai
i )

d1 , (Z/pi)
d2}. We

claim that Γ′i is torsion-free for i large enough. Firstly, Γ′i ≤ Aut(Γi). For each i we have
an injective morphism Aut(Γi) −→ Aut(ΓQ), since all lattices Γi ≤ N are commensurable
to Γ. Moreover, Aut(ΓQ) = Aut(L(ΓQ)) ≤ GL(m, Q) for some m, where L(ΓQ) denotes
the rational Lie algebra of ΓQ. Since any finite subgroup of GL(m, Q) is conjugated to a
finite subgroup of GL(m, Z), we can conclude that each Γ′i is Minkowski with a constant
C′ which does not depend on i. Finally, since Γ′ is torsion-free the torsion of Γ′i injects in
(Z/pi)

d2 . Thus, Γ′i is torsion-free if pi > C.

Since Out(Γ′) is Minkowski with a constant not depending on i, we have a commutative
diagram for i large enough.

1 1

1 ZΓ′ CΓ′i
(Γ′) (Z/pi)

d2 1

1 Γ′ Γ′i (Z/pi)
d2 1

Inn Γ′ Inn Γ′

1 1

Id

Id

Since Γ′i is torsion-free, the group CΓ′i
(Γ′) is torsion-free. The first row of the diagram is

central, hence CΓ′i
(Γ′) is abelian and d2 ≤ rankZΓ′. Furthermore, Γ′ is the fundamental
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group of the nilmanifold N′/Γ′, obtained as the orbit space of the free action of ZN/ZΓ ∼=
T f on N/Γ. Therefore, rankZΓ′ ≤ dim(N′/Γ′) = n − f . In conclusion, d2 ≤ n − f . If
d2 = n− f then N′/Γ′ ∼= Tn− f and N/Γ is a 2-step nilmanifold with rankZΓ = f , as we
wanted to see.

Let us now prove the converse implication. Suppose that N/Γ is a 2-step nilmanifold with
f = rankZΓ and let b = n − f . Then Γ ∼= Z f ×c Zb, where c : Zb ×Zb −→ Z f is a 2-
cocycle representing a cohomology class [c] ∈ H2(Zb, Z f ) = H2(Tb, Z f ) which determines
the principal T f -bundle π : N/Γ −→ Tb. The cocycle can be chosen to be of the form

c((x1, . . . , xb), (y1, . . . , yb)) = ( ∑
1≤i<j≤b

c1
i,jxiyj, . . . , ∑

1≤i<j≤b
c f

i,jxiyj)

where ck
i,j ∈ Z for all 1 ≤ i, j ≤ f and 1 ≤ k ≤ b.

For any prime p we can define a free iterated action {(Z/p2) f , (Z/p)b} ↷ N/Γ. The
first action is by right multiplication on the fiber T f . The orbit space is a nilmanifold with
fundamental group Γp ∼= ( 1

p2 Z) f ×c Zb, where c : Zb ×Zb −→ Z f ⊆ ( 1
p2 Z) f . The second

iterated is by rotations on the torus of the basis Tb. More explicitly, we define the lattice
Γ′p ∼= ( 1

p2 Z) f ×cp (
1
pZ)b, where cp : ( 1

p Z)b × ( 1
p Z)b −→ Z f ⊆ ( 1

p2 Z) f is of the form

c(( 1
p x1, . . . , 1

p xb), ( 1
p y1, . . . , 1

p yb)) = ( ∑
1≤i<j≤b

c1
i,j

p2 xiyj, . . . , ∑
1≤i<j≤b

c f
i,j

p2 xiyj).

We have that Γp ⊴ Γ′p and Γ′p/Γp ∼= (Z/p)b, which defines a free action of (Z/p)b on
N/Γp.

Moreover, rankab({(Z/p2) f , (Z/p)b} ↷ N/Γ) = n, therefore ( f , b) ≤ disc-sym2(N/Γ).
But the first part of the theorem implies that disc-sym2(N/Γ) ≤ ( f , b). In consequence
disc-sym2(N/Γ) = ( f , b).

4.5 Free iterated actions on closed aspherical 3-dimensional
manifolds

If M is a closed 3-dimensional aspherical manifold with an effective S1 action, then M can
be one of the following four cases (see [LR10, §14.4]):

1. M ∼= T3.

2. M is homeomorphic to K × S1 or SK, where K denotes the Klein bottle and SK the
non-trivial principal S1-bundle over K.

3. M ∼= H/Γ, where H is the 3-dimensional Heisenberg group and Γ is a lattice of H
(see example 1.3.26)
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4. Zπ1(M) ∼= Z, and Inn π1(M) ∼= π1(M)/Zπ1(M) is centreless.

Note that in all cases, we have a central extension

1 −→ Z −→ π1(M) −→ Q −→ 1

where Q acts effectively, properly and cocompactly on R2. In section 2.6 we computed the
toral degree of symmetry in these four cases. We proved that tor-sym(T3) = 3, tor-sym(K×
S1) = tor-sym(SK) = 2, tor-sym(H/Γ) = 1, and tor-sym(M) = 1 if M belongs to the case 4.
Moreover, if M is a closed connected aspherical 3-manifold then Out(π1(M)) is Minkowski
by [Koj84] and tor-sym(M) = disc-sym(M) = rankZπ1(M) by [Gab92, Corollary 8.3] and
[CJ94, Theorem 1.1]. Thus, if M is a closed connected aspherical 3-manifold which does
not belong to one of the four cases above, then tor-sym(M) = rankZπ1(M) = 0 and hence
disc-sym(M) = 0.

We will compute the iterated discrete degree of symmetry and show that it can be used to
distinguish the four cases of the classification (see theorem 4.0.15). We start by providing a
different proof that Out(π1(M)) is Minkowski if M belongs to one of these four cases.

Lemma 4.5.1. Let M be a closed 3-dimensional aspherical manifold with an effective S1-action.
Then Zπ1(M) is finitely generated and Out(π1(M)) is Minkowski.

Proof. In the first three cases the fundamental group is polycyclic and therefore Out(π1(M))

is Minkowski (see theorem 2.2.1). We only need to check the case where we have a short
exact sequence 1 −→ Zπ1(M) ∼= Z −→ π1(M) −→ Inn(π1(M)) −→ 1 and Inn(π1(M)) is
centreless. Since Zπ1(M) is a characteristic subgroup of π1(M) then there are short exact
sequences

1 −→ K −→ Out(π1(M)) −→ Out(Inn π1(M)) −→ 1

and
1 −→ H1

(Inn π1(M), Z) −→ K −→ GL(1, Z) −→ 1.

Recall that H1
(Inn π1(M), Z) ∼= Z1(Inn π1(M), Z)/B1

(Inn π1(M), Z) and

B1
(Inn π1(M), Z) ∼= p−1(Z Inn π1(M) ∩ Cπ1(M)(Zπ1(M)))/Zπ1(M)

where p : π1(M) −→ Inn π1(M) is the quotient map. Since Z Inn π1(M) is trivial, the
group B1

(Inn π1(M), Z) is also trivial and

H1
(Inn π1(M), Z) ∼= Z1(Inn π1(M), Z) ∼= H1(Inn π1(M), Z).

The group Out(π1(M)) will be Minkowski if Out(Inn π1(M)) and H1(Inn π1(M), Z) are
Minkowski. Since Inn π1(M) acts effectively, properly and cocompactly on R2, Inn π1(M)

is a subgroup of isometries of the Euclidean plane or the hyperbolic plane. In both cases
H1(Inn π1(M), Z) is a finitely generated abelian group and therefore Minkowski.
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If Inn π1(M) is a subgroup of isometries of the Euclidean plane then it is virtually abelian
and therefore Out(Inn π1(M)) is Minkowski. If Inn π1(M) is a subgroup of isometries of
the hyperbolic plane, then it contains a centreless torsion-free Fuchsian subgroup Q of finite
index. Since Out(Q) is virtually torsion-free, Out(Inn π1(M)) is also virtually torsion-free
(see [MS06, Lemma 2.4, Corollary 2.6 ]) and therefore Minkowski.

The following is theorem 4.0.15.

Theorem 4.5.2. Let M be a 3-dimensional closed connected aspherical manifold. Suppose that there
exists an effective S1 action on M. Then:

1. disc-sym2(M) = (3, 0) if and only if M ∼= T3.

2. disc-sym2(M) = (2, 0) if and only if M ∼= K× S1 or M ∼= SK.

3. disc-sym2(M) = (1, 2) if and only if M ∼= H/Γ.

4. disc-sym2(M) = (1, 0) if and only if Zπ1(M) ∼= Z and Inn π1(M) is centreless.

The proof of theorem 4.5.2 is mainly a combination of lemma 4.4.13, lemma 4.4.12 and the
following lemma.

Lemma 4.5.3. Let M be a closed aspherical manifold. Assume that Zπ1(M) is finitely generated,
that Out(π1(M)) is Minkowski and that there exists a constant C satisfying that for every free
inner action of an abelian group A on M, Out(π1(M/A)) is Minkowski with a constant less or
equal than C. Then disc-sym2(M) = (d1, 0).

Proof. Assume that disc-sym2(M) = (d1, d2). We have an increasing sequence of primes
{pi}i∈N, a sequence of positive integers {ai}i∈N and a collection of free iterated actions
{(Z/pai

i )
d1 , (Z/pi)

d2}↷ M satisfying that

rankab({(Z/pai
i )

d1 , (Z/pi)
d2}↷ M) = (d1, d2).

We can assume that pi > C for all i. In this case, ψi : (Z/pai
i )

d1 −→ Out(π1(M)) and
ψ′i : (Z/pi)

d2 −→ Out(π1(M)) are trivial for all i. By lemma 4.4.13, this iterated action is
simplifiable, which implies that there exists a free group action of (Z/pi)

d1+d2 on M. But
then d1 + d2 ≤ d1, which implies that d2 = 0.

From lemma 4.5.3 we can deduce the following corollary, which proves part (2) of theo-
rem 4.5.2.

Corollary 4.5.4. Let M be a closed flat manifold. Then disc-sym2(M) = (rankZπ1(M), 0).

Proof. Given any abelian group A acting freely on a n-dimensional closed flat manifold
M such that ψ : A −→ Out(π1(M)), the quotient space M/A is a closed flat manifold
of the same dimension and hence π1(M/A) is a Bieberbach group. Because there is a
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finite number of isomorphism classes of Bieberbach groups in each dimension and their
outer automorphisms group is Minkowski, we can use lemma 4.5.3 by taking C to be the
maximum of all Minkowski constants of the outer automorphism group of Bieberbach
groups of flat manifolds of dimension n.

Proof of theorem 4.5.2. We have already proved that disc-sym2(M) = (3, 0) if M ∼= T3 (see
lemma 4.4.6) and that disc-sym2(M) = (1, 2) if M ∼= H/Γ (see theorem 4.4.14). More-
over, SK and K × S1 are closed flat manifolds, which implies that disc-sym2(K × S1) =

disc-sym2(SK) = (2, 0) (see corollary 4.5.4). Therefore, we only need to check the last case.

Let M be a 3-aspherical manifold of the case 4 and assume that the Minkowski constant
of Out(π1(M)) is C. Since disc-sym(M) = tor-sym(M) = rankZπ1(M) = 1, there exist
an increasing sequence of primes {pi}i∈N and a sequence of positive integers {ai}i∈N such
that Z/pai

i acts freely on M and pi > C for all i. Therefore each action induces the trivial
group morphism ψi : Z/pai

i −→ Out(π1(M)) and a commutative diagram

1 1

1 Zπ1(M) ∼= Z CGi(π1(M)) = ZGi Z/pai
i 1

1 π1(M) Gi Z/pai
i 1

Inn π1(M) Inn π1(M)

1 1

Id

Id

where Gi = π1(M/(Z/pai
i )). Note that Inn π1(M) is centreless.

We claim that Out(Gi) is Minkowski with a constant that does not depend on i. Since ZGi

is a characteristic subgroup of Gi and Inn π1(M) is centreless there exist two short exact
sequence (see lemma 4.5.1)

1 −→ K −→ Out(Gi) −→ Out(Inn π1) −→ 1

and
1 −→ H1(Inn π1(M), Z) −→ K −→ GL(1, Z) −→ 1.

The Minkowski constant of the group Out(Gi) can be bounded by the Minkowski constants
of Out(Inn π1(M)), GL(1, Z) and H1(Inn π1(M), Z), which do not depend on pi. Thus, we
can use lemma 4.5.3 to conclude that disc-sym2(M) = (1, 0).
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Remark 4.5.5. The key observation of the proof of theorem 4.5.2 is that if Inn π1(M) is centreless
then H̄1(Inn π1(M), Z) = H1(Inn π1(M), Z), which does not depend on the action of (Z/pai

i )

on M. In general, H̄1(Inn π1(M), Z) does depend on the action of (Z/pai
i ) on M.

4.6 Free iterated actions on closed aspherical manifolds

The aim of this section is to prove theorem 4.0.13. We will use the following definition:

Definition 4.6.1. If Γ is a finitely generated group satisfying that ZΓ and Z Inn Γ are finitely
generated and that Out(Inn Γ) and Aut(Inn Γ) are Minkowski then we say that Γ has the 2-step
Minkowski property.

Remark 4.6.2. Assume that Γ is 2-step Minkowski. Then ZΓ and Inn Γ are finitely generated and
therefore the group of closed 1-cocycles Z1(Inn Γ,ZΓ) is a finitely generated abelian group, and
hence Z1(Inn Γ,ZΓ) is Minkowski.

Lemma 4.6.3. Assume that Γ is torsion-free and 2-step Minkowski. Then Out(Γ) and Aut(Γ) are
Minkowski.

Proof. We consider the central short exact sequence 1 −→ ZΓ −→ Γ −→ Inn Γ −→ 1. We
know that Out(ZΓ) = Aut(ZΓ) = GL(n, Z) for some n, hence Out(ZΓ) is Minkowski.
Moreover, H1(Inn Γ,ZΓ) is Minkowski because Inn Γ and ZΓ are finitely generated, and
Out(Inn Γ) is Minkowski by hypothesis. By theorem 1.2.21 and lemma 1.1.54, we can
conclude that Out(Γ) is Minkowski.

The group Z1(Inn Γ,ZΓ) is Minkowski by remark 4.6.2 and Aut(Inn Γ) is Minkowski by
hypothesis. Therefore Aut(Γ) is Minkowski by theorem 1.2.22 and lemma 1.1.54.

Remark 4.6.4. Note that if Γ is a centreless finitely generated group, then Inn Γ ∼= Γ. Therefore Γ
is 2-step Minkowski if and only if Out(Γ) and Aut(Γ) are Minkowski.

Proposition 4.6.5. Let Γ be lattice of a connected Lie group, then Γ has the 2-step Minkowski
property.

Proof. Recall that there is a short exact sequence 1 −→ ΓA −→ Γ −→ Γnc −→ 1 where ΓA is
virtually polycyclic and Γnc is a centreless lattice in a semisimple Lie group (see section 2.4).
In consequence, ZΓ ⊴ ΓA ⊴ Γ. Thus, we have a short exact sequence 1 −→ ΓA/ZΓ −→
Inn Γ −→ Γnc −→ 1. Moreover ΓA/ZΓ is virtually polycyclic.

Since Γnc is centreless, the center Z Inn Γ is a subgroup of ΓA/ZΓ. Since ΓA/ZΓ is virtually
polycyclic, Z Inn Γ is finitely generated. Moreover, using again that ΓA/ZΓ is virtually
polycyclic and Γnc is a centreless lattice in a semisimple Lie group and that ΓA/ZΓ is
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virtually polycyclic we can conclude that Out(Inn Γ) and Aut(Inn Γ) are Minkowski (see
section 2.4 and in particular, remark 2.4.6).

As we said, our main goal in this section is to prove theorem 4.0.13, which we recall:

Theorem 4.6.6. Let M be a closed connected n-dimensional aspherical manifold such that π1(M)

is 2-step Minkowski. If disc-sym2(M) = ( f , b) with f + b = n then M ∼= N/Γ, where N/Γ is
the total space of a principal T f -bundle over Tb.

Proof of theorem 4.6.6. The idea of the proof is to reduce the general case to the case where
M is an infranilmanifold finitely covered by a 2-step nilmanifold. We divide the proof in 4
parts.

Part 1. Study of the first step of the iterated actions: Since disc-sym2(M) = ( f , b) there
exist a strictly increasing sequence of prime numbers {pi}i∈N and a sequence of numbers
{ai}i∈N such that {(Z/pai

i )
f , (Z/pi)

b}↷ M freely. Since Out(π1(M)) is Minkowski, there
exists i0 such that for all i ≥ i0 the induced group morphism ψi : (Z/pai

i )
f −→ Out(π1(M))

is trivial. Thus, we can assume without loss of generality that all ψi are trivial.

Let G̃i = π1(M/(Z/pai
i )

f ). By lemma 1.3.95 and lemma 4.4.12, we have the following
commutative diagram

1 1

1 Zπ1(M) CG̃(π1(M)) = Z G̃i (Z/pai
i )

f 1

1 π1(M) G̃i (Z/pai
i )

f 1

Inn π1(M) Inn G̃i

1 1

id

p

∼=

where the isomorphism of the last row is induced by the inclusion morphism Inn π1(M) −→
Aut(π1(M)). Since π1(M) is 2-step Minkowski and Inn π1(M) ∼= Inn G̃i for all i, the groups
Aut(Inn G̃i) and Out(Inn G̃i) are Minkowski for all i. The key observation is that Minkowski
constants of Aut(Inn G̃i) and Out(Inn G̃i) do not depend on i.
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Part 2. Study of the second step of the iterated actions: Note that M/(Z/pai
i )

f is a
closed aspherical manifold. Therefore the second step of each iterated action induces a
group morphism ψ′i : (Z/pi)

b −→ Out(G̃i). We claim that ψ′i is injective for all i. As-
sume the contrary. Then, each iterated action is equivalent to the iterated action in 3 steps
{(Z/pai

i )
b, Ker ψ′i , (Z/pi)

b/ Ker ψ′i} ↷ M, where the first 2 steps of the iterated action are
inner actions.

By lemma 4.4.13, the iterated action {(Z/pai
i )

b, Ker ψ′i} ↷ M is simplifiable by an abelian
group Ai for all i. This implies that {(Z/pai

i )
b, (Z/pi)

b}↷ M and {Ai, (Z/pi)
b/ Ker ψi}↷

M are equivalent. Since disc-sym2(M) = ( f , b) we obtain that rank Ai = f . Moreover, we
have rank((Z/pi)

b/ Ker ψi < b). Consequently, rankab({(Z/pai
i )

b, (Z/pi)
b}↷ M) < f + b,

which contradicts the fact that disc-sym2(M) = ( f , b). Thus, the only possibility is that
Ker ψ′i is trivial for all i.

Like in the first step of the proof, we can use lemma 1.3.95 and lemma 4.4.12 to obtain the
commutative diagram

1 1

Z G̃i CG̃′i
(G̃i)

1 G̃i G̃′i (Z/pi)
b 1

1 Inn G̃i Gi (Z/pi)
b 1

1 1

id

p

id

where G̃′i is the fundamental group of M/{(Z/pai
i )

f , (Z/pi)
b} and Gi ≤ Aut(G̃i). The key

observation in this case is the following lemma:

Lemma 4.6.7. The group Aut(G̃i) is Minkowski with a constant that does not depend on i.

Proof. Consider the short exact sequence 1 Z G̃i G̃i Inn G̃i 1 .

Since Z G̃i is a characteristic subgroup there exist short exact sequences

1 Ki Aut(G̃i) Li 1
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and
1 Z1(Inn G̃i,Z G̃i) Ki L′i 1

such that Li ≤ Aut(Inn G̃i) and L′i ≤ Aut(Z G̃i). Since Inn G̃i
∼= Inn π1(M) and Z G̃i

∼=
Zπ1(M) we obtain that Aut(G̃i) is Minkowski with a constant not depending on i.

Part 3. M is an infra-nilmanifold: Consider the abstract kernel of the extension

1 Inn G̃i Gi (Z/pi)
b 1

which we denote by ϕi : (Z/pi)
b −→ Out(Inn G̃i). Since Out(G̃i) is Minkowski with a

constant not depending on i, ϕi is trivial for i large enough. Thus, we will assume that ϕi is
trivial. We obtain the following diagram where the first row is a central extension and the
columns are inclusions.

1 Z Inn π1(M) CGi(Inn π1(M)) (Z/pi)
b 1

1 Inn π1(M) Gi (Z/pi)
b 1

id

Note that we cannot assume that CGi(Inn π1(M)) or Z Inn π1(M) are torsion-free. Never-
theless, the group Z Inn π1(M) is finitely generated. Consequently, Z Inn π1(M) ∼= Zr⊕ T,
where T is the torsion subgroup of Z Inn π1(M). Moreover, CGi(Inn π1(M)) ≤ Gi, which
is Minkowski with a constant which does not depend on i. Therefore, for i large enough
we can assume that the order of torsion elements of Gi is smaller than pi. In this setting we
can use the following lemma:

Lemma 4.6.8. Let

1 Zr ⊕ T G (Z/p)b 1

be a central group extension such that the order of the torsion elements of G is smaller than the
prime p. Then r ≥ b.

Proof. We have a central short exact sequence

1 Zr G/T (Z/p)b 1

Note that G/T is torsion-free. If not, there would exist an element g ∈ G such that gp ∈ T
and therefore its order o(g) ≥ p, contradicting the fact that the order of the torsion elements
of G is smaller than the prime p. Since the extension is central and G/T is torsion-free this
implies that r ≥ b.
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In consequence Zb ≤ Inn π1(M) and we have the following commutative diagram where
the rows are central extensions and the columns are inclusions:

1 Z f Γ Zb 1

1 Z f π1(M) Inn π1(M) 1

id

The group Γ is a finitely generated torsion-free 2-step nilpotent group and hence it is a
lattice in a 2-step nilpotent Lie group N. The nilmanifold N/Γ is a the total space of a
principal T f -fibration over Tb.

Let M̃ denote the universal covering of M. We claim that the covering M̃/Γ −→ M is a finite
covering. Indeed, since M̃ is contractible, we have H∗(M̃/Γ) ∼= H∗(Γ, Z) = H∗(N/Γ, Z).
Therefore, Hn(M̃/Γ) ̸= 0, which implies that M̃/Γ is a closed connected manifold. The
map M̃/Γ −→ M is a covering between closed manifolds and hence a finite covering.

We reach the conclusion that [π1(M) : Γ] < ∞. Since π1(M) is torsion-free, π1(M) is an
almost-Bieberbach group (see theorem 1.3.61). Since the Borel conjecture holds for almost-
Bieberbach groups (see section 1.3), we obtain that M is an infra-nilmanifold.

Remark 4.6.9. The central short exact sequence

1 Z f Γ Zb 1

can be trivial and therefore Γ ∼= Z f+b = Zn. This implies that M is a flat manifold and hence
disc-sym2(M) = (rank π1(M), 0) by corollary 4.5.4. Thus, b = 0 and rankZπ1(M) = f = n.
By theorem 2.0.1, we can conclude that M ∼= Tn, which completes the proof of theorem 4.6.6 in
this particular case. Thus, from now on we will assume that the above central exact sequence is not
trivial and hence Γ will be a 2-step nilpotent torsion-free group.

Part 4. If M is an infra-nilmanifold with disc-sym2(M) = ( f , b) and f + b = n then M
is a nilmanifold: To prove the bolded claim and finish the proof of theorem 4.6.6 we need
some preliminary results of free group actions on 2-step nilmanifolds.

Let N/Γ be a 2-step nilmanifold of dimension n. Assume that rankZΓ = f and let b =

n − f . Thus, N/Γ is the total space of principal T f -bundle over Tb and Γ is a finitely
generated torsion-free 2-step nilpotent group fitting in the short exact sequence 1 −→
ZΓ ∼= Z f −→ Γ −→ Zb −→ 1. Then we have short exact sequences

1 −→ K −→ Out(Γ) −→ Out(Zb) = GL(Z, b) −→ 1

and
1 −→ H1

(Zb, Z f ) −→ K −→ K′ −→ 1,



162 4.6 Free iterated actions on closed aspherical manifolds

where K′ ≤ Out(Zb) = GL(b, Z) and H1
(Zb, Z f ) = {[g] ∈ Out(Γ) : g|Z f = idZ f , g : Zb −→

Zb = idZb}.

Let G be a finite group acting freely on N/Γ and let G̃ be the fundamental group of the
manifold (N/Γ)/G. There exists a group morphism ϕ : G −→ Out(Γ). Using propo-
sition 1.3.32, ϕ induces a morphism to the outer automorphism group of the rational
Mal’cev completion of Γ, ϕQ : G −→ Out(ΓQ). The next lemmas provide a relation be-
tween Ker(ϕQ : G −→ Out(ΓQ)) and the image ϕ(G) ≤ Out(Γ).

The first result is proposition 2.1.11. Recall that since ZΓ is a characteristic subgroup of
Γ, the restriction of outer automorphisms to ZΓ induces a group morphism ϕ′ : G −→
Aut(ZΓ).

Lemma 4.6.10. We have rankZ G̃ = rankZΓ if and only if ϕ′ : G −→ Aut(ZΓ) is trivial. In
this situation, Z G̃ = CG̃(Γ).

Recall that we can define the isolator of the commutator [Γ, Γ] as
√
[Γ, Γ] = {γ ∈ Γ : γr ∈

[Γ, Γ] for some r}. It is a characteristic subgroup of Γ and Γ/
√
[Γ, Γ] is torsion-free (see

[Dek06, Lemma 1.1.2]).

Lemma 4.6.11. [Dek06, Proposition 2.4.1] Given a positive integer a, consider the extension

1 −→ Γ −→ Γ̃ −→ Z/a −→ 1.

The group Γ̃ is nilpotent if and only if the induced map ϕ : Z/a −→ Aut(Γ/
√
[Γ, Γ]) is trivial.

Since Γ is 2-step nilpotent,
√
[Γ, Γ] ⊆ ZΓ and there exists a number l such that ZΓ =√

[Γ, Γ]⊕Zl. Thus, Γ/
√
[Γ, Γ] ∼= Γ/ZΓ⊕Zl.

Lemma 4.6.12. We have ϕ(Ker ϕQ) ≤ H1
(Zb, Z f ). Conversely, if g ∈ G such that ϕ(g) ∈

H1
(Zb, Z f ), then g ∈ Ker ϕQ.

Proof. Let g ∈ Ker ϕQ. Then there exists x ∈ ΓQ such that ϕ(g)(γ) = xγx−1 for all γ ∈ Γ.
Thus, ϕ(g)|Z f = idZ f since Z f is in the center of ΓQ and ϕ(g) = idZb since ϕ(g) is a
conjugation on an abelian group.

Conversely, given g ∈ G, we consider the extension

1 −→ Γ −→ Γ̃ −→ ⟨g⟩ −→ 1.

If ϕ(g) ∈ H1
(Zb, Z f ), then ϕ(g) = idZb and ϕ(g)Z f = idZ f . In particular, ϕ(g) fixes all

elements in Zl. Thus, since ⟨g⟩ is a finite group, we have ϕ : ⟨g⟩ −→ Aut(Γ/
√
[Γ, Γ]) =

Aut(Zb ⊕Zl) is trivial. In consequence, Γ̃ is a torsion-free nilpotent group and g ∈ Ker ϕQ

by proposition 1.3.64.
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We are ready to finish the proof of theorem 4.6.6. Recall that if disc-sym2(M) = ( f , b) with
f + b = n then there exists a finite index subgroup Γ ≤ π1(M) which is the fundamental
group of a 2-step nilmanifold N/Γ, which is the total space of a principal T f -bundle over
Tb.

We consider the Fitting subgroup Fitt(π1(M)), which is torsion-free, nilpotent and of fi-
nite index in π1(M) (see theorem 1.3.61). Since Γ has finite index on π1(M), the groups
Fitt(π1(M)) and Γ are commensurable, and therefore we have a central short exact se-
quence

1 Z f Fitt π1(M) Zb 1.

In particular, disc-sym2(N/ Fitt(π1(M))) = ( f , b).

We also have a short exact sequence

1 Fitt(π1(M)) π1(M) G 1

where G is a finite group. If ϕ : G −→ Out(Fitt(π1(M))) denotes the abstract kernel of
the group extension, then the induced map ϕQ : G −→ Out(Fitt(π1(M))Q) on the rational
Mal’cev completion is injective (see proposition 1.3.63).

Since M is an infranilmanifold, we have disc-sym(M) = rankZπ1(M) (see theorem 2.0.4
or [LR10, Theorem 11.7.7]). In consequence, rankZπ1(M) = rankZ Fitt(π1(M)) = f and
ϕ′ is trivial by lemma 4.6.10. The injectivity of ϕQ together with lemma 4.6.12 implies
that ϕ : G −→ Out(Fitt(π1(M))/Z Fitt(π1(M))) ∼= GL(b, Z) is injective. We obtain the
commutative diagram (see lemma 1.3.95)

1 1

Z Fitt(π1(M)) = Z f Zπ1(M)

1 Fitt(π1(M)) π1(M) G 1

1 Inn Fitt(π1(M)) = Zb Inn π1(M) G 1

1 1

id

p

id

where the identity map in the first row is induced by the inclusion Z Fitt(π1(M)) −→
Cπ1(M)(Fitt(π1(M))) = Zπ1(M). The abstract kernel of the third row is ϕ. Since ϕ is
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injective, Inn π1(M) is a crystallographic group. Moreover, disc-sym2(M) = ( f , b) im-
plies that Zb ≤ Z Inn π1(M) and hence [Inn π1(M) : Z Inn π1(M)] < ∞. Therefore,
[Inn π1(M), Inn π1(M)] is a finite normal subgroup of a crystallographic group Inn π1(M),
which means that [Inn π1(M), Inn π1(M)] is trivial (see theorem 1.3.61). Hence Inn π1(M)

is abelian and π1(M) is a finitely generated torsion-free 2-step nilpotent group. This im-
plies that M is a nilmanifold, as desired.

The same proof can be used to obtain the following bound on the iterated discrete degree
of symmetry.

Corollary 4.6.13. Let M be a closed connected aspherical manifold such that π1(M) is 2-step
Minkowski. Then disc-sym2(M) ≤ (rankZπ1(M), rankZ Inn π1(M)) and rankZπ1(M) +

rankZ Inn π1(M) ≤ dim(M).

Combining proposition 4.6.5 and corollary 4.6.13, we obtain:

Corollary 4.6.14. Let G be a connected Lie group, K a maximal subgroup of G and Γ a torsion-
free cocomapct lattice of G. The closed aspherical locally homogeneous space Γ \ G/K satisfies
disc-sym2(M) ≤ (rankZΓ, rankZ(Inn Γ)).

Corollary 4.6.13 can be used in the following situation:

Corollary 4.6.15. Let M be a closed connected aspherical manifold. Assume that Out(π1(M)) and
Aut(π1(M)) are Minkowski and that Zπ1(M) is trivial. Let E be the total space of a principal
T f -bundle over M. Then disc-sym2(E) = ( f , 0).

Proof. Consider the central short exact sequence

1 Zπ1(E) ∼= Z f π1(E) π1(M) 1.

Consequently, Inn π1(E) ∼= π1(M) and π1(E) is 2-step Minkowski. Hence, by corol-
lary 4.6.13, disc-sym2(M) ≤ ( f , 0).

On the other hand, since E has a free action of T f , E also admits free actions of (Z/pa) f

for any prime p and positive integer a. Consequently, disc-sym2(E) ≥ ( f , 0). Thus,
disc-sym2(E) = ( f , 0).

4.7 Free iterated group actions on manifolds admitting a
non-zero degree map to a nilmanifold

The aim of this section is to study the relation between the iterated discrete degree of
symmetry and rigidity on manifolds which admit a non-zero degree map to a nilmanifold.
In particular, we prove theorem 4.0.14. We start with a result on closed connected oriented
manifolds admitting a non-zero degree map to a torus.
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Proposition 4.7.1. Let M be a closed oriented connected manifold of dimension n and f : M −→ Tn

a non-zero degree map. Then disc-sym2(M) ≤ (n, 0).

Proof. Suppose that disc-sym2(M) = (d1, d2). Let {pi}i∈N be the increasing sequence of
primes and let {(Z/pai

i )
d1 , (Z/pi)

d2}↷ M be the collection of free iterated actions given by
the definition of the iterated discrete degree of symmetry. Note that we can assume without
loss of generality that pi > max{deg( f ), C} for all i, where C is the Minkowski constant
of GL(r, Z) with r = rank H1(M, Z). Consequently, the induced action of (Z/pai

i )
d1 on

H1(M, Z) is trivial for all i.

By theorem 3.2.1, for each i there exists a group morphism ηi : (Z/pai
i )

d1 −→ Tn, which
is injective since |Ker ηi| ≤ d < pi. Moreover, for each i there exists a ηi-equivariant map
fi : M −→ Tn homotopic to f . We consider the commutative diagram

M Tn

Mi
∼= M/(Z/pai

i )
d1 Tn/(Z/pai

i )
d1 ∼= Tn

fi

f ′i

Note that deg( f ′i ) = deg( f ) for all i. The first cohomology group does not have torsion,

hence rank H1(Mi, Z) = rank H1(Mi, Q) = rank H1(M, Q)(Z/p
ai
i )d1 = rank H1(M, Q) = r,

where the last equality holds because the action of (Z/pai
i )

d1 on H1(M, Q) is trivial. Since
we have assumed that pi > C for all i then the action of (Z/pi)

d2 on H1(Mi, Z) is trivial
for all i.

Consequently, by theorem 3.2.1, for each i there exists an injective group morphism η′i :
(Z/pi)

d2 −→ Tn and a η′i -equivariant map h′i : Mi −→ Tn homotopic to f ′i . Since Tn −→
Tn/(Z/pai

i )
d1 is a principal (Z/pai

i )
d1-bundle, for each i there exists a (Z/pai

i )
d1-equivariant

homeomorphism between the total space of the pull-back Tn −→ Tn/(Z/pai
i )

d1 by h′i and
M, which we denote by ϕi : (h′i)

∗Tn −→ M. It induces a commutative diagram

(h′i)
∗Tn

M Tn

hiϕi

fi

Note that each hi is a {(Z/pai
i )

d1 , (Z/pi)
d2}-equivariant map of degree deg( f ). We have a
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commutative diagram

M Tn

Mi Tn/(Z/pai
i )

d1 ∼= Tn

Mi/(Z/pi)
d2 Tn/(Z/pi)

d2 ∼= Tn

hi

h′i

The induced iterated action {(Z/pai
i )

d1 , (Z/pi)
d2} ↷ Tn is simplifiable by an abelian pi-

group Gi for each i.

The map hi maps bijectively iterated orbits of {(Z/pai
i )

d1 , (Z/pi)
d2} ↷ Tn to orbits of the

action of Gi on Tn. In consequence, we can simplify {(Z/pai
i )

d1 , (Z/pi)
d2}↷ M with a free

action of Gi on M. This implies that d1 + d2 = rankab({(Z/pai
i )

d1 , (Z/pi)
d2}) = rank(Gi) ≤

n. If d1 < n then disc-sym2(M) < (n, 0) = disc-sym2(T
n). If d1 = n then d2 = 0 and

therefore disc-sym2(M) = (n, 0) = disc-sym2(T
n).

Theorem 4.7.2. Let M be a closed oriented connected n-dimensional manifold M and f : M −→
N/Γ a non-zero degree map where N/Γ is a 2-step nilmanifold. Then:

1. disc-sym2(M) ≤ disc-sym2(N/Γ).

2. If the map f∗ : π1(M) −→ Γ is surjective and disc-sym2(M) = disc-sym2(N/Γ) then
H∗(M, Z) ∼= H∗(N/Γ, Z).

Before proving the theorem, let us show what happens if we remove the hypothesis of
f∗ : π1(M) −→ Γ being surjective from theorem 4.7.2.2.

Corollary 4.7.3. Let M be a closed oriented connected n-dimensional manifold M and f : M −→
N/Γ a non-zero degree map where N/Γ is a 2-step nilmanifold. If we have disc-sym2(M) =

disc-sym2(N/Γ) then H∗(M, Q) ∼= H∗(N/Γ, Q).

Proof. The condition d = deg( f ) ̸= 0 implies that [Γ : f∗π1(M)] < ∞. Therefore f∗π1(M)

is a lattice of N and we have a finite covering N/ f∗π1(M) −→ N/Γ. We can lift the map f
to a map f ′, obtaining a commutative diagram

N/ f∗π1(M)

M N/Γ
f

f ′
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Note that deg( f ′) ̸= 0 and f ′∗ : π1(M) −→ f∗π1(M) is surjective. Thus, we have a chain of
isomorphisms

H∗(M, Q) ∼= H∗(N/ f∗π1(M), Q) ∼= H∗(L(N), Q) ∼= H∗(N/Γ, Q).

The proof of theorem 4.7.2 is a generalization of the arguments used to prove theorem 3.0.1.2.
in [MiR24a] and it follows the same outline as the proof of theorem 4.6.6. We will di-
vide the proof in six parts. The first two parts are analogous to proposition 4.7.1 and
will prove the first part of theorem 4.7.2. We denote by M̃ the total space of the pull-
back of ρ : N −→ N/Γ by f . In the third and fourth part of the proof, we assume that
disc-sym2(M) = disc-sym2(N/Γ) and we discuss the structure of H∗(M̃, Z) as ZΓ-module.
In part 5, we use non-commutative ring theory to prove that M̃ is an acyclic manifold. From
this fact we deduce that H∗(M, Z) ∼= H∗(N/Γ, Z) in part 6.

Before starting the proof we fix some notation. We set a = dimZN and b = dim N/ZN.
We have a projection map π : N −→ Rb with Ker π = ZN. thus, we have a short exact
sequence

1 Ra N Rb 1π

Since ZN is lattice hereditary, we have ZΓ = ZN ∩ Γ ∼= Za and π(Γ) ∼= Zb. We have a
normalized 2-cocycle c : Zb ×Zb −→ Za such that Γ ∼= Za ×c Zb and N ∼= Ra ×c Rb. We
can write the 2-cocycle c

c((x1, . . . , xb), (y1, . . . , yb)) = ( ∑
1≤j,k≤b

c1
jkxjyk, . . . , ∑

1≤j,k≤b
ca

jkxjyk)

where cl
jk ∈ Q and cl

jk = −cl
kj for all j, k, l and c(π(Γ)× π(Γ)) ⊆ ZΓ.

We denote ei = ((0, . . . , 1, . . . , 0), 0) ∈ Za×c Zb, where the 1 is in the i-th position. Similarly,
we denote e′i = (0, (0, . . . , 1, . . . , 0)) ∈ Za ×c Zb, where the 1 is in the i-th position. Note
that the set {e1, . . . , ea, e′1, . . . , e′b} generates Γ.

Denote by M̃ the pull-back by f of the universal cover N −→ N/Γ.

Part 1. First step of the iterated actions: Assume that disc-sym2(M) = (d1, d2) and
disc-sym2(N/Γ) = (a, b).

Let {pi} be the sequence of increasing primes and let {ai} be a sequence of natural numbers
such that we have a free action {(Z/pai

i )
d1 , (Z/pi)

d2} ↷ M for each i. We can assume
without loss of generality that pi > max{deg( f ), C}, where C is the exporting map constant
of f (see definition 3.2.3 and theorem 3.3.1). In consequence, there exists an inner free action
(Z/pai

i )
d1 on N/Γ and a (Z/pai

i )
d1-equivariant map fi : M −→ N/Γ which is homotopic to
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f for each i. In particular, d1 ≤ a. If the inequality is strict then the first part of the theorem
is proven. Thus, we will assume that d1 = a.

Part 2. Second step of the iterated action: Before we continue with the proof we introduce
some notation. We denote by Mi the orbit space M/(Z/pai

i )
d1 and by πi : M −→ Mi the

orbit map. The quotient (N/Γ)/(Z/pai
i )

d1 is a nilmanifold with the same simply connected
nilpotent Lie group N and lattice Γi, which fits into the short exact sequence

1 Γ Γi (Z/pai
i )

d1 1.

The map fi induces a map f ′i : Mi −→ N/Γi for each i. We have a commutative diagram

M N/Γ

Tb

Mi N/Γi

Tb

πi

fi

q

id
f ′i

qi

Note that qi ◦ f ′i ◦ πi is homotopic to q ◦ f and deg( f ′i ) = deg( f ).

By Minkowski’s lemma, there exists a constant C′ such that (Z/pai
i )

d1 acts trivially on
H∗(M, Q) for all pi ≥ C′. The map πi induces an isomorphism in cohomology H∗(Mi, Q) ∼=
H∗(M, Q)(Z/p

ai
i )d1 = H∗(M, Q). Since the first cohomology group has no torsion, we have

H1(Mi, Z) ∼= H1(M, Z). The action of (Z/pi)
d2 on Mi induces an action of (Z/pi)

d2

on H1(Mi, Z). Since H1(Mi, Z) does not depend on i up to isomorphism, we can use
Minkowski’s lemma again to conclude that there exists a constant C′′ > C′ such that the
action of (Z/pi)

d2 on H1(Mi, Z) is trivial for pi ≥ C′′. Thus, we can assume without loss
of generality that the action of (Z/pi)

d2 on H1(Mi, Z) is trivial.

We consider the map qi ◦ f ′i : Mi −→ Tb, for each i. Since (Z/pi)
d2 acts trivially on

H1(Mi, Z), there exist a group morphism η′i : (Z/pi)
d2 −→ Tb and a η′i -equivariant map

Fi : Mi −→ Tb homotopically equivalent to qi ◦ f ′i . If η′i is injective then disc-sym2(M) =

(a, d2) ≤ (a, b) = disc-sym2(N/Γ) and the first part of the theorem would be proved.

Our next goal is to prove that η′i is injective. We divide the proof in two lemmas, since the
first lemma will be also useful in other steps of the proof. Recall that X(π1(Mi), N) is the
set of isomorphism classes of N-locla systems, X(π1(Mi), N) = Hom(π1(M), N)/ ∼.

Lemma 4.7.4. There exists a constant D such that the action of (Z/pi)
d2 on X(π1(Mi), N) is

trivial for pi ≥ D.
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Proof. We will prove that the restriction of the action of (Z/pi)
d2 on X(π1(Mi), N) to any

cyclic subgroup of Z/pi is trivial. Thus, we will study actions of Z/pi on X(π1(Mi), N).
Recall that we also assume that pi > C′′ and therefore Z/pi acts trivially on H1(Mi, Z).

Let us fix some more notation. Let ϕi ∈ Homeo(Mi) be the homeomorphism induced
by the action of Z/pi on Mi corresponding to 1 ∈ Z/pi, π : N −→ Rb is the projection
such that Ker π = ZN ∼= Ra and ιi : Γi −→ N is an injective morphism. Set µi =

ιi ◦ f ′i∗ and consider the representative [µi] ∈ X(π1(Mi), N). We consider the morphism
qi ◦ µi ∈ X(π1(Mi), Rb) = Hom(π1(Mi), Rb) (note that we do not have the conjugation
equivalence relation since Rb is abelian). Since Z/pi acts trivially on H1(Mi, Z), we have
qi ◦ µi ◦ ϕi∗ = qi ◦ µi. Therefore, we can define a map ζi : π1(Mi) −→ R f such that

ζi(α) = µi(ϕi∗(α))µi(α)
−1

for α ∈ π1(Mi). It is well defined since the image is inside Ker π = ZN ∼= Ra and it is also
a group morphism. Indeed, we have

ζi(αβ) = µi(ϕi∗(α))µi(ϕi∗(β))µi(β)−1µi(α)
−1

= µi(ϕi∗(α))µi(α)
−1µi(ϕi∗(β))µi(β)−1 = ζi(α)ζi(β)

for α, β ∈ π1(Mi), where we use that µi(ϕi∗(β))µi(β)−1 ∈ ZN. Consequently, ζi ∈
Hom(π1(Mi), Ra). Note that Z/pi acts on Hom(π1(Mi), Ra) by precomposition, there-
fore it fixes a lattice of Ra. Thus, by Minkowski lemma, there exists a constant D > C′′

such that Z/pi acts trivially on Hom(π1(Mi), Ra). From now on we assume that pi ≥ D.
This implies that ζi ◦ ϕi∗ = ζi.

On the other hand [µi ◦ ϕ
p
i∗] = [µi] and therefore there exists n ∈ N such that nµi(ϕ

p
i∗(α)) =

µi(α)n for all α ∈ π1(Mi). A computation shows that

[µi(α), n] =
pi−1

∑
j=0

ζi(ϕ
j
i∗(α)) = ζi(α)

pi .

Recall that N = Ra ×c Rb where c : Rb ×Rb −→ Ra is a normalized 2-cocycle such that
c(π(Γ)× π(Γ)) ⊆ ZΓ. Since π(Γ) = π(Γi) for all i, we have c(π(Γi)× π(Γi)) ⊆ ZΓ ⊆ ZΓi

for all i. Using N ∼= Ra ×c Rb, we can write n = (x, y) and µi(α) = (µ′i(α), π(µi(α))).

A straightforward computation shows that the conjugation by n takes the form

cn(µi(α)) = (µ′i(α) + c(y, π(µi(α)))− c(π(µi(α)), y), π(µi(α))).

Hence
ζi(α)

pi = c(y, π(µi(α)))− c(π(µi(α)), y).
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We define m = (x, y
p ) ∈ Ra ×c Rb, which satisfies

ζi(α) = c( y
p , π(µi(α)))− c(π(µi(α)),

y
p ).

Summarising the previous computations, we showed that µi ◦ ϕi∗ = cm ◦ µi which implies
that [µi ◦ ϕi∗] = [µi] ∈ X(π1(Mi), N), as we wanted to prove.

Lemma 4.7.5. The morphism η′i is injective for all pi ≥ D.

Proof. Assume that η′i is not injective and take Z/pi ≤ Ker η′i . The iterated action of
{(Z/pai

i )
a, Z/pi, (Z/pi)

d2−1} ↷ M is equivalent to {(Z/pai
i )

a, (Z/pi)
d2} ↷ M. We will

prove that {(Z/pai
i )

a, Z/pi} ↷ M is simplifiable by an abelian group of rank a. This will
imply that rankab({(Z/pai

i )
a, (Z/pi)

d2} ↷ M) < a + d2, which is a contradiction with the
assumption that disc-sym2(M) = (a, d2).

Firstly, note that Fi(gx) = η′i(g)Fi(x) = Fi(x) for all g ∈ Z/p and x ∈ Mi. Using the
homotopy lifting property, we can replace f ′i by a homotopic map f ′′i : Mi −→ N/Γi

such that f ′′i = qi ◦ Fi. Note that the orbits of the action of Z/pi are inside the fibers of
qi : N/Γi −→ Tb.

By lemma 4.7.4 and lemma 3.3.7, there exists a Z/pi action on N/Γi and a Z/pi-equivariant
map h′i : Mi −→ N/Γi homotopic to f ′′i , and hence homotopic to f ′i . The orbit space
(N/Γi)/(Z/pi) is a nilmanifold N/Γ′i. The equality η′i(Z/pi) = 0 implies that π(Γi) =

π(Γ′i) which leads to the commutative diagram

1 1

1 ZΓi ZΓi Z/pi 1

1 Γi Γ′i Z/pi 1

π(Γi) π(Γ′i)

1 1

id
p

id

The action of Z/pi on N/Γi is inner, hence {(Z/pai
i )

a, Z/pi} ↷ N/Γ is simplifiable by
an abelian group Ai (see lemma 4.4.13). Thus, rankab(Ai) ≤ a = rankZΓ. In conclu-
sion {(Z/pai

i )
a, (Z/pi)

d2} ↷ M is equivalent to {Ai, (Z/pi)
d2−1} ↷ M and therefore

rankab({(Z/pai
i )

a, (Z/pi)
d2}↷ M) ≤ a + d2 − 1, as we wanted to see.
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Since η′i : (Z/pi)
d2 −→ Tb is injective, d2 ≤ b. Thus, the proof of item 1 of theorem 4.7.2 is

completed.

If η′i : (Z/pi)
d2 −→ Tb is injective then the action of (Z/pi)

d2 on Hom(π1(Mi), Rb) is
trivial. By lemma 4.7.4, the action of (Z/pi)

d2 on Hom(π1(Mi), N) is trivial. Thus, we can
construct a (Z/pi)

d2 action on N/Γi and a (Z/pi)
d2-equivariant map h′i : Mi −→ N/Γi

such that qi ◦ h′i : Mi −→ Tb is η′i -equivariant.

Part 3. H∗(M̃, Z) as a ZΓ-module: The action of Γ on M̃ induces an action on H∗(M̃, Z),
which we denote by Φ : Γ −→ AutZ(H∗(M̃, Z)). Thus, H∗(M̃, Z) has a structure of ZΓ-
module. To prove the following lemma we use the same argument as in [MiR24a, Lemma
8.2]

Lemma 4.7.6. H∗(M̃, Z) is finitely generated as a ZΓ-module.

Proof. Recall that compact manifolds are Euclidean Neighbourhood Retracts (see, for ex-
ample, [Hat02, Corollary A.9]) and therefore we can identify M with a closed subset of Rm

for some m large enough such that there exist an open neighbourhood U ⊆ Rm of M and a
retraction r : U −→ M. Given x ∈ M let Bx denote an open ball centred at x and contained
in U. By the compactness of M there exists a collection of point x1, . . . , xs in M such that
M ⊆ ⋃s

i=1 Bxi = B. Let F = f ◦ r : B −→ N/Γ, Bi = Bxi and Fi = f ◦ r : Bi −→ N/Γ.

Since Bi is contractible, the principal Γ-bundle F∗i π : F∗i N −→ Bi obtained by pulling back
the universal covering π : N −→ N/Γ by Fi is trivial. This implies that for every subset
S ⊆ Bi, we have H∗((F∗i π)−1(S), Z) ∼= H∗(S, Z)⊗Z ZΓ. So if H∗(S, Z) is finitely generated
then H∗((F∗i π)−1(S), Z) is finitely generated as ZΓ-module.

Let B≤j = B1 ∪ · · · ∪ Bj and F≤j = f ◦ r|B≤j
: B≤j −→ N/Γ. To ease notation, we set

Xi = (F∗i π)−1(Bi) and X≤i = (F∗≤iπ)−1(B≤i). We will prove using the Mayer-Vietoris long
exact sequence that H∗(X≤j, Z) is finitely generated as ZΓ-module.

If j = 1 then H∗(X≤1, Z) ∼= H∗(X1, Z) ∼= ZΓ and hence it is finitely generated. Assume
now that H∗(X≤j−1, Z) is a finitely generated ZΓ-module. By using that B≤j = B≤j−1 ∪ Bj,
we have a long exact sequence of ZΓ-modules:

· · · −→ Hk(X≤j, Z) −→ Hk(X≤j−1, Z)⊕ Hk(Xj, Z) −→ Hk(X≤j ∩ Xj, Z) −→ . . .

Since H∗(B≤j−1 ∩ Bj, Z) is finitely generated and it is a subset of Bj, the cohomology group
Hk(X≤j ∩ Xj, Z) is a finitely generated ZΓ-module. By induction hypothesis, we have that
Hk(X≤j−1, Z)⊕Hk(Xj, Z) is finitely generated. We can conclude that Hk(X≤j, Z) is finitely
generated. Finally, Hk(X≤j, Z) = 0 for k > m implies that H∗(X≤j, Z) is a finitely generated
ZΓ-module.
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Since we have an inclusion i : M −→ B and a retraction r : B −→ M, the ZΓ-module
H∗(M̃, Z) is a ZΓ-submodule of H∗((F∗π)−1(B), Z). Since H∗((F∗π)−1(B), Z) is finitely
generated and ZΓ is Noetherian, H∗(M̃, Z) is finitely generated as ZΓ-module.

Part 4. Setting for the proof of the second part of the theorem: We suppose now that
(d1, d2) = (a, b). By theorem 3.3.1, there exists a {(Z/pai

i )
a, (Z/pi)

b}-equivariant map
hi : M −→ N/Γ homotopic to f for all i. Hence, for each i there exist non-zero degree
maps h′i : Mi −→ N/Γi and h′′i : Mi/(Z/pi)

b = M′i −→ N/Γ′i such that the following
diagram commutes

M N/Γ

Mi N/Γi

M′i N/Γ′i

hi

h′i

h′′i

The vertical arrows are the orbit maps of the iterated group actions on M and N/Γ.

In this part of the proof we show that for each i there exists group morphism Φ′i : Γ′i −→
AutZ(H∗(M̃, Z)) such that Φ′i|Γ = Φ. We will construct Φ′ in two steps. First, we construct
a group morphism Φi : Γi −→ AutZ(H∗(M̃, Z)) such that Φi|Γ = Φ. Thereafter, we
construct a group morphism Φ′i : Γ′i −→ AutZ(H∗(M̃, Z)) such that Φ′i|Γi

= Φi.

Lemma 4.7.7. The action of Γi on H∗(M̃, Z) induces a morphism Φi : Γi −→ AutZ(H∗(M̃, Z))

such that Φi|Γ = Φ for all i.

Proof. We denote by M̃i the total space of the pull-back of N −→ N/Γ by hi : M −→ N/Γ.
Similarly, we denote by M̃′i the pull-back of N −→ N/Γi by h′i : Mi −→ N/Γi.

We also have a free action of Γ′i on M̃′i . We consider the commutative diagram

M̃i N

M̃′i N

M N/Γ

M′i N/Γi

ζ ′i IdN

hi

h′i

The maps M̃′i −→ Mi and M̃i −→ Mi are isomorphic coverings. Thus, M̃i admits a free
action of Γi and the map ζ ′i : M̃i −→ M̃′i is a Γi equivariant homeomorphism. By construc-
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tion, the restriction to Γ of the action of Γi on M̃i is the action induced by the pull-back of
N −→ N/Γ by hi : M −→ N/Γ. Thus, the action of Γi on M̃i induces a group morphism
Ψ′i : Γi −→ AutZ(H∗(M̃i, Z)) such that Ψ′i|Γ = Ψi.

Since, hi is homotopic to f , there exists a Γ-equivariant homeomorphism ζi : M̃ −→ M̃i

which induces an isomorphism of ZΓ-modules ζ∗i : H∗(M̃i, Z) −→ H∗(M̃, Z). We define
Φi : Γi −→ AutZ(H∗(M̃, Z)) as Φi(γ) = ζ∗i ◦Ψi(γ) ◦ (ζ∗i )−1. Since ζ∗i is an isomorphism of
ZΓ, we have Φi|Γ = Φ.

The proof of the next lemma is analogous to the proof of lemma 4.7.7.

Lemma 4.7.8. The action of Γ′i on H∗(M̃, Z) induces a morphism Φ′i : Γ′i −→ AutZ(H∗(M̃, Z))

such that Φ′i|Γ = Φ.

Proof. We continue using the same notation introduced in lemma 4.7.7. We denote by M̃′′i
the pull-back of N −→ N/Γ′i by h′′i : Mi −→ N/Γ′i.

We also have a free action of Γ′i on M̃′i . We consider the commutative diagram

M̃′i N

M̃′′i N

Mi N/Γi

M′i N/Γ′i

ζ ′′i IdN

h′i

h′′i

The maps M̃′i −→ M′i and M̃′′i −→ M′i are isomorphic coverings. Thus, M̃′i admits a
free action of Γ′i and the map ζ ′′i : M̃i −→ M̃′i is a Γ′i-equivariant homeomorphism. By
construction, the restriction to Γi of the action of Γ′i on M̃i is the action induced by the
pull-back of N −→ N/Γ by hi : M −→ N/Γ. Thus, the action of Γ′i on M̃′i induces a group
morphism Ψ′′i : Γ′i −→ AutZ(H∗(M̃′i , Z)) satisfying (ζ ′i

∗ ◦ Ψ′′i ◦ (ζ ′i
∗)−1)|Γi

= Ψ′i, where
ζ ′i
∗ : H∗(M̃′i , Z) −→ H∗(M̃i, Z) is the isomorphism of ZΓi-modules induced by ζ ′i defined

in lemma 4.7.7.

Finally, we can define Φ′′i as Φ′′i (γ) = (ζ∗i ◦ ζ ′i
∗) ◦ Ψ′′i (γ) ◦ (ζ∗i ◦ ζ ′i

∗)−1. Since ζ ′i
∗ is an

isomorphism of ZΓi-modules, we have Φ′′i|Γi
= Φi.

Part 5. H∗(M̃, Z) is a finitely generated Z-module: Our objective in part 5 of the proof
will be to prove that H∗(M̃, Z) is finitely generated as a Z-module.
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Recall that Γi/Γ ∼= ZΓi/ZΓ ∼= (Z/pai
i )

a and Γ′i/Γi
∼= q(Γi)/q(Γ) ∼= (Z/pi)

b. Note that
Γi
∼= ( 1

p
ai
i

Z) f ×c Zb and Γ′i
∼= ( 1

p
ai
i

Z) f ×c (
1
pi

Z)b. In particular, the lattice Γ′i is generated

{ 1
p

ai
i

e1, . . . , 1
p

ai
i

ea, e′1, . . . , e′b} and Γ′′i is generated by { 1
p

ai
i

e1, . . . , 1
p

ai
i

ea, 1
pi

e′1, . . . , 1
pi

e′b}.

By lemma 4.7.7 and lemma 4.7.8, for each 1 ≤ j ≤ a there exists a collection {wj,i}i∈N of

automorphisms of H∗(M, Z) satisfying that (wj,i)
p

ai
i = Φ(ej). Similarly, for each 1 ≤ j ≤ b

there exists a collection {w′j,i}i∈N of automorphisms of H∗(M, Z) satisfying that (w′j,i)
pi =

Φ(e′j).

Recall that ZΓ is an iterated skew-Laurent ring generated by {e±1
1 , . . . , e±1

a , e′1
±1, . . . , e′b

±1}
(see lemma 1.4.1). Explicitly, ZΓ ∼= Z[e±1

1 , . . . , e±1
a , e′1

±1, . . . , e′b
±1; α1, · · · , αa+b] where the

automorphism are defined using the cocycle c.

The main theorem of this part is the generalization of [MiR24a, Theorem 6.1]. Be aware
that the ring involved R involved in the theorem below is in general not commutative. See
section 1.4 for some comments on the situation.

Theorem 4.7.9. Let R be a prime Noetherian ring such that any prime ideal p is right localizable.
Given an automorphism α : R −→ R, we consider the skew-polynomial ring R[z; α]. Suppose that
X is a finitely generated R[z; α]-module and that there exists a sequence of positive integers rj −→ ∞
and a collection of automorphisms wj : X −→ X such that w

rj
j coincides with the multiplication by

z on the right. Then X is finitely generated as R-module.

Proof. Let S = {x1, . . . , xs} be a generating set of X as a R[z; α]-module and let X0 ⊆ X be
the R-module generated by S. Consider the increasing sequence of finitely generated R-
modules X0 ⊆ X1 ⊆ X2 ⊆ · · · defined by the condition Xi = Xi−1 + Xi−1z. Multiplication
by z induces surjective morphisms of R-modules µi : Xi−1/Xi−2 −→ Xi/Xi−1 and thus we
can define surjective maps νi = µi ◦ · · · ◦ µ1 : X0 −→ Xi/Xi−1. We have an increasing se-
quence K0 ⊆ K1 ⊆ K2 ⊆ · · · of submodules of X0 where Ki = Ker νi. Since R is Noetherian
and X0 is finitely generated there exists a i0 such that Ki = Ki0 for all i ≥ i0. In particular,
µi is an isomorphism for all i0.

Let Y = Xi0/Xi0−1. If Y = 0 then X = Xi0−1 and we are done. Thus we will assume
that Y ̸= 0 and reach a contradiction. Since Y is a finitely generated R-module and R is
Noetherian, there exists an increasing series of submodules 0 = Y0 ⊆ Y1 ⊆ · · · ⊆ Yr = Y
such that Yi/Yi−1 is a prime module (see theorem 1.4.16). Let p denote a minimal prime
ideal of the collection of the associated prime ideals {p1, . . . , pr}. We can now consider the
right localization Rp and we can also consider the localization Yp. Since localizing is an
exact functor (see lemma 1.4.21), (Yip/Yi−1p) = (Yi/Yi−1)p. Moreover, Rp/pRp is simple
Artinian (see corollary 1.4.24), hence the length lenght(Yp) = λ of the composition series is
finite.
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We will now prove that there cannot exists any R[z; α]-module automorphism w such that
wr = z with r > λ by reaching a contradiction. Thus, assume that there exists an automor-
phism w : X −→ X such that wr = z and r > λ. Consider the following R-modules defined
recursively as X′0 = X0 and X′i = X′i−1 + w(X′i−1) for i ≥ 1. Using the same arguments
as above, there exists a i′0 such that µ′i : X′i−1/X′i−2 −→ X′i/X′i−1 is an isomorphism for all
i ≥ i′0. Let Y′ = X′i′0

/X′i′0−1.

It is clear that Xi ⊆ X′ri for all i. On the other hand, since X is finitely generated as a
R[z; α]-module we can write

wj(xk) = x1Pjk1 + · · ·+ xsPjks

for j = 1, . . . , r− 1 and k = 1, . . . , s, where Pjkl are polynomials in z with coefficients in R.
Let e = max deg Pjkl. Then wj(xk) ∈ Xe for j = 1, . . . r− 1 and k = 1, . . . , s. This implies that
X′i ⊆ X[i/r]+e for any i. Thus, we have inclusions Xi ⊆ X′ir ⊆ Xi+e.

The next step is to localize at p in order to use the length of the composition series. Firstly,
we consider the inclusions Xi+L ⊆ X′(i+L)r ⊆ Xi+L+e where L is large number which we
will determine below. If we fix i such that i ≥ i0 and i ≥ i′0r these inclusions imply that

0 ≤ lenght(Xi+L+e,p/X′(i+L)r,p) ≤ lenght(Xi+L+e,p/X(i+L)r,p) = eλ.

Moreover, the chain of inclusion Xi,p ⊆ X′ir,p ⊆ X′(i+1)r,p ⊆ · · · ⊆ X′(i+L)r,p ⊆ Xi+L+e,p imply
that

(i + L)λ = lenght(X′(i+L)r,p/X′ir,p) + lenght(Xi+L+e,p/X′(i+L)r,p)

and
lenght(X′(i+L)r,p/X′ir,p) = rL lenght(Y′p).

In conclusion,
λ/r ≤ lenght(Y′p) ≤ L+e

Lr λ.

Note that the lower bound is inside the interval (0, 1) and if L is big enough then the
upper bound also is inside the interval (0, 1), contradicting the fact that lenght(Y′p) is an
integer.

We want now to extend Theorem 4.7.9 to skew-Laurent rings. Thus, we consider the skew-
Laurent ring R[z±1; α], where α ∈ Aut(R). We now construct an iterated skew-polynomial
ring as follows (see [GW04, Exercise 1R]). First, we consider the skew-polynomial ring
R[t+; α+] where α+ = α. We now define a map α− : R[t+; α+] −→ R[t+; α+] satisfy-
ing that α−(∑ tiri) = ∑ tiα−1(ri). Using that rt = tα−1(r) and that α is an automor-
phism, it is straightforward to prove that α− is an automorphism of R[t+; α+]. Thus,
we can consider the iterated skew-polynomial ring (R[t+; α+])[t−; α−]. Consider the map
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µ : (R[t+; α+])[t−; α−] −→ R[z±1; α] defined as µ(∑ ti
−(∑ tj

+rij)) = ∑ zj−irij. As before, a
routine check shows that µ is a surjective ring morphism. Thus, if X is a finitely gener-
ated R[z±1; α]-module then X is finitely generated as a (R[t+; α+])[t−; α−]-module. Assume
that there exists a sequence of positive integers ri −→ ∞ and a collection of R[z±1; α]-
automorphisms wi : X −→ X such that wri

i coincides with the multiplication by z on the
right. We define automorphisms wi+ : X −→ X and wi− : X −→ X satisfying that wi+ = wi

and wi− = w−1
i for all i. By construction, wri

i+ coincides with the right multiplication by t+
and wri

i+ coincides with the right multiplication by t−. Thus, we have:

Corollary 4.7.10. Let R be a prime Noetherian ring such that any prime ideal p is right localizable.
Suppose that M is a finitely generated R[z±1; α]-module and that there exists a sequence of positive
integers rj −→ ∞ and a collection of automorphisms wj : M −→ M such that w

rj
j coincides

with the right multiplication by z. Finally, assume that R[t+; α+] defined as above is also a prime
Noetherian ring such that any prime ideal p is right localizable. Then M is finitely generated as
R-module.

Recall that M̃ denotes the total space of the pull-back of the covering N −→ N/Γ by
f : M −→ N/Γ. Since the group ring ZΓ satisfies the conditions of corollary 4.7.10 (see
theorem 1.4.18 and theorem 1.4.25) and they are iterated skew-Laurent rings, we can use
downward induction to prove:

Corollary 4.7.11. H∗(M̃, Z) is a finitely generated Z-module.

Proof. By lemma 4.7.6, H∗(M̃, Z) is a finitely generated as ZΓ-module. Recall also that
ZΓ ∼= Z[e±1

1 , . . . , e±1
a , e′1

±1, . . . , e′b
±1; α1, · · · , αa+b]. By lemma 4.7.7 and lemma 4.7.8, there

exists a collection of {w′b,i}i∈N of automorphisms satisfying that (w′b,i)
pi coincides with

the multiplication of e′b. Thus, by corollary 4.7.10, H∗(M̃, Z) is a finitely generated as
ZΓ ∼= Z[e±1

1 , . . . , e±1
a , e′1

±1, . . . , e′±1
b−1; α1, · · · , αa+b−1]. We can repeat this process with each

generator to conclude that H∗(M̃, Z) is a finitely generated as Z-module.

Part 6. Concluding the proof The last step of the proof theorem 4.7.2 is to prove that
H∗(M̃, Z) is acyclic (that is, H0(M̃, Z) ∼= Z and Hi(M̃, Z) = 0 for all i > 0). We will prove
this statement by contradiction.

Assume that M̃ is not Z-acyclic. Note that f∗(π1(M)) = Γ implies H0(M̃, Z) ∼= Z. Hence
if M̃ is not Z-acyclic there exists j > 0 such that H j(M̃, Z) ̸= 0.

By the universal coefficients theorem, there exists a prime l such that M̃ is not Z/l-acyclic.
Let k = max{j : H j(M̃, Z/l) ̸= 0} > 0. Since H∗(M̃, Z) is a finitely generated abelian
group, then Aut(H∗(M̃, Z/l)) is finite. Let Φ(l) : Γ −→ Aut(H∗(M̃, Z/l)) be the group
morphism induced by the action of Γ on M̃. The kernel of the morphism Φ(l) : Γ −→
Aut(H∗(M̃, Z/l)), which we denote by Λ, has finite index in Γ. Hence Λ is a lattice of N.
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Consider the diagram

M̃×Λ N M̃/Λ

N/Λ

π

Θ

where Θ and π are the natural projections. Since N is contractible the map Θ is a homotopy
equivalence and H j(M̃×Λ N, Z/l) ∼= H j(M̃/Λ, Z/l) = 0 for j > n.

To compute the cohomology of the other fibration we need to use the Serre spectral se-
quence. The monodromy action of Λ on H j(M̃, Z/l) is trivial, thus

Er,s
2 = Hr(N/Λ, Hs(M̃, Z/l)) ∼= Hr(N/Λ, Z/l)⊗ Hs(M̃, Z/l) =⇒ Hr+s(M̃×Λ N, Z/l).

We have Ek,n
2 ̸= 0, but for dimensional reasons Ek,n

2 does not belong to the image of any
differential. Furthermore, Ek,n

2 is not inside the kernel of any differential. Consequently,
Hk+n(M̃×Λ N, Z/l) ̸= 0 which is a contradiction because M̃×Λ N ∼= M̃/Λ and M̃/Λ has
dimension n.

Finally, we take the fibration

M̃×Γ N

N/Γ

π

with fiber M̃. Since M̃ is acyclic the Serre spectral sequence collapses on the second page.
This implies that H∗(M, Z) ∼= H∗(M̃×Γ N, Z) ∼= H∗(N/Γ, Z) as we wanted to see.

Corollary 4.7.12. With the same assumptions as in theorem 4.7.2.2, suppose also that π1(M) is
virtually solvable. Then M is homeomorphic to N/Γ.

Proof. Firstly, recall that f : M −→ N/Γ induces a surjective map f∗ : π1(M) −→ Γ. Since
π1(M) is virtually solvable there exists a finite covering q : M′ −→ M such that π1(M′) is
solvable. We have a commutative diagram

M′ N/Γ′

M N/Γ

r

f ′

f

where f ′∗ : π1(M′) −→ Γ′ is surjective. Notice that disc-sym2(N/Γ′) = disc-sym2(N/Γ)
and that disc-sym2(M′) ≥ disc-sym2(M). Consequently, we have disc-sym2(N/Γ′) =

disc-sym2(M′). The next step is to prove that M′ is a nilmanifold.

The acyclic manifold M̃′ has solvable fundamental group. This implies, since H1(M̃′, Z) is
trivial, that M̃′ is simply connected. Consequently, M̃′ is contractible by Hurewicz theorem
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(see [Hat02, Corollary 4.33]) and M′ is a closed connected aspherical manifold. The map
π : M̃′×Γ′ N −→ N/Γ′ is a homotopy equivalence. Since Θ is also a homotopy equivalence
we can construct a homotopy equivalence M′ −→ N/Γ′. Since the Borel conjecture is true
for nilmanifolds, we can conclude that M′ is homeomorphic to N/Γ.

Finally, M is also a closed connected aspherical manifold, since the finite covering r :
M′ −→ M is obtained via pullback by f of the covering of nilmanifolds N/Γ′ −→ N/Γ, we
have π1(M) ∼= Γ. Thus, M is homeomorphic to N/Γ, as we wanted to see.

Remark 4.7.13. Using the same argument as in corollary 4.7.3, we can remove the assumption that
f∗ : π1(M) −→ Γ is surjective. In this case, if π1(M) is virtually solvable then M is homeomorphic
to a nilmanifold and π1(M) is commensurable to Γ.

4.8 Locally simplifiable iterated actions

The aim of this section is to replace the freeness condition used through section 4.2 to
section 4.7 with a weaker hypothesis but still retaining the conclusions of previous sections.

Definition 4.8.1. Assume that we have an iterated action of a collection G of finite groups on a
topological space X. Let p : X −→ X/G denote the orbit map. An open subset U ⊆ X is said to be
G-invariant if p−1(p(U)) = U.

An iterated action of G ↷ X is said to be locally simplifiable if for every x ∈ X there exists an open
G-invariant neighbourhood U of x such that the iterated action of G on U is simplifiable.

Remark 4.8.2. A G-invariant open neighbourhood of an orbit always exists by theorem 4.1.5.

Remark 4.8.3. Assume that we have a locally simplifiable action {G1, . . . , Gn}↷ M. Then for all
1 ≤ i ≤ n the iterated action {G1, . . . , Gi}↷ M is locally simplifiable. Indeed, pick x ∈ M and let
U be a G-invariant neighbourhood of x where the iterated action is simplifiable. There exists a group
G and a normal series {e} = G0 ⊴ G1 ⊴ · · · ⊴ Gn = G such that Gi/Gi−1 ∼= Gi simplifying the
iterated action G ↷ U. In particular, Gi ↷ U simplifies {G1, . . . , Gi} ↷ M. Notice also that free
iterated group actions are locally simplifiable.

Our objective is to prove that locally simplifiable actions behave in a similar way to free
iterated actions. To do so, we will use the theory of orbifolds explained in section 1.5.

Proposition 4.8.4. Assume that we have a locally simplifiable iterated action of G on a manifold M.
Then M/G supports a structure of orbifold such that the orbit map p : M −→ M/G is an orbifold
covering.

Proof. Let x′ ∈ M/G and x ∈ M such that p(x) = x′. Let U′ ⊆ M/G be a neighbourhood
of x′ small enough such that U, the connected component of p−1(U′) containing x, is
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contained in a chart of M and that G ↷ p−1(U′) is simplifiable. Let G be the group
which simplifies the iterated action G ↷ p−1(U′). The isotropy group Gx acts on U and
U/Gx = U′. Then (U, U′, Gx, p|U) is a local chart around x.

Note that if y ∈ M such that p(y) = x′ then there exists g ∈ G such that gx = y. Then we
have a homeomorphism ϕ : U −→ V = gU satisfying ϕ(z) = gz and a group morphism ϕ∗ :
Gx −→ Gy such that ϕ∗(h) = ghg−1. In consequence, (U, U′, Gx, p|U) and (V, U′, Gy, p|V)
are equivalent local models.

We now consider two local charts (U, U′, Gx, p|U) and (V, V′, Gy, p|V) such that U′∩V′ ̸= ∅.
Then there exists W ′ ⊆ U′ ∩V′ with such that G simplifies the action G ↷ p−1(W ′). Pick a
connected component W of p−1(W ′) and z ∈ W such that (W, W ′, Gz, p|W) is a local chart.
We have embeddings (W, Gz) ↪→ (U, Gx) and (W, Gz) ↪→ (V, Gy), given by the inclusions
on M and conjugations by elements of G. Therefore M/G is an orbifold.

Finally, we need to prove that p : M −→ M/G is an orbifold covering, where we assume
that M has the trivial orbifold structure given by the manifold structure. Then p−1(U′) =⋃

i Ui. If we pick (Ui, Ui, {e}, id) as a local model, then we have a diagram

Ui Ui

Ui U′
id

id

p

p

which makes p into an orbifold covering.

Corollary 4.8.5. The locally simplifiable iterated action of G on M is simplifiable if and only if
π1(M) ⊴ πorb

1 (M/G). In particular, if M is simply connected then any locally simplifiable iterated
action is simplifiable.

Proof. Let q : M̃ −→ M be the universal covering of M. Then p ◦ q : M̃ −→ M/G is
the universal cover of M/G. In particular, M/G is good and M/G ∼= M̃/πorb

1 (M/G).
The orbifold covering p : M̃/π1(M) −→ M̃/πorb

1 (M/G) induces an inclusion π1(M) ≤
πorb

1 (M/G).

By lemma 1.5.16 and lemma 1.5.23, if the iterated action G ↷ M is simplifiable by a
group G, then πorb

1 (M/G)/π1(M) ∼= G and π1(M) ⊴ πorb
1 (M/G). Conversely, assume

that π1(M) ⊴ πorb
1 (M/G) and denote πorb

1 (M/G)/π1(M) ∼= G. We can define a group
action of G on M equivalent to G ↷ M. If M is simply connected then the action of
πorb

1 (M/G) on M simplifies G ↷ M.

Like in the case of free iterated actions, being simply connected is not a necessary condition
for the simplificability of locally simplifiable actions.
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Proposition 4.8.6. A locally simplifiable iterated action on S1 is simplifiable. There exists locally
simplifiable iterated actions on T2 which are not simplifiable.

Proof. Let G ↷ S1 be a locally simplifiable action. Then πorb
1 (S1/G) is a 1-dimensional crys-

tallographic group and hence πorb
1 (S1/G) ∼= Z or πorb

1 (S1/G) ∼= D∞, the infinite dihedral
group. In both cases, any subgroup of πorb

1 (S1/G) isomorphic to Z is normal, and therefore
the action is simplifiable.

For the second part of the proposition, we first note that if we have a locally simplifiable
iterated action G ↷ T2, then T2/G is a flat 2-orbifold and hence πorb

1 (T2/G) is a crystallo-
graphic group.

We now construct a locally simplifiable iterated action on T2 which is not simplifiable.
Consider the 2-dimensional crystallographic group with presentation Γ = ⟨x, y, α|[x, y] =
1, α2 = 1, αxα−1 = y⟩ and the normal series ⟨x, 2y⟩ ∼= Z2 ⊴ ⟨x, y⟩ ∼= Z2 ⊴ Γ. This normal
series induces an iterated group action {Z/2, Z/2} ↷ T2. The first step of the iterated
action is free, it corresponds to the short exact sequence 1 −→ ⟨x, 2y⟩ ∼= Z2 −→ ⟨x, y⟩ ∼=
Z2 −→ Z/2 −→ 1, and T2/(Z/2) ∼= T2. The second step of the iterated action corresponds
to the short exact sequence 1 −→ ⟨x, y⟩ ∼= Z2 −→ Γ −→ Z/2 −→ 1 and the quotient
T2/(Z/2) has the structure of an orbifold with orbifold fundamental group Γ. Since the
first action is free, the orbit map p : T2 −→ T2/{Z/2, Z/2} is an orbifold covering and
hence {Z/2, Z/2} ↷ T2 is locally simplifiable. Note however that ⟨x, 2y⟩ ⋬ Γ. Thus,
{Z/2, Z/2}↷ T2 is not simplifiable.

Remark 4.8.7. Note that if we have a locally simplifiable action on a closed manifold G ↷ M, then
the quotient orbifold M/G is a very good orbifold. Indeed, the covering M −→ M/G induces an
inclusion of fundamental groups π1(M) ≤ πorb

1 (M/G). Let S be a finite set of representatives
of the coset πorb

1 (M/G)/π1(M). Then Γ =
⋂

g∈S gπ1(M)g−1 is a finite index normal subgroup
of πorb

1 (M/G). We have Γ ⊴ π1(M), hence we can consider the covering M −→ M associated
to Γ ⊴ π1(M). Consequently, M −→ M/G is a regular orbifold finite covering. Since M is a
manifold, M/G is a very good orbifold.

We also generalize the principal orbit theorem theorem 1.1.15 for locally simplifiable iter-
ated actions.

Theorem 4.8.8. Assume that we have a locally simplifiable iterated action of G on a manifold M.
Let M′ = {x ∈ M : Gx = {e1, . . . , en}}. Then M′ is open and dense in M.

The proof requires the following lemmas. The first one is an elementary point-set topology
result.

Lemma 4.8.9. 1. Let Z ⊆ Y ⊆ X be topological spaces. If Y is open and dense in X and Z is
open and dense in Y then Z is open and dense in X.
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2. Let f : X −→ Y be a continuous open map. If Z ⊆ Y is open and dense in Y, then f−1(Z) is
open and dense in X.

Proof. For the first part, let U be a non-empty open subset of X. Since Y is open and dense
in X, we have U ∩Y is a not empty open subset of Y. This implies that U ∩ Z = Z∩ (U ∩Y)
is not empty. Consequently Z is open and dense in X.

For the second part, let U be an non-empty open set of X, then f (U) is a non-empty open
subset of Y and hence f (U) ∩ Z is not empty. Consequently, U ∩ f−1(Z) is not empty and
f−1(Z) is dense in X.

The second lemma is a key result for locally simplifiable actions. We will use the following
notation: Given a locally simplifiable action G ↷ M, we define M′i−1 to be the set of
points of M whose iterated stabilizers are trivial for the first i steps, M′i−1 = {x ∈ M :
{(G1)x, . . . , (Gi−1)xi−2} = {e1, . . . , ei−1}}. Then:

Lemma 4.8.10. Given a locally simplifiable action G ↷ M, the group Gi acts on pi−1(M′i−1) ⊆
Mi−1 for all 1 ≤ i ≤ n.

Proof. We need to check that given gi ∈ Gi then the image of any point of pi−1(M′i−1) by
gi lies in pi−1(M′i−1). Assume on the contrary, that there exist points x′ ∈ pi−1(M′i−1) and
x ∈ Mi−1 \ pi−1(M′i−1) and gi ∈ Gi such that gix′ = x. We have that |p−1

i−1(x)| < ∏i−1
j=1 |Gi|.

On the other hand, we have |p−1
i−1(x′)| = ∏i−1

j=1 |Gi|. Since the action {G1, . . . , Gi} ↷ M is

locally simplifiable, there exists a group Gi simplifying the action on a neighbourhood of
the orbit containing p−1

i−1(x) and p−1
i−1(x′). There also exists g ∈ Gi which is send to gi by

the projection Gi −→ Gi. In particular, the image of p−1
i−1(x′) by g is p−1

i−1(x), which is not
possible since g is bijective.

Proof of theorem 4.8.8. We proceed by induction on l(G). If l(G) = 1 then the assertion is a
consequence of theorem 1.1.15. Suppose that now that theorem 4.8.8 holds for all locally
simplifiable iterated actions of length n− 1 and suppose that we have a locally simplifiable
iterated action G = {G1, . . . , Gn} ↷ M. By induction hypothesis M′n−1 is a dense open
subset of M. Note that {G1, . . . , Gn−1} acts freely on M′n−1, hence pn−1(M′n−1) is a manifold,
which is also an open and dense subset of Mn−1. Since the iterated action G ↷ M is
locally simplifiable, the action of Gn on Mn−1 restricts to an action of Gn on pn−1(M′n−1)

by lemma 4.8.10. Consequently, the set {xn−1 ∈ pn−1(M′n−1) : (Gn)xn−1 = {en}}, which is
equal to pn−1(M′), is open and dense in pn−1(M′n−1) by theorem 1.1.15. Therefore pn−1(M′)
is open and dense in Mn−1, which implies that M′ = p−1

n−1(pn−1(M′)) is open and dense in
M by lemma 4.8.9.

The notion of length and rank of locally simplifiable iterated actions can be defined in an
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analogous way, by using the orbifold fundamental group instead of the usual fundamental
group.

Definition 4.8.11. We define µls
2 (M) as the set of all pairs ( f , b) ∈ (N)2 which satisfy:

1. There exist an increasing sequence of prime numbers {pi}, a sequence of natural numbers
{ai} and a collection of locally simplifiable iterated actions {(Z/pai

i )
f , (Z/pi)

b} ↷ M for
each i ∈N.

2. rankab({(Z/pai
i )

f , (Z/pi)
b}↷ M) = f + b for each i ∈N.

Consider the lexicographic order in N2 ((a, b) ≥ (c, d) if a > c, or a = c and b ≥ d). Define the
locally simplifiable iterated discrete degree of symmetry of M as

disc-symls
2 (M) = max{(0, 0) ∪ µls

2 (M)}.

The next result is a generalization of theorem 1.1.32 for locally simplifiable actions. Unlike
the free version theorem 4.4.4, the next result only works for large enough primes.

Theorem 4.8.12. Let M be a closed connected n-dimensional manifold. There exists a constant C
and a sequence of numbers { fi}i∈N depending only on n and b(M) such that any locally simplifiable
iterated action {(Z/pki)ai}i=1,...,r ↷ M with p > C, where ki are arbitrary positive integers,
satisfies ai ≤ fi for all i.

Proof. We follow the same notation introduced in the proof of theorem 4.8.8. We have an
effective action of (Z/pk1)a1 on M, thus by theorem 1.1.32 there exists f1 such that a1 ≤ f1

for all prime p. On the other hand, by corollary 1.1.61 there exists a constant C1 such that
for all primes p > C1 the Betti number bp(M′0) ≤ C1. Since (Z/pk1)a1 acts freely on M′0,
its quotient is a manifold (M′0)/(Z/pk1)a1 such that bp((M′0)/(Z/pk1)a1) ≤ n f1C1, as in
theorem 4.4.4.

We now consider the second step of the locally simplifiable iterated action (Z/pk2)a2 ↷
M1. By lemma 4.8.10, we have can restrict the action of (Z/pk2)a2 on M1 to an action of
(Z/pk2)a2 on M′0/(Z/pk1)a1 . Since the cohomology of M′0/(Z/pk1)a1 is finitely generated
we can use theorem 1.1.32 again to conclude that there exists a number f2 such that if
(Z/pk2)a2 acts effectively on M′0/(Z/pk1)a1 then a2 ≤ f2. Since f2 only depends on n and
bp(M′0/(Z/pk1)a1), we can make f2 independent of the action of (Z/pk1)a1 on M′0 if we use
n f1C1 instead of bp(M′0/(Z/pk1)a1) to compute f2.

We can use corollary 1.1.61 again. There exists a constant C2 such that for all primes
p > C2 the Betti number bp(p1(M′1)) ≤ C2. Again, C2 only depends on the Betti number
of M′0/(Z/pk1)a1 , thus it can be made independent of the manifold M′0/(Z/pk1)a1 if we
use the bound bp(M′0/(Z/pk1)a1) ≤ n f1C1. Like before, we have bp(p1(M′1)/(Z/pk2)a2) ≤
n f2C2.
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Set C0 = 1. Repeating the same process the required steps we obtain numbers C0, . . . , Cr−1

and f1, . . . , fr which satisfy that for 1 ≤ i ≤ r, ai ≤ fi if p ≥ Ci−1. By taking C =

max{C0, . . . , Cn−1} we obtain the desired conclusion.

Corollary 4.8.13. Let M be a closed manifold. There exists ( f , b) ∈N2 such that disc-symls
2 (M) ≤

( f , b).

Theorem 21, theorem 22 and theorem 23 also hold vacuously for locally simplifiable actions,
since all manifolds appearing in the theorems satisfy that if a finite p-group acts on them
for a prime p large enough, then the action is free. This is a consequence of the small
stabilizers property (see theorem 2.0.1, theorem 3.0.2 and remark 1.1.66). An example
where disc-symls

2 (M) ̸= disc-sym2(M) is the following:

Proposition 4.8.14. We have disc-symls
2 (S

n) = ([n+1
2 ], 0) and disc-sym2(S

n) = ( (−1)n+1+1
2 , 0),

where [x] denotes the integer part of x.

Proof. Recall that Homeo(Sn) is Jordan (see theorem 1.1.42.2). Let C denote the Jordan
constant of Homeo(Sn) and suppose that disc-symls

2 (S
n) = (d1, d2). There exist an increas-

ing sequence of prime numbers {pi}i∈N and locally simplifiable iterated group actions of
{(Z/pai

i )
d1 , (Z/pi)

d2} on M satisfying

rankab({(Z/pai
i )

d1 , (Z/pi)
d2}↷ M) = d1 + d2.

We may assume without loss of generality that pi > C. Since Sn is simply connected, all
the locally simplifiable actions are simplifiable (see corollary 4.8.5). Consequently, for each
i there exists a pi-group Gi acting freely on M which fits in the short exact sequence

1 −→ (Z/pai
i )

d1 −→ Gi −→ (Z/pi)
d2 −→ 1.

Any proper subgroup H of Gi has index [Gi : H] > pi > C. Since Homeo(Sn) is Jordan of
constant C, the group Gi is abelian. Thus, rank Gi = rankab({(Z/pai

i )
d1 , (Z/pi)

d2}↷ M) =

d1 + d2. Therefore Gi
∼= (Z/pai

i )
d1 ⊕ (Z/pi)

d2 . We can take a subgroup (Z/pi)
d1+d2 ≤ Gi,

which acts effectively on M for all i. This implies that (d1 + d2, 0) ≤ (d1, d2) and, since
d1, d2 ≥ 0, d2 = 0. Finally, using that disc-sym(Sn) = [n+1

2 ] (see theorem 1.1.50) we can
conclude that disc-symls

2 (S
n) = ([n+1

2 ], 0).

By lemma 4.4.10, disc-sym2(S
n) = (d1, 0). Since we are now considering free actions of

abelian p-groups of the form (Z/pa)d1 on spheres, we have d1 = 0 if n is even and d1 = 1

if n is odd. In conclusion, disc-sym2(S
n) = ( (−1)n+1+1

2 , 0).
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