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Abstract

Tracking and analysing the vast amounts of data generated from social networks and digital

platforms presents important challenges, not only due to the overwhelming volume but also the

complex relationships embedded within the data. This thesis addresses these challenges through

data visualisation techniques, focusing on hierarchical and multivariate data, where visual clutter

and effective use of space are key concerns. Furthermore, the rise of Visual Natural Language

Interfaces (V-NLIs), also referred to in this thesis as VisChatbots, offers new opportunities to

facilitate the interaction with data visualisations via natural language.

This thesis contributes to the fields of Hierarchical Multivariate Data Visualisation and

Visualisation-oriented Natural Language Interfaces. Specifically, we introduce a novel categorisation

algorithm to classify hierarchical data, from which we propose the most suitable visual designs

for their visualisation. Additionally, we propose a new incremental design methodology for Vis-

Chatbots, called VisChat. This structured approach guides the development of chatbots integrated

into visualisation platforms, establishing smooth communication among stakeholders—end users,

designers, and developers—and introducing new design artefacts, such as the VisAgent persona,

visualisation conversation patterns, and conversational transcripts that help guide and validate the

design of the VisChatbot.

Following the VisChat methodology, we have integrated a VisChatbot into a platform for

visualising hierarchical and multivariate data. To validate our proposal, we present a case study on

the analysis of hate speech in online news articles, where the suitability of the proposed visualisations

was evaluated, as well as the capability of the visualisation chatbot to enable users to easily explore

and understand, through Natural Language interactions, both the structural relationships and the

feature-based relationships within the data.

In conclusion, this thesis not only advances data visualisation techniques for multivariate

hierarchical data but also establishes a framework for integrating natural language interfaces into

visual analysis platforms, thereby promoting a more efficient and effective analysis of data.
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Resum

Actualment, les xarxes socials i plataformes digitals presenten reptes no només pel volum de dades

que generen, sinó també per la complexitat d’aquestes dades. Aquesta tesi aborda aquests reptes

usant tècniques de visualització de dades, centrant-se en dades jeràrquiques i multivariades, on és

especialment important transmetre la informació de manera comprensible i completa alhora. A

més, el creixement de les interf́ıcies visuals de llenguatge natural (V-NLIs), també denominades

en aquesta tesi com a VisChatbots, ofereix noves oportunitats per facilitar la interacció amb

visualitzacions de dades.

Aquesta tesi contribueix als camps de la visualització de dades jeràrquiques multivariades i

de les interf́ıcies de llenguatge natural orientades a la visualització. Concretament, introdüım un

nou algoritme de categorització per classificar dades jeràrquiques, a partir del qual es proposen

els dissenys visuals més adients per a la seva visualització. Addicionalment, proposem una nova

metodologia de disseny incremental per a VisChatbots, denominada VisChat. Aquest plantejament

estructurat guia el desenvolupament de xatbots integrats en plataformes de visualització, establint

una comunicació fluida entre els diferents actors (usuaris finals, dissenyadors i desenvolupadors)

i proposant nous artefactes de disseny, com ara el VisAgent persona, patrons de converses de

visualització i transcripcions conversacionals que permeten guiar i validar el disseny del VisChatbot.

Seguint la metodologia VisChat, hem integrat un VisChatbot en una plataforma per visualitzar

dades jeràrquiques i multivariades. Per validar la nostra proposta, presentem un estudi de cas sobre

l’anàlisi del discurs d’odi en not́ıcies en ĺınia, on s’han avaluat la idonëıtat de les visualitzacions

proposades, aix́ı com la capacitat del xatbot de visualització per permetre als usuaris explorar i

comprendre fàcilment, amb interaccions en llenguatge natural, tant les relacions estructurals com

les basades en caracteŕıstiques dins de les dades.

En conclusió, aquesta tesi no només fa avançar les tècniques de visualització de dades per a

dades jeràrquiques multivariades, sinó que també estableix un marc per integrar interf́ıcies de

llenguatge natural en plataformes d’anàlisi visual, fomentant aix́ı una anàlisi més eficient i efectiva
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de les dades.
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Resumen

Actualmente, las redes sociales y plataformas digitales presentan desafios no solo por el volumen de

datos que generan, sino también por la complejidad de los datos. Esta tesis aborda estos desaf́ıos

mediante técnicas de visualización de datos, centrándose en datos jerárquicos y multivariados,

donde es especialmente importante transmitir la información de forma comprensible y completa a la

vez. Además, el auge de las interfaces visuales de lenguaje natural (V-NLIs), también denominadas

en esta tesis como VisChatbots, ofrece nuevas oportunidades para facilitar la interacción con

visualizaciones de datos.

Esta tesis contribuye a los campos de la visualización de datos jerárquicos multivariados y

de las interfaces de lenguaje natural orientadas a la visualización. Concretamente, introducimos

un nuevo algoritmo de categorización para clasificar datos jerárquicos, a partir de los cuales se

proponen los diseños visuales más apropiados para su visualización. Adicionalmente, proponemos

una nueva metodoloǵıa de diseño incremental para VisChatbots, denominada VisChat. Este

enfoque estructurado gúıa el desarrollo de chatbots integrados en plataformas de visualización,

estableciendo una comunicación fluida entre los distintos actores (usuarios finales, diseñadores y

desarrolladores) y proponiendo nuevos artefactos de diseño tales como el VisAgent persona, patrones

de conversaciones de visualización y transcripciones conversacionales que permiten guiar y validar

el diseño del VisChatbot. Siguiendo la metodoloǵıa VisChat, hemos integrado un VisChatbot en

una plataforma para visualizar datos jerárquicos y multivariados. Para validar nuestra propuesta,

presentamos un estudio de caso sobre el análisis del discurso de odio en noticias online, donde se

han avaluado la idoneidad de las visualizaciones propuestas, aśı como la capacidad del chatbot de

visualizacion para permitir a los usuarios explorar y comprender fácilmente, con interacciones en

lenguaje natural, tanto las relaciones estructurales como las basadas en caracteŕısticas dentro de

los datos.

En conclusión, esta tesis no solo avanza las técnicas de visualización de datos para datos

jerárquicos multivariantes, sino que también establece un marco para integrar interfaces de lenguaje
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natural en plataformas de análisis visual, fomentando aśı un análisis más eficiente y efectivo de los

datos.
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Chapter 1

Introduction

This introductory chapter provides background information on this PhD thesis in the context of

Data Visualisation. It highlights the issues in the field and further explores Visualisation-oriented

Natural Language Interfaces (V-NLI), examining how these interfaces can enhance user interaction

and understanding of complex data and visualisations. The issues explored serve as the foundation

for the challenges that shape the objectives of this PhD. Additionally, we present our contributions

that extend beyond theoretical insights by applying them to case studies. Finally, an overview of

the organisation of the contents of this manuscript is provided, organised as a series of chapters,

each contributing to the overarching goals of this doctoral thesis.

1.1 Data Visualisation of Hierarchical and Multivariate Data

In this context, many modern datasets are structured hierarchically or as networks, where elements

are distributed across different levels or connected through various relationships [158]. Indeed,

many research areas need to analyse hierarchical and networked data, such as taxonomies of

language terms in linguistics [76], organisational structures in business [140], genomics in biology

[41], and related comments in social media [92]. These hierarchies and networks are often vast, with

both densely interconnected and sparsely distributed regions, making them difficult to navigate and

analyse. Visualisations facilitate the exploration of hierarchical data by organising and presenting

information to convey intricate relationships more clearly and efficiently [207, 145]. Furthermore,

when this data is also multivariate (i.e., each data point is characterised by multiple features),

solely hierarchical and network visualisations are insufficient to convey the full scope of information.

The relationships between these features can reveal important details and distinctions about the

1
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data. Additional visual elements such as colour, size, and shape should be incorporated to effectively

represent these relationships. Therefore, considering the datasets’ size, the number of attributes

(i.e., multidimensional data), and the relationships among them (i.e., correlations, dependencies,

hierarchical relationships, network configurations), it is particularly important to incorporate

appropriate visual representations [103].

Nevertheless, visualising hierarchical and networked multivariate data in a meaningful way

comes with several problems. Achieving a meaningful representation requires a delicate balance

between detail and clarity. The aim is to transmit the maximum amount of information without

losing context while ensuring that viewers maintain an understanding of the overall structure. It

involves ensuring that viewers can comprehend the relationships within the data without becoming

overwhelmed. Effective visualisations must facilitate an understanding of how individual components

interrelate, all while maintaining an awareness of the overarching narrative the data convey.

Another major issue is the visual clutter, which occurs when an excess of information is

displayed simultaneously on canvases with limited spaces, making it difficult to discern meaningful

patterns. Visual clutter can significantly reduce the effectiveness of visual displays, leading to

cognitive overload and decreased comprehension, ultimately defeating the purpose of visualisations.

Additionally, there are limited visual channels available for effectively representing multivariate

data, such as colour, position, and shape, which can quickly become insufficient. While icons and

glyphs can help to analyse and communicate additional information, they can also contribute to

visual overload and overcrowding in visualisations[201, 135].

Moreover, in recent years, a wide range of complex and multidimensional data visualisations

have been proposed in the scientific community [166], either for specific datasets in different areas of

the study such as social network data [62] and biological data [6] and as more general visualisation

methods [61, 213], Sankey diagrams [182], Sunburst maps [213], tree maps [173] and network

graphs [14]. Not only academic research interested in data analysis to improve or examine their

work; many companies also rely on data analytics to enhance their businesses and, hence, enhance

the services provided to their users [165]. Consequently, visualisation methods and tools are evolving

rapidly and constantly to solve new issues and adapt to changes in the field.

With these increasing varieties of visualisations, a significant dilemma arises: how to choose

the most informative visualisation method for specific data types. By informative, we mean

selecting a visualisation that preserves the context and minimises visual clutter. This is particularly

challenging for non-expert users who are not accustomed to working with visualisations or analysis

tools, especially when dealing with networked and hierarchical structures. Some works [159, 202]
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propose hierarchical visualisation taxonomies based on dimensionality (i.e., 2D or 3D) and node

alignment, but identifying the most understandable visualisation remains a challenge.

Indeed, the complexity and multidimensionality of the data require a wide range of interaction

possibilities, such as filtering specific data, displaying projections in 2D and 3D, examining connec-

tions between data items, clustering them, and obtaining statistics, among others [177]. Therefore,

interactive platforms are necessary for users to engage with these visualisations dynamically, al-

lowing for real-time exploration, analysis, and interpretation of complex datasets. However, these

interactive visualisation platforms also come with their own set of issues as described below.

Many visualisation platforms lack the flexibility to handle high-level visualisation tasks

effectively. We mean, visualisation tasks that involve making sense of patterns, trends and

relationships in the data, which usually require more than one step to complete. While simple User

Interface (UI) filters can be used to solve low-level tasks that involve interpreting individual data

points or simple relationships (and can be solved in a single step), they are often insufficient for

addressing complicated queries that require a more nuanced understanding of the data.

Furthermore, the high cognitive load associated with managing numerous filters, buttons, and

options in these WIMP (Windows, Icons Menus Pointers) systems can overwhelm users, reducing

their efficiency and effectiveness. Navigating various interaction combinations to accomplish specific

tasks can make these platforms cumbersome and less user-friendly. These GUIs, while highly

detailed and multifaceted, offer users a wide array of features and functions that can be particularly

challenging to navigate on canvases with limited space [167].

Finally, many visualisation solutions are domain-dependent and not generic, which limits

their applicability across different fields and data types. Domain-dependent solutions arise from

visualisations and interactions that are specifically designed based on the characteristics of the

selected data itself. This domain specificity makes it more challenging to create general, and

accessible visualisation tools. Therefore, despite the potential of interactive platforms, there is a

pressing need for more advanced, universally applicable, and user-friendly solutions to effectively

manage sophisticated data and visualisation tasks.

1.2 Visualisation-Oriented Natural Language Interfaces

The issues described above, related to complex interactions with high cognitive demands and

intricate interfaces, have been addressed by advancements in sensor technologies and Natural

Language Processing (NLP), as they enable a natural interaction through gestures and conversations,
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respectively [107, 130]. These innovations contribute to the creation of seamless and comfortable

user experiences (UX) [17]. Recently, generative large language models such as ChatGPT [136]

and DALL-E [137] have given a great impulse to the NLP field. However, Natural Language

Interfaces (NLIs) still face major problems. For instance, users’ expectations are often very high,

as they expect to communicate with the system in the same way as they interact with other

human beings. Therefore, the conversational system must handle ambiguities that might be

interpreted differently by different people [179]. Moreover, contextual understanding is essential

for accurately interpreting user queries in NLI systems. However, current systems still require

improvements in this area, often resulting in misinterpretations and less effective responses.

Specifically, Visualisation-Oriented Natural Language Interfaces (V-NLI) focus on using natural

language to create and interact with data visualisations [167] [96]. Indeed, many academic research

projects and popular companies, such as Tableau [37], IBM Watson [88] and Microsoft [129],

have introduced and integrated them into their visualisation tools. These tools are effective and

easy to learn, democratising data analysis by allowing users to interact with visualisations using

natural language. Natural language removes the need to transform queries into tool-specific actions,

enabling a wider range of people to focus on their analysis [167]. In this context, natural language

and gestures are considered complementary input modalities to direct manipulation in WIMPs. In

fact, the results of various studies have confirmed that users were more comfortable and interested

in using multiple input modalities (i.e., multimodality) [147, 178]. Another major benefit of

incorporating natural language in visualisations is its inclusiveness [132], as it can support blind

and low-vision individuals when interacting with visualisations.

Cox et al., pioneers in this field, proposed a basic system using form-based interaction, meaning

that users typed their queries (analytical intents) into a text box to obtain the corresponding

visualisation outputs [42]. As research has advanced, more sophisticated V-NLIs have been

developed, such as those referred to as chatbot-based (also referred to in this thesis as VisChatbots).

Chatbots are intelligent conversational systems that not only provide visual outputs to users but

also guide them–particularly users with less experience in visual analytics–by offering additional

aids such as textual feedback, recommendations, and complex multi-stepped queries [127].

Note that the creation of a V-NLI presents numerous issues due to its multifaceted nature:

integrating visual elements into a conversational interface requires careful planning to ensure a

seamless user experience. Effectively leveraging the synergies between visualisation and

natural language is key, while the specifications need to be broad enough to encompass factors

such as target user profile, goals, tasks, preferred visualisations, and input/output modalities.
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The literature has often concentrated on exploring and discovering specific aspects of V-NLIs

without establishing a standardised methodology. The lack of a standardised methodology

is a significant issue, as fundamental concepts and techniques in this relatively new field are still

under development. Without a structured approach, integrating natural language understanding,

conversational flow, and visualisation techniques can lead to significant challenges in creating

effective chatbot systems for data analysis. Although some toolkits, such as NL4DV [133] and

ncNet [119], facilitate the creation of V-NLIs, they fail to guarantee their robustness and efficacy,

as shown by Feng et al. [59].

Moreover, most V-NLIs started out relying on limited jargon (i.e., vocabulary based on specific

data), simple visualisations (e.i., bar charts, line charts) instead of complex visualisations and

functions such as filtering and selection. For example, some works presented V-NLIs in health

[108] or business [89] domains, and also delved into specific aspects of chatbots such as query

recommendations [176] and ambiguity resolution [65]. These works often focused on using simple

data rather than complex data with interconnections and on basic charts like bar charts, pie

charts, and similar visualisations. However, few works used hierarchical or networked data with

more complex visualisations such as tree graphs or network diagrams [171, 178]. Additionally, while

new technologies like large language models (LLMs) are advancing rapidly in the visualisation

domain, they still face significant issues. These include a reliance on basic visualisations and tabular

data, as well as issues such as contextual misunderstandings and difficulties in handling complex

visual encoding properties [122].

1.3 Open Challenges and Research Direction

This section presents the identified open research challenges and the research direction of this

thesis, which can categorised into two domains; Challenges in Hierarchical and Multivariate Data

Visualisations and Challenges in Visualisation-oriented Natural Language Interfaces.

1.3.1 Challenges in Hierarchical and Multivariate Data Visualisations

Visualising hierarchical and multivariate data presents several challenges. The complexity of

large datasets makes analysis difficult without losing context. Moreover, the limited space on

visualisation canvases often leads to cluttered and overwhelming displays. Thus, a key challenge lies

in effectively visualising the entire structure or specific regions while minimising clutter, maximising

the amount of information conveyed, and preserving clarity. To prevent information overload, some
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approaches reduce the number of graph elements displayed in the active view. These methods

include filtering, interaction, and the use of hybrid or multiple views [102]. For example, some

works [18, 33] displayed each attribute combination in separate views, with one main graph and

others shown as thumbnails to visualise all multivariate attributes. On the other hand, some studies

[32, 73] used a combination of methods to overcome the limited canvas challenge, allowing users to

switch views, highlight visual patterns, and use an interactive facet legend and dynamic query filter

to explore data in detail. In addition, hierarchical multivariate data is widely used across various

domains [79, 134], and the effectiveness of these methods has been tested with real case studies

to ensure their applicability and effectiveness in real-world scenarios. Thus, our first challenge is

defined as follows:

Challenge 1. Developing a novel interactive visualisation platform that can

visualise hierarchical multivariate data in a meaningful way, validated through real-world

case studies.

Furthermore, the literature offers an extensive visual bibliography of hierarchical visualisations

[159], which currently includes 341 techniques and is updated regularly. This makes it challenging

to identify the most informative visualisation for different hierarchical structures. Even for

professionals experienced in data visualisation, this task can prove daunting. For individuals

unfamiliar with the field, it becomes even more challenging. When attempting to choose the best

visualisation for hierarchical data, it is important to consider the specific structure and relationships

within a dataset while ensuring the overall visualisation remains comprehensible. In the context

of hierarchical structures, these structures have different shapes depending on the connectivity

degree of the internal nodes, and the number of nodes, among others. By shapes, we refer to the

different distribution of nodes within hierarchies, i.e., the topology of the hierarchical structures.

For example, a tree diagram may be ideal for displaying a small to medium-sized hierarchy with

nodes distributed uniformly across different hierarchy levels. However, a radial layout could be

more effective for representing larger datasets where most nodes are concentrated at the first level

of the hierarchy, as a tree diagram may become excessively long and lose context if too many nodes

are at the first level. Moreover, the literature provides some automatic layout selection tools limited

to basic visualisations such as bar charts and pie charts [121, 37]. Thus, our second challenge is

defined as follows:

Challenge 2. The automatic selection of the most informative visualisation layout

according to the hierarchical structure of the data.
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Moreover, when dealing with multivariate data in hierarchies, additional complexities arise.

Multivariate data includes multiple attributes or dimensions, which can be ordinal, nominal, interval,

ratio, vectorial, temporal, and spatial. Visualising such data effectively requires techniques that can

convey the relationships between these multiple variables. For example, ordinal attributes, which

have a clear, ordered relationship, can be represented using gradient colours or size variations to

indicate different levels. Nominal attributes, which are categorical without an inherent order, can

be either abstract or concrete. In such cases, icons, glyphs, colours, or shapes can differentiate

categories. Icons offer a clear and intuitive representation of concrete attributes, while shapes or

colours are better suited for representing more abstract attributes. Temporal attributes, representing

time, are typically visualised using timelines or time-series charts, while spatial attributes are

displayed with maps or spatial plots for geographic data. Furthermore, visualising multivariate

data is challenging with basic visualisations and becomes even more complex when attempting

to integrate them with hierarchical visualisations [213, 135]. Thus, another challenge arises when

combining hierarchies with multivariate data. The third challenge is as follows:

Challenge 3. Choosing the most informative method to visualise multivariate data

attributes within hierarchical visualisations.

1.3.2 Challenges in V-NLI

Early-stage Visualisation-oriented Natural Language Interfaces were mainly conceived as form-

based question-answering systems, where the users ask the system questions using User Interface

(UI) widgets, and the system’s answer takes the form of text, a filtered visualisation and/or a

new visualisation [81, 174]. Nevertheless, recent advances in Natural Language Processing have

facilitated a double enhancement of these systems, both in their inner workings (NLU—Natural

Language Understanding and NLG—Natural Language Generation) and in their interface. The

interface is now a chatbot (embodied or not) that engages in conversation with the users to facilitate

their interaction with visualisations [69, 11]. However, there has been no attempt in the V-NLI

literature to specifically examine the relationship between the fields of Data Visualisation and

Chatbots (VisChatbots). Hence, our fourth challenge is as follows:

Challenge 4. Understanding the synergies between Data Visualisation and Chatbot

technologies to enhance interactive data exploration and interpretation.
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In the literature, there exists a considerable body of research on Visualisation-oriented Natural

Language Interfaces (V-NLIs), with several surveys also available [200, 177, 80]. The works presented

in these surveys usually focused on a specific application and each was dedicated to exploring a

distinct dimension of the V-NLIs (e.g., ambiguity, visual narrative, multimodality) and articulating

the insights derived from their analyses. However, when we turned our attention to crafting a

chatbot for visualisations, we discovered a notable gap in standardised design methodologies

for VisChatbots. Thus, our fifth challenge is defined as follows:

Challenge 5. The proposal of a visualisation chatbot design methodology.

While a traditional data visualisation system designed with direct manipulation interfaces

(WIMP – Windows, Icons, Mouse, Pointer) may facilitate the analysis of hierarchical multivariate

data, the cluttered design of these interfaces requires users to invest significant time and effort to

fully utilise them for analysing complex data [114]. In contrast, a V-NLI (Visual Natural Language

Interface) can offer a more intuitive and efficient way to interact with hierarchical multivariate

data visualisations. By allowing users to describe their visualisation goals using natural language,

V-NLIs can automate the creation of visualisations, reducing the cognitive load and enabling

them to focus on data exploration and analysis [163, 176]. The literature mostly focuses on using

V-NLI for simple data in place of complex data with interconnections and emphasises more basic

visualisations such as bar charts, pie charts, and line charts over complex visualisations. Thus,

our next challenge is described as:

Challenge 6. Designing a VisChatbot that effectively enables users to interact with

hierarchical multivariate data visualisations.

Additionally, V-NLIs can be seamlessly integrated with WIMP interfaces, providing a hybrid

approach that combines the best of both worlds. The V-NLI component can handle complex

visualisation tasks and automate the creation of visualisations, while the WIMP interface can

provide a familiar and intuitive way for users to interact with the visualisations [81, 178]. This

hybrid approach can lead to more efficient and effective data analysis, particularly for users who

are not experts in data visualisation techniques. Nevertheless, the designed VisChatbot should be

aware of user interactions with the WIMP, and in reverse, the WIMP should be updated according

to the visual analytics conversation maintained with the user. Thus, we present the following

challenge:
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Challenge 7. Propose a hybrid approach by integrating the VisChatbot within a

WIMP interface.

A case study demonstrating the practical application of V-NLI in real-life scenarios is essential.

This case study should showcase how these tools facilitate visual data analysis effectively. Moreover,

evaluation methods have been proposed for conversational interfaces in general [148, 149], however,

limited proposals have been made in the field of V-NLIs [65]. Additionally, the establishment

of a well-defined methodology for evaluating VisChatbots is crucial. This methodology should

outline clear criteria and processes for assessing the performance, usability, and effectiveness of

these tools in facilitating visual data analysis. By defining standardised evaluation metrics

and procedures, researchers and practitioners can systematically measure the capabilities and

limitations of V-NLIs across different contexts and datasets. Thus, our final challenge is as follows:

Challenge 8. Evaluating VisChabots with standardised metrics in real Case Studies

1.4 Objectives

This thesis lies in the intersection of two fields, Visualisation of Hierarchical Multivariate Data and

Visualisation-oriented Natural Language Interfaces. It investigates approaches to the categorisation

of hierarchical data structures, categorisation of multivariate attributes, novel visualisation for

hierarchical multivariate data, VisChatbots and VisChatbot design methodologies. Below, we

summarise the two main objectives in these two fields, O1 and O2, and corresponding the

sub-objectives of this thesis:

• O1: Enhancement of hierarchical multivariate visualisations, focusing on selecting the

most informative layouts and methods to accurately represent complex data structures and

multivariate attributes.

– O1.1 Proposal of categorisation algorithm that is used to select the most informative

layout based on the hierarchy structure and the most informative way to visualise

multivariate attributes.

– O1.2 Proposal of different Glyphs to visualise the abstract multivariate data to

maximise the amount of information conveyed without cluttering the hierarchical

visualisation.
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– O1.3 Proposal of a novel Data Visualisation platform for analysing hierarchical multi-

variate data.

– O1.4 Validation of the proposal through a real Case Study on hate speech analysis, using

annotated conversational data from online news articles, including a user evaluation.

• O2-VisChatbot: Development and demonstration of a VisChatbot design methodology by

exploring and integrating chatbots with data visualisation techniques.

– O2.1 Exploring the synergies between Natural Language Interfaces and Visualisation.

– O2.2 Proposal of a VisChatbot Design Methodology.

– O2.3 Application of the proposed VisChatbot Design Methodology in a Case Study

that deals with hierarchical multivariate data.

– O2.4 Integrate the VisChatbot in a WIMP-based interface.

– O2.5 Validating the VisChatbot with users.

1.5 Contributions

This section presents our contributions and related papers. First, we present our contributions

concerning the objective O1-Vis and second, our contributions regarding the objective O2-

VisChatbot.

1.5.1 Enhancement of hierarchical multivariate visualisations, focusing on se-

lecting the most informative layouts and methods to accurately represent

complex data structures and attributes.

We contributed by developing a categorisation algorithm that classifies hierarchies and is used to

automatically select the most informative layout for various hierarchical structures, and

visualise different types of multivariate attributes without causing clutter in the layout. Based

on the assumption of an existing variety of hierarchical structures characterised by their shape, this

contribution formalises their categorisation in Elongated (narrow) and Compact (broad) structures

and argues for the adequacy of a visualisation method depending on defined attributes, such as

the growing factor and the number of direct children of a node, which can be applied to any

hierarchical dataset. We also contribute with a formalisation of features of multivariate data and,

consequently, integrate their visualisation in a hierarchical structure. This contribution fulfils our



CHAPTER 1. INTRODUCTION 11

first objective (O1.1) presented in the previous section. This work has been published in the

Information Visualization Journal by Sage Journals.

• Kavaz, E.; Puig, A.; Rodŕıguez, I.; Chacón, R.; De-La-Paz, D.; Torralba, A.; Taule, M.;

Nofre, M. Visualisation of Hierarchical Multivariate Data: Categorisation and

Case Study on Hate Speech Information Visualization 2023, 22, 1, pages 31-51. https:

//doi.org/10.1177/14738716221120509 — Quartile: Q3 - Impact Factor (JCR): 2.3.

Furthermore, to visualise these hierarchical visualisations, we developed a novel visualisation

platform called Data Visualisation in Linguistics (DViL), where we visualise multivariate hierarchical

data and incorporated the categorisation algorithm introduced above, which execute our objective

O1.3. In addition, we present a case study for the DViL using conversational data about hate

speech collected from online news articles. Although, it should be noted that our platform can

be adapted to any hierarchical multivariate data. In this case study, we test the categorisation of

hierarchical structures with a user evaluation. This meets our objective O1.4. This validation is

published in the Information Visualization Journal by Sage Journals along with the categorisation.

Also, the presentation of the DViL is published in SEPLN-CEDI-PD 2024: Seminar of the Spanish

Society for Natural Language Processing.

• Kavaz, E.; Wright, F; Nofre, M.; Puig, A.; Rodŕıguez, I.; Taule, M.; Introducing the

Multidisciplinary Design of a Visualisation-Oriented Natural Language Interface.

Proceedings of the Seminar of the Spanish Society for Natural Language Processing: Projects

and System Demonstrations (SEPLN-CEDI-PD 2024), Vol. 3729: 142-147. 7th Spanish

Conference on Informatics (CEDI 2024), A Coruña (Spain), June 19-20, 2024. https:

//ceur-ws.org/Vol-3729/d11_rev.pdf.

Moreover, to demonstrate how to visualise multivariate attributes, we focused on our case study

of exploring hate speech in conversational data from online news articles, aiming to determine the

best methods for visualising its multivariate attributes. We conducted a preliminary user evaluation

to gather insights, and the lessons learned from this evaluation have guided us in refining our

approach to visualising multivariate data. This work has been published in WSCG: International

Conference in Central Europe on Computer Graphics, Visualization and Computer Vision.

• Kavaz, E.; Puig, A.; Rodriguez, I.; Taule, M.; Nofre, M.Data Visualization for Supporting

Linguists in the Analysis of Toxic Messages.. WSCG 2021: full papers proceedings:

https://doi.org/10.1177/14738716221120509
https://doi.org/10.1177/14738716221120509
https://ceur-ws.org/Vol-3729/d11_rev.pdf
https://ceur-ws.org/Vol-3729/d11_rev.pdf
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29. International Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision, pages 59-70. http://hdl.handle.net/11025/45010 — Rank: B.

Following this study, based on the formalisation described for the contribution for O1.1, we

introduce two types of glyphs to visualise multivariate attributes: i) the one-by-one, where features

are depicted by coloured dots placed one next to each other, and ii) the all-in-one, where a single

pie chart represents all the features, which contributes for the objective O1.2 and this contribution

is also published in the Information Visualization Journal by Sage Journals.

1.5.2 Develop and demonstrate a VisChatbot design methodology by exploring

and integrating chatbots with data visualisation techniques.

We studied the synergies between the fields of Data Visualisation and Natural Language Interaction

in a scoping review. Specifically, we focus on chatbot-based V-NLI approaches. We propose

an analysis framework based on the three spaces of the data visualisation pipeline, i.e., Data

Space, Visual Space, and Interaction Space as well as on a characterisation of chatbots using 4

dimensions called AINT(A-Anthropomorphic, I-Intelligence, N-Natural Language Processing, and

T-InTeractivity). Moreover, we extract insights and challenges that will be helpful for researchers

to develop and improve V-NLIs. This contribution fulfils our objective O2.1. This work has

been published in the Applied Sciences Journal by MDPI special edition AI Applied to Data

Visualization.

• Kavaz, E.; Puig, A.; Rodŕıguez, I. Chatbot-based Natural Language Interfaces for

Data Visualisation: A Scoping Review. Applied Sciences 2023, 13, 12, 7025. https:

//doi.org/10.3390/app13127025 — Quartile: Q2 - Impact Factor (JCR): 2.7.

Additionally, we proposed a new Visualisation Chatbot methodology (VisChat Methodology).

This is an iterative process that includes the three main classical phases of a development process:

Analysis, Design, and Development. In our case, however, each phase introduces various stages that

deal with specific characteristics of VisChatbots, encouraging collaboration among the stakeholders

(end-users, developers, and designers). Specifically, we contribute with the definition of phases

and stages of the VisChat methodology, three new design artefacts (a VisChat Persona template,

Visualisation Conversation Patterns and VisChatbot Transcripts), as well as VisChatbot metrics for

evaluation, and a case study describing a real application of the VisChat methodology for creating

a chatbot for hate speech analysis on data based in conversations in social media. This contribution

achieves our objective O2.2. This work has been submitted to Visual Informatics Journal.

http://hdl.handle.net/11025/45010
https://doi.org/10.3390/app13127025
https://doi.org/10.3390/app13127025
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• Kavaz, E.; Rodŕıguez, I.; Puig, A.; Simoff, S. Bridging Natural Language and Data

Visualization with VisChat Methodology. Visual Informatics Journal. Quartile: Q2 -

Impact Factor (JCR): 3.8

Moreover, we proposed a VisChatbot designed using the VisChat methodology we introduced

previously, incorporated with our novel visualisation platform, DViL, to support users in analysing

hierarchical multivariate data. We incorporated it into our existing platform where users can interact

with both the chatbot and the WIMP, filter data, highlight parts of the hierarchy, change visual

mapping, and enable/disable glyphs, among others. This contribution focuses on the objectives

O2.3 and O2.4. This work has been published in The Eurographics Association EuroVis conference

and also, a part of it in the SEPLN-CEDI-PD Seminar presented above.

• Kavaz, E.; Rodŕıguez, I.; Puig, A.; Vives, E. A Conversational Data Visualisation

Platform for Hierarchical Multivariate Data. in: C. Gillmann, M. Krone, S. Lenti

(Eds.), EuroVis 2023 - Posters, The Eurographics Association, 2023 https://doi.org/10.

2312/evp.20231053 — Rank: B.

Finally, we contribute with a user evaluation, again using the hate speech case study, conducted

using a well-defined methodology, and we also establish thorough evaluation metrics for analysing

VisChatbots, which fulfils the objective O2.5. This contribution is described in Chapter 7 of this

manuscript.

1.6 Connection to Sustainable Development Goals

This thesis contributes to advancing the broader goals outlined in the 2030 Agenda for Sustain-

able Development of the United Nations [87]. Our research on data visualisation of hierarchical

multivariate data in conversations. Our research also supports Sustainable Development Goal

4 - Quality Education. By enhancing the comprehension of data patterns, through our vi-

sualisation framework, we provide clear and interpretable visualisations that support initiatives

aimed at increasing digital literacy and awareness. This democratisation of data facilitated by

our visualisation platform and VisChatbot makes these insights available to a broader audience,

including non-experts. The VisChatbot guides users through data analysis in a natural conversa-

tional manner, breaking down technical barriers and promoting engagement with the visualised

data. This approach aligns with SDG 4’s focus on inclusive and equitable education, ensuring

that awareness of key issues reaches diverse individuals and communities. Additionally, our work

https://doi.org/10.2312/evp.20231053
https://doi.org/10.2312/evp.20231053
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indirectly supports Goal 17 - Partnerships for the Goals by advancing tools that facilitate

more effective collaboration between technical and language experts in data analysis.

Moreover, our case study of a real problem focuses on analysing hate speech that aims to help

linguists improve societal understanding and responses to harmful online behaviours by enabling

them to analyse complex data with ease through visualisations. By employing advanced data

visualisation techniques, we facilitate the clear communication of intricate hate speech patterns and

trends. This allows linguists to more effectively study and interpret these behaviours, ultimately

enhancing their ability to develop insights that contribute to broader societal understanding. This

aligns with the objectives of Sustainable Development Goal 16 - Peace, Justice, and Strong

Institutions.

Finally, our study promotes Sustainable Development Goal 10 - Reduced Inequalities and

Goal 5 - Gender Equality, as the implementation of our data visualisation framework helps to

identify and illuminate disparities in hate speech targeted at marginalised communities, including

women and minority groups. Our approach facilitates the analysis of complex data by providing a

tool that simplifies and enhances the examination of these patterns, making it easier for researchers

to uncover and address discrimination.

1.7 Research Project and Funding

This doctoral thesis is part of CLIC Research Group and was supported by the SGR CLiC project

(2021 SGR 00313, funded by the Generalitat de Catalunya), FairTransNLP-Language (PID2021-

124361OB-C33, MICIU/AEI/10.13039/501100011033/FEDER, UE), and ACISUD (PID2022-

136787NB-I00 funded by MICIU/AEI/10.13039/501100011033).

1.8 Thesis Outline

This section describes the outline of the dissertation. The thesis is divided into Parts. Parts I refer

to Data Visualisation for Hierarchical Multivariate Data and Part II refer to Visualisation-Oriented

Natural Language Interface to Analyse Hierarchical Multivariate Data.

The first part focuses on the following chapter:

Chapter 2 introduces the foundational concepts of hierarchical multivariate data by outlining

the Data Visualisation Pipeline (DataVis Pipeline), which includes three key spaces: Data Space,
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Visual Space, and Interaction Space. Within these frameworks, we define essential vocabulary

related to data visualisation. This will be followed by a literature review focusing on three critical

areas: the visualisation of network and hierarchical data, multivariate data, and conversational

data, highlighting both their contributions and the existing gaps within each domain.

Chapter 3 proposes a categorisation algorithm to classify hierarchical structures as Elongated or

Compact, based on defined attributes such as the growth factor, the number of direct children of

a node, and significant nodes. We will then present an analysis of this categorisation to justify

the selection of the threshold values that are used in it. Additionally, we discuss appropriate

visualisation layouts for each category, suggesting that Tree and Circle layouts are the most

informative for Elongated structures, while Radial and Force layouts are more effective for Compact

structures. Later, we will use this algorithm and integrate it with our visualisation platform to

automatically select the most informative layout. Furthermore, we formalise features of multivariate

data and incorporate their visualisations into a hierarchical structure. Based on this formalisation,

we explore the best methods for visualising each type of multivariate data.

Chapter 4 introduces our visualisation platform, Data Visualisation in Linguistics (DViL),

which is specifically designed to visualise hierarchical multivariate data. Our objective is to create

visualisations of hierarchical structures that facilitate a clear analysis of parent-child relationships

and feature distributions, ensuring a user-friendly experience that minimises cognitive overload

while maintaining clarity. To illustrate the capabilities of DViL, we conduct a case study on hate

speech data, collected and annotated from online newspapers, thoroughly presenting this data

alongside its visualisation within our platform. Furthermore, we will present a user evaluation

conducted using this case study to assess the categorisation we introduced in Chapter 3.

The second part consists of the following chapters:

Chapter 5 introduces the V-NLI pipeline, an extension of the DataVis Pipeline, and explores the

key vocabulary associated with V-NLI. We present a literature review that examines the synergies

between data visualisation and natural language interfaces, highlighting both contributions and

existing gaps within the field. Concretely, we will analyse the type of V-NLIs, their inputs and

outputs, the technology behind V-NLIs, and relevant design methodologies.

Chapter 6 focuses on addressing the gap in the standard design methodology for VisChatbots

by proposing a new methodology called the Visualisation Chatbot (VisChat Methodology). This
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framework aims to guide the incremental creation of VisChatbots specifically for visual analytics

processes. Our iterative approach encompasses three main classical phases of the development

process: Analysis, Design, and Development. In the Analysis phase, we outline various stages,

including User Analysis, Data Analysis, VisTask (visualisation task) Analysis, Visualisation Type

Analysis, and Interaction Requirements Analysis. The Design phase introduces three key design

artefacts: the VisAgent Persona, Visualisation Conversation Patterns, and Annotated Transcripts,

all derived from the Analysis phase. Finally, the Development phase includes stages for VisChatbot

Modelling, Visualisation-Chatbot Connection, and User Evaluation.

Chapter 7 presents how we utilise the VisChat Methodology presented in Chapter 6 to design

our VisChatbot and integrate it with the DViL platform. We demonstrate how we apply each

phase and its stages to develop our VisChatbot. Specifically, this chapter presents a user evaluation

to assess the performance of our VisChatbot with users.

Chapter 8 presents the conclusions of the dissertation, summarising the main findings and

contributions. Additionally, it outlines potential directions for future research, identifying areas

where the current work can be extended or further developed.

Appendix A contains supplementary information for Chapter 2.

Appendix B contains supplementary information for Chapter 7.



Part I

Data Visualisation of Hierarchical

Multivariate Data
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Chapter 2

Background on Hierarchical

Multivariate Data

In this chapter, we present a review of the current state of the art in data visualisation techniques,

beginning with an overview of the Data Visualisation Pipeline based on [34, 167], detailing its

three spaces: Data Space, Visual Space, and Interaction Space. This pipeline outlines the stages

required to systematically transform raw data into visual representations that effectively convey

information. The pipeline serves as the context in which various types of visualisations will be

explored. Following this, the chapter is organised into three key areas that this PhD focuses

on: (1) hierarchical and network data visualisation, (2) multivariate data visualisation, and (3)

the visualisation of conversational data, which is a specific case that combines elements of the

previous two. For each area, we review the related work by outlining the specific requirements

of each field and then analysing the related work based on these requirements. First, we present

the state of the art of hierarchical data visualisations. Next, we delve into the visualisation of

multivariate data, exploring these techniques in depth to inform our subsequent visualisation

strategies and presenting related work. Finally, as a real and specific case study of hierarchical data,

we explore the background of visualising data related to conversations, discuss the state of the art,

and identify key challenges and opportunities in the visualisation of hierarchical multivariate data

within conversational contexts.

18
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2.1 Overview of the Data Visualisation Pipeline

A well-known data visualisation process presented in the bibliography [34, 167] consists of several

steps; Data Transformation, Visual Mapping, and View Transformation. Figure 2.1 details the

three spaces in which the visualisation takes place—Data Space, Visual Space and Interaction

Space— and the data flow through these steps constructing the visual structures and how the

end-user can interact with the data involved in each step (from right to left, see the arrows in the

lower part of the figure), filtering regions (View Transformation), changing visual parameters

(Visual Mapping), and making more complex requests on the data (Data Transformation). In

the following, we present the most relevant characteristics that will serve as a basis for examining

the related work and the contributions of this PhD.

Figure 2.1: Overview of the Data Visualisation pipeline adapted from [167].

Data Space

The Data Space (shown in green in the upper-left part of Figure 2.1) covers the space in

which raw data is manipulated through transformations before being mapped into visualisations.

When the input data are in a tabular format, the Data Transformation stage (see the first blue

square in Figure 2.1) usually offers a set of operations to filter, cluster, and aggregate data, among

other functions, which can help to provide some data insights. We categorise the data according to

Shneiderman’s [170] framework based on the implicit nature of the data, which are: data where

items are distributed along the orthogonal axis (1D, 2D and 3D), data containing items in higher

dimensionalities (complex use of the context when the dimension is greater than three), trees or

hierarchical distributions (simple connected data), and networks (complex interconnected data).

The two former categories are based solely on dimensionality, considering data as a set of individual

items or sampled points, in a structured or unstructured way, but without interconnections between
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them. However, trees and networks encode relationships between the sampled points: trees describe

data containing parent-child relationships, while networks codify more complex relationships, which

may be directed or undirected [158]. Moreover, in all the data categories, each point contains

samples of different attributes that Shneiderman categorised as nominal, numerical (ordinal or

quantitative) and temporal. Additionally, if these attributes are mapped into a 2D or 3D space,

they are considered spatial.

These data categories help to identify the Data Transformation, which is decisive for discovering

insights in the data. Classical data transformations such as grouping, aggregation, enclosure and

binning temporal items are widely associated with specific data categories in the visualisation

community [145]. For instance, while aggregation functions, such as mean and sum, are suitable

for quantitative data, grouping is better suited to nominal and ordinal data, and binning intervals

is the right transformation in the case of temporal samples [167]. In addition, some works have

proposed more complex transformations of multidimensional datasets to extract meaningful subsets

using relational queries [72, 119, 156]. In the case of connected structures, the topology can

play an important role in the transformations, and also in the next stage of Visual Mapping [97].

For instance, extracting the largest path is a common transformation in trees, and obtaining

the widest level is a more typical transformation in hierarchies. Therefore, regarding the data

types and their different transformations, in this dissertation, we categorised data as (1) tabular

data, i.e., data with individual and non-connected items, where classical data transformations are

enough, and (2) complex data, i.e., high-dimensional, temporal, and interconnected data, which

require more complex transformations. Moreover, both categories of data not only involve different

transformations but also different strategies in the successive steps of the pipeline.

Visual Space

The second space involved in the data visualisation process is the Visual Space (shown in blue

in the upper-middle part of Figure 2.1), which refers to how to map the data in visual structures

(the Visual Mapping Step) and how to display them in a viewport (the View Transformation

Step).

The Visual Mapping Step involves the definition of the next three aspects:

• The spatial substrate—i.e., the space and the layout used to map the data;

• The graphical elements—i.e., marks such as points, lines, images, glyphs, lines, etc.;

• The graphical properties—also called retinal properties, i.e., size, colour, orientation, etc. [34].



CHAPTER 2. BACKGROUND ON HIERARCHICAL MULTIVARIATE DATA 21

In the spatial substrate, a wide variety of layouts for displaying data have been proposed,

from the simplest, such as those based on coordinate axes, to the more complex, such as those

representing networks [24, 105]. In fact, the more basic and simple they are, the more they are

exploited in different applications. In this research, we classify these layouts as basic and advanced.

Basic layouts refer to chart-based layouts, which have x and y axes (e.g., bar chart, line chart,

scatter plot), table-based layouts, and map-based layouts (such as a bubble map). We consider

advanced layouts to be those that deal with higher dimensionalities (e.g., parallel coordinates)

and with connections (e.g., radial tree, circle packing, network graph, sunburst diagram, and chord

diagram). Refer to Figure 2.2 for examples of basic and advanced visualisation layouts, respectively.

Figure 2.2: (a) Basic visualisation layouts; bar chart, line chart, and scatter plot and (b) Advanced
visualisation layouts; chord diagram, sunburst diagram, and network graph.

Even with this simple classification into basic and advanced, we still have a wide range of

layouts, and identifying the appropriate layout is therefore complex, especially if the users who

analyse the data are not experts. Again, depending on the data types, some layouts fit better (i.e.,

a 3-aligned axis is a good choice to show quantitative spatial 3D data where each axis corresponds

to one coordinate, and the circle packing layout fits well for simple hierarchical data). Moreover,

once the layout has been selected, the next challenge is how to map the data attributes onto it.

End-users can select and assign these characteristics manually, i.e., user-defined [183], but systems
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commonly use pre-defined layouts that only fit specific data. For example, Hoque et al., [79]

maps conversational hierarchical data with specific labelled attributes (e.g., negative or positive) to

a stacked bar layout that is custom-designed for their data with indentations showing the hierarchy

and is therefore not flexible enough to be adapted to other data. Indeed, other approaches propose

rule-based strategies to choose the layouts and their configuration dynamically according to the

analysed data.

These rule-based approaches are commonly used in commercial systems such as PowerBI [2]

and Tableau [37]. Tableau integrated the “Show Me” algorithm [121], which selects and maps

layouts depending on data type (text, date, date and time, numeric or boolean), data role (measure

or dimension), and data interpretation (discrete or continuous). For example, to create a bar chart,

users need to place at least one quantitative attribute and one categorical attribute to the y and

x axes, respectively, and then, Tableau automatically creates the bar chart. Similarly, Tableau

needs two quantitative attributes to automatically create a scatter plot. Several academic studies

used the “Show Me” algorithm to select visualisation methods [164, 81, 176]. More intelligent

approaches infer the most suitable layout using some visual examples given by users [195], while

others recommend layouts from among five key design choices [83], and more recently use pre-trained

Neural Network (NN) models that map data to predefined chart templates [119].

Additionally, the Visual Mapping step must consider which graphical elements to use and

their properties. There is a broad range of graphical elements (also called mark types) used to

map attributes, such as points, lines, glyphs, icons and symbols. Some of them are more suitable

for displaying quantitative attributes such as points, while others are better suited to nominal

data, where a symbol can communicate the meaning of the data in a pictorial way [23, 103]. In

this research, we explore a semantic continuum of the graphical elements which goes from the

more abstract (e.g., points, cross, stars) to the more meaningful or symbolic (e.g., glyphs, icons).

We also take into account the graphical properties that can enhance one’s understanding of the

graphical elements, such as colours, size, position, orientation, value, textures, shapes, connectivity,

grouping, and animation. In addition, as in layout selection, finding adequate graphical elements

for a given dataset and its properties is not a trivial task. In general, users can interactively select

these graphical elements, although, as in the case of layouts, other methods have been proposed

based on expert-defined rules [215] and intelligent algorithms that recommend [211], or infer the

elements by means of pre-trained models with the most commonly used graphical elements [197].

Thus, in summary, we define the concept of visual mapping identification in terms of selecting

layouts, graphical elements, and properties, using the following categories: fixed, user-defined,
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rule-based (where basic rule-based methods follow a set of heuristics and make decisions based on

them), and intelligent methods (involving the use of machine learning, artificial intelligence, or

other computational techniques to enable systems to learn from data, adapt, and make decisions in

a flexible and adaptive manner).

Once the visual mapping is performed, the View Transformation stage allows users to change

the viewpoint (e.g., zooming and panning), perform location probes (to measure values in samples),

and create some distortions in the image (i.e., change the projection type) [34]. Additionally,

view transformation allows users to take into account multiple views simultaneously, as well

as animations and others. Some view transformations emphasise data with importance-driven

strategies to enhance values and regions of interest, among other factors. Focus+Context [180]

highlights the important data (focus) while the rest of the data provide additional information on

the background (context), which allows users to see the details as well as the entire perspective,

without losing context. For example, imagine a line chart showing sales over time in which the peak

point is highlighted (focus) but you can still see the all sales over time in the background (context).

Other methods use the size of the items to show different levels of detail simultaneously, such as

the multi-resolution approach [100], which allows users to select different resolutions to drill down

and see details as needed, avoiding visual cluttering in the limited space of the canvas. For example,

treemap exploits multiresolution, showing overall sales of all the continents in the outer rectangles

so that the user can select a specific continent to view the details of sales of its countries in nested

rectangles. We categorise the related works based on the number of views they use simultaneously

(Single/Multiple) and the strategy employed to emphasise regions or parts of the view (zoom,

panning, focus+context, level of detail, multiresolution, and others).

Interaction Space

Last but not least is the Interaction Space (shown in blue in the upper-right part of Figure 2.1),

where the users interact with all the previous steps defined above. User intents refer to the specific

goals or purposes that users have when interacting with a visual representation of data. These

intents guide how users engage with the visualisation and determine what they aim to achieve,

such as exploring patterns, comparing data points, or making decisions.

Visualisation tasks (VisTasks from now on) define how users will interact with visualisations

to derive insights. These tasks are the actions users take to achieve their intents. Through these

tasks, users conduct visual analytics and analyse their data, effectively transforming raw data into

meaningful information that aligns with their specific goals. We use the main VisTasks Types
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reported in the literature [26]: Lookup, Locate, Browse, and Explore the data, in the following

referred to as LookupT, LocateT, BrowseT and ExploreT. Brehmer et al. [26] analysed these four

visualisation tasks in terms of known/unknown data Location and Target data.

Specifically, known data Location indicates that users can directly identify the part of the

visualisation where they want to perform the VisTask. In contrast, unknown data Location

means they can not explicitly identify the data location.

On the other hand, known Target data refers to situations in which the users know exactly

what they are looking for. This data can be provided either explicitly by the user or inferred from

the context of the visualisation task. An example of target data provided by the users is when they

have a specific value or metric they want to find, such as ”Finding the most negative messages.”.

Target data inferred from context is when the visualisation itself guides the users towards specific

data points. For example, a bar chart with a clear legend allows them to easily find the value for a

particular category. In contrast, unknown target data refers to data that the user is not initially

aware of, or cannot identify directly in the visualisation, such as patterns, anomalies, and trends,

among others.

Location and Target data in terms of known/unknown are exemplified in Table 2.1. All

the examples included in the table are related to social network data where the messages are nodes

and the connections between them correspond to responses to these messages. A thread is a set

of interconnected messages. All the messages have labels indicating their level of toxicity (0 is a

non-toxic message and 4 is a very toxic message). Moreover, we assume that the user first views

the complete social network, before viewing the tasks, where the darkest coloured nodes are the

most toxic and the lightest coloured nodes are the least toxic (see Figure 2.3).
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Table 2.1: VisTasks taxonomy introduced by [26]. All the locations are coloured in blue and targets
in magenta.

Location Target Example

LookupT known known Find the most toxic messages

in the current view

(messages’ toxicity is visible)

LocateT unknown known Find the most toxic thread

in the current view

(the most toxic thread is not visible)

BrowseT known unknown Find a pattern in the

in the current thread

(the thread is visible)

ExploreT unknown unknown Find trends of toxicity in the data

Figure 2.3: Tree layout visualising interconnected messages and showing the level of toxicity.

In addition, these VisTasks are performed through user Queries (in the following referred to as

VisQueries) such as IdentifyQ (e.g., identifying a data point), CompareQ (e.g., comparing two data

sets), and SummariseQ (e.g., summarising the whole data/visualisation).

Furthermore, there have been many attempts to categorise different interactions that are used

to fulfil or solve VisTasks and VisQueries [47, 4]. Yi et al. [209] proposed seven interaction methods

based on the user’s intents: select, explore, reconfigure, encode, abstract/elaborate, filter,

and connect. Select is used for marking data points choosing data points, and layouts, while

explore refers to navigating through the data, including functions such as zooming and panning.

Reconfigure can be used to swap layout attributes on the x and y axes or can use an algorithm to
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cluster some data points together in a network visualisation. Encode is used to assign or change

graphical properties in terms of colour, size and shape. Abstract/elaborate displays details on

demand such as collapsing/drilling down on a visualisation. The filter method shows data that

fulfil a given condition. Finally, the connect method highlights the relationships between data

items. These interaction types defined are either directly or indirectly related to all VisTasks

and VisQueries. These interactions facilitate users in achieving their specific goals by enabling

various VisTasks and VisQueries related to data exploration and analysis. Here are some examples

illustrating how these interactions are applied:

• Select is crucial for LookupT, allowing users to pinpoint and examine individual data points.

It also aids ExploreT by helping users narrow their focus during exploratory analysis and

aligns with IdentifyQ by enabling detailed views of specific data points. Additionally, Select

supports CompareQ by facilitating the comparison of selected items.

• Explore enhances BrowseT by allowing users to navigate through and visually scan large

datasets. In ExploreT, it supports in-depth investigation and analysis of data patterns and

relationships.

• Reconfigure plays a role in CompareQ by altering the arrangement of data to facilitate

side-by-side comparisons. It also assists LocateT by modifying the layout to reveal item

positions and supports ExploreT by enabling the rearrangement of data elements for deeper

analysis.

• Encode supports LocateT by helping users differentiate and identify specific items through

visual attributes. It also facilitates CompareQ by enabling comparisons based on encoded

features and aligns with SummariseQ by aiding in the visualisation and aggregation of

summarised information.

• Abstract/Elaborate is essential for ExploreT, allowing users to dynamically show or hide

details and view broader patterns. It also supports SummariseQ by enabling users to collapse

or expand data to summarise key insights effectively.

• Filter is useful in LocateT for isolating and focusing on specific subsets of data, making it

easier to identify particular items. In BrowseT, it helps by displaying only relevant data

points according to specified criteria.
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• Connect supports ExploreT by linking related items and revealing patterns. It also aids

CompareQ by showing how different data points or trends are interconnected, enhancing the

comparison process.

Note that the visual analytics process may involve a sequence of VisTasks, each comprising a

set of VisQueries to solve user intents. For instance, in the example of the toxicity of comments in

online news articles, where the darker the message, the more toxic it is, the user notices several areas

of the visualisation with unusual black&white patterns. That is, areas with dispersed non-toxic

messages are in the middle of many very-toxic messages (many black nodes and few white nodes).

These areas could be potential locations of interesting non-toxic messages to analyse. Then, the user

1) ”Zooms-in on this area” (IdentifyQ, Interaction type: Explore). Here, the tool enables the user

to zoom into specific data points or regions of interest for detailed examination. Once in the zoomed

view, the user wants to perform a further exploration of additional details about non-toxic nodes: 2)

”Finding the attributes of non-toxic nodes” (SummaryQ, Interaction type: Abstract/Elaborate and

Filter), viewing them in a separate pop-up window. Finally, 3) ”Comparing with the toxic ones”

(CompareQ, Interaction type: Abstract/Elaborate), opening another chart. Finally, thanks to the

exploration task (ExploreT) that consisted of several queries, the user validates the hypothesis that

even in the most toxic message threads, there are users who give positive opinions.

Finally, we consider that users can utilise all these methods through different interaction styles.

In this thesis, we consider a coarse two-labelled categorisation: Basic and Advanced. Basic styles

refer to the WIMP (Windows, Icons, Mice, Pointer), while Advanced styles involve techniques

such as Virtual Reality (VR), Augmented Reality (AR) and Natural Language.

In summary, we defined the following terms, clearly outlined in Table 2.2, which will serve

as the context for exploring different types of visualisations (a more detailed summary can be

found in Appendix A). It should be noted that in this dissertation, we primarily focus on the

Visual and Interaction Spaces. Specifically, our emphasis is on complex data with advanced

visualisations, symbolic graphical elements, rule-based visual mapping identification, multiple view

transformations, and advanced interaction styles.
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Data Space Visual Space Interaction Space

Data Data Visualisation Graphical Visual Mapping View Interaction VisTasks Interaction

Transformation Type Type Elements Identification Transformation Style Style

Filter Tabular Basic Abstract (lines, points, bar) Fixed/Pre-defined Single Basic-WIMP LookupT Basic-WIMP

Cluster Complex Advanced Symbolic (glyphs, icons) User-defined Multiple Advanced-NL LocateT Advanced-NL

Aggregate Rule-based BrowseT

Intelligent ExploreT

Table 2.2: Summary of Data, Visual, and Interaction Spaces.

2.2 Visualisation of Network and Hierarchical Data

In the following, we will discuss the requirements for effective hierarchical and network visualisations.

We will then review the existing work around these criteria and conclude with a summary.

2.2.1 Networked and Hierarchical Data Visualisation Requirements

Hierarchical and networked visualisations are used to represent graph structures, typically in a

two-dimensional plane (R2) or in three-dimensional space (R3), although this dissertation focuses

on the 2D plane. In these visualisations, networked and hierarchical data are displayed as graphs,

where nodes—represented by points, disks, rectangles, text, or other shapes—are connected by

edges, visualised as curves or straight lines. We define a visualisation canvas of area W ×H, where

W and H are the width and height in pixels. Within this canvas, the main problem to solve is

projecting the graph structure into the 2D plane. This process involves several challenges while

designing effective layouts: arranging nodes and edges to optimise both clarity and informational

value, ensuring maximum information transmission without losing contextual relevance, reducing

visual clutter in the available space and channels, and selecting an optimal layout that best suits

the characteristics of the data being visualised.

In the following, we will explain the principal requirements of hierarchical and network visuali-

sations. The main requirements are related to a) visualising maximum information while preserving

context, b) ensuring non-cluttered visualisations, c) selecting the best visualisation layout based

on the data and the associated VisTask, and d) prioritising domain-independent visualisations to

make them more widely applicable.

(A) Visualising maximum information while preserving the context is a delicate balance.

If too much information is displayed at once, it can become overwhelming and difficult to interpret.
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The goal is to maximise the amount of data shown while keeping the context clear. The challenge

here is to represent multivariate data within the nodes and edges of a hierarchy or network in a way

that preserves the structural context and relationships while ensuring that the multiple variables

are visually encoded without overwhelming the user. This problem can be broken down into several

concrete criteria:

(1) Node Representation: All nodes in a graph should be represented in simplified or detailed

ways depending on the context, allowing the viewer to grasp key information without feeling

overwhelmed. (2) Relationship Representation: The relationships between nodes should be

shown either explicitly (e.g., with lines) or implicitly (e.g., through spatial arrangements), helping

users understand more easily the connections between elements. (3) Consistency in Size and

Length: Similar lengths and sizes should indicate the same meaning, maintaining consistency and

helping users interpret the data structure clearly. For example, node sizes in hierarchical layouts

can either be uniform or reflect the number of descendant nodes. (4) Scalability: The design

should be scalable, allowing for the compaction of information such as grouping related nodes or

using multiple views to divide the visual information to ensure the visualisation remains clear and

accessible as more data is added.

(B) Non-cluttered visualisations is another challenge to overcome in creating effective hi-

erarchical visualisations, as excessive detail or disorganised elements can obscure the intended

message. In hierarchical and networked data visualisations, it is imperative to maintain clear and

intuitive parent-child relationships, along with distinct levels in hierarchical views like tree diagrams.

For instance, in network visualisations, node-link diagrams can easily become overwhelmed with

excessive nodes and edges, leading to visual congestion that distorts the underlying relationships and

structural patterns, thereby diminishing the impact of the visualisation. Maintaining the clarity

and simplicity in hierarchical visualisations is essential for helping users grasp the structure and

relationships within the data [109]. For instance, a tree layout illustrating online conversations with

clear and concise labels and appropriate spacing allows users to easily identify relationships

between conversations. Additionally, maintaining readability involves avoiding overlapping

nodes and ensuring that text remains legible as the hierarchy becomes more complex. This helps

preserve the visual flow and ensures that each part of the structure can be easily interpreted.

Therefore, the following principles should be followed to avoid clutter in hierarchical visualisa-

tions: (1) Nodes should be distributed evenly across the canvas to reduce overcrowded

or empty areas, ensuring a balanced and clear layout. (2) Nodes must not overlap either in

their projection in the 2D plane or their scaling in the WxH canvas, as doing so can
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confuse viewers and obscure the relationships between elements. (3) Edges should not overlap,

meaning crossing edges must be avoided to prevent visual clutter and maintain clear connections

between nodes. (4) Proximity between connected nodes should be preserved to convey

their logical relationship and strengthen the visual understanding of the data. (5) Maximise the

angles between edges of the same node to ensure that each edge is distinguishable and the

visualisation remains legible. (6) Empty spaces between nodes should be preserved to help

clarify the structure of the data, allowing for easier identification of relationships and better overall

comprehension.

(C) Selecting the best visualisation layout for the data and the associated VisTask is

crucial, as not all hierarchical data share the same structure. Some datasets feature more nodes

directly connected to the root, resulting in a compact layout, while others have nodes distributed

along a vertical axis, creating a more elongated shape. Choosing the right layout is important

not only for avoiding clutter but also for ensuring the data is represented in a visually compelling

and easily comprehensible manner. Since hierarchical structures and network configurations vary

widely and datasets can grow in size, a scalable design must be adaptable to handle both structural

diversity and increasing complexity. Therefore, when choosing a layout, it is important to consider

its ability to manage large, deep, or wide datasets effectively. Poor scalability can result in

overcrowded and confusing visualisations, where critical information is obscured by excessive detail

[105].

(D) Domain-dependent vs domain-independent visualisations is another aspect that

should be considered. Domain-dependent visualisations are designed with a specific dataset or

application in mind, meaning they are tailored to the unique characteristics and requirements of a

particular type of data. These visualisations often cannot easily accommodate other datasets, as

they rely on predefined assumptions and structures. For instance, uploading a different dataset

might require significant modifications or may not be supported at all. While such visualisations can

be highly effective for their intended use cases, they lack the flexibility to be universally applicable.

On the other hand, domain-independent visualisations are designed with generality in mind,

allowing them to adapt to a wide variety of datasets. These tools are built to work without requiring

extensive changes or customisation, making them versatile and suitable for analysing diverse types

of data. Such flexibility can be more advantageous as it appeals to a broader audience.
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2.2.2 Review of the Literature

Hierarchical and network data visualisation is a critical area of study within the broader field of

data visualisation, driven by the growing complexity and volume of interconnected data [21]. In

the following literature review, we will explore various hierarchical and network data visualisation

techniques, assessing their strengths, limitations, and suitability.

Several researches explored visualisations of hierarchical structures [44, 205, 61, 10, 28, 50,

208, 173, 204]. In the following, we highlight the most relevant ones for this thesis. For instance,

Darzi et al., [44] designed Functree2, a radial layout to visualise omics data, such as genome,

and proteome (see Figure 2.4.a). They selected a pre-defined radial layout as they presumed

that tree layout was insufficient with a large number of nodes and scaled poorly. However, as

illustrated in the figure, the implementation of coloured rectangles to represent additional attributes

clutters the visualisation and impacts readability. Overlapping nodes and the placement of outer

nodes can make the visualisation challenging to interpret. The paper notes that they addressed

these issues by incorporating interactive elements and additional charts and bar graphs. These

supplementary visuals help summarise and clarify the extensive information displayed in the

radial layout, enhancing the overall user experience and making complex data more accessible.

Moreover, they stated that the Functree2’s ability to handle generic reference trees makes it a

domain-independent solution. While particularly designed for bioinformatics pipelines, it is

flexible enough to visualise diverse hierarchical data, demonstrating its applicability across various

domains.

Similarly, MonaGo [205] handles data related to genomics, transcriptomics, proteomics, and

metabolomics. MonaGO uses a pre-defined chord diagram to effectively visualise clusters and

similarities among entities (see Figure 2.4.b). The visualisation employs colour-coding based on

significance values, with arc lengths representing the number of relevant items. Green arcs on the

diagram indicate potential hierarchical clusters, while numbers on these arcs show the percentage of

shared items between clusters. Grey links within the diagram connect clusters with common items.

Moreover, explanations of the clusters are written next to the circle. By hierarchically clustering

similar entities, MonaGO reduces clutter while trying to present maximum information

without losing the context. It allows users to collapse or expand clusters, which also helps with

the readability and clarity. They also use multiple views to display additional information,

helping to avoid clutter. However, scalability can be an issue here, as a large amount of data can

lead to overlapping cluster explanations, making it difficult to read and interpret the information

clearly. Also, interactivity allows users to dynamically explore and manipulate the data, enabling
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them to focus on specific subsets or adjust the clustering parameters to better understand the

underlying relationships. Moreover, MonaGO is considered a domain-dependent tool, as it is

designed to assist biologists in exploring biological data. However, it is not stated whether it can

be adapted for other domains.

Figure 2.4: (a) Functree2 [44] and (b) MonaGo [205]

In addition, Graphia [61] offers a comprehensive solution for the visual analysis of the vast

amounts of quantitative and qualitative data generated from genomic, proteomic, metabolomic,

and cellular studies (see Figure 2.5.a). The core functionality of Graphia revolves around its ability

to perform data transformation by calculating correlation matrices from any tabular matrix of

continuous or discrete values, which can then be visualised in pre-defined large network graphs in

both 2D and 3D spaces. However, the visualisation can become cluttered as the large amount

of data may lead to overlapping clusters. To help with visualising maximum information

without losing the context they use complementary bar charts and heat maps. But even with

these, the main visualisation can be hard to interpret. Nevertheless, the flexibility and interactivity

offered by Graphia, including algorithms for graph transformation and attribute visualisation, make

it a powerful tool for analysing complex biological data. Graphia is designed with biological data

in mind, but it is a domain-independent, and it can be used to analyse network data from any

source.

Moreover, GrouseFlocks [10] focused on taking an input hierarchy and showing other related
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hierarchies of it (e.g. from all movies to action movies) using several pre-defined layouts, concretely,

they mix implicit and explicit types using both tree and circle packing. By allowing users to see

several different possible hierarchies on the same graph, the tool helps users investigate graph

hierarchy space instead of a single, fixed hierarchy. While it is interesting to explore hierarchies

inside others using several layouts and having a zoom functionality, circle packing gets crowded and

begins to visualise hard-to-follow nesting when the data structure gets deeper and wider causing

poor scalability because of the clutter. Which makes it hard to read and lose its context

with too much information displayed at once. For instance, it can be observed in the Figure

2.5.b, the example at the top demonstrates the theory effectively. However, as seen in the real-life

application at the bottom, it becomes cluttered with larger data. Furthermore, it is not designed

for a specific domain but rather as a domain-independent tool.

Figure 2.5: (a) Graphia [61] and (b) GrouseFlocks [10]

Furthermore, VizWick [28] was designed to provide visualisations for hierarchical data in a 3D

environment. While they emphasised that only one visualisation layout is not enough to visualise

all hierarchies as they have different properties such as size, depth, and branching factor, instead of

trying to use and select the best layout according to the data, they tried to solve this problem

by introducing a multiple views dashboard (see Figure 2.6.a). Authors suggested that visualising
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a single dataset simultaneously with different layouts can give more analytical information about it.

They included five visualisation methods, circle packing, and sunburst between others, and up to

four windows to visualise the dataset. While these layouts are pre-defined, users can select which one

to visualise based on their preferences. This approach can be useful as each visualisation can offer

information about a different viewpoint of the data. VizWick offers users view transformations,

such as the ability to drag and manipulate shapes to able to see graphs from different perspectives.

Moreover, interactivity is beneficial as it allows zooming in, with views synchronised to help

reduce clutter when examining details. However, when the data is too large in the main view,

the clutter becomes unavoidable. This tool is domain-independent, allows users to upload their

data and is easily accessible as it is web-based.

On the other hand, the PansyTree a pre-defined visualisation technique addresses a critical

challenge in hierarchical data representation by enabling the simultaneous visualisation of multiple

hierarchies [50]. Traditional methods typically allow for the display of only a single hierarchical

dataset at a time, making it difficult to compare and analyse different datasets. PansyTree introduces

a novel approach by merging up to three hierarchical datasets into a single visualisation. This

is achieved using a unique iconography, where each node in the tree is represented by a ”pansy,”

a flower-like symbol that encodes data from three distinct datasets through different colours and

structural elements such as petals and sepals (see Figure 2.6.b). This design not only ensures a

clear and readable representation of each dataset’s attributes but also helps to display maximum

information without losing context. In larger datasets, clutter is likely to occur due to

overlapping nodes and edges, which can hinder the comparison of hierarchical structures. The

PansyTree further incorporates a force-directed layout with encoded links, where the width and

animations of connections convey additional hierarchical information. Also, PansyTree is designed

as domain-independent.

2.2.3 Summary

In this section, we have described the criteria that effective hierarchical and network visualisations

should possess, such maximising visual information without losing context, avoiding visual

clutter, selecting the best layout according to the data, and domain-dependent vs domain-

dependent techniques. We then conducted a literature review of various visualisation techniques

used for network and hierarchical data. The summary of the literature review can be seen in the

Table 2.3. This review highlights the importance of choosing the right visualisation method, as

each technique offers distinct strengths and limitations. Ensuring that visualisation is well-designed
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Figure 2.6: (a) VizWick [28] (b) PansyTree [50]

to effectively convey complex information without becoming overcrowded or difficult to interpret.

A) Max info and con-

text

B) Non-cluttered Vis C) Selecting layout D) Domain

Functree2 [44] - ↑ interactivity ↑ multiview ↓ scalability Pre-defined Independent

MonaGo [205] ↑ clustering ↑ interactivity ↑ multiview ↓ scalability Pre-defined Dependent

Graphia [61] ↑ multiview ↑ interactivity ↑ multiview ↓ scalability Pre-defined Independent

GrouseFlocks [10] - ↑ interactivity ↓ scalability Pre-defined Independent

VizWick [28] ↑ multiview ↑ interactivity ↑ multiview ↓ scalability Pre-defined Independent

PansyTree [50] ↑ simultaneous hierarchies

↑ iconography
↓ scalability Pre-defined Independent

Table 2.3: Summary of the explored hierarchical and network visualisation related works, where
↑ indicates a high level of a feature and ↓ indicates a low level. The green colour represents
features that are positive or desirable, while the red colour represents features that are negative or
undesirable.

We examined several visualisation types, including radial layouts, chord diagrams, and

circle packing, each suitable for different types of data. For instance, radial layouts, as used

in Functree2, can be effective for compact datasets but may suffer from readability issues when

additional attributes are visualised through coloured rectangles. Chord diagrams, as demonstrated

by MonaGo, are useful for visualising relationships and similarities in genomic data, but scalability

can be a concern as data complexity increases which can cause a loss of the context while visualising
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maximum information. Graphia’s network diagram and its ability to perform data transformations

via correlation matrices provide a powerful tool for visualising large graphs, though they may

become cluttered with very large datasets.

Circle packing, explored in GrouseFlocks is useful for visualising nested hierarchies but can

be challenging to interpret with more complex or expansive data structures. VizWick addresses

hierarchical data visualisation in a 3D environment with multiple views, allowing simultaneous

analysis from different perspectives. Despite its advantages, this method can also face issues

with scalability and clarity for very large datasets. The PansyTree technique stands out by

integrating multiple hierarchical datasets into a single view, using distinct iconography to enhance

data comparability and clarity, and offering a novel approach to visualising complex hierarchical

information.

Moreover, it should be noted that most of the related work featured a multiview option, a

feature we consider essential. Multiview capabilities can effectively mitigate clutter, help, and align

closely with Shneiderman’s principle of ”details on demand.” Furthermore, interactive elements

are used in all the related works to help reduce clutter or visualise more information. Therefore,

our remark underscores the necessity for integrating multiview and interactive functionalities to

enhance clarity and usability in visualisation design.

Remark 2.1. Both Multiview and Interactivity are widely used techniques to reduce

clutter and maintain the scalability and clarity of the visualisations.

While all the works aim to reduce clutter, we conclude that the challenge lies in selecting the

best visualisation layout to convey meaningful insights, which depends heavily on the implicit

structures within hierarchical data. These works consistently relied on pre-defined visualisations,

applying the same approach to all datasets. However, not all hierarchical structures are alike, and

scalability remains a significant issue across the board. This highlights the importance of offering

diverse visualisation layouts that can adapt to the requirements of different hierarchical structures.

Additionally, while these approaches rely on pre-defined visualisations, the ability to automatically

select the most suitable layout from multiple options would add significant value, especially for

users unfamiliar with choosing the best layout.

Remark 2.2. Related works focused on pre-defined visualisations instead of using auto-

matic layout selection, as they often overlooked the flexibility required to accommodate

diverse hierarchical structures.
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Finally, while most tools are designed with a specific area in mind, they are domain-independent.

The majority claim their tool is compatible with any hierarchical data, which is beneficial as it

makes them accessible to a broader range of users.

2.3 Visualisation of Multivariate Data

In the following, we will present the requirements for multivariate data immersed in hierarchical

and networked visualisations. We will subsequently examine the current works and conclude with

a summary.

2.3.1 Requirements of Multivariate Data in Hierarchical and Networked Visu-

alisations

Multivariate data refers to datasets where each entity (node or edge) is characterised by multiple

attributes or features. To interpret this data within the context of a hierarchy or network, it

is essential to analyse how these attributes are structured and how they relate to one another.

Analysing the relationships between these variables can reveal patterns, such as how certain node

attributes influence other node attributes, or how edge attributes affect the relationships between

nodes. Creating an understandable hierarchical multivariate visualisation is a difficult job as these

kinds of hierarchies are very complex due to the variety of information that can be stored in them

[135]. The main challenge arises from the complexity of both the data and the structures, as each

node or edge can carry a variety of attributes. The visualisation must effectively communicate both

the structure and the underlying data. In the following, we present the requirements to overcome

these challenges, following the same categorisation used in the section 2.2.1.

(A) Maximum information preserving the context: The challenge of representing multi-

variate data within the nodes and edges of a hierarchy or network lies in preserving the structural

context and relationships while visually encoding the multiple variables without overwhelming

the user. To achieve this, several criteria must be met. These include (1) ensuring that the

representation of variables remains close to the relevant nodes and edges, either inside or

beside them, (2) maintaining consistent visual mappings of colour, size, and thickness

for both nodes and edges, (3) ensuring that all variables are always visible, and (4) supporting

scalability to accommodate varying amounts of data.

(B) Non-Cluttered visualisations: Embedding multiple variables into each element of a

hierarchy or network can lead to visual clutter, making it difficult for users to interpret the data.
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The requirement lies in displaying diverse variables on a single graph without overwhelming the

viewer, particularly when information becomes densely packed. For example, if too many attributes

are clustered on glyphs, the result may be a loss of clarity. To avoid this, it is important to

reduce overlaps and complexity, with some variables, represented implicitly (e.g., colour for

node groups) and others requiring explicit encoding (e.g., edge width for connection strength).

Interactivity can improve the visualisation of such data. Features like filtering enable users to

selectively display or hide data based on specific attributes or conditions, facilitating focused

analysis and reducing the clutter on glyphs. This approach allows for multivariate data to be

displayed without overwhelming the user, providing access to details on demand rather than keeping

them constantly visible. Moreover, strategic use of colour, shape, and size can effectively distinguish

between categories or levels, improving clarity and understanding.

(C) Choosing the best representation of the variables for the data and the VisTask:

Selecting the appropriate visualisation approach for multivariate data involves determining the

best way to represent the variables without overwhelming the user. This decision might include

depicting variables directly on nodes or edges, using icons or glyphs, or employing separate views

to improve clarity. Another consideration is whether to visualise these glyphs on the nodes as

an all-in-one representation or separately next to the nodes, one-by-one. The challenge lies in

determining how to represent the variables effectively—whether through icons, shapes, glyphs, or a

combination of these—while ensuring the visualisation remains clear and comprehensible.

It is also important to consider the type of interaction or analysis the visualisation supports.

If the aim is to compare multivariate attributes, visualising variables such as colour, size, and

shape becomes essential. However, for structural analysis (e.g., identifying subgroups), it might

be more effective to summarise or downplay the multivariate data. The requirement is aligning

the visual representation of multivariate data with the intended task—whether that’s comparison,

discovery, or interaction—ensuring that the visualisation facilitates the desired insights without

causing confusion.

Finally, we also considered the last requirement D) Prioritising domain-independent over

domain-dependent visualisations, which is introduced in Section 2.2.1.

2.3.2 Review of the Literature

Each data point in the hierarchy can be associated with any number and type of attributes. There

have been various attempts in the literature to address the challenge of visualising multivariate

attributes on hierarchical or network graphs [102]. These approaches often focus on reducing the
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number of graph elements displayed in the active view, as displaying all the information

at once can overwhelm the viewer and obscure clarity and meaning. Common strategies include

filtering, interactive techniques, and using hybrid or multiple views to effectively manage and

present the data. In the following, we explore the most relevant literature related to this thesis.

The literature proposed different techniques for visualising multivariate data such as interaction-

based, hybrid visualisations [99], glyph-based [102], icon-based[98], and animation-based [203]. For

example, Bezerianos et al. [18] used the method of reducing the number of graph elements shown

on the active view by displaying multivariate data in pairs one at a time (see Figure 2.7.a on the

centre the main view and on the left side the combination of each attribute). This approach fulfils

the requirement of non-cluttered visualisations, as it limits the amount of data displayed at

once, reducing the risk of visual clutter and making the information more digestible. They added

additional features of interaction and filters to enhance the visualisation such as animation between

each graph and graph selection history. However, this method can be limiting, especially in cases

where more than two attributes need to be analysed simultaneously. However, it does not fulfil

the requirement of maximum information preserving the context, as displaying only a few

attributes at a time might result in a loss of the full structural context and relationships in the

data. Furthermore, while reducing the number of elements displayed may enhance clarity, it can

also cause information loss when navigating between different views, potentially disrupting the

continuity of analysis. This tool is domain-independent.

Figure 2.7: (a) GraphDice [18] and (b) FacetAtlas [32]

On the other hand, FacetAtlas [32] consists of big bubble-like density maps and relation links

(see Figure 2.7.b). They place diseases as nodes in these density maps grouping them according to

their similarities and linking diseases that share the same symptoms and treatments with different
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coloured lines. This method covers the requirement non-cluttered visualisations, as it visually

groups related data and uses colour to differentiate connections, reducing complexity and aiding in

the interpretation of multivariate data. Also, the system allows users to switch to symptom view,

highlighting visual patterns, and choosing other links from the interactive facet legend which also

helps to reduce clutter. For communicating multivariate data, they relied on dynamic query filtering

where users can interact with the visualisation by zooming in to explore only some parts of the

data in detail. While FacetAtlas presented its application using biological data, the system itself is

domain-independent. Similarly, Shareflow [82] used various filters and directly mapped attributes

(e.g., colour) onto the main visualisation (e.g., node-link graph) to communicate multivariate data.

Nerex [54] used an icon-based approach. They have 10 icons mapped on an interactive node-

link diagram to analyse conversational transcripts, such as multi-party conversations, focusing

on entities like persons and geo-locations (see Figure 2.8.b). Additionally, the icons have three

different outliners to visualise more attributes such as synonyms (see Figure 2.8.c). This approach

fulfils the requirement non-cluttered visualisations, as it avoids visual clutter by overlaying the

icons directly on top of the nodes. By doing so, the visualisation presents detailed information

without overwhelming the user. Moreover, this method reflects principles from choosing the

best representation of variables for the data and the VisTasks, as the use of icons proves

effective for representing the data in a clear and organised manner. Also, the placement of the

outliners helps maximising the information while preserving the context. Furthermore,

Nerex is designed for conversational transcript data, therefore, it is domain-dependent.

Moreover, glyph-based visualisation is a popular option. A glyph is a small visual object that

represents several attributes simultaneously, often providing a more comprehensive representation of

data compared to a single icon [23]. It can be used individually [51, 210, 94] and also in combination

with other graphs [206] to add more meaning to the data being presented.

For example, Du et al. [51] designed a donut based glyph as the main visualisation and used other

graphs to support the glyph visualisation. This study is designed as a recommendation system to

find similarities and dissimilarities between peers such as students. Their main visualisation is called

LikeMeDonuts which is supported by the Ranking glyph and History Heat map. LikeMeDonuts

has a picture of the person who is the subject at the centre and each attribute is placed as a ring

around the picture (see Figure 2.9.a). An example of attributes is gender and a ring is formed

with female and male peers with their respective numbers reflected as sizes. Three colours are

mapped onto visualisation namely, bright green, dark green and grey. Bright green shows peers

that exactly match with the subject, dark green represents peers that are in the tolerance range
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Figure 2.8: Nerex [54]

and grey represents peers that are not in the tolerance range. The tolerance range is the range

where subjects share similar records with their peers. For example, if the subject is a male PhD

student, he has similarities with female PhD students and male Master students but not with

female Master students. This glyph is an interpretation of a hierarchical tree as the number of rings

increases the more detailed the LikeMeDonuts gets and the glyph becomes a radial hierarchical

tree. The design covers the requirement non-cluttered visualisations by segmenting attributes

into distinct, easily interpretable rings. The use of three chosen colours enhances clarity, ensuring

users can easily distinguish between levels of similarity. Furthermore, supporting graphs, like the

Ranking Glyph and History Heat map, distribute information across multiple views, preventing

visual overload while enabling deeper analysis. This visualisation is domain-independent and

can work with analysing any types of peers.

On the other hand, Xu et al. [206] conducted a study where they used glyphs as part of their

visualisation. Their study is designed to explore debates that happen on online reviews, such

as movie reviews, restaurant reviews, etc. Their glyphs are formed of pie charts and each pie

chart represents a topic (see Figure 2.9.b). The pie chart is divided in two showing positive and
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Figure 2.9: (a)LikeMeDonuts [51] and (b)Reviews [206]

negative reviews. The size of each side of the pie represents the number of reviews. Also, the

positive side is represented with green and the negative side is represented with orange. There

is a word cloud placed on the pie chart showing the most used words. There is an outer ring

around the pie chart that shows the ratings of the reviewers on that topic. This ring chart is

represented with colours from green to red, green being positive and red being negative. While

these glyphs effectively represent sentiment, ratings, and word frequency, they can become crowded

and difficult to interpret when applied to a higher number of topics involving larger datasets. This

study compromises the requirements maximum information preserving the context, and

non-cluttered visualisations, as overloading the visualisation with too many glyphs can make

it harder to analyse each element effectively due to the overwhelming amount of information to

process. This visualisation is also domain-independent as it is showcased using datasets about

movies, products, and restaurants.

Moreover, Social Wave [184] used glyph-based approach in cooperation with their main visu-

alisation to analyse the distribution of popular hashtags (collected from X, previously Twitter)

in various locations (see Figure 2.10.a). Their main graph is a network graph but they created

three glyphs to communicate more information about hashtags (e.g. proportion of used hashtags)

and assigned these glyphs to each node as all-in-one presentation, according to their sizes. This

is an interesting approach because glyphs added more information to their main visualisation as

well as reduced the clutter by having different versions according to the size. Social Wave is

domain-independent, as it is demonstrated using diverse data sets, including information about

the sociopolitical events and an epidemic.

ConToVi, [53] was designed to explore speaker behaviours in multiparty conversations. The

tool has four main animation-based visualisations (see one of the main views in Figure 2.10.b). In

addition to these four views, they included an argumentation glyph to detail the features of each
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Figure 2.10: (a)SocialWave [184] and (b)ConToVi [53]

utterance. Ten argumentation attributes such as assurance, and common ground, among others,

were mapped onto an all-in-one glyph (similar to a pie chart) to explore the degree of justification

and stances of the speakers in utterances (see Figure 2.10.b on the right-hand side the legend

and how they are used). The main drawback of this approach is that the glyph is only shown

in a separate view, requiring thus a change in the context of users’ attention which can require

retaining some details of the hierarchical structure and so alter the ability of the user to effectively

process the information [90]. This approach compromises the requirement maximum information

preserving the context, as the use of an all-in-one glyph to represent multiple argumentation

attributes works well for consolidating data. However, the glyph is displayed in a separate view,

requiring users to shift their focus away from the main visualisation. This disruption in context

can make it harder for users to process the information effectively, as they must retain some details

of the hierarchical structure while interpreting the glyph, potentially hindering their ability to

understand the data as a whole. As ConToVi is designed to analyse speaker patterns in multi-party

conversations and uses glyphs to specifically analyse conversations, it is domain-dependent.

2.3.3 Summary

Creating understandable hierarchical multivariate data presents challenges due to the diverse range

of information they can contain. Various methods have been proposed to address these challenges,

including filtering techniques, interactive tools, and the use of hybrid or multiple views, glyphs,

and icons. We conducted a review of the related works in the previous section and we summarise

our results in Table 2.4.

We explored tools that utilised multiple views, such as displaying attributes in pairs, although this
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approach can sometimes lead to information loss, which challenges (A) Maximum Information

Preserving the Context. On the other hand, interactions and supplementary charts can add

value by allowing attributes to be displayed on demand, with additional information presented in

separate views. This approach helps to minimise clutter while still displaying more information,

also aligning with (B) Non-Cluttered Visualisations.

A) Max Info and

Context

B) Non-Cluttered

Vis

C) Choosing Rep. D) Domain Visual Mapping:

Layout and Location

GraphDice [18] ↓ only two attributes at

a time

↑ limiting the amount

of data displayed at

once ↑ interactivity

- Independent Scatter plot with links,

on x-y axis

FacetAtlas [32] - ↑ clustering ↑ switch
views ↑ interactivity

- Independent Node-link diagram, on

the nodes as colours

Nerex [54] ↑ outliners ↑ icons on the nodes icons and outliners Dependent Node-link diagram, on

the nodes as icons

LikeMeDonuts [51] - ↑ different rings ↑
multiviews

- Independent Glyph, all-in-one

glyph

Reviews [206] ↑ overcrowded view ↑ overcrowded view - Independent Bubble graph, on the

nodes as all-in-one

glyphs

SocialWave [184] - ↑ different glyphs - Independent Node-link diagram, on

the nodes as all-in-one

glyphs

ConToVi [53] ↓ glyphs on separate

view

↑ glyphs on separate

view

- Dependent Animation-based visu-

alisation, all-in-one

glyphs on a separate

view

Table 2.4: Summary of the explored related work about multivariate visualisations, where ↑ indicates
a high level of a feature and ↓ indicates a low level. The green colour represents features that are
positive or desirable, while the red colour represents features that are negative or undesirable.

In the literature, we encountered a study that focused on icons, but extensive use of icons can

lead to clutter, especially when representing abstract attributes that are difficult to depict with

distinct icons. We reviewed several works that preferred and incorporated glyphs as either integral

or primary visual elements. Most of the studies, whether for integral or primary use, showcased

glyphs that were designed as all-in-one representations. In some cases, glyphs remained constantly

present in the visualization, contributing to clutter. Alternatively, glyphs were visualised separately,
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limiting their integration into more comprehensive visual representations. Additionally, aesthetics

play a significant role in visual design; appropriate colours should be chosen to avoid overcrowding

the glyphs.

Remark 2.3. Glyphs are the preferred method for visualising multivariate data, and

they are often chosen as an all-in-one, customised representation, tailored to the specific

needs of the dataset or task.

Furthermore, in the case of integral glyphs used in hierarchical or network visualisations, efforts

were made to choose locations that avoided clutter while still conveying more information. For

example, SocialWave [184] designed three types of glyphs, all presented on the nodes, but some

provide more detail, while others are simpler, helping to reduce clutter and improve clarity.

Remark 2.4. The location of the variable representation typically depends on the visual

layout chosen for the hierarchical or network data.

2.4 Visualisation of Conversational Data

In this section, we will present data based on conversations, as the following sections will use a case

study on this type of data, specifically focusing on hate speech. Similarly to the previous sections,

we will also review current research in the field and conclude with a summary.

2.4.1 Conversational Data

Conversational data refers to the collection of information generated through human interactions,

often in the form of textual exchanges, multimedia content (such as images, videos, or links), and

other elements like emojis or audio [49]. This data is inherently dynamic, characterised by its

diverse content and temporality [56]. This diversity not only enriches communication but also

presents challenges in processing and analysing heterogeneous data formats. Conversations often

unfold linearly, forming a hierarchy where each exchange (or utterance) is part of a broader dialogue

or interaction. Each conversation can thus be seen as a hierarchical structure where utterances

build upon or respond to one another, with conversations growing in complexity over time.

Moreover, the informal and spontaneous nature of conversations introduces complexity, requiring

sophisticated methods to capture and interpret key aspects like sentiment, topics of interest, and

user engagement dynamics. Conversational data is inherently multivariate, consisting of different
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types of variables that can be classified as nominal, ordinal, or categorical. For example, text-based

data can include nominal variables such as the speaker’s identity, the topic of discussion, or

sentiment. These are often encoded in categorical variables, like sentiment (e.g., positive, negative,

neutral), topic (e.g., politics, sports, entertainment), or user engagement (e.g., number of responses,

likes, shares). Such diverse data types provide valuable insights into both the immediate context

and the broader trends within a conversation.

In addition, temporality is a key dimension that influences both the structure and interpretation

of conversational data. Conversations unfold over time, creating patterns that reflect evolving

sentiments, behaviours, and events. For instance, the timing and order of messages shape their

meaning and impact, as seen in conversations that transition through stages like introduction,

elaboration, and conclusion. Temporal analyses can reveal short-term dynamics, such as immediate

shifts in sentiment, while also providing long-term insights into behavioural trends and evolving

user engagement.

Furthermore, conversational data can also be analysed through the lens of layered networks,

each representing distinct dimensions of interaction. For example, a social layer captures stable

relationships, such as followers or connections, while a conversational layer maps the transient

dynamics of replies, mentions, and shared content. These layers not only reveal the flow of

information but also uncover patterns in user behaviour and relationships. Within each layer,

hierarchies add further structure and depth. In the conversational layer, threads often form

hierarchical trees, where replies branch from an initial post, reflecting the natural organisation

of dialogue. Similarly, in the social layer, hierarchies of influence can highlight key users driving

engagement and shaping discussions.

Finally, in Sections 2.2.1 and 2.3.1, we introduced key requirements to achieve effective

data visualisations: A) Displaying maximum information while preserving the con-

text, B) Avoiding cluttered visualisations, and C) Selecting the best visualisation

layout/representation for the data and the associated VisTask. These requirements are

highly relevant to the visualisation of conversational data. A) helps ensure that the flow and context

of conversations are preserved, which is necessary for understanding patterns such as how topics

evolve or sentiment shifts over time. B) is essential for managing the complexity of large-scale

conversational data, ensuring that visualisations remain clear and interpretable despite the volume

and variety of the data. C) supports the selection of appropriate representations to balance the

multivariate nature of conversational data which has a hierarchical structure, enabling the effective

exploration of variables like sentiment, topic, and interaction dynamics without overwhelming the
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user.

2.4.2 Review of the Literature

The literature provides several works that focus on visualisation of conversations [212, 31, 150,

144, 79, 82, 126, 135, 199, 7, 63]. Some works have focused on visualising trends and values of

non-hierarchical variables by exploring various techniques such as colours, icons, and glyphs, while

others have proposed hierarchical visualisations to effectively represent multivariate data within

structured conversations.

FluxFlow [212] is an interactive data visualisation system designed to display and evaluate

anomalous information spread (rumours and misinformation) on Twitter. The novel visualisation

design consists of packed circles (retweets) arranged along a timeline showing how an original

message spreads among people over time (see Figure 2.11). The size of the circles symbolises

the power of the influence of a user, and the colour represents an anomaly score. In terms of

visualisation requirements, it adheres to avoiding clutter by using size and colour to distinguish

between the volume and significance of retweets. However, dense clusters can still reduce clarity.

It also supports scalability by allowing the layout to adapt to varying data volumes, although

handling larger datasets may pose challenges.

Figure 2.11: FluxFlow [212]

Episogram [31] was designed to analyse retweeting behaviours on Twitter (see Figure 2.12).

It visualises the activity of each person separately, displaying every message as a single line

on a timeline. While this approach focuses on preserving context by representing individual

interactions over time, it becomes overwhelming due to clutter, as the abundance of lines makes it

challenging to interpret the data at a glance. Furthermore, while the visualisation design is simple,

it lacks scalability, as the timeline can become overcrowded with larger datasets, hindering clear
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comprehension of the retweeting behaviour patterns.

Figure 2.12: Episogram [31]

RumorLens [199] offers a comprehensive tool for detecting and analysing the diffusion of rumours

on social media (see Figure 2.13). It preserves context by providing a Location Distribution

View that maps geographical spread and a Topic Evolution View that tracks the rise and fall of

themes over time, ensuring a clear representation of rumour dynamics. The tool avoids clutter

by using separate, well-organised views that focus on specific aspects, such as sentiment, influence,

and post content, ensuring clarity. Finally, it selects appropriate visualisation layouts to

represent different data types, like the Propagation View’s circular diagram for understanding

rumour dissemination, and the Features Projection View’s clustering technique, which allows for

easy comparison of rumour characteristics.

Mandola [144] was designed with NLP and ML techniques to monitor and detect online hate

speech on social media (see Figure 2.14). The visualisation includes several interactive tools to

present hate speech data effectively. The Hate-map (Figure 2.14.a) uses heat spots on a world

map to indicate the intensity of hate speech in specific regions, with brighter and larger spots

highlighting areas of higher activity. A temporal slider allows users to analyse trends and spikes

over time. The Heat map visualisation (Figure 2.14.b) organises hate speech data by thematic

categories, such as ethnicity, politics, religion, and social issues, using a colour-coded matrix to

display the density of incidents over time. The Hotspot Map (Figure 2.14.c) uses a colour scale
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Figure 2.13: RumorLens [199]

to represent six levels of hate speech intensity across countries, providing a global overview of

hate-related activity. Finally, the all-purpose statistical visualisation (Figure 2.14.d) combines

multiple data elements, including a temporal graph, a U.S. map with regional details, and bar

charts showing hate speech distribution across cities and themes. The system design follows the key

visualisation principles by preserving context through the integration of geographical and temporal

data. It avoids clutter by using multiple views, each focusing on different attributes of the data,

allowing users to explore the information without overwhelming the screen. The use of distinct

colour gradients further enhances clarity, and the design maintains scalability by grouping hate

speech data by regions and topics, making it adaptable to larger datasets.

Moreover, some works utilise hierarchical visualisations for analysing conversations; here,

we will explore those that are most relevant. ConVis [79] was designed to analyse comments in

online conversation threads and focused on getting the perception of the whole conversation at

first glance. They display each comment as a horizontal stack bar and all the replies are stack

bars placed under each other by their order in the thread (see Figure 2.15, comments are stacked

together). The levels of the threads are shown by positioning bars with indentation. However, this

approach has limitations in preserving context and avoiding clutter when dealing with deeper



CHAPTER 2. BACKGROUND ON HIERARCHICAL MULTIVARIATE DATA 50

Figure 2.14: Mandola [144]

or broader hierarchies. The architecture may struggle to visualise extensive hierarchies effectively,

as such data may not fit on a single screen, failing the criteria for scalability. Additionally, the use

of indentation to represent thread levels can result in stretched bars for long and narrow threads,

leaving large empty spaces that disrupt the balance and clarity of the visualisation, contrary to

principles of even node distribution and space preservation. Moreover, this layout incorporates

multivariate data using a one-by-one style glyph representation on the bars. This approach is

effective in this case because the bars provide sufficient space to accommodate and display the

glyphs.

Other works used different layouts, such as ShareFlow [82] used a radial tree layout to show

information diffusion between individuals on social media fan pages’ comment sections (see Figure

2.16). Nevertheless, their method did not show the data hierarchically and rather showed hierarchical

items side by side. This design choice limits the ability to preserve context, as the side-by-side

arrangement may obscure the natural parent-child relationships inherent to hierarchical data.

Furthermore, the layout risks creating visual clutter when dealing with complex hierarchies,
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Figure 2.15: ConVis [79]

as it does not fully exploit the available canvas space to distribute nodes evenly or maintain

proximity between connected elements. These shortcomings highlight the need for scalable and

context-preserving designs when visualising hierarchies within conversational data.

Additionally, Forum Explorer [126] was designed to visualise threaded conversations on websites

like Reddit (see Figure 2.17). They used a radial layout to visualise the threads as a whole, i.e.,

achieve a complete view of all the threads, and they used a traditional tree layout in addition to

the radial layout to visualise some of the large sub-conversations in the hierarchies separately. This

approach aligns with the requirement of preserving context by making both the overall structure

and detailed sub-threads accessible. However, radial layouts may struggle with scalability when

dealing with highly large hierarchies. If the data set is large or densely connected, the visualisation

can become cluttered, as overlapping nodes and edges obscure relationships. While the

technique is useful for analysing larger sub-threads, it may not provide the most informative or

adaptable representation for all hierarchical structures, especially when prioritising clarity and

avoiding visual clutter.

2.4.3 Summary

The literature presents various approaches to visualising conversations and information diffusion on

social media, each addressing unique aspects of hierarchical and multivariate data representation.
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Figure 2.16: ShareFlow [82]

We summarise our findings in the Table 2.5.
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Figure 2.17: Forum Explorer [126]

Vis Name A) Max Info and

Context

B) Non-Cluttered

Vis

C) Choosing

Rep.

Visual Mapping:

Layout and Conv.

Data

FluxFlow [212] - ↑ size ↑ colour ↓ scalabil-
ity

- Bubble graph, colours

Episogram [31] ↑ visualising messages

separately

↓ visualising messages

separately ↓ scalability
- Lines, lines and

colours

RumorLens [199] ↑ multiviews ↑ multiviews Chooses suitable

layouts for various

data types

Sunburst diagram,

colours and shapes

Mandola [144] ↑ multiviews ↑ multiviews - Map and heat map,

colours

ConVis [79] ↓ scalability ↓ scalability - Bar blocks on top of

each other, colours

ShareFlow [82] ↓ scalability ↓ scalability - Radial, colours

ForumExplorer [126] ↑ subtree views ↓ scalability - Radial and tree,

colours

Table 2.5: Summary of the literature review of conversational data visualisations, where ↑ indicates
a high level of a feature and ↓ indicates a low level. The green colour represents features that are
positive or desirable, while the red colour represents features that are negative or undesirable.
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For instance, FluxFlow and RumorLens employ packed circles and circular diagrams to depict

the spread of rumours and anomalies on X (previously Twitter), complying with the principle of

preserving context (A) by illustrating the flow of information explicitly. However, these methods may

struggle with avoiding clutter (B), as densely packed circles or flow paths can obscure relationships

when not well-distributed.

Episogram and ConVis focus on retweeting behaviours and conversation threads, using timelines

and stack bar visuals. These layouts effectively preserve the temporal aspect of conversations while

remaining scalable for smaller datasets. However, the stack bar approach in ConVis can lead to

inefficient use of space and visual clutter when dealing with long or narrow threads.

Mandola leverages maps and heat maps to monitor hate speech, offering a clear spatial

context that aligns with task-specific visualisation needs (C). Yet, its utility for hierarchical

data is limited, as heat maps do not inherently convey parent-child relationships within the

data. Conversely, ShareFlow and Forum Explorer use radial layouts for information diffusion and

threaded conversations, which can effectively depict hierarchical structures when appropriately

applied. However, radial layouts often fail to avoid overlapping nodes and edges, reducing clarity

in large datasets.

Overall, these works demonstrate how criteria such as preserving context, avoiding clutter,

and selecting appropriate layouts influence the effectiveness of visualisations for hierarchical and

multivariate data of conversations.

Remark 2.5. Most commonly, conversational data is mapped to colours and visualised

using radial layout, visualisations can become cluttered when displaying large datasets.

Moving forward, the next chapters will focus on optimising these visualisation approaches by

integrating the strengths of hierarchical layouts to better represent complex, multivariate data

with greater clarity. The goal will be to address the gaps identified in existing works, particularly

in effectively visualising deeper hierarchies and integrating multivariate data in a manner that

remains clear and uncluttered.



Chapter 3

Categorisation of Hierarchical

Multivariate Data

Visualising hierarchical data, particularly when it is multivariate, is a challenging task. Multi-

variate hierarchies are complex, large, and contain a variety of information and properties. The

main challenges involve representing this information without introducing visual clutter or losing

contextual meaning. Numerous well-known visualisation methods exist to display hierarchies, such

as Treemaps, Tree diagrams, and Sunburst charts [103]. In this context, choosing an appropriate

visual mapping is a difficult task and it becomes even more challenging for users who are unfamiliar

with visualisations. This necessitates the use of automatic visual mapping of layouts to facilitate

the creation of effective visual representations as it can be observed in the Remark 2.2 in the

previous Chapter.

Nonetheless, the overarching challenge, as we mentioned in Challenge 2 in the Introduction 1,

lies in finding the visualisation method that best fits a specific hierarchical structure. Hierarchical

structures can vary greatly in shape, which is influenced by factors such as the degree of connectivity

of internal nodes and the number of nodes. The term ”shape” refers to the varying distributions of

nodes and their connections, which can differ in levels and fan-outs, resulting in structures that

may be broad or narrow and deep.

We propose that to create effective visualisations, it is important to select the right visualisation

layout while considering these different inner shapes. Moreover, when hierarchical data is also

multivariate, additional methods are required to effectively represent these attributes or variables

embedded in the hierarchy. This can be accomplished by incorporating visual variables such as

colour, position, and shape, as well as by utilising icons and glyphs, depending on the type of

55
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variable or attribute being represented and the layout in which it will be embedded. Additionally,

when multiple attributes need to be displayed simultaneously, this influences the choice of visual

elements to ensure clarity and minimise cognitive load.

Thus, in this chapter, we first introduce the notation of hierarchical data and variables.

Afterwards, we propose a categorisation of hierarchical data based on its internal shape and present

a formalisation algorithm. Additionally, we analyse this algorithm with examples, and we propose

an automatic layout selection based on this categorisation. Then, we provide guidelines for visual

mapping of multivariate data and conclude with a discussion.

3.1 Networked and Hierarchical Data Categorisation

Hierarchical data contains nodes and edges that connect a pair of nodes. Depending on the number

of nodes and their connexions, the ”shape” of the internal structure of the hierarchy can vary. In

this section, we propose the formalisation of two prominent shapes that often emerge, which are

the elongated shape and the compact shape. The elongated shape is characterised by a hierarchy

that extends linearly, meaning they are narrow (see Figure 3.1.a). In contrast, the compact shape

features a more condensed structure, with nodes densely packed together, often concentrated in the

upper levels of the hierarchy and branching out from a central point (see Figure 3.1.b). Additionally,

some hierarchical structures can exhibit mixed topologies, combining elements of both elongated

and compact shapes (see Figure 3.1.c). In the following, we will define specific properties, which

will later be used to accurately characterise these different shapes.

3.1.1 Notation of Networked and Hierarchical Data

In this section, we introduce the notation of networked data and hierarchical data, along with some

properties that will be used in the next chapters of this manuscript. Networked data is defined

by a system of objects (nodes) and links (edges) representing many-to-many relationships between

them. In this type of data, entities can have multiple, reciprocal connections, making it suitable for

analysing systems with complex, interdependent components, such as social networks or biological

networks.

A networked dataset can be formalised as a graph G = (Nodes,Edges), where:

• Nodes = {n0, n1, . . . , ni} is the set of nodes (vertices), representing entities in the network.
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Figure 3.1: Examples of (a) Elongated, (b) Compact, and (c) Mixed structures.

• Edges = {ei,j | ni, nj ∈ Nodes} is the set of edges (or links), where each edge ei,j represents

a relationship between nodes ni and nj .

Each edge ei,j ∈ Edges can be either directed or undirected, depending on the nature of the

relationship between ni and nj .

When we deal with real data, we can obtain several connected components in a networked

dataset. We define a connected component of a graph G = (Nodes,Edges) is a subgraph

Gk = (Nodesk, Edgesk) where:

• For every pair of nodes nk
i , n‘kj ∈ Nodesk, there exists a path of edges in Edgesk connecting

them.

• The subgraph is maximally connected, meaning that no node from Nodes \Nodesk can be

added to Nodesk while preserving this property of connectivity.

In contrast, hierarchical data is organized in a tree-like structure where entities are arranged in

levels, with each entity (node) having a clear parent-child relationship. Connections in hierarchical

data follow a strict one-to-many pattern, ensuring a top-down organization where each lower-level

entity is subordinate to a higher-level one. In the following, we formalise hierarchical structures,

introducing some basic definitions about them.

We define a set of hierarchical structures,



CHAPTER 3. CATEGORISATION OF HIERARCHICAL MULTIVARIATE DATA 58

T = {T 1, T 2, T 3, ..., Tn}. (3.1)

where each T k, the k-th hierarchy, is a directed rooted tree,

T k =< Nodesk, Edgesk >, (3.2)

being,

Nodesk = {nk
0} ∪Nk is the set of nodes of the hierarchy , being nk

0 the root node of T k, and

Nk =
⋃
{nk

j }, ∀1 ≤ j ≤ numk , the set of all the other nodes of the tree T k, and

Edgesk =
⋃
{eki,j}, is the set of edges of the hierarchy, where eki,j is the directed edge from nk

i

to nk
j , if n

k
j is related to nk

i , and nk
i , n

k
j ∈ Nodesk.

Notice that the size of T k is the number of nodes of the tree, #Nodesk = numk + 1, where

numk is the number of nodes directly or indirectly related to the root node, nk
0. Moreover, all the

hierarchies T k are weakly connected and acyclic graphs. Each T k is weakly connected since

when we change all of its directed edges for non-directed edges, we get a connected non-directed

tree, where there is one and only one path from any node to any other node in T k. In addition, T k,

as a single rooted graph, is acyclic, i.e., no node has more than one parent; thus, it presents no

cycles. We define a subtree of T k rooted at nk
j as Subtree(T k, nk

j ).

Furthermore, there are some relevant properties of the hierarchy to bear in mind such as depth

and width. First, let’s consider the depth of any node of the tree T k as the distance of the node

nk
j to the root nk

0, taking as distance between two nodes (nk
i , n

k
j ), the number of connected edges

from the node nk
i to the node nk

j ,

depth(T k, nk
j ) = distance(nk

0, n
k
j ),∀0 ≤ j ≤ numk

Note that we can define similarly the depth of any node, nk
i , of a subtree rooted in nk

j :

depth(Subtree(T k, nk
j ), n

k
i ) = distance(nk

j , n
k
i ),

∀nk
i ∈ Subtree(T k, nk

j )
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Then, we define D(T k) = maxnk
j∈Nk depth(T k,nk

j ) as the depth of the tree. Likewise, the depth

of a subtree is D(Subtree(T k, nk
j )).

Secondly, we define directChildren(nk
i ) as the set of nodes nk

j belonging to T k such that

distance(nk
i , n

k
j ) = 1, and then we define witdh(nk

i ) of a node as the number of its direct children,

width(nk
j ) = #directChildren(nk

j ) ∀0 ≤ j ≤ numk

Thus, we define W(T k) = maxnk
j∈Nk width(nk

j ) as the width of the tree.

Based on the characteristics, now we will define how a tree grows. First of all, we define a node

as significant when it has enough descendants in relation to its parent’s descendants. That is,

significant nodes fulfil the following conditions:

size(Subtree(T k, nk
j ))

size(Subtree(T k, parent(nk
j )))

> tolerance (3.3)

We define significant(nk
i ) as the set of significant direct children of the node nk

i .

Then, the Growing Factor of a tree rooted in nk
i , either for the whole tree (T k rooted in

nk
0) or any subtree (Subtree(T k, nk

j ) rooted in nk
j ), refers to how nk

i branch out, i.e., it defines the

relationship between its width and the width of any of its s-th subsequent levels. Within a level,

we only consider those significant nodes, nk
j . Thus, the Growing Factor of the subtree rooted in the

node nk
i of a s-th sublevel defined as:

GrowingFactor(nk
i , s) =

∑
nk
j∈s-th level(nk

i )

width(nk
j )

width(nk
i )

being s-th level(nk
i ) = {nk

t }, where each node nk
t is located at the s level of the subtree rooted

at nk
i , i.e., depth(Subtree(T

k, nk
i ), n

k
t ) equals to s.

Given any hierarchical structure - a whole tree or a subtree -, we define the tendency of its

inner shape based on the Growing Factor. This trend tells us how the tree grows through its

sublevels: elongated or compacted (see Equations (3.4) and (3.5), respectively). These conditions

depend on certain threshold values, N , L, GFElongated, and GFCompact related to the number of

direct children, a certain number of levels and the growing factor thresholds related to elongated and

compact tendencies, respectively. Next, we formalise the Elongated and Compact tendencies

as a combination of two conditions AND (∧), and OR (∨):
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• Elongated Tendency, ET (nk
i , L,GFelongated) means that the tree rooted at nk

i is narrow

along l levels.

width(nk
i ) ≤ N ∧(

#significant(nk
i ) = 0 ∨ (3.4)

GrowingFactor(nk
i , s) ≤ GFelongated,

∀s : 1 ≤ s ≤ L
)

• Compact Tendency CT (nk
i , L,GFcompact) means that the tree rooted at nk

i is broad along

L levels.

width(nk
i ) > N ∧(

#significant(nk
i ) = 0 ∨ (3.5)

GrowingFactor(nk
i , s) ≥ GFcompact,

∀s : 1 ≤ s ≤ L, GrowingFactor(nk
i , s) ̸= 0

)
The first condition to distinguish both tendencies checks the number of direct children of the

root node, width(nk
i ). This value fixes the tendency of the tree, which is elongated whenever this

value is below the threshold value, N , and compact otherwise.

Moreover, the second condition checks the significance of the node nk
i , i.e., if it has significant

children and its growing factor. It should be noted that when a node has no direct significant

children, its Growing Factor makes no sense, i.e., #significant(nk
i ) = 0, Table 3.1.(b) is an example,

node nk
0 in blue colour, that has no significant children. Thus, in those cases, the tendency is only

based on the width of the node because #significant(nk
i ) = 0 is true (see the first part of the

second condition in Equations 3.2 and 3.3).

The value L in the second condition models the proportion of the tree needed to determine

its shape’s tendency. For example, by setting L to 1, we are only considering the trend of the

shape at the first level but not in the rest of levels, and by setting L at the maximum depth of the

tree, we are demanding all its levels to strictly follow that tendency. Note that this constraint is
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Table 3.1: Circle Packing with categories (a) Elongated, (b) Compact, and (c) Unspecified. The
threshold values used to compute significant nodes and Growing Factors are: N = 25, L = 4,
GFElongated = 1.9, GFCompact = 0.25, and tolerance = 0.15.
Note that data sets are automatically classified by means of an algorithm that implements the
categorisation presented in section 3.1.

(a) Data set categorised as Elon-
gated

(b) Data set categorised as Com-
pact

(c) Unspecified data set

W(T 1) = 18 W(T 2) = 60 W(T 3) = 45

D(T 1) = 11 D(T 2) = 4 D(T 3) = 15

#Nodes1 = 100 #Nodes2 = 100 #Nodes3 = 200

width(n1
0) = 9 width(n2

0) = 60 width(n3
0) = 45

#significant(n1
0) = 2 #significant(n2

0) = 0 #significant(n3
0) = 3

GrowingFactor(n1
0, 1) = 1.1,

GrowingFactor(n1
0, 2) = 1.5,

GrowingFactor(n1
0, 3) = 0.8,

GrowingFactor(n1
0, 4) = 0.7

GrowingFactor(n3
0, 1) = 0.08,

GrowingFactor(n3
0, 2) = 0.11,

GrowingFactor(n3
0, 3) = 0.26,

GrowingFactor(n3
0, 4) = 0.33

theoretically possible but it is not easy to happen in real data sets. Actually, an intermediate value

of L fixes the trend in the first L levels of the tree, without considering how the rest of the levels

behave. Table 3.1 shows the GrowingFactor(nk
0, s), with s between 1 and 4 (L = 4) in columns a

and c.

In addition, the value of the growing factor, GF , tell us about the tree’s growth, i.e., it

determines how the L sublevels of a node maintain in relation to how it does. For example, if the

same tendency is maintained in the successive L sublevels of the tree, then the growingFactor is

approximately 1, which strictly guarantees the tendency of the whole tree. In the case of elongated

tendency, to control how the tree expands we define a maximum value, GFElongated below which we
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Figure 3.2: Overview of (a) Elongated and (b) Compact tendencies. In red, are zones where the
tendency changes from elongated to compact, and from compact to elongated.

consider that the tendency is maintained (see Figure 3.2.a). Similarly, we define a minimum value,

GFCompact up to which we consider that the tendency is maintained in the case of compact tendency

(see Figure 3.2.b). For instance, Table 3.1.(a) shows a root node with 9 direct children (less than

N = 25) and the following s levels up to L = 4 with a (GrowingFactor(nk
i , s) ≤ GFelongated(= 1.9)).

Thus, according to Equation (3.2), we can affirm that the root node, nk
0 follows an Elongated

Tendency (ET).

Additionally, we can detect some parts of the hierarchies that become linear sequences, i.e.,

such spines. Then we can easily identify that a spine starts at node nk
i when the relation between

the number of nodes of the subtree of nk
i , and the number of sublevels of that subtree is close to 1.

Let denote spine(nk
i ) if

D(Subtree(Tk,nk
i ))

#Subtree(Tk,nk
i )

= 1.

Considering elongated and compact tendencies, as depicted in Figure 3.2, we propose the

following categorisation of hierarchies:

1. T k is Elongated when all the significant nodes through L levels starting at the root node of

T k fulfil the elongated tendency property, ET (nk
0, L)
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(see Figure 3.3). Notice also that spines are a particular case of elongated structures.

2. T k is Compact when the main trend of the hierarchy fulfils compact properties at the root

of T k or any node/s at some distance to it, D, and also it has not narrow (elongated) subtrees

(see Figure 3.4) .

(CT (nk
0, L,GFcompact)∨

∃nk
i : CT (nk

i , L, 1.0), distance(n
k
i , n

k
0) < D)

∧ ∄nk
i : ET (nk

i , L) ∀0 ≤ i ≤ #Nodesk

Figure 3.3: Example of Elongated hierarchy: width(n1
0) = 9, #significant(n1

0) = 1,
GrowingFactor(n1

0, 1) = 0.55, GrowingFactor(n1
0, 2) = 1.33, GrowingFactor(n1

0, 3) = 0.55,
GrowingFactor(n1

0, 4) = 0.66, Threshold values: N = 25, L = 4, GFElongated = 2, tolerance =
0.15.

It should be noted that not all hierarchies fall into these two categories and thus may remain
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Figure 3.4: Example of Compact hierarchy: width(n2
0) = 60, #significant(n2

0) = 0, Threshold
values: N = 25, L = 4, GFCompact = 0.25, tolerance = 0.15

Unspecified. Those Unspecified hierarchies may contain both elongated and compact subtrees,

having a mixed structure or several compact clustered regions. In this chapter, we focus on the

study of the layouts that fit in well with Elongated and Compact ones.

3.1.2 Algorithm

In this section, we depict the main strategy followed to categorise the inner shapes of hierarchical

data (see Algorithm 1). As inputs, it takes the entire hierarchy (T k), the root node (nk
0), and

threshold values. It is noteworthy that nk
i can be any node of the hierarchy. As we stated above, the

algorithm uses the threshold values to check some properties of the hierarchy (N , L, D, GFElongated,

GFCompact, tolerance).

First, in lines 1–12, we check if the root node has an Elongated Tendency (see ET (nk
0, L,GFelongated)),
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verifying the conditions stated in Equation (4)). If so, we go through all the significant children

(getAllSignificantChildren() to test their compactness (using the method CT (nk
i , L,GFcompact)).

Only if no compact subtree exists, the hierarchy will be categorised as Elongated. Otherwise,

the hierarchy is elongated in the first level but contains some compact structure and thus, it is

categorised as Unspecified.

Secondly, in lines 13–29, the algorithm finds a node with Compact Tendency, nk
c , (i.e. a node

that fulfils the condition of Equation (5), CT (nk
0, L,GFcompact)). Note that this node can be directly

the root node of the hierarchy, nk
0, or any node close enough to the root node, dist(nk

i , n
k
0) < D

(see lines 13–16). Then, similarly to the Elongated case, we traverse all the significant children

(getAllSignificantChildren() to test their elongation (using the method ET (nk
i , L,GFelongated)).

Again, only if no elongated subtree exists, the hierarchy will be categorised as Compact. Otherwise,

the hierarchy is compact in the first level but contains some elongated structure and thus, it is

categorised as Unspecified.

Finally, in case the algorithm does not find elongated or compact tendencies in the root node,

we categorise the hierarchy as Unspecified.

3.1.3 Analysis of the Categorisation

In the previous sections, we introduced a categorisation method to detect the tendencies in

hierarchical structures, focusing on the factors that influence their shape. By fixing certain values,

we aim to distinguish between elongated and compact tendencies in hierarchies. Specifically,

we examine the number of direct children of the root node, denoted as width(nk
i ), which is one of

the conditions that determine the hierarchy’s tendency—elongated when below a threshold value,

N , and compact when above. Furthermore, we identify significant nodes in the hierarchy, which

help control the expansion and maintain the consistency of the hierarchy’s shape. We also explore

the concept of the growing factor, GF , which describes how sublevels maintain the hierarchy’s

tendency as it grows. In the case of an elongated tendency, the growing factor is defined with a

maximum value, GFElongated, below which we consider that the elongated tendency is maintained.

Conversely, for compact tendencies, a minimum value, GFCompact, is set to determine when the

compact tendency is preserved. These values help control the hierarchy’s expansion and ensure

the consistency of its shape. In this section, we will analyse our choices for these fixed values and

how they contribute to detecting hierarchical tendencies. The datasets analysed are derived from

real online conversations in news contexts, providing a practical foundation for the analysis. The

subsequent simulations are based on these examples to ensure relevance and applicability. For the

analysis of the N value, we will utilise two elongated, two compact, and two unidentified datasets,



CHAPTER 3. CATEGORISATION OF HIERARCHICAL MULTIVARIATE DATA 66

Algorithm 1 Hierarchical Data Categorisation Algorithm

Require: T k, nk
0, GFelongated, GFcompact, L ≥ 0, D ≥ L, 0 ≤ tolerance ≤ 1, N

1: if ET (nk
0, L,GFelongated) then

2: sign = getAllSignificantChildren(T k, nk
0, L, tolerance)

3: isCompact ← False
4: for all nk

i in sign do
5: isCompact ← CT (nk

i , L,GFcompact)
6: end for
7: if isCompact then
8: Return Unspecified
9: else

10: Return Elongated
11: end if
12: end if
13: if CT (nk

0, L,GFcompact) then
14: nk

c ← nk
0

15: else if ∃nk
i : CT (nk

i , L,GFcompact), dist(n
k
i , n

k
0) < D then

16: nk
c ← nk

i

17: end if
18: if ∃nk

c then
19: sign = getAllSignificantChildren(T k, nk

c , L, tolerance)
20: isElongated ← False
21: for all nk

j in sign do

22: isElongated ← ET (nk
j , L,GFelongated)

23: end for
24: if isElongated then
25: Return Unspecified
26: else
27: Return Compact
28: end if
29: end if
30: Return Unspecified
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each with varying numbers of total nodes, inner structures, and direct children (see Table 3.2). For

tolerance analysis, we will focus on one elongated and one compact dataset (datasets 2 and 3 of

Table 3.2, respectively). Lastly, for GFElongated and GFCompact, we will use the same two elongated

and two compact datasets previously employed in the N value analysis (datasets 1, 2, 3, and 4 of

Table 3.2).

N Value

The tendency of a hierarchical data structure depends on various factors, including the threshold

value N . By fixing N near 25, we standardise the process of classifying hierarchies as elongated

or compact, simplifying comparisons across datasets. One of the conditions is that a hierarchy is

considered elongated when the number of direct children of the root node (the ”width”) is below

N , and compact when the width exceeds this value. Additionally, other parameters are fixed for

consistency: tolerance is set to 0.15, GFElongated is 2, and GFCompact is 0.25. This ensures that

only the N value is adjusted during the analysis. It is worth noting that the size of the hierarchy

plays a significant role, as N = 25 may not be effective for larger hierarchies. In this study, the

total number of nodes in the hierarchies ranges between 65 and 265.

In Table 3.2, we explore how fixing N to 25 is a reasonable choice for the selected examples.

The green cells represent the correctly identified tendency—elongated or compact—according to the

chosen threshold for N . For instance, in the case of Dataset 1, with a width of 21 and N = 25, the

hierarchy is classified as elongated, as expected, since the width is below the threshold. However,

reducing N to 21 would result in it not being classified as elongated. This is evident in Figure

3.5.a, where Dataset 1 clearly exhibits an elongated tendency. The nodes are distributed vertically,

and in the radial layout (see Figure 3.5.b), the compactness typically seen in fully occupied levels

is notably absent with one branch standing out having an elongated tendency.
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Dataset Width N Elongated Tendency Compact Tendency

1 21 25 Yes No

1 21 21 No No

2 10 25 Yes No

2 10 9 No Yes

3 26 25 No Yes

3 26 26 Yes No

4 64 25 No Yes

4 64 65 Yes No

5 36 25 No Yes

5 36 36 Yes No

6 10 25 No No

6 10 9 No Yes

Table 3.2: Elongated and Compact Tendencies Based on Width (total number of direct children)
and N Values. Green cells represent correctly classified cases, while red cells indicate misclassified
cases.

Figure 3.5: Dataset 1 displayed in (a) Tree layout and (b) Radial Layout
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The value of N is influenced by the width, meaning that different datasets may exhibit an

elongated tendency at different values of N . For instance, in Dataset 1, a threshold of N = 21

prevents the dataset from being classified as elongated, while in Dataset 2, N = 9 is the value

that changes classification to compact. Therefore, we explored various datasets to determine the

threshold value for N in hierarchies with a total number of nodes ranging between 65 and 265. We

concluded that N = 25 is the critical value where the hierarchy becomes too wide to be considered

elongated. As shown in Figure 3.6.a, Dataset 2 is elongated, as it has very few direct children and

lacks the growth of compactness. The radial layout (see Figure 3.6.b) reveals an irregular shape,

while the tree layout maintains a more structured and coherent form.

Figure 3.6: Dataset 2 displayed in (a) Tree layout and (b) Radial Layout

Turning to Dataset 3, with a width of 26, we observed that with N = 25, it is classified as

having a compact tendency. This classification is confirmed in Figure 3.7. It is evident that when

using the tree layout, the hierarchy becomes too wide, making it difficult to appreciate the finer

details (see Figure 3.7.a). In contrast, the radial layout optimises the canvas usage, allowing for a

clearer view of the continued compactness, as shown in Figure 3.7.b. The threshold value of 25

is further confirmed in this case, as setting N = 26 classifies the hierarchy as elongated (see 3.2),

which does not accurately reflect the compact structure.
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Figure 3.7: Dataset 3 displayed in (a) Tree layout and (b) Radial Layout

For Dataset 4, which has a larger width of 64, setting N = 25 correctly classifies the hierarchy

as compact, as shown in Figure 3.8.b. To change the tendency to elongated, a significantly larger

value of N , such as 65, would be required. However, this is an unusually high value and does not

reflect the hierarchy’s actual structure, as demonstrated in Figure 3.8.a. The choice of N = 25 is a

reasonable threshold in this kind of dataset with a mean of 157 total nodes, effectively capturing

the hierarchy’s true structure without resorting to excessively large values.

Figure 3.8: Dataset 4 displayed in (a) Tree layout and (b) Radial Layout



CHAPTER 3. CATEGORISATION OF HIERARCHICAL MULTIVARIATE DATA 71

Furthermore, some datasets initially exhibit either elongated or compact tendencies but later

take on a different form, such as Datasets 5 and 6, which we classify as unspecified. For example,

setting N = 25 for Dataset 5, which has a width of 36, incorrectly classifies it as compact, as shown

in Figure 3.9. Although the width is large, the hierarchy exhibits some elongated tendencies within

its branches, with certain branches being very long. However, it does not maintain consistent

compactness, making the compact classification unsuitable (see Figure 3.9.b). On the other hand,

when we set N = 36, the hierarchy is classified as elongated, which is not correct either, due to the

initial compactness observed at the root level (see Figure 3.9.a). As mentioned before, N is just

one factor in determining the tendency.

Figure 3.9: Dataset 5 displayed in (a) Tree layout and (b) Radial Layout

Lastly, for Dataset 6, which has a width of 10, similar to Dataset 2, we observed that while the

hierarchy initially appears elongated (see Figure 3.10), with few nodes directly connected to the root

and long branches, some nodes at the second level become more compact, making the classification

uncertain. Setting N = 9 classifies it as compact, while N = 25 classifies it as elongated. However,

as shown in Figure 3.9 a and b, the hierarchy is neither strictly elongated nor compact. Therefore,

after a careful review of multiple datasets, we conclude that N = 25 provides the most consistent

and accurate classification across all datasets.
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Figure 3.10: Dataset 6 displayed in (a) Tree layout and (b) Radial Layout

As we have already explored, the threshold value N can be influenced by the available datasets.

Now, we also think that the canvas size may impact this value. The visual representation of the

hierarchy can vary depending on the device being used—whether it’s a standard laptop, a large

desktop screen, or a mobile phone. While the concept of N remains constant, the way the data

is displayed changes based on the screen size. For consistency, we have adjusted N to suit a

medium-sized screen (28–38 cm W and 16.5–23 cm H), such as a typical laptop, ensuring that the

visualisation remains clear and balanced across common devices.

Tolerance Value

The Growing Factor is another key factor used to determine the tendency of the hierarchy, as

shown in formulas 3.4 and 3.5. Significant nodes denoted as significant(nk
i ), are defined as nodes

that have a relevant number of descendants compared to their parent’s descendants. These nodes

play an important role in detecting the Growing Factor (GF ), as only these nodes are used to

define the GF of a hierarchy. To identify the significant nodes, a tolerance threshold is set. In this

thesis, we fixed the value of tolerance to 0.15. However, this value can be adjusted depending on

the available datasets. To justify our choice, we take two datasets, one elongated (dataset 2) and

one compact (dataset 3), and explore the impact of different tolerance values on the classification

of significant nodes.

For example, for a tolerance value of 0 in Dataset-Elon, nearly all nodes in the hierarchy are

considered significant, as illustrated in Figure 3.11.a. However, many of these nodes lack relevance
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in practice. For instance, nodes directly connected to the root without any children contribute

little and can be excluded. When the tolerance is adjusted to 0.10, as shown in Figure 3.11.b, the

hierarchy simplifies, retaining only the largest direct node connected to the root and some of its

children. Thus, as the tolerance value increases, the number of significant nodes decreases. When

the tolerance is raised to 0.20, as shown in Figure 3.12.a, some of the less relevant nodes from the

larger branch are eliminated.

Figure 3.11: Significant nodes for Dataset-Elon with tolerance set to a) 0 and b) 0.10

From a tolerance of 0.20 to 0.40, the number of significant nodes remains unchanged; however,

when the tolerance reaches 0.50, as shown in Figure 3.12.b, only a single node remains. The final

tolerance value should be chosen with care. If set too high, significant descendants at the root of

the tree may go undetected, which can result in hierarchies being misclassified as compact due to

the root appearing as the only significant node. Conversely, if the tolerance is set too low, such as

0.10, the hierarchy becomes cluttered with unnecessary nodes, reducing its interpretability. In this

dataset, we can consider 0.20 the mid-way.

Figure 3.12: Significant nodes for Dataset-Elon with tolerance set to a) 0.20 and b) 0.50
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When exploring another dataset, Dataset-Comp, as shown in Figure 3.13, the effect of different

tolerance values becomes clear. In Figure 3.13.a, with a tolerance set to 0.10, three nodes connected

to the root remain significant along with their children. However, when the tolerance is increased

to 0.15 (see Figure 3.13.b), one of the nodes is removed as it is less significant, with the remaining

node being much larger. At a tolerance of 0.20 (see Figure 3.13.c), there is no change. Moving

to 0.30 (see Figure 3.13.d), another child node is removed, and at 0.40 (see Figure 3.13.e), all the

nodes are eliminated. It’s important to find a middle ground, as selecting an appropriate tolerance

ensures a balance between retaining meaningful nodes and removing redundant ones.

Figure 3.13: Significant nodes for Dataset-Comp with tolerance set to a) 0.10, b) 0.15, c) 0.20, d)
0.30 and e) 0.40

Upon returning to Dataset-Elon and exploring with a tolerance of 0.15 (see Figure 3.14), it

became apparent that more nodes were retained compared to Dataset-Comp, with the largest node

still present. Therefore, we concluded that a tolerance between 0.15 and 0.20 is appropriate for this

thesis. In most cases, we used 0.15 because it provided a good balance for the types of hierarchies

we were analysing.
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Figure 3.14: Significant nodes for Dataset-Elon with tolerance set to 0.15

GFElongated and GFCompact Values

Similarly, factors such as adjusting the elongated and compact dimensions (GFElongated and

GFCompact) of the Growth Factor also influence the overall structure of the hierarchy. These limits

set maximum and minimum values from which the hierarchy is considered elongated or compact

at a given level, respectively. In this thesis, hierarchies are considered to exhibit an elongated

tendency at a given level if their Growth Factor is less than 2, and a compact tendency if their

Growth Factor is greater than 0.25. In Table 3.3, we justify these numbers across four datasets,

where two exhibit an elongated tendency and two a compact tendency.

It can be seen in Table 3.3 that the changes in GFElongated and GFCompact values directly

influence the tendency for each dataset. For example, in the first dataset, the Growing Factor is set

to 0.09, which is smaller than the GF , resulting in a compact tendency. In the second dataset, the

Growing Factor is 0.6; when GFElongated is set to 2 and GFCompact to 0.25, the tendency shifts to

elongated. Similarly, for Datasets 3 and 4, where the Growing Factor is 1, setting GFElongated to 2

and GFCompact to 0.25 initially results in a compact tendency, but as GFCompact is adjusted to 0.9,

the tendency shifts to elongated. These changes demonstrate how variations in GFElongated and

GFCompact influence the hierarchy’s tendency within each dataset. As observed, different Growing

Factors require appropriate threshold values to ensure accurate results. If 0.01 is selected, for
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Dataset Growing Factor GF Elongated GF Compact Tendency

1 0.09523 2 0.25 Elongated

1 0.09523 0.09 0.09 Compact

2 0.6 2 0.25 Elongated

2 0.6 0.5 0.5 Compact

3 1 2 0.25 Compact

3 1 0.9 0.9 Elongated

4 1 2 0.25 Compact

4 1 0.9 0.9 Elongated

Table 3.3: Dataset, Growing Factor, and Growing Factors of Elongated and Compact Tendencies.
Green cells represent correctly classified cases, while red cells indicate misclassified cases.

example, Datasets 2, 3, and 4 will produce incorrect tendencies. The choice of 2 for GFElongated

and 0.25 for GFCompact is deliberate. A high GFElongated value (e.g., 2) emphasises the tendency

for nodes to extend further, creating an elongated hierarchy. Conversely, a low GFCompact value

(e.g., 0.25) allows for tighter grouping, resulting in a compact structure. These values were selected

because they provide a clear distinction between the two tendencies, making it easier to study their

effects on the hierarchy.

3.1.4 Visualising Hierarchical Data

The literature offers a huge visual bibliography of hierarchical visualisations (advanced visuali-

sations), [159] that includes more than 341 techniques, which makes it challenging to find the

best-fitted visualisation for different hierarchical structures. They are classified mainly into two

categories: implicit and explicit visualisations [161]. Implicit hierarchical visualisations represent

parent-child relationships with positional encoding using shapes within other shapes (e.g., using

rectangles both in treemaps, sunburst and icicle diagrams, and circles in circle packing) (see Figure

3.15.a). While on the other hand explicit visualisations represent these relationships with lines,

such as radial tree layout (see Figure 3.15.b). Elijah Meeks [128] proposed four types of layouts:

pack layouts (circle packing), node-link layouts (tree and radial layout), partition layouts (sunburst

diagram and icicle diagram), and treemaps, explaining when to use each visualisation depending on

the type of the data or the VisTask to perform. For instance, they recommended using partition
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layouts for analysing numerical data, and node-link layouts for analysing paths.

Figure 3.15: Example of (a) Implicit and (b) Explicit hierarchical visualisations

It should be pointed out that most of these techniques are derived from each other by adding

additional features or advancing the existing techniques. For example, Multivariate Bubble Treemap

by [213] has the same visual as Bubble Treemap by [71] but it includes additional glyphs. Moreover,

some of these techniques (e.g. radial, tree, etc.) are the most used [141]. In the following, we

analyse the most common implicit and explicit hierarchical layouts. The use of implicit layouts [161],

such as treemaps, Circle packing, Icicle or Sunburst diagrams, where the parent-child relationships

are coded using relative locations between parents and children, are space efficient due to their

high compactness. However, it is harder to read huge-sized, broad and deep hierarchies with these

layouts. In addition, as these layouts place nodes in a nested way without leaving empty spaces,

the inclusion of icons and glyphs, to represent additional attributes in case of data is multivariate,

becomes more difficult. Our emphasis lies in explicit layouts to accommodate multivariate elements

that will be explained in Section 3.2.

We illustrate these ideas by displaying hierarchical data using the Circle packing layout in

Table 3.1. This layout is the circular version of a treemap where nodes are packed in circles. The

root node (e.g., the first tweet on Twitter, now X) is represented as the biggest circle that contains
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all the nodes (see the big blue circle in Table 3.1.a). Direct children of a node are placed inside the

circle relative to their parent node. The more children a node has, the larger the circle is.

While its compactness is an advantage with small-sized data that has few levels, it can be a

disadvantage, especially with broad data that has most of its nodes on the same level as it becomes

overcrowded easily (Table 3.1.b). Moreover, where siblings with a different number of children,

the circle packing uses different sizes in the same levels, losing the perception of the relationships

between them. On the other hand, in narrow and deeper hierarchies, the nested circles make it

difficult to understand the hierarchy structure (Table 3.1.a). Moreover, long spines (i.e., large

narrow branches) are visualised as many concentric circles, because of the consecutive placement of

children onto their parents’ circles, thus, making it hard to appreciate the different levels of the

hierarchy and the parent-child and sibling relationships (see Table 3.1.c). In addition, if we also

add pictorial representations of the multivariate attributes, the visualisation ends up being even

more crowded.

Unlikely to treemaps, Sunburst diagram [180] and Icicle plot [111] implicit layouts show the

parent-child relationships by placing the child nodes next to their parents nodes, circularly in

Sunburst and linearly in Icicle plot. While these two layouts could better show the hierarchy than

treemaps, and use the space more efficiently, they will have similar problems displaying large-sized

data that has long spines. Especially, when the data is big the very outer leaves on hierarchies

are displayed as very thin rectangles on both layouts thus, this will make the graphs harder to

analyse in a complete view. Additionally, in an Icicle plot, the same level nodes are placed next to

each other in a horizontal line and when we consider broad data that has a compact tendency, the

visualisation has to be either horizontally extended beyond the screen, or shrunk with zoom-out, in

both ways it loses the global view. While due to its circular shape, Sunburst will not have this

problem, when the data is too dense it can become crowded easily, and an overcrowded visualisation

hinders the effective exploration of the data. Moreover, if multiple attributes are integrated with

these visualisations, they will be harder to read and analyse on overview and it would be impossible

to see multivariate attributes on the slimmer nodes.

On the other hand, explicit layouts[160], i.e., node-link layouts (tree, radial, force-directed),

have better readability over viewing hierarchies as each node is shown individually [193]. However,

they are also known for using space not very efficiently due to the lines that connect parent

and children nodes occupying space and generating empty backgrounds. Indeed, this can be an

advantage while visualising multivariate attributes as there is plenty of space to map additional

elements such as glyphs. Also, they can visualise data both on the nodes and edges. In the
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Figure 3.16: Tree layout with the same data sets shown using Circle Packing in Table 3.1. The
threshold values used to compute significant nodes and Growing Factors are N = 25, L = 4,
GFElongated = 1.9, GFCompact = 0.25, and tolerance = 0.15.
(a) Data set categorised as Elongated, (b) Data set categorised as Compact, and (c) Unspecified
data set.

following, we show three data sets (elongated, compact and unspecified) through a review of the

most significant explicit layouts in Figures 3.16, 3.17, and 3.18.

The Tree layout in Figure 3.16 is laid out horizontally. Thus, the depths of the nodes are shown

horizontally and, all nodes in the same depth are placed in the same vertical line. Particularly,

the tree layout is well organised to visualise narrow structures, it clearly presents the relationships

between siblings in different levels (see Figure 3.16.a). However, if a hierarchy has nodes with a lot

of direct children on the same level, they will be placed on the same vertical line forming a very long

straight column with very small nodes (see Figure 3.16.b), losing details and wasting canvas space.

Especially, when the wide data is also crowded at all levels tree layout loses its comprehension and

becomes difficult to visualise the entirety of the structure at once (see Figure 3.16.c).

Radial layout (see Figure 3.17) arranges nodes on concentric circles. It is better than the

tree layout when the data is broad since it uses space more efficiently by arranging hierarchies

circularly. Thus, the Radial layout fits larger amounts of nodes into the canvas (see Figure 3.17b).

For whenever its circles are partially filled, human perception through Gestalt’s principle of closure

[194], could reconstruct them as long as they are sufficiently populated with nodes that are evenly

distributed in each level such as in compact data. Thus, the radial layout offers a comprehensible

visualisation of hierarchies with compact data as the total number of nodes in each level is in

proportion to the number of nodes in other levels (see Figure 3.17.b). Otherwise, when data has

elongated tendency characteristics, the perception of closure is lost (see Figure 3.17.a). Moreover,

a hierarchy can initially have a perception of closure in the first few levels however, this perception
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can be lost if the rest of the hierarchy does not follow the initial tendency, such as by having long

threads away after compact first few levels. (see Figure 3.17.c)

Figure 3.17: Radial layout with the same data sets shown using Circle Packing in Table 3.1. The
threshold values used to compute significant nodes and Growing Factors are: N = 25, L = 4,
GFElongated = 1.9, GFCompact = 0.25, and tolerance = 0.15.
(a) Data set categorised as Elongated, (b) Data set categorised as Compact, and (c) Unspecified
data set.

Force layout (see Figure 3.18) also displays the hierarchy somehow in a circular way. However,

unlike Tree and Radial layouts, it does not place the same depth nodes in an ordered alignment,

thus, it is not as effective as showing the relationship between sibling nodes but it gives nodes more

freedom on the canvas. Also, due to its force-based strategy that uses energy functions to place

nodes in the canvas [38], force layout visualises groups (threads) of data in clusters and places them

away from each other. Thus, the Force layout could efficiently display broad (see Figure 3.18.b)

and large-sized (see Figure 3.18.c) hierarchies in a global view. However, in Figure 3.18.a there is a

Force layout with narrow data we can observe that it is difficult to appreciate the relationships

between siblings due to the uneven distribution of nodes at each level.

While circle packing has advantages for small-sized data with few levels, the tree layout effectively

organises narrow structures for visualisation. On the other hand, the radial layout utilises Gestalt’s

principle of closure, allowing human perception to reconstruct partially filled circles, making it

suitable for compact data with evenly distributed nodes across levels. Meanwhile, the force layout

efficiently visualises broad and large-sized datasets. Therefore, we believe that when visualising

Elongated structures the most informative layouts are Tree and Circle. When visualising Compact

structures the most informative layouts are Radial and Force, and for Unspecified structures Force

is the best option. Based on these insights, we propose a rule-based automatic visual mapping

system that selects the appropriate layout according to the structure, and we suggest the following
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Figure 3.18: Force layout with the same data sets shown using Circle Packing in Table 3.1. The
threshold values used to compute significant nodes and Growing Factors are: N = 25, L = 4,
GFElongated = 1.9, GFCompact = 0.25, and tolerance = 0.15.
(a) Data set categorised as Elongated, (b) Data set categorised as Compact, and (c) Unspecified
data set.

appproach:

• Elongated Structure −→ The selected layout is Tree.

• Compact Structure −→ The selected layout is Radial.

• Unspecified Structure −→ The selected layout is Force.

Additionally, we propose that this automatic visual mapping should be applied to subtrees when

they are displayed separately, as a result of a VisQuery on the whole dataset. Since a subtree may

exhibit a different structural tendency compared to the original hierarchy to which it belongs, the

layout applied to the subtree will be adjusted accordingly. For example, as shown in Figure 3.19,

(a) displays the entire hierarchy in a force layout as it has an unspecified structure. However, when

a subtree of this hierarchy is visualised (see b), we calculated that it has an elongated structure.

As a result, it should be visualised in a tree layout, as shown in (c).
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Figure 3.19: a) Entire hierarchy, b) Subtree highlighted on the entire hierarchy, and c) Subtree
visualised separately.

3.2 Visualisation of Multivariate Data in Hierarchies

In this section, we first explore the concept of multivariate data to formalise it and cluster the data,

helping us visualise the different types. We then delve into visualising multivariate data, discussing

the most effective methods for representing each cluster.

3.2.1 Notation of Multivariate Data

In the following, we formalise the types of features contained in multivariate data. This

formalisation will help us later in Section 3.2.2 to analyse the design elements (e.g., glyphs, icons)

that best symbolise them. It should be noted that each node of the hierarchy contains data from

which a set of numF predefined features, F = {f1, . . . , fnumF }, will be extracted. We denote

datank
i
as the data relative to the node nk

i . Analogously, we define dataeki,j
, and datank

0
as the data

contained in each edge eki,j of the tree, and in the root node nk
0 respectively. Thus, the total
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information stored in a tree, T k, is

DataTk = DataNodesk ∪ DataEdgesk ∪ {datank
0
} (3.6)

being

DataNodesk = {datank
i
}, ∀nk

i ∈ Nodesk,

DataEdgesk = {dataeki,j}, ∀e
k
i,j ∈ Edgesk

Above we introduced our multivariate data categorisation neutrally without concretely basing it

on any type of data. It should be noted that this categorisation can be applied to any multivariate

data. Moreover, to explain our idea further we will present an example about analysing conversations

in social media. As an example of a hierarchy T k, the root node contains as datank
0
the text from

X (previously Twitter), a social network: ”A young North African is beaten after a violent robbery

of an old woman”. Then, a direct child nk
j of the root node nk

0 will contain as data datank
j
the

message that replies to this tweet: ”A fucking piece of shit, he and those who lynch him, let’s see

if we understand that we live in a civilisation and not in the jungle. The thief is detained and

the police are called.” In this example, the edge between both nodes nk
0 and nk

j does not contain

any related data (dataek0,j
= ∅). However, when a direct child nk

i of a node nk
j , contains data,

datank
i
, that relates to the data in datank

j
, the edge between them contains the data of both nodes:

dataekj,i
=< datank

j
, datank

i
>.

Based on previous definitions, we state the labelling function, L, as a function that associates

a list of features to each element (either node or edge) of T k according to its information:

L : DataTk −−→ f1 × f2 × · · · × fnumF , fi ∈ F (3.7)

Moreover, we can define L separately for each type of tree element. Thus, we define LNodesk

and LEdgesk with their related information, DataNodesk and DataEdgesk respectively.

LNodesk : DataNodesk −−→ f1 × · · · × fnumFNodes
,

fi ∈ FNodes
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LEdgesk : DataEdgesk −−→ f1 × · · · × fnumFEdges
,

fi ∈ FEdges

It is worth noting that each dimension, or feature, of F , fi, defines a variable in the domain that

can be numerical (discrete or continuous) or categorical (nominal or ordinal). Some of them are

independent variables, but others are dependent allowing to model cause-and-effect relationships.

Additionally, we group related features in NumC clusters depending on their semantics,

C = {c1, ..., cNumC}, where ci = {f i
1, ..., f

i
numF i}, being ∀f i

s ∈ F , 1 ≤ s ≤ numF i.

3.2.2 Visualising Multivariate Data

As discussed, the data is hierarchical but also possesses multivariate attributes (features) that need

to be visualised and integrated with these hierarchical visualisations. Multivariate data implies

visualising a high amount of features without overwhelming users’ perceptions. In the previous

section, we formalised multivariate data, introducing equations 3.6 to capture all information on

nodes and edges, and in 3.7 to include annotated labels. Furthermore, we clustered these labels

based on similarity. Consequently, there are various types of multivariate attributes to visualise, and

selecting the most suitable visualisation method is essential. There is a wide range of approaches in

the literature proposing different visual elements and techniques to communicate a high number of

features at once, such as colours, shapes, icons and glyphs. Although one-by-one based approaches

depict features side by side [201], all-in-one approaches group together interrelated features [135].

Multivariate data visualisations are challenging in themselves but even more so when they

should be integrated into hierarchical visualisations. On the one hand, implicit hierarchical layouts,

due to their high compactness use space efficiently but are left with little empty space to integrate

visual elements representing multivariate data. On the other hand, the low compactness of explicit

layouts can be turned into an advantage, as the empty space, and also edges could be used for

visualising features [213]. Concretely, in this research, we presented explicit layouts (Tree, Radial,

Force) to incorporate the visualisation of multivariate data.

Firstly, let’s consider ordinal data with a list of values, for instance, a three-valued size feature

(small, medium, large), and each node has one of those different values. As these kinds of data

should be represented in every node, the best way to visualise them is directly on the visualisations.



CHAPTER 3. CATEGORISATION OF HIERARCHICAL MULTIVARIATE DATA 85

For example, they could be directly shown on nodes or edges as hue colours. As usually ordinal

features have more abstract meanings, using icons is not ideal. Moreover, using shapes fixed next

to each other on the visualisations can complicate them very easily. If the node contains more than

one ordinal feature or one ordinal feature combined with other types of features then glyphs can be

also an option [51].

Secondly, regarding nominal features (e.g., hair colour blond - yes or no -), to not overwhelm

the user perception, only those nodes or edges that fulfil the property will display its visual element.

For example, only nodes representing blonde individuals will display a visual representation of

blonde hair. Moreover, features with concrete meanings would be well represented with icons. For

example, if recycling is the tagged feature it could be easily visualised with a recycle icon. On the

other hand, for more abstract features such as being sarcastic and intolerant, glyphs could be a

good option and each feature can be mapped onto this glyph, with unique hue colours, without

any additional symbol or icon, that can be visualised either as one-by-one or all-in-one.

3.3 Discussion

Our categorisation, as described in this chapter, is based on some features of the hierarchical data

to detect Elongated and Compact tendencies starting from the node nk
i , such as the significance

of the nodes (significant(nk
i )), how they grow (width(nk

i ), and GrowingFactor(nk
i , s)), and the

scope of growth (controlled by the analysis of L levels). To do so, we needed some threshold values:

for computing significant nodes, tolerance; for the number of direct children (width of nk
i ), N ; for

calculating the tendency along with several levels, L; and for the maximum and minimum values of

the growing factor of elongated and compact structures, GFelongated and GFcompact, respectively. It

should be noted that these threshold values may depend on the data, especially determining the N

value, which indeed helps to establish some kind of borderline between Elongated and Compact

structures. Although we presented an analysis of these threshold values, we think that they deserve

further study, discarding the constant values such as L (in this thesis set to 4) and considering, for

example, their computation based on some percentage of nodes of the tree.

In this dissertation, we mainly focused on the categorisation of hierarchical data independently of

the canvas dimensions as we conducted the study based on a fixed medium-sized screen. Nevertheless,

the value of N (in this thesis set to 25) could be determined by computing the canvas aspect ratio,

which would categorise the same hierarchy differently depending on this aspect ratio, rather than

on the inner structure of the data.
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Moreover, our categorisation is based on rule-based selection, which is currently robust and

reliable. However, recent developments in machine learning algorithms, specifically Large Language

Models (LLMs), such as GPT-3.5 or GTP-4, have shown remarkable advancements in natural lan-

guage processing. For example, a study introduced LLM4Vis [196], a ChatGPT-based visualisation

recommender. While it focuses on recommending visualisations rather than creating them, it can

serve as a starting point for the future. It is noted that currently it is used and tested with tabular

data. Another example is Chat2Vis [122], which is another approach created with ChatGPT that

creates visualisations on prompts and selects the layout itself. However, in this tool, visualisations

are limited to basic ones and work with tabular data. Thus, the field still lacks more intelligent

methods for selecting hierarchical graphs.

Indeed, we proposed a formalisation to categorise hierarchical structures as Elongated or

Compact, however, some hierarchies do not belong to either category, which we have defined as

Unspecified in our current categorisation. Thus, our classification can be further extended as we

detected that some hierarchies include characteristics from both Elongated and Compact (Hybrid)

and some of them may have more than one compact structure (N-compact). Indeed, we investigated

layouts that fit in well with these additional categories. For example, we think that Force layout

could be a good option for visualising Hybrid and n-Compact hierarchies, as it gives nodes more

freedom on canvas.

3.4 Conclusions

In this chapter, we introduced a categorisation algorithm designed to classify data into either

Elongated or Compact categories, with an additional category labelled Undefined if neither applies.

We introduced how the shape of a tree grows, incorporating factors such as significant nodes and

growth factors, and formally defined the concepts of Elongated and Compact tendencies. We

analysed the threshold values used in this categorisation to justify our selections. We presented

examples of various hierarchical structures to illustrate these concepts with different layouts.

Moreover, we decided that Circle packing and Tree layout are the best fit for Elongated hierarchies,

while Radial and Force layouts are for Compact hierarchies. In the next chapter, we will validate

this selection by conducting an evaluation with users. Additionally, we proposed some suggestions

for implementing this algorithm as a rule-based automatic selection, which will also be verified

according to the results. Finally, in this chapter, we discussed how to visualise multivariate aspects

of these hierarchical layouts, and also this will be validated in the same evaluation.



Chapter 4

DViL - A Platform for Hate Speech

Visualisation

In this chapter, we introduce the DViL (Data Visualisation in Linguistics) platform, a web-based

framework designed for analysing the hate speech contained in the comments of online newspapers,

which can be adapted to any data domain. We use this case study to demonstrate the platform’s

capabilities. First, we outline the primary problems and hypotheses in linguistics aimed at studying

hate speech in online newspapers followed by a description of the data linguists developed by

annotating features. Next, we discuss the chosen layouts for visualising hierarchical hate speech

data and also demonstrate how we selected approaches for multivariate data visualisation, based

on formalisations presented in Chapter 3. Afterwards, we describe our proposal of a novel platform

(DViL) to visualise the news articles, their comments, and annotated features as an example of

hierarchical multivariate data. Finally, to test our categorisation of hierarchical data presented

in Chapter 3, we conducted an evaluation with this case study data and the DViL platform, the

results of which are also presented here.

4.1 The Context of the Hate Speech Study

The primary objective of linguistics in this context is to analyse messages to detect and classify

instances of hate speech, with the ultimate goal of developing a Machine Learning model capable

of automatically annotating new datasets. However, achieving this requires a high-quality, well-

annotated dataset to effectively train the model and ensure reliable performance in identifying hate

speech. The annotation of toxicity is a difficult task due to its inherent subjectivity [153], [45], [60].

87
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Therefore, this subjectivity must be objectified as much as possible to carry out reliable annotation.

Deciding whether the content of a message (comment, tweet, etc.) is toxic involves considering

various factors, including both the content of the discourse and the extra-linguistic context. The

discursive content refers to the linguistic elements, distinguishing between the information conveyed

(what is being said) and the manner of expression (e.g., improper language, offensive language, rude

vocabulary, belittling language, irony, sarcasm, and mockery). However, the extra-linguistic context

involves real-world knowledge such as political, economic, social, and cultural events occurring

simultaneously with the publication of the article and comments, which helps interpret them

appropriately.

Therefore, to analyse hate speech data, the CLIC 1 Research Group constructed a corpus of

annotated messages, that is described in the Section 4.1.1. To reflect the diversity in the expression

of toxicity, linguists propose to assign different levels of toxicity, indicating whether the comment is

’not toxic’, ’mildly toxic’, ’toxic’ or ’very toxic’. This classification is based on annotations that

consider various features, such as sarcasm, and argumentation among others, which are described in

Section 4.1.2. We explain the annotation process and also contextualise it in Section 4.1.3 regarding

how visualisation can assist in the annotation and analysis processes.

4.1.1 The NewsCom-TOX Corpus

The data utilised in this application is sourced from a dataset created by the CLIC Research

Group, based on online news articles [186, 187]. This data corpus is called the NewsCom-TOX

and consists of 4,359 comments posted in response to different articles extracted from Spanish

online newspapers (e.g., El Mundo) from August 2017 to May 2019 and annotated with toxicity

[186, 187]. The news articles were selected to cover three different topics that are immigration,

society and crime, and they were chosen for their likelihood to provoke controversy, aiming to

identify comments with opposing opinions and instances of toxic language. The comments were

taken in the same order in which they appear in the time thread on the web. Meaning, that some

comments are written in response to specific or general aspects of the article in question, while

others are written in response to other comments, creating threads of conversations. For example,

in Figure 4.1, Comment 1 is written directly under the news article, Comments 2 and 3 are written

under Comment 1 as a response, and Comment 4 is a response to Comment 3. Additionally,

Table 4.1 shows the distribution of comments per topic and the number of news articles in each

topic. News articles had a minimum of 60 comments and a maximum of 360 comments.

1Centre de Llenguatge i Computació, Universitat de Barcelona, Spain
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Figure 4.1: Structure of the news article and its comments displaying comment levels.

Table 4.1: Distribution of comments per topic

Area Comments No of News Articles (T k)

Immigration (IM) 1,651 8

Society (SO) 866 5

Crime (CR) 1,842 8

Total 4,359 21

4.1.2 Annotation Tagset

As previously mentioned, analysing hate speech and detecting levels of toxicity is a subjective

concept. To provide a reliable classification of toxicity levels, the CLIC Research Group developed

an annotation tagset that captures various linguistic features, such as sarcasm, target person, insult,

constructiveness, and argumentation, intending to state the level of toxicity as a combination and

occurrence of these features. The goal is to standardise the process and minimise disagreement

among annotators in identifying toxicity and, consequently, hate speech. These features are binary
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and will allow for the discrimination of the level of toxicity of the comments. Furthermore, some

of these features can be correlated, for instance, argumentation and constructiveness, insult and

improper language, and these correlations are also useful when assigning the level of toxicity.

Therefore, the proposition is that the combination of these features enables a more objective

determination of the level of toxicity. The tagset used for the annotation of comments with toxicity

is as follows:

• <constructiveness>: a comment is constructive when it is respectful and polite (regardless

of whether it is in favour or against the content of the article or another comment) , when it

intends to create an enriching and useful dialogue when it contributes with new knowledge,

ideas and proposals, and offers new perspectives and insights to approach the subject.

• <argumentation>: indicates that the comment gives arguments or reasoned explanations

or grounds opinions with pieces of evidence.

• <sarcasm>: a comment is sarcastic when the content is ironic -that is, when the writers use

words that mean the opposite of what they really want to say- and when it is accompanied

by harsh, sharp, and negative criticism and made in bad faith.

• <mockery>: indicates that the comment ridicules, mocks or humiliates a person or group.

• <improper language>: indicates that the comment contains language not considered to

be proper or that is vulgar and impolite which includes rude words.

• <intolerance>: indicates that the comment expresses intransigence and non-acceptance

of difference, both in general terms (traditions, customs, religious beliefs) and at a personal

level (skin colour, sexual orientation, sex, etc.), in oppressed groups.

• <insult>: indicates that the comment contains one or more insults or slurs with the intention

to offend a person or group.

• <aggressiveness>: indicates that the comment expresses violence or a desire to exercise it

consciously or unconsciously, without the need to include sarcasm, mockery or insults.

• <stereotype>: indicates that the comment contains beliefs or ideas attributed in a gener-

alised way to a group, which characterise the individuals of this group in an undifferentiated

and simplistic way based on the magnification of a characteristic.
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• <target person>: indicates that the comment is directed to a specific person (a politician,

an artist, among others).

• <target group>: indicates that the comment is directed to a specific group of people

(immigrants, the LGBTQ+ community, among others).

• <negative stance>: indicates that the comment is written against the previous comment.

• <positive stance>: indicates that the comment is written in favour of the previous comment.

• <toxicity>: a comment is toxic when it attacks, denigrates or disqualifies a person or group

on the basis of certain characteristics such as race, ethnicity, nationality, religion, gender and

sexual orientation, among others. This attack can be expressed in different ways -directly

(through insult, mockery and inappropriate humour) or indirectly (for instance through

sarcasm)- and at different levels of intensity, that is at different levels of toxicity (the most

aggressive being those comments that incite hate or even physical violence).

It should be noted that all these tags are either binary (value= yes/no), except for the toxicity

tag, which has four values (<0= non-toxic>; <1= mildly toxic>; <2= toxic> and <3: very toxic>).

The level of toxicity is determined by the presence and combination of the features presented above

(see Figure 4.2). In fact, these features are different ways or mechanisms to express the toxicity and,

therefore, they also help to define what is meant by toxicity. The more negative features appear

in the comment, the higher the level of toxicity. For instance, annotators tag as ’mildly toxic’

comments in which only one feature appears, the most frequent being <sarcasm>, <mockery> and

<improper language>, whereas in comments tagged as <very toxic> the combination of features

is higher than two, an especially frequent combination is <improper language>, <mockery> and

<insult>. This annotation allows for the establishment of fine-grained criteria for analysing and

better defining what can be considered a comment with toxic language or hate speech.

Apart from annotating to detect the toxicity of comments, additional contextual information is

also collected. This information is invaluable for annotators, aiding in the accurate interpretation

and understanding of the message content while also facilitating the exploration of conversation

threads between different commentators. It can be helpful to see if commentators contribute more

than once or not. Thus, the following is also annotated with:

• <comment ID>: An order number that indicates the chronological order in which comments

were posted.
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Figure 4.2: Selecting a Level of Toxicity from the combination of features.

• <user ID>: Name or alias of the person who wrote the comment; in some cases, these are

users who have had to pre-register and may appear in more than one news article.

• <date>: Date the comment was posted.

• <time>: Time the comment was posted.

• <thread>: A thread is a sequence of comments connected by replies. The annotated thread

number indicates the position to which each comment belongs. See in Figure 4.3 the thread

1 consists Comment 1 and other comments that are written as a response to it.

• <comment level>: It is the number that indicates whether this is a primary (1) or secondary

(2) comment. Primary comments are written directly under the news article, while secondary

comments are written under other comments. Secondary comments will always be marked as

2, regardless of the degree of nesting within a thread. See in Figure 4.3 example of comment

levels 1 and 2.

• <depth>: It is the number that indicates the degree of nesting within a thread. See the

illustration of different depths in Figure 4.3.
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Thus, the NewsCom-TOX corpus is multi-level annotated with different binary linguistic

categories, considering both the information conveyed in each comment and the entire discourse

thread in which the comment occurs.

Figure 4.3: Structure of the news article and its comments.

4.1.3 Annotation Process

After establishing the annotation tagset as defined in the previous section, in the following we

explore the process the annotators perform in order to annotate the corpus to feed Machine Learning

Models and how the visualisations can enhance the whole process. Before starting the annotations,

annotators set up the tagset and also define annotation guidelines to ensure a uniform approach to

the annotation process. In the first stage of the annotation process, each comment is annotated by

three different annotators working in parallel (see (1) in Figure 4.4).
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Figure 4.4: Annotation Process and the Role of Visualisations: (1) Individual Annotation, (2)
Inter-Annotator Agreement, (3) Gold-Standard Annotation, and (4) Automatic Annotation

Once the annotation of all comments related to a news article was finished, in the second

stage, (2) Inter-Annotator Agreement test was conducted to detect the problematic cases and solve

the disagreements by consensus in meetings with the three annotators and a lead coordinator.

When there was disagreement on the annotation, the final consensus annotation was reached after

reviewing each case, discussing and deciding collaboratively. After the inter-annotator agreement

stage comes the stage (3) Gold Standard Annotation, which represents the final agreed-upon version

of annotations resulting from the inter-annotator agreement process. In the final stage (4) of the

annotation process, this data can be used to train Machine Learning algorithms, enabling systems

to automatically annotate messages. However, it is important to note that the quality of the

automated annotations will depend on the accuracy of the manual annotations.

As depicted in the bottom of Figure 4.4, visualisation plays a crucial role in each of the four

stages, adding significant value. For example, in the first stage, visualisations can track the

annotation process; in the second stage, it can identify inconsistencies in the annotations; in the

third stage, it can assess annotation quality and analyse insights based on the hypotheses of the

annotators, which will be discussed later; and finally, in the fourth stage, it can facilitate deeper

analysis of insights and monitor the automatic classifications. In this dissertation, we leverage

the data from the gold standard annotation to focus on analysing insights and developing a tool

to facilitate the analysis of this complex annotated data as the data has a naturally hierarchical

structure and with comprehensive annotations (tagged features) it became multivariate.
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4.2 Visualising Hierarchical Data

In the previous section, we outlined the challenges faced by linguists in analysing hate speech

and described how they created an annotated dataset to achieve their goal. In this section, we

will explore how the Visual Mappings of this dataset can be applied to the layouts proposed

in Chapter 3. Thus, following the formalisation of hierarchical data introduced in Chapter 3,

Section 3.1, we define the NewsCom-TOX as a set of hierarchical multivariate structures,

denoted as T = T 1, T 2, T 3, ..., Tn, where each T k represents a directed rooted tree. Specifically,

T k = ⟨Nodesk, Edgesk⟩, with Nodesk comprising the root node nk
0 and all other nodes Nk, and

Edgesk representing the directed edges between these nodes.

In the NewsCOM-TOX annotated dataset, T are the set of news articles with their corresponding

comments. One news and all its associated comments form a rooted tree, T k, where the news article

is the root node, nk
0. Additionally, some users reply to nk

0, and others reply to other comments,

nk
i , then edges symbolise all these direct replies. Moreover, we introduced the concept of subtrees,

which are the hierarchical branches of the main tree rooted at any given node, the depth, defined

as the distance of each node from the root, and the width, which is the maximum number of direct

children any node has in the tree.

Additionally, in Chapter 3, we presented a categorisation algorithm for identifying different types

of hierarchical structures using the concepts of subtrees, depth and width, and we defined specific

properties such as the growth factor, significant nodes, elongated tendencies, compact tendencies,

and spines. Next, we also defined two categories of hierarchies: Elongated and Compact. Elongated

hierarchies are characterised by narrow structures with nodes distributed along a single path,

creating a vertically extended shape. In contrast, Compact hierarchies feature broad structures

where nodes are distributed more evenly across the levels, resulting in a more horizontally spread

and compact shape.

We also argued that the best layouts for visualising Elongated hierarchies are Tree and Circle

Packing, while Radial and Force layouts are more suitable for Compact hierarchies (see Figure 4.5).

In this chapter, we use these layouts to visualise the hierarchical NewsCom-TOX dataset introduced

earlier. Circle Packing is highlighted for its distinct approach among the implicit layouts, whereas

Tree, Radial, and Force layouts represent explicit layouts. Our primary focus is on these explicit

layouts to effectively visualise additional multivariate data due to their spatial capacity and the

complexity of implicit layouts. Multivariate data visualisation will be explained in the following

section.
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Figure 4.5: Four hierarchical layouts considered in this PhD: (a) Tree Layout, (b) Circle Packing,
(c) Force Layout, and (d) Radial Layout.

4.3 Visualising Multivariate Data

Following the formalisation of multivariate data introduced in Chapter 2, Section 3.2.1 (equations

about total information associated with nodes and edges 3.6, and labelling features in nodes and

edges 3.7), we provide an example of how the formalisation is carried out in the NewsCOM-TOX

annotated dataset. The NewsCom-TOX dataset that we presented above, is the set of features

associated with the tree nodes, FNodes, which is a set of categorical features that define the spectrum

of the speech related to the comments, such as constructiveness, argumentation, sarcasm, mockery,

insult, improper language, intolerance, aggressiveness, target person, target group, stereotype,

toxicity, and the level of toxicity. These features correspond to f1, f2, . . . , f13, respectively. Some of

these features are nominal features representing two values, such as f1 (a message is constructive

or non-constructive), and some others include ordinal features, such as f13 that represents the

four levels of toxicity - not toxic, mildly toxic, toxic and very toxic -.

Additionally, the feature relative to the edges of the tree is related to the stance of a comment

in relation to the previous one, and thus, FEdges = {f14}, i.e., f14 represents the stance, that is

also a nominal variable representing three values - the stance of a message can be positive if it

reinforces the opinion of the previous message, negative, if it is against, and neutral, otherwise -.

As introduced previously, The NewsCom-TOX consists datasets that are each an online news arti-

cle and a possible reply, datank
1
representing the multivariate data in node nk

1 (see Figure 4.6), the la-

belling function of the reply produces the following result: Lnodes(datank
1
) = <not constructive, ar-

gumentative, not sarcastic, not mockery, not intolerant, improper language, insult, not aggres-

sive, target person, no target group, no stereotype, toxic, mildly toxic>, and

Ledges(dataek0,1) = ∅.
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And, for example, when a node nk
2 supports the opinion of its father nk

1, then the label of the

edge between them is defined by: Ledges(dataek2,1) = positive stance.

Figure 4.6: Example of a Tree layout showing multivariate nodes.

Additionally, to reiterate, we group related features in NumC clusters depending on their

semantics, C = {c1, ..., cNumC}, where ci = {f i
1, ..., f

i
numF i}, being ∀f i

s ∈ F , 1 ≤ s ≤ numF i. For

example, in our case study, the cluster c1, includes four levels of toxicity c1={0 (non-toxic), 1

(mildly-toxic), 2(toxic) and 3 (very toxic)}, c2 three types of stances; c2={neutral stance,

positive stance, negative stance}, c3 refer to the targets the comment focuses on; c3={target

person, target group, stereotype}, and c4 includes nominal features; c4={constructiveness,

argumentation, sarcasm, mockery, intolerance, improper language, insult, aggressiveness}.

To achieve the best visualisation for each multivariate feature, we utilised our formalisation to

cluster these features according to their characteristics. In the following, we describe the Visual

Mapping of each cluster.

For our case study, Cluster 1, c1 includes an ordinal feature, level of toxicity, c1={0 (non-toxic),

1 (mildly-toxic), 2(toxic) and 3 (very toxic)}. As this is an ordinal feature and each node is

tagged with one of the values the best way to visualise this feature is as hue colours on the nodes.

We used a colour range from white to black to represent non-toxic to very toxic (see Figure 4.7).

Moreover, the level of toxicity is the most important feature in our case study. Therefore, it should



CHAPTER 4. DVIL - A PLATFORM FOR HATE SPEECH VISUALISATION 98

be prominently visualised in the global view of hierarchies to provide immediate information at

first glance. For example, in Figure 4.8, part a) shows that the majority of nodes are toxic, while

in part b), it appears that half of the nodes are non-toxic and the other half have varying degrees

of toxicity.

Figure 4.7: Level of Toxicity and Stances mapped on a Tree layout

In the following, we present different nominal clusters and the visualisation methods we used for

each one. Cluster 2, c2, includes nominal features that can be represented with edges, c2={neutral

stance, positive stance, negative stance}. As these features are related to the edges the best

option is to directly show them on the layouts as hue colours (see coloured edges in Figure 4.7).

Neutral, positive, and negative stances are represented with black, green and red respectively.

Moreover, if a node has both positive and negative stances it is shown as orange.

Cluster 3, c3, represents nominal features that have concrete meanings, c3={target person,

target group, stereotype}. Thus, we created an icon for each feature in this cluster and showed

them on-demand next to the nodes that have these features (see Figure 4.9c-d).

Finally, Cluster 4, c4, represents eight nominal features with abstract meanings,

c4={constructiveness, argumentation, sarcasm, mockery, intolerance, improper language,

insult, aggressiveness}. Therefore, we created two glyphs to visualise these features: i) an

one-by-one glyph (see Figure 4.9.a), where features are represented by coloured dots that are placed
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Figure 4.8: One-by-one glyph shown on (a) Tree layout, and (b) Radial layout

next to the nodes in an ordered row (Figure 4.8.a shows an example), and ii) an all-in-one glyph

(see Figure 4.9.b), placed on the node, depicted as a pie chart including eight equal pieces with

unique hue colours for each feature, displaying the level of toxicity of the nodes on its centre. Both

glyphs used green shades for more positive features (i.e., constructiveness), blue for more neutral

features (i.e., sarcasm), and magenta for more negative features (i.e., insult). Similarly to Cluster

3, these glyphs will be shown on-demand to avoid visual clutter.

Figure 4.9: Glyphs: a) One-by-one, and b) All-in-one, and Target Icons: c) Target Person, d)
Target Group, and e) Stereotype

Moreover, we analyse our selected layouts against the glyphs that we will include in them. For

example, one-by-one glyphs, that is, visualising them next to nodes either linearly, ordered one

next to each other, or circularly around the node, which could be very compatible with tree and
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radial layouts as these layouts are more structured (see 4.8.a and 4.8.b). However, as Force layout

distributes its nodes more freely, the linear placement of one-by-one glyphs could look confusing

and hard to detect which glyph belongs to which node and, then the option to place circularly.

Another option for force layout could be visualising glyphs as all-in-one on the nodes as shown

in 4.10. Note that all-in-one glyphs should accommodate all the features in the cluster in less

space than in the one-by-one case. Additionally, all-in-one glyphs could be either placed outside

or inside the nodes. In the latter, the space devoted to each feature will be even smaller in size

as it depends on the size of the nodes. Thus, all-in-one glyph could be more useful on a detailed

view (see Figure 4.11, when zoomed in on a part of the layout), while one-by-one could be a more

helpful method while visualising the global view of the hierarchies without losing the context and

causing clutter (see Figure 4.8).

Figure 4.10: All-in-one glyph shown on Force layout
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Figure 4.11: All-in-one glyph shown in a detailed view.

4.4 Data Visualisation in Linguistics (DViL) Platform

Having described the Visual Mappings in the previous section, this part introduces the new

hierarchical multivariate data visualisation platform for linguistics (DViL - Data Visualisation in

Linguistics), which provides interactive features and functionalities that will be detailed in the

following.

Figure 4.12 displays the user interface of the DViL platform. Figure 4.12 (A) is a drop-down

menu for datasets, allowing users to select a dataset from the list. The section (B) of Figure 4.12

shows the selected dataset’s visualisation with the best-fitted visualisation layout according to the

structure of its hierarchy. In the DViL platform, we incorporated the categorisation algorithm

introduced in Chapter 3. In Figure 4.12, the data (one news article and its comments) is displayed

with the tree layout and each comment is represented with a node. Four visualisation layouts,

including Tree, Force, Radial, and Circle, can be found at the top of the screen 4.12 (C). Although

the platform automatically selects the layout according to the hierarchy structure, we also

provide users with the freedom to choose their preferred visual mapping through a user-defined

visual mapping. Figure 4.12 (D) displays glyph options we introduced in the previous section

to visualise Cluster 4 ; Dots (one-by-one) and Circular (all-in-one), that can be used to visualise
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abstract tagged features of each node. On the left hand-side, (see part (E) in Figure 4.12), there are

three sets of filters: (1) Targets (shows target icons next to associated nodes) to visualise Cluster 3,

(2) Highlight Colour Feature (activates colours of glyphs) and (3) Select node & edge (displays

only nodes & edges with selected annotations) to filter all Clusters. Figure 4.12 (F) illustrates

the summary of the statistics (level of toxicity and targets) and buttons for additional charts that

will open as pop-ups. One of the additional charts can be seen in Figure 4.12 (G), showing the

distribution of features in the whole visualisation. Finally, Figure 4.12 (H) shows additional charts

displaying the distribution of the features in subtrees. Next, we describe the main components of

the platform in detail.

Figure 4.12: Overview of the platform (A) Datasets menu (B) Main visualisation: hate speech
annotation of an online news article and its generated comments, (C) Hierarchical layouts, (D)
Glyphs, (E) Filters, (F) Summary of statistics and supplementary charts, (G) Supplementary
chart illustrating distribution of features in the whole visualisation, and (H) Supplementary chart
illustrating distribution of features in subtrees.

Main Visualisation

The main visualisation includes four layouts: Tree, Force, Radial, and Circle. Each of these

visualisations represents a single news article at a time, with the root symbolising the news article

and the nodes representing the comments made on it, maintaining the hierarchical structure on

layouts Tree, Force, and Radial. In the Circle Packing layout, the news article and comments are

nested within each other as circles, with the root represented as a large blue circle beneath all

other circles. In this layout, the nodes are depicted as packed circles (see Figure 4.5.b in Section

4.2). The node colours indicate toxicity levels, ranging from white (non-toxic) to black (very toxic),
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visualising the Cluster 1. Edges represent the stances of the comments with green being the positive

stance, red negative, orange both, and black neutral, visualising Cluster 2 of multivariate data.

The node size reflects the number of child nodes. Nodes can be collapsed or expanded for further

interaction in the Tree, Force, and Radial layouts. Additionally, in the Force layout, nodes can

be dragged and dropped. Subtrees, which were introduced in the formalisation in Chapter 3, are

considered here as well. For example, in Figure 4.12 (B), each node directly connected to the root

node represents the beginning of a subtree, with the nodes branching out from it forming smaller

trees within the overall structure.

Filters

As explained, the User Interface presents three sets of filters: Targets, Highlight Colour Features,

and Select Node& Edge (part (E) in Figure 4.12). Our aim with these filters is to reduce visual

clutter and appropriately visualise multivariate data on demand while maximising information and

not losing context. Additionally, they allow us to focus our attention on specific levels of toxicity

or features as needed.

For example, in Figure 4.13, we are analysing comments that are annotated with Argumentation

by selecting it from the Select Node & Edge filter menu (see the activated buttons in the Menu

of filters). In the main view, some nodes are greyed out while others are highlighted, indicating

those tagged with argumentation. When a feature is chosen from this menu, statistics in the

top-right corner are updated accordingly. Furthermore, we delved deeper into features present in

argumentative nodes by activating the Dots (one-by-one) glyph option from the Highlight Colour

Feature filter menu. This displays all features next to the nodes side by side. Additionally, a

complementary chart is opened to visualise the distribution of features in argumentative comments,

which is updated based on selections from the Select Node & Edge menu.
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Figure 4.13: Use case of Filters and complementary chart

It should be noted that we offer our users two types of filtering for nodes and edges. One

option is the AND option, where if two features are selected, such as Argumentation and Improper

Language, only the comments that have both features will be highlighted. In contrast, with the

OR option selected, comments that have either Argumentation or Improper Language will be

highlighted. To compare the differences, refer to Figure 4.14 (a) for the AND option, and (b) for

the OR option.
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Figure 4.14: (a) Filtering Argumentation and Improper Language comments with AND option,
which displays comments that are tagged with both features and (b) Filtering with OR option,
which displays comments that are tagged with either feature.

Similarly, icons representing features are also shown on demand to avoid overcrowding. In Figure

4.15, we present an example showing our icons for Target Person, Target Group, and Stereotype.

Figure 4.15: Example of Icons (Target Person, Target Group, and Stereotype) displayed on the
tree layout.
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Complementary Charts

The DViL platform includes complementary charts alongside the main visualisation to display

the statistics of all features. This helps users view the data in another format. Like glyphs, these

charts are shown on demand. Users can review the statistics of the features by clicking on the

”Selected Comments” button or the individual subtrees using the ”Level One Comments” button

in the statistics summary section in the upper left corner (see Figure 4.16).

Figure 4.16: Complementary charts showing statistics of (a) Features, (b) Stances, (c) Targets, and
(Level of Toxicity)

In these charts, we can visualise Features 4.16.a, Stances 4.16.b, Targets 4.16.c, and Level of

Toxicity 4.16.d. Selections can be made using the first dropdown to choose the type of data to

visualise, and the second dropdown to select the chart type: Bar Chart, Horizontal Bar Chart, or

Pie Chart. By default, the Bar Chart is shown, as it provides the easiest data reading in most

cases. It should be noted that hovering over these graphs reveals the values. Additionally, these
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charts are updated dynamically when a selection is made in the Select Node & Edge menu.

Subtrees in Complementary Charts

As mentioned, each node directly connected to the root, along with its children, represents

a subtree. We have the option to view the statistical information of these subtrees individually.

Currently, each subtree can be highlighted by clicking on its name. Figure 4.17 demonstrates

this by selecting the first subtree, which highlights it in the main visualisation. Note that in this

complementary chart, the subtree is highlighted while preserving the contextual information of

the entire tree (i.e., a focus+context approach), which maintains the properties of Elongation and

Compactness unchanged. However, if the selected subtree were visualised independently, these

properties could vary, possibly requiring layout changes. This concept is explored further in the

following section of the manuscript, where users perform visualisation tasks using the VisChatbot.

Figure 4.17: Subtrees in Complementary Charts
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Tooltip

A tooltip displays tagged features and contextual information collected by the annotators, such

as comment ID, comment level, comment depth, and the actual comment from the user (see Figure

4.18). This allows annotators to see the comment details. The features that are not tagged are

greyed out, while the tagged features are highlighted in the tooltip. Moreover, when a node is

collapsed and its children are collapsed with it, additional information, such as the number of direct

children and total children, appears. This shows the number of comments in a collapsed node

and its children, also known as the subtree, as well as the total number of each level of toxicity

contained in that parent node. To maintain our goal of avoiding clutter, the tooltip appears only

when hovering over a node.

Figure 4.18: Tooltip
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4.5 Evaluation

This section presents a user evaluation of the DViL platform focusing on the testing of the automatic

layout/glyphs selection based on the categorisation introduced in Chapter 3. Our goal is to achieve

a visualisation of hierarchical structures that allows for a clear analysis of both parent-child

relationships and the distribution of features, without overwhelming the user’s perception or

causing clutter.

In fact, we formalised hierarchical structures with a categorisation in Elongated (narrow) and

Compact (broad) structures and argued for the adequacy of a visualisation method - Tree, Circle

Packing, Force and Radial (see Figures 4.19 and 4.20) - depending on defined attributes, such

as the growing factor and the number of direct children of a node, which can be applied to any

hierarchical dataset. We also formalised features of multivariate data and, consequently, integrated

their visualisation in a hierarchical structure. Based on this formalisation, we introduced two types

of glyphs: i) the one-by-one, where features are depicted by coloured dots placed one next to each

other, and ii) the all-in-one, where a single pie chart represents all the features. Thus, we argued

that a one-by-one glyph is more informative than a all-in-one glyph for depicting multivariate data

in overviews of hierarchical structures while ensuring comprehension and avoiding complication.

Therefore, in our test, we aim to validate the following hypotheses:

• H1: When the hierarchy is categorised as Elongated (EC), the most informative methods to

visualise it are Tree layout and Circle Packing (see (a) and (b) in Figure 4.19).

• H2: When the hierarchy is categorised as Compact (CC), the most informative methods to

visualise it are Force layout and Radial layout (see (a) and (b) in Figure 4.20).

H3: With a large number of features, the most informative glyph to embed them in a

hierarchical layout is the one-by-one glyph instead of an all-in-one glyph (see (a) and (b) in

Figure 4.21).
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Figure 4.19: Elongated Hierarchy with a) Tree Layout and b) Circle Packing

Figure 4.20: Compact Hierarchy with a) Force Layout and b) Radial Layout
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Figure 4.21: Example of a) One-by-one Glyph and b) All-in-one Glyph embedded in hierarchical
visualisation with large number of features.

We conducted a user evaluation to study our hypotheses. Thus, the purpose of the evaluation

was twofold: 1) to validate the best-fitted visualisation layouts according to the proposed categories

of hierarchies, Elongated and Compact, and 2) to determine which glyph (one-by-one, all-in-one)

is more useful with layouts while visualising data globally without causing clutter.

4.5.1 Methodology

We recruited 35 participants of which two of them were lecturers while the rest were students

from the Faculty of Philology and Communication at the University of Barcelona; 60% of the

participants were female, 80% were aged between 20-30 and 17% of the participants had experiences

in message annotation and data visualisation but in general, participants had no experience in

these fields. The study was a within-subject where participants performed several VisTasks. It

was a moderated test, conducted in a classroom, with an average duration of one and half hours.

It should be noted that, prior to the evaluation, the protocol we defined for the experiment was

approved by the Bioethics Committee of the University of Barcelona. Before starting, participants

were presented with a standard consent form, which they read and agreed to. The form informed

them that the test would be anonymous, their data would be securely stored and only accessible by

researchers involved in this study, and that they were free to withdraw at any time.

At the beginning of the evaluation session, we explained to students our research, the structure
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of conversation threads, and annotations (tagged features), and then we briefly explained how

they were mapped onto our visualisation layouts. We aimed to facilitate the understanding of

the tagged attributes by explaining this in more depth and to make sure that users focus on the

visualisations rather than trying to understand how annotations worked. Afterwards, we gave them

a couple of minutes to engage with the visualisations before we started the test to ensure that our

users understood the tool. Also, before each VisTask, we gave users tips regarding how to use our

visualisation tool (e.g. showing glyphs) that could help them solve the VisTasks, again, to make

sure that users focus on the visualisations rather than trying to understand the tool’s functioning.

There were a total of 5 VisTasks (see Tables 4.2 and 4.3, where EC and CC refer to Elongated

Categories and Compact Categories, respectively), to make sure that there was no learning effect

in performing the first 4 VisTasks we prepared two versions, half of the users did Test A with the

VisTask order T1-EC, T2-EC, T3-CC, T4-CC, T5, and the other half did Test B with the VisTask

order T3-CC, T4-CC, T1-EC, T2-EC, T5. T5 was consistently placed last for all users to isolate

the only glyph-related VisTask. This placement ensured it was not affected by the learning effect,

as it was the first time users encountered it.

4.5.2 Research Hypotheses and Associated VisTasks

We aimed to analyse our hypotheses with VisTasks that are defined from linguists’ research

questions. Each VisTask is assigned a chosen dataset according to the Elongated and Compact

categories.

VisTasks 1 and 2 were designed to explore Hypothesis 1: ”When the hierarchy has Elongated

Category the most informative layouts to visualise it are Tree layout and Circle Packing.” To test

our hypothesis, in VisTasks 1 and 2, we selected datasets that are Elongated thus we will refer

to these VisTasks as T1-EC and T2-EC. In T1-EC we asked users to only engage with Circle

Packing and Tree layout, and in T2-EC we asked users to play with all layouts. In this way, in

T1-EC we could compare the two layouts we selected for the Elongated category to see if they are

equally useful for the users to perform the VisTasks. Moreover, with T2-EC we could compare our

selections (Tree and Circle) for the Elongated category with users’ selections as we expect them to

have higher scores than the other layouts (Force and Radial) in this category.

VisTask 3 and VisTask 4 were designed to explore Hypothesis 2: ”When the hierarchy has

Compact Category the most informative layouts to visualise it are Force layout and Radial layout”.

Thus, we assigned datasets with the Compact category to these VisTasks and we will refer to them

as T3-CC and T4-CC. Similarly, in T3-CC we asked users to only engage with selected layouts,
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Table 4.2: Evaluation: Research Hypothesis H1 with associated VisTasks, layouts, datasets, and
data gathered.

Research
Hypothe-
ses

VisTask Visualisation Layout DatasetData
Gath-
ered

H1 Elon-
gated
Category

T1-EC: In Com-
ment level 2, in
which Level of Tox-
icity does the com-
bination of Intol-
erance and Stereo-
type comments ap-
pear more?

Tree Layout and Circle Packing Elong.
News
Ar-
ticle
IM 1

Ratings
of 2
layouts

T2-EC: In Com-
ment level 2, in
which Level of
Toxicity does the
combination of
Improper Lan-
guage and Insult
comments appear
more?

Play with all 4 layouts Elong.
News
Arti-
cle:
SO 1

Ratings
of 4
layouts

Force and Radial and in T4-CC we asked users to play with all layouts. Thus, we could compare

if Force and Radial are equally sufficient in T3-CC. Furthermore, we wanted to compare if users

agreed with our selections as we expected that Force and Radial would score higher than Tree and

Circle Packing in T4-CC.

Finally, VisTask 5 was designed to explore Hypothesis 3: ”When a cluster contains a large

number of features, the most informative representation to embed them in a hierarchical layout is an

one-by-one instead of an all-in-one glyph” . In this VisTask, we asked participants to interact with

both glyphs with the layout of their choice and rate considering the global view of the visualisation.

We decided to use Compact data with VisTask 5 as we wanted to see if our glyphs were useful even

with broad datasets.

In all VisTasks, we asked users ”to rate the layouts they used to perform the VisTasks on a

scale of very difficult (1) to very easy (5), N/A if applicable, and to write their comments, if they
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Table 4.3: Evaluation: Research Hypotheses H2 and H3 with associated VisTasks, layouts, datasets,
and data gathered.

Research
Hypothe-
ses

VisTask Visualisation Layout DatasetData
Gath-
ered

H2 Com-
pact Cate-
gory

T3-CC: In
Comment level
1, in which Level
of Toxicity does
the combination
of Target Group
and Mockery
comments appear
more

Force layout and Radial Layout Comp.
News
Ar-
ti-
cle:
SO 2

Ratings
of 2 lay-
outs

T4-CC: In Com-
ment level 2, in
which Level of
Toxicity there are
more Aggressive
comments?

Play with all 4 layouts Comp.
News
Ar-
ti-
cle:
IM 2

Ratings
of 4 lay-
outs

H3
Glyphs

T5: Which
Features appear
more with Target
Group in Level of
Toxicity 3 (very
toxic)? In this
task please use
one-by-one glyph,
all-in-one glyph
and Target Icons

Layouts - Tree, Force and Radial Comp.
News
Ar-
ti-
cle:
CR 1

Ratings
of 2
glyphs
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have any.” It should be noted that in VisTask 5 we asked participants to play only with layouts

Tree, Force and Radial as these are the visualisation layouts that support glyphs. Additionally, in

VisTask 5, we asked users ”to rate the glyphs they used to perform the VisTask on a scale of not

useful (1) to very useful (5) and N/A if applicable.” At the end of all VisTasks we asked about

their overall comments to collect some qualitative data. The evaluation VisTasks and questionnaire

are available at this link.

4.5.3 Results

We considered our sample size enough for computing statistical significances, as stated by [27].

Thus, we conducted paired t-tests and computed the Effect Size (ES) after rejecting the null

hypothesis to measure the magnitude of mean differences (see Cohen’s d ES in Tables 4.4, 4.5 and

4.6). Notice that we obtained large effect size in all cases (Cohen’s d ES > 0.8), meaning that

means are likely very different. In the following, we present our results.

Hypothesis 1

VisTasks T1-EC and T2-EC were designed to study Hypothesis 1 (Elongated structure). Specifically,

T1-EC was designed to compare Tree layout and Circle packing. As it can be observed in Figure

4.22 and Table 4.4, Tree layout (4.17 out of 5) received much higher scores than Circle packing

(2.77), the standard paired t-test shows a significant difference between their scores (p < 0.001).

However, this may be as a result of participants’ familiarity with Tree layout as hierarchical tree

diagrams are being used in a variety of fields such as management planning [8] or diagramming

sentences in linguistics [123]. Circle packing has a relatively different design that participants

required more explanations about how conversation thread structures are mapped onto its circular

design. Moreover, the results of T1-EC and T2-EC, show that Tree layout kept its popularity and

has the same mean (4.17) in both VisTasks.
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Figure 4.22: Mean values of Layouts from VisTask 1 to 4 with Standard Deviation

Table 4.4: Hypothesis 1, Elongated Categories (paired t-test)

Layouts (Mean, SEM) p-value ES

T1-EC Tree ( 4.17, 0.14) Circle (2.77, 0.23) < .001∗ 0.85

T2-EC Tree (4.17, 0.18) Force (3.09, 0.20) < .001∗ 0.74

Tree (4.17, 0.18) Radial (2.74, 0.20) < .001∗ 1.00

Circle (2.74, 0.22) Force (3.09, 0.20) 0.195 -

Circle (2.74, 0.22) Radial (2.74, 0.20) 1.000 -

According to Hypothesis 1, we expected that Tree layout and Circle packing would score higher

than Force and Radial layouts in T2-EC, recall that users played with all layouts in this VisTask.

When we compared the results of the Tree layout versus the Force and Radial layouts in T2-EC we

found that the Tree layout (4.17) scored significantly higher than the Force (3.09) and Radial (2.74)

layouts. The standard paired t-tests prove the significant difference between Tree versus Force

and Radial layouts as they are both p < 0.001. However, when we compared Circle packing (2.74)

with the Force and Radial layouts in T2-EC with the standard paired t-test we could not find any

significant differences. As we stated previously, this can be because of participants’ unfamiliarity

with a circular design of threads of comments.
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Remark 4.1. The results indicate that the most preferred layout with Elongated

data is the Tree layout. Thus, H1 is partially supported by our results.

Hypothesis 2

VisTasks T3-CC and T4-CC were designed to study Hypothesis 2 (compact structure). As it can

be seen in Figure 4.22 and Table 4.5, Force and Radial layouts in T3-CC scored relatively similar as

expected, 3.77 and 3.65, respectively, and the t-test shows that their scores do not have a significant

difference.

Table 4.5: Hypothesis 2, Compact Structures (paired t-test)

Layouts (Mean, SEM) p-value ES

T3-CC Force (3.77, 0.18) Radial (3.65, 0.17) 0.607 -

T4-CC Force (3.69, 0.21) Tree (4.03, 0.19) 0.195 -

Force (3.69, 0.21) Circle (2.51, 0.23) < .001∗ 0.83

Radial (3.4, 0.21) Tree (4.03, 0.19) 0.012* 0.45

Radial (3.4, 0.21) Circle (2.51, 0.23) 0.003* 0.54

According to Hypothesis 2, we expected that the Force and Radial layouts would score higher

than the Tree and Circle in T4-CC. When we conducted the standard paired t-test between the

Force (3.69) and Radial (3.4) layouts against Circle packing (2.51), both showed that they scored

significantly higher than the Circle packing. The results of the t-tests of the Force layout vs Circle

packing is p < 0.001 and the Radial layout versus Circle packing is (p = 0.003). However, neither

the Force nor Radial layouts scored higher than the Tree layout. The reason, again, for this can

be that the Tree layout is a more common visualisation layout when it is compared to others.

Moreover, another reason for this may be because originally conversation threads were formed from

top to bottom and in the Tree layout, this is simply changed to the left to right. However, in other

layouts the structure changed into circular designs, this caused participants to understand the tree

layout more easily, therefore giving it higher scores.

Remark 4.2. The results indicate that the most preferred graph with Compact

data is Tree layout.
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Although the Tree layout was the best-scored layout in the previous analysis of Hypothesis 1

(Elongated data) and Hypothesis 2 (compact data), we believed that Force and Radial should score

higher with Compact data and Circle packing should score higher with Elongated data. Then, we

compared the scores of Force, Radial and Circle Packing layouts between T2-EC and T4-CC (see

table 4.6).

Table 4.6: Elongated vs Compact (paired t-test)

Layouts (Mean, SEM) p-value ES

T2-EC T4-CC

Force (3.09, 0.20) Force (3.69, 0.21) 0.016* 0.43

Radial (2.74, 0.20) Radial (3.4, 0.21) 0.019* 0.42

Circle (2.74, 0.22) Circle (2.51, 0.23) 0.530 -

The results show that Force and Radial layouts scored significantly higher in T4-CC (p = 0.016)

and (p = 0.019), respectively. Even though Force and Radial layouts scored lower than Tree layout

in both VisTasks, we can see that with Compact data they scored significantly higher. Therefore,

our Hypothesis 2 can be partially supported. Furthermore, Circle packing received a higher score

in T2-EC compared to T4-CC which is aligned with our Hypothesis 1. However, the difference is

very little and we couldn’t find any significant difference.

Remark 4.3. Even though Tree layout was selected best with Compact data,

Force and Radial layouts showed some evidence that they are more appropriate

for Compact data rather than Elongated ones. Thus, this evidence confirms that

our second hypothesis can be further explored. Even though it is not significant, Circle

packing received higher scores with Elongated data as expected.

Hypothesis 3:

VisTask 5 was designed to examine Hypothesis 3. When we compared the scores of one-by-one (3.91)

and all-in-one glyph (3.48) we discovered that one-by-one scored higher, as expected. However,

a paired t-test showed no statistical difference between them. Also, some users commented that

the one-by-one option was more useful. This can be because the coloured dots used in one-by-one



CHAPTER 4. DVIL - A PLATFORM FOR HATE SPEECH VISUALISATION 119

glyph can better scale with zoom-out when compared to the all-in-one glyph. The latter glyph can

be better in a detailed view. As both received quite high scores we can conclude that our users

find Glyphs useful.

Remark 4.4. The results showed that participants preferred one-by-one over all-in-one

glyph on the global view which aligns with H3.

Qualitative Results

We gathered some information from our open questions. Users’ comments aligned with our

Hypothesis 1. For example, user 20 stated that in T2-EC ”in tree layout, it is much easier to

detect the comment level of each comment”, however, he also commented in T4-CC ”it is difficult

to obtain a nice general perspective from all comments from tree layout”. As compact data has a

wider and more dense set of comments it can be harder to analyse them with tree layout.

While most users commented that Circle packing can be confusing and hard to understand,

users commented that it gets easier to understand as you get familiar with it. User 4 commented

that ”Even though the tree, force and radial layouts seem easier to understand at first, I found that

once you get the hang of it, the circle packing was the most useful layout to answer task 4”, and

user 10 stated that ”the circle packing layout seemed the most visually useful to me, but I needed a

brief explanation to identify which circles were comment level 1 so as not to confuse them”.

Also, we discovered that some participants needed more time to understand Force and Radial

layouts. For example, when we follow the comments of user 11, in T1-EC and T2-EC the user

commented that only the Tree layout was easy to understand and others, especially Circle packing,

was very difficult. Then in T3-CC, the same user stated that ”in this task, I found it easy to use

both display options (force and radial) in fact, I have a better idea of how they work”. Finally, in

T4-CC the user also found circle packing easier to use as the user got familiar with it.

Remark 4.5. Although tree layout seemed the most intuitive for the users at first glance,

the rest of the layouts have a potential once the users know how to interpret them.

4.5.4 Discussion

Previous studies gave some advice on the hierarchical visualisation methods suitable for some types

of data and VisTasks [161] [128]. Nevertheless, they did not take into account the hierarchical shape
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Figure 4.23: Mean values of Glyphs from VisTask 5 with Standard Deviation

dictated by the data, focusing instead on creating visualisation layouts that balance readability

and compactness, without considering the data’s inner structure. Other works in the literature

visualised hierarchical data using a pre-defined layout. For example, Functree2 [44] visualised omics

data using a radial layout, VisAC [22] used tree layout to visualise their ancestral data, and ConVis

[79] and Eras [126] addressed data similar to our case study and used stacked bars and radial layout,

respectively. Our findings, however, suggest that a categorisation of hierarchical data informs the

visualisation method (layout) that best fits an overview of the data. Moreover, this research opens

the avenue of analysing whether it is adequate to change the layout depending on the tendency of

the sub-trees resulting from some queries or selections. For instance, when visualising subtrees in

complementary charts, the categorisation of the entire tree may differ from that of the selected

subtree, changing, for example, from a radial layout to a tree layout. This same idea can be applied

to create responsive hierarchical visualisations, which would change depending on the size of the

device as Hoffswell et al. [77] proposed to effectively present information based on the device

context. Furthermore, this idea can be integrated when the size of the data is huge. For example,

this huge dataset can be divided into regions and classified separately with our categorisation.

Thus, we can visualise these regions using a combination of layouts.

Although our results showed that the Tree layout was selected by the majority of users as the

most intuitive with both Elongated and Compact data, we found some evidence that Force and

Radial layouts are useful for visualising broad data since users scored them higher with Compact

than with Elongated data. Furthermore, we also discovered during our sessions and from user

comments that some participants needed more time to understand Force and Radial layouts. Even

though we gave our users explanations and exploration time, our sessions were short to fully

understand how these graphs worked for users that were new to visualisations.

Moreover, the Circle packing achieved slightly higher scores with Elongated data than with

Compact data, but it received the lowest scores of all the 4 layouts in every VisTask overall.

This could be due to the users’ unfamiliarity with the layout. It might also result from a

lack of training in this type of graph, which made it less advantageous. This section of this
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dissertation shares some similarities with Zheng and Saldo’s study [213] which explored hierarchical

multivariate visualisations. Specifically, they also used Circle packing and mapped their glyphs on

this visualisation. Their results aligned with our expectations and their Circle packing also received

the lowest scores due to the low readability of the glyphs. Therefore, we suggest that the use of

Circle packing could be further restricted to hierarchical data that are not densely crowded, i.e.,

trees with very few levels (maximum 3 to 4), or trees not particularly broad. In the case of broader

and deeper hierarchies, Schreck et al. [157] analysed the treemap family providing global layouts

for balanced and unbalanced trees. Our proposal is aligned with this work since we also try to find

the best-fitted layout, and treemap among others, depending on the nature of the dataset.
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Chapter 5

Background on V-NLIs

In this chapter, we introduce the V-NLI (Visualisation-oriented Natural Language Interface) pipeline,

extension of the DataVis (Data Visualisation) Pipeline presented in Chapter 2, Section 2.1, where

we defined key vocabulary related to data visualisation. We now define the key terms specific

to chatbot-based V-NLIs. Subsequently, we outline the categories derived from the vocabulary

introduced for both fields to conduct a unified literature review. This literature review also

encompasses the underlying technologies powering V-NLIs and the design methodologies employed

in their development.

5.1 V-NLI Pipeline

Previously, in Chapter 2, section 2.1, we introduced the DataVis pipeline, which includes three

spaces: Data Space, Visual Space, and Interaction Space. We discussed data visualisation

characteristics in stages within each space, such as Data Transformation, Visual Mapping,

View Transformation, and Interaction. Now, we extend this pipeline by incorporating a

chatbot, which serves as a valuable enhancement at each step (see Figure 5.1). For instance, a

chatbot can facilitate data transformations, select optimal layouts, adjust visual elements such

as colours, and handle visual transformations, like executing a zoom command. Additionally, a

chatbot can guide users through the interaction process by offering explanations and clarifications

about the tools and features available. By integrating the V-NLI pipeline with the DataVis pipeline,

we aim to provide a structured perspective for our literature review by examining the chatbot’s

role across various stages and properties of the visualisation process. This approach allows us

to systematically investigate: (1) How do VisChatbots contribute to interactions with the Data

123
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Space?, (2) How do VisChatbots contribute to interactions with the Visual Space?, and (3) How

do VisChatbots enhance the user’s interaction with the visualisation? In the subsequent sections,

we will examine and define the core properties of chatbots to effectively analyse how NLIs with

visualisations function, with a focus on understanding how, specifically, VisChatbots contribute to

each stage of the data visualisation spaces.

Figure 5.1: Overview of the Data Visualisation pipeline adapted from [167].

5.2 Chatbots

Chatbots are software systems that can engage in conversations with users [3], thereby representing

a natural interface for them. This naturalness has favoured its spread in domains such as educa-

tion [112], health [15], business [190] and, of course, fields such as visualisation analysis [133, 118].

In Figure 5.2, we propose a general characterisation of chatbots using four dimensions, named

AINT, depending on how we view them. First, chatbots may have Anthropomorphic (A) properties

such as appearance [36] and gender and also may be endowed with personality and emotions [189].

Second, as an Intelligent system (I), task-based chatbots can proactively make data-driven deci-

sions to give support to users’ activities, and social chatbots maintain meaningful and engaging

conversations with their users. In any case, chatbots can also be enhanced through a variety of

AI methods and techniques, for example predicting users’ necessities and behaviours and thereby

personalising the UX (User eXperience) [120]. Third, as a Natural language processing system (N),

chatbots usually consist of an NLU (Natural Language Understanding) component [106], which

interprets user intentions (i.e., inputs) and helps maintain the context of the conversation. Based

on this understanding, chatbots provide appropriate responses, whether textual, auditory, or visual,
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depending on the system’s design and the interaction mode. Those answer types (i.e., the outputs)

can be either pre-defined or automatically generated. In the specific case of text, they are usually

created by an NLG (Natural Language Generation) system [66]. Finally, as an interactive system

(T), chatbots can be integrated with different interaction styles (WIMP, VR, XR) and be equipped

with a multimodal interface through voice, text and gestures.

Figure 5.2: AINT—General characterization of a Chatbot based on four dimensions:
A—Anthropomorphic, I—Intelligence, N—Natural Language Processing, and T—inTeractivity.
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5.3 VisChatbots

Next, we focus on chatbots in the specific context of visualisation (see Figure 5.3). We analyse

several aspects of the interactive space of a visualisation-oriented chatbot, including its user interface

as well as its input and output mechanisms, which are listed next to them in the figure, and will be

explained in the following. From this analysis, there will emerge the main V-NLI features (User

Interface, Input, and Output, indicated in bold) and sub-features (indicated in italic) that will lead

the analysis of the literature in this chapter.

Figure 5.3: The interactive space’s components of a V-NLI: User Interface, Input, and Output.
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User Interface

Visualisation-oriented Natural Language Interfaces (V-NLIs) are interactive systems (AINT)

designed to facilitate the users’ VisTasks. They can be designed using two different user interfaces

(UI): a form-based interface and a chatbot-based interface. On one hand, a form-based V-

NLI [176, 65] (see Figure 5.4) is usually composed of a text box that allows the users to introduce

the VisQuery using natural language, though it also has other widgets, for example, to refine (filter)

the resultant visualisation. Nevertheless, these forms are usually not designed to engage in follow-up

questions with the visualisation system. On the other hand, a chatbot-based interface [16] (see

Figure 5.5) is distinguished by a named entity (also known as an agent), with gender and appearance,

as well as with the ability to recognise and express emotions, while having personality traits (i.e.,

empathetic, fun, neutral). Chatbots are usually presented to the users as a separate “chat window”

from the visualisations. This window displays the conversation but also complementary outputs

(explanation, charts, and others), as we will explore later. We can say that a chatbot-based V-NLI

(VisChatbot) may have all of the aforementioned chatbot characteristics, i.e., AINT, meanwhile

form-based V-NLI are potentially endowed with all of them except the anthropomorphic traits, i.e.,

INT.

Figure 5.4: Snowy [176], a form-based V-NLI example. Dashboard including: (A) Attribute
panel, (B) manual view specification and filter panel, (C) NL input box and textual feedback, (D)
visualisation space, and (E) query recommendation panel.
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Figure 5.5: TransVis [16], a chatbot-based V-NLI (VisChat) example. Dashboard including; (A)
Architecture visualisation, (B) and (C) area line graphs, and (D) chatbot window.

Input

The types of inputs (analytical questions) that a V-NLI system deals with are low- and high-level

VisQueries. In Low-level VisQueries, the users explicitly describe their intent, for example, “Show

me action films that won an award in the past 10 years”. Therefore, these VisQueries can be

interpreted easily. In contrast, High-level open-ended VisQueries are naturally broader and their

interpretation can be more complex [178, 4]. In many cases, these high-level analytical questions

should be decomposed as a series of low-level VisQueries and be answered as such [169]. For

example, to answer “What are the trends in award-winning films?” the system needs to infer the

low-level VisQueries: first, visualise award-winning films over a certain period, and then show their

relevant characteristics (genre, special effects, franchises and others). Whenever the V-NLI system

is not able to answer this type of complex question, it might need to ask additional questions to

the users. Note that both types of VisQueries allow the users to interact with the data through

the seven-interaction methods (select, explore, reconfigure, encode, abstract/elaborate, filter, and

connect) as defined in the description of the Interaction Space in Chapter 2, Section 2.1, at any of the

steps (Data Transformation, Visual Mapping, and View Transformation) of the data visualisation

pipeline as depicted in Figure 5.1.

Moreover, VisQueries can be One-turn or Follow-up. In One-turn VisQueries, the users
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ask the system in a single shot. Thus, even when the conversation may flow along several one-

turn VisQueries, it may not be necessary for the V-NLI system to maintain the context of the

conversation [104]. On the other hand, the users usually perform Follow-up VisQueries, which

are a series of interconnected questions [181]. Therefore, the system should be able to remember

the context of the conversation while answering the questions [81, 178]. For example, if the first

VisQuery is “Colour nodes by age” and the second VisQuery is “Now by gender”, NLI understands

that the user continues talking about nodes and wants to use the same function, colour, but now

colouring them by gender.

Nevertheless, the underlying system (AINT) may fail to understand the VisQueries of the users,

thus, not meeting their expectations [191]. Moreover, inexperienced users may have difficulties

expressing their VisQueries. Then, the design of the conversational system faces the challenge of

understandability, i.e., the ability of the system to be aware of the users’ intents, really knowing

and grasping the nuances of users’ intentions, and also the challenge of discoverability [179], i.e.,

the ability of the users to know what they can ask to the system. Indeed, the two properties are

closely connected, as designing chatbots for discoverability can enhance their understandability.

Addressing the challenges of understandability and discoverability requires an interactive

conversational system to guide users in effectively communicating their goals (or intentions). Well-

known Conversational Guidance strategies are based on help—the chatbot gives the users hints

on what to ask; intent auto-complete functions—the system makes suggestions of possible intents

while the users are writing the intent [163, 171, 65, 84]; and intent recommendations [176]—after

giving a response, the system suggests, based on data or on the previous turns of the analytical

conversation, possible next intents to the users. Additionally, the understandability problem of

NLIs is mainly derived from the biggest challenge that NL poses, which is ambiguity. One solution

is to ask the users what they meant or to use disambiguity widgets [65, 163]. For instance, when the

user’s VisQuery is “Show me medals for hockey”, the NLI might not correctly interpret which type

of hockey the user is referring to. Then, a widget may appear for the term ‘Hockey’ showing two

options ‘indoor hockey’ and ‘ice-hockey’ as both of these sports are basically called hockey. Thus,

users can select the right one either through direct manipulation or by using natural language.

In the context of follow-up VisQueries, the V-NLI should help the users to transition through

the different visualisation states of the analysis. Indeed, research studies concluded that users

prefer to carry out analytical conversations, meaning users want to go beyond the first visualisation

they receive when making a request to the conversational interface [74]. Nevertheless, previous

Conversational Guidance strategies (help, auto-complete, and recommendations) may be sufficient
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for helping with the (initial) users’ intent but could be insufficient for inferring the user’s transitional

intents (elaborate, adjust/pivot, start new, retry, and undo) throughout the different visualisation

states (interaction methods such as select attributes, filter, encode, transform) of an analytical

conversation [191]. Therefore, intelligent Conversational Guidance (AINT) approaches are needed

to predict users’ goals based on their interactions throughout the analytical conversation and then

proactively guide the user.

Another aspect of analytical visualisations is the need to handle co-reference, as users may

refer to the same entity differently during a conversation, such as by using pronouns. Fortunately,

nowadays the most common NLP toolkits such as spaCy and AllenNLP incorporate components for

co-reference resolution in their pipelines [139]. Moreover, an interesting case of co-reference arises

when natural language interfaces coexist with other interaction styles (Multimodality) such as

menu selection (WIMP—Window Icon Mouse Pointer) and direct manipulation (XR—Virtual or

Augmented Reality) [86]. That is, users’ natural language (NL) VisQueries may refer to actions

they performed through clicks, gestures, or eye-gaze. Consequently, the V-NLI system should track

these non-textual references—what users did, not just what they said. Thus, there should be a way

of translating (WIMP, VR, AR) manipulations in the visualisation to text (with named entities)

and so to be ready to be solved by the co-reference model.

Output

In addition to the requested visualisation, a V-NLI can consider Complementary Output

such as Feedback, either text or visual: (i) to inform about the VisQuery’s success or failure, (ii)

to justify relevant decisions taken by the system, (iii) to provide users with additional explana-

tions—such as textual descriptions, oral explanations, graphs, statistics, and annotations—to help

them better interpret the resulting visualisation, and (iv) to display changes in the User Interface

(highlighting menus and buttons). Specifically, annotations are superposed visual elements that

enhance the generated visualisation and thereby further communicate more information [115].

Another type of complementary output is a visual narrative, which is text combined with images

presenting the information with narrative components (actor, plot, setting) [162]. Finally, when

there are other Interaction Styles integrated into the V-NLI system, the output should be

synchronised to help the users be aware of the operation performed (e.g., filters updated in WIMP),

and it should also be enhanced to facilitate a better understanding of the required visualisation (e.g.,

overlying images in AR) and to better communicate the system’s response (e.g., haptic feedback in

VR).
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5.4 Review of the Literature

We identified 20 works that explored and presented V-LNIs to conduct a thorough review of the

literature. We included 10 articles that are VisChatbots [91, 214, 43, 95, 19, 57, 154, 16, 116, 122]

and 10 articles that are form-based NLIs but have some chatbot characteristics such as providing

feedback [178, 176, 65, 169, 108, 81, 174, 39, 84, 171]. In the following, we summarise the review

categories used to evaluate these works. More information can be found in [96]

5.4.1 Review Categories

To analyse the collected works, we use the categories defined in Chapter 2, Section 2.1, exploring

the three spaces involved in the DataVis pipeline (Data, Visual, and Interaction Spaces), as well as

VisChatbot characteristics (the interface, the Input, and the complementary Output) in Section

5.3. Furthermore, we review the state of the art of underlying technologies of V-NLIs and chatbots’

design methodologies. In the following, we summarise the categories;

Categories related to the Data Space described in Chapter 2, Section 2.1:

• Description of data.

• Data type (Tabular or Complex).

• Attributes (Nominal, Numerical, Temporal, Spatial).

• Data transformation.

In relation to the Visual Space (see Table 5.1), the characteristics presented in Chapter 2,

Section 2.1 include:

• Visualisation Category (Basic or Advanced) and Type.

• Abstract (Lines, Points, Bar) and Symbolic (glyphs, icons) graphical elements.

• Visual Mapping Identification (Fixed, User-defined, Rule-based, Intelligent).

• View Transformation (Single or Multiple).

• Interaction Style (Basic—WIMP or Advanced—NL) .

In the Interaction Space, we collect information about the seven interaction methods proposed

by Yi et al. [209]: select, explore, reconfigure, encode, abstract/elaborate, filter and connect,
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presented in Chapter 2, Section 2.1. These interaction methods also directly or indirectly relate to

VisTasks which is explained in the same section.

Finally, regarding chatbots, we propose the following categories:

• V-NLI Interface (chatbot-based or form-based).

• Input :

– VisQuery Type (low or high);

– One-turn or Follow-up VisQueries;

– Conversational Guidance (Help, Auto-complete, Recommendation);

– Multimodality (WIMP, Touch, Gestures).

• Output :

– Feedback (textual or visual): inform, justify, decisions, additional explanations (text,

oral, graph, statistics, annotations), UI changes (menus, buttons) and narratives.

– Interaction Style (WIMP, VR, AR).

• Technology behind V-NLIs

• Design Methodologies
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5.4.2 Data Space

We analysed all the research works in terms of the main characteristics involved in the Data Space;

see Figure 5.6.

Figure 5.6: Data Space overview and the main characteristics of the data involved in the visualisation
pipeline.

The analysed research works cover a diverse range of topics including movies, sports, coronavirus,

finance, and more, each described through various visualisation techniques. We found that most of

them used multidimensional tabular data [176, 39, 81, 174, 175, 122, 154, 169, 57, 116, 214, 95, 43,

91], while some of them also included spatial data [81, 39, 154, 84]. Few of the twenty visualisations

systems used complex data. For instance, Bieliauskas and Schreiber [19] have data related to

software bundles and services such as OSGi bundles, and Orko [178] uses network data displaying

the relationships between football players. Furthermore, ConVisQA [171] has hierarchical data that

is collected from online conversations and FlowNL [84] works with flow data such as hurricanes.

Finally, Data@Hand [108] has sequential temporal data (e.g., sleep time during each night), and

TransVis [16] has transient data which is a data type that is relevant to a time; in this case, it is

the quality of software services over time.

Regarding the Data Transformation step, 10/20 V-NLIs used a kind of data transformation.

For example, Ava [91] and Iris [57] are both designed to facilitate data science tasks and they

transform data to perform statistical analyses, such as logistic regression and finding correlations,

respectively. Similarly, Valetto [95] and Boomerang [116] compute the correlation between attributes,

and the latter also finds aggregated values. Data@hand [108], InChorus [174], Evizeon [81] and

Snowy [176] also perform aggregation functions such as average and sum. GeCoAgent [43] also

computes aggregation functions, as well as, other data transformations such as clustering, regression,

etc., while extracting genomics data. Finally, Talk2Data [169] calculates the difference between
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numerical attributes. In general, the reviewed methods applied basic transformations that were not

highly complex, i.e., those that entail more “intelligent” data processing (e.g., PCA).

5.4.3 Visual Space

Regarding the Visual Space (Figure 5.7), we summarise in Table 5.1 the works in terms of Visual

Mapping components (graphical elements, identification, and type of visualisation or substrate) and

View Transformation details (use of single or multiple views and the type of interactions). Most of

the articles employed explicitly basic visualisations [91, 116, 43, 108, 175, 214, 57, 39, 154, 81,

176, 95, 122, 169]. The most common methods are bar charts, line charts and scatter plots.

Figure 5.7: View Space overview and the main characteristics of the Visual Mapping and the View
Transformation steps.

Most of the V-NLIs include a combination of these common methods [116, 176, 169, 108, 214, 122].

Additionally, Chat2Vis [122] includes a box plot, Talk2Data [169] has a pie chart, and Gamebot [214]

offers users game shot charts about football and basketball games, as well as, displays games statistics

in tables. Moreover, some V-NLIs include a map chart, while [39, 81, 154] have 2D maps in addition

to the most popular methods, and [84] includes a 3D map. Some V-NLIs have only one visualisation

method: GeCoAgent [43] has a pie chart, Ava [91] has a line chart, Valetto [95] and Iris [57] have

scatter plots, and DataBreeze [175] uses dots to visualise every data point individually.

Only a small percentage of these studies used advanced visualisation methods. For example,

Bieliauskas and Schreiber [19] and Orko [178] (see Figure 5.8) implemented network visualisations

as their main visualisation. On the other hand, Tansvis [16] uses a line graph as the main

visualisation for analysing transient data (quality of the software system over time), though it

has a network graph for displaying the overview of the software system, where users can select
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Figure 5.8: Orko [178] including A) Input box, B) Network visualisation, C) Access icons, D)
Details container, E) Summary container, and F) Filter and visual encodings.

a part to explore transient behaviours. ConVisQA (see Figure 5.9) [171] created a novel design

to show the hierarchical structure of conversations using stacked bar charts with indentations to

show the hierarchy. ConVisQA also displays the conversations on the right-hand side of the screen.

InChorus (see Figure 5.10) [174] supports popular basic visualisations such as bar, line and scatter,

and they also include one complex option, parallel plots. FlowNL (see Figure 5.11) [84] used

flow visualisation to show flows occurring on the earth (e.g., hurricanes). Moreover, all V-NLIs,

including basic and advanced visualisations, used abstract graphical elements (lines, points, bars).
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Figure 5.9: ConVisQA [171] including on top the input box, filters, and the main visualisation

Figure 5.10: InChorus [174], Parallel plots visualisation.
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Figure 5.11: FlowNL [84] including a) input box, b) dialogue box to solve unknown terms, c) query
formula, d) objects, e) suggested queries, and f) visualisation.

As defined in Chapter 2, Section 2.1 we categorised the Visual Mapping Identification into

three types: fixed, user-defined, and rule-based. In the previous works, we found that half of

them only have fixed visual mapping [171, 108, 175, 84, 178, 39, 19, 43, 16, 95]. Meanwhile, only a

couple of them support user-defined mapping [91, 57], while a few use only the rule-based visual

mappings [116, 176, 169, 214] method. Finally, there are V-NLIs that support a combination of two

visual mappings [174, 154, 81, 122]. For example, Data@Hand [108] is a mobile application on which

users can track their daily steps and sleep time, among others. It has basic fixed visualisations that

are displayed when users open the application. On V-NLIs such as Orko [178], ConVisQA [171],

Miva [39], and DataBreeze [175], when the dataset is uploaded, data are directly displayed with

one pre-defined visualisation method. FlowNL [84] displays flow visualisations on a 3D world

map with NL commands. GeCoAgent [43] and Bieliauskas and Schreiber [19] both have fixed

visualisations that are updated with NL VisQueries. TransVis [16] and Valetto [95] automatically

generate visualisations from natural language, though both of these systems have only one fixed

visualisation. TransVis uses transient data (quality of service vs. time) that is visualised with a

line area graph and Valetto uses a scatter plot to visualise tabular data (e.g., cars).

Some V-NLIs allow user-defined visual mapping. For instance, Ava [91] and Iris [57] use NL
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to perform complex data science tasks such as statistical analysis and both support visualising data

with one available visualisation when asked.

Snowy [176] is one of the V-NLIs that support rule-based visual mapping to select layouts and

graphical elements. It has three visualisation methods—bar chart, scatter plot, and line chart—and

the system automatically selects and updates the visualisation method depending on the user’s

VisQueries and pre-defined visualisation mapping rules. They use an adaptation of the “Show

Me” [121] algorithm to decide the visualisation method according to data attributes. They follow

rules such as displaying a scatter plot if there are two quantitative attributes on the x and y axes

or displaying a bar chart if there is one qualitative and one categorical attribute.

Similarly, Talk2Data [169] generates multiple visualisations after NL VisQueries and the system

also annotates the visualisation and gives textual answers. The system follows a rule-based approach

in which it associates different data facts with different visualisation methods. Data facts are

extracted from the data. For example, a categorisation fact includes categorical data and is

associated with a bar chart.

As we stated earlier, there are four V-NLIs that support a combination of several visual

mapping strategies. For example, InChorus [174] uses rule-based mapping to automatically select a

visualisation depending on the attribute type detected from users’ VisQueries and it also allows

users to explicitly request a visualisation method. Onyx [154] uses fixed visualisation methods but

users can change these methods using WIMP or NL. Moreover, Evizeon [81] is the only V-NLI

that combines fixed and rule-based mapping. It includes multiple fixed visualisations, however, if a

user’s VisQuery cannot be answered by the existing visualisations, the system generates a new,

appropriate visualisation using the aforementioned “Show Me” algorithm [121]. Finally, Chat2Vis

[122] is the only V-NLI that uses artificial intelligence (Large Language Models—LLM) for visual

mapping. Moreover, users can specify in their VisQuery which type of chart they want to use to

visualise the data.

Related to View Transformation, most of the explored works use a single view to visu-

alise data [127, 91, 171, 175, 84, 214, 43, 174, 57, 154, 178, 95]. Nine V-NLIs have multiple

views. Boomerang [116] displays multiple recommended visualisations simultaneously, while

Talk2Data [169] generates multiple visualisations with annotations in a visualisation narrative

style. In the case of MIVA [39], there are three fixed visualisations (bar, line, and map), which are

simultaneously updated to answer users’ VisQueries. Similarly, Evizeon [81] supports synchronised

multiple views. Moreover, in Data@hand [108], Talk2Data [169], and TransVis [16], multiple

visualisations can be observed. Finally, Orko [178] and FlowNL [84] also have complementary
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visualisations in addition to primary ones.

Furthermore, there are V-NLIs that also support other view transformations. For example,

some systems support Focus+Context [108, 19, 171, 178, 116]. Data@hand’s [108] users can analyse

their sleep time across a month and they can ask the system to show the days the user woke up at

8 a.m. In this way, the system highlights the days the user woke up at 8 a.m. but also displays in

the background in grey the data for the whole month. Similarly, Bieliauskas and Schreiber [19]

and Orko [178] have network visualisations and users can highlight certain nodes to see in detail

while viewing the whole visualisation in the background. ConVisQA [171] allows users to see the

whole hierarchy while highlighting certain parts in response to users’ NL VisQueries. On the other

hand, Boomerang [116] uses an approach similar to small multiples (i.e., grid-like layout) on the

right-hand side of the screen as recommendations while letting users ask questions on the left-hand

side, as well as displaying users charts in the chat window.
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Table 5.1: Summary of V-NLIs in defined visualisation categories. Visualisation Category (Basic
and Advanced), Graphical Elements (Lines, Points, Bars), Visual Mapping Identification (Fixed,
User-defined, Rule-based and Intelligent), and View Transformation (Single and Multiple views).

V-NLI

Visual Space

Visual Mapping

View

Trans.
Visualisation Graphical Visual Mapping

Category (Type) Elements Identification

ACUI [19] Adv (Network) Lines, Points Fixed Single

Ava [91] Basic (Line) Lines User-defined Single

Boomerang [116] Basic (Bar, Scatter, Line) Lines, Points Rule-based Multiple

Chat2Vis [122] Basic (Bar, Scatter, Line, Box-plot) Lines, Points, Bars Intelligent & User-defined Multiple

ConVisQA [171] Adv (Hierarchical stacked bar) Bars Fixed Single

Data@Hand [108] Basic (Bar, Line) Lines, Bars Fixed Multiple

DataBreeze [175] Basic (Dots) Points Fixed Single

Evizeon [81] Basic (Bar, Scatter, Line, Map) Lines, Points, Bars Fixed & Rule-based Multiple

FlowNL [84] Adv (Flow) & Basic (Bar, Map) Lines, Bars Fixed Multiple

GameBot [214] Basic (Bar, Line, Table, Shot) Lines, Points, Bars Rule-based Single

GeCoAgent [43] Basic (Pie) Pies Fixed Single

InChorus [174] Adv (Parallel) & Basic (Bar, Scatter, Line) Lines, Points, Bars Rule-based & User-defined Single

Iris [57] Basic (Scatter) Points User-defined Single

MIVA [39] Basic (Bar, Line, Map) Lines, Points, Bars Fixed Multiple

ONYX [154] Basic (Bar, Scatter, Map) Points, Bars Fixed & User-defined Single

Orko [178] Adv (Network) & Basic (Bar) Lines, Points, Bars Fixed Multiple

Snowy [176] Basic (Bar, Scatter, Line) Lines, Points, Bars Rule-based Single

Talk2Data [169] Basic (Bar, Scatter, Line, Pie, Area) Lines, Points, Bars, Pies Rule-based Multiple

TransVis [16] Adv (Network) & Basic (Line) Lines, Points Fixed Multiple

Valetto [95] Basic (Scatter) Points Fixed Single
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5.4.4 Interaction Space

The Interaction space refers to all the interactions that users can make throughout the different

stages of the visualisation pipeline (see Figure 5.12).

Figure 5.12: Interaction Space affects all the steps of the visualisation pipeline.

In the literature, the use of different interaction styles varies. Most V-NLIs use both Basic (WIMP) and,

naturally, Advanced (NL) interactions [171, 108, 175, 81, 214, 174, 39, 178, 176, 154, 95, 84, 16], while

some of them use only Advanced (NL) interactions [19, 91, 116, 57, 169, 43, 122]. Next, we analyse

the interaction techniques, focusing on how different systems support both basic and advanced user

interactions.

The most used interaction techniques are select and filter among all included techniques

(encode, reconfigure, explore, abstract/elaborate, and connect). V-NLIs such as [116,

16, 108, 19] use NL to interact with visualisations selecting (marking a data point) and filtering

(showing something conditionally) data according to user VisQueries. Boomerang [116] selects and

filters data at the data transformation stage to create visualisations using NL. Data@hand [108] and

TransVis [16] also use these techniques at the data transformation stage to update visualisations.

Similarly, GeoAgent [43] and Valetto [95] use NL to update visualisations using filtering at the

data transformation stage, while Chat2Vis [122] does this to generate visualisations.

Others, such as [171, 174, 39, 154], use both basic and advanced to filter visualisations at the

visual mapping stage. Also, Evizeon [81] and Snowy [176] use both basic and advanced interaction

techniques at the visual mapping stage to filter visualisation and [81] uses advanced interaction while

using the select method. Orko [178] and Databreeze [175] use both NL and direct manipulation

to filter and select data on visualisations. Moreover, Gamebot [214] asks users if they want to
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see a visualisation related to their VisQuery. Before displaying the visualisation, the chatbot asks

questions to filter the data and customises it based on the user’s responses, providing options with

buttons. Similarly, Ava [91] uses NL to filter data and not visualisations. It uses NL to perform

complex data science tasks such as statistical analysis and generating visualisations from libraries.

Finally, Talk2Data [169] uses advanced NLP-based interaction techniques when labelling selected

data visualisation (maximum sale), and FlowNL [84] uses both interaction styles.

The next most used method is Encode [175, 178, 176, 174, 154, 16, 95, 57, 169, 122]. For

example, [175, 174, 178, 176, 154] allow users to colour and size data points and add/remove

attributes by using Basic (WIMP) and Advanced (NL) interactions at the visual mapping stage.

On the other hand, Valetto [95] and TransVis [16] use NL commands to add or remove attributes at

the data transformation stage. Similarly, Iris [57] uses NL to interact with data in Visual Mapping

(i.e., users can select different attributes for axis), but not with View Transformations. On the

other hand, Talk2Data [169] and Chat2Vis [122] only interact at the Data Transformation stage,

allowing NL VisQueries to colour visualisations.

The reconfigure method is supported by four V-NLIs [175, 174, 95, 81], which are used to

change the visual perspective of the data in the visual mapping. For instance, Valetto [95] uses

gestures (a basic interaction) to flip the axis in the visualisation mapping stage. InChorus [174]

uses both basic and advanced interaction methods, such as re-ordering data in the step of data

transformation, to reconfigure the visualisation. Similarly, in the same step, Databreeze [175] uses

a combination of basic and advanced interactions to rearrange data points and Evizeon [81] uses

advanced interactions for this task.

Furthermore, the explore method, which is considered to be zooming and panning in the

View Transformation stage, is used in four V-NLIs [178, 174, 16, 81], all with basic interactions. It

should be noted that Evizeon [81] and Orko [178] also automatically zoom in/out to the part of the

visualisation that is related to users’ VisQuery, though users cannot ask it to zoom in directly using

NL. The abstract/elaborate method is used in four V-NLIs [108, 174, 176, 16] to drill down to

show more details. For example, Data@Hand [108] transforms data to show average hours of sleep

over various months, and users can choose the visual mapping to see each month separately in

more detail using NL. Similarly, Snowy [176] uses NL to do drill downs, while, on the other hand,

TransVis [16] uses direct manipulation. InChorus [174] uses both modalities.

Finally, the connect method is only used by two V-NLIs [19, 178]. Both of these V-NLIs have

network visualisation and use the connect method to highlight the relationships between links using

Advanced interactions (i.e., using Focus+Context visualisations). While Bieliauskas and Schreiber
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[181] perform this at the data transformation stage, Orko [178] does this at the visual mapping

stage.

5.4.5 V-NLI Interface

In the following, we analyse V-NLI interfaces, focusing on whether they are chatbot-based or

form-based. We also examine the input characteristics, including the type of VisQuery (low or

high), the interaction style (one-turn or follow-up VisQueries), and the presence of conversa-

tional guidance features such as help, auto-complete, and recommendations. Additionally, we

explore the multimodal aspects of these interfaces, considering various input modalities like

WIMP, touch, and gestures. Table 5.2 summarises the chatbot input categories in related

work. Among the reviewed works, half of them, integrated VisChatbots (Chatbot-based

V-NLIs) [91, 57, 116, 214, 43, 19, 154, 95, 16, 122]. These V-NLIs have a chat window in which

users can engage in conversations with a bot to analyse data visualisations. In some tools, the

chat window is separated from the main visualisation dashboard [19, 43, 154, 16, 95], and in others,

the visualisations are displayed in the chat windows [91, 57, 214, 116, 122]. For instance, both

Iris [57] and Ava [91] were developed to help users perform complex data science tasks such as

statistical analysis. While Iris [57] displays visualisations in a single chat window, Ava [91] has

two windows, one containing the chatbot and the other showing the actions the chatbot performs,

such as displaying visualisations. Moreover, we consider the other half of the approaches to be

Form-based V-NLIs [108, 175, 84, 174, 81, 176, 169, 171, 178, 39].

When we explored different Low and High VisQuery Types, we found that most of the

previous research presented V-NLIs that support only low-level VisQueries [19, 57, 91, 171, 214,

16, 95, 116, 108, 175, 84, 178, 81, 43, 174, 176, 154, 39]. For instance, in [171, 175, 174, 176, 108,

154, 39, 19, 84, 116, 95], users can ask direct VisQueries and receive answers such as filtered or

highlighted data points on visualisations or new visualisations. Finally, there are two V-NLIs that

support both low and high-level VisQueries, Talk2Data, which is form-based [169] and Chat2Vis,

which is chatbot-based [122]. Specifically, Talk2Data [169] uses high-level questions to interact with

data using basic interaction techniques such as filtering, and they split high-level VisQueries into

smaller sub VisQueries to find answers. An example from Talk2Data is, “Which genre has more

user reviews, fiction or non-fiction books?” They break down this question into two: “How many

reviews does the fiction book category have?” and “How many reviews does the non-fiction book

category have?”. On the other hand, Chat2Vis [122] is able to understand more complex VisQueries

such as “Show the number of products with a price higher than 1000 or lower than 500 for each
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product name in a bar chart, and rank the y-axis in descending order?” using several LLMs, which

generate correct visualisations. Nevertheless, these models require some refinements because they

may generate unnecessary extra information.
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Table 5.2: Summary of input chatbot categories of V-NLIs. V-NLI interface (chatbot-based or
form-based), VisQuery Type (low or high), Follow-up VisQuery, Conversational Guidance: Help
(data-based, user-based: based on what the user can ask), Auto-complete and Recommendation
(recommend next action from D: Data, N: previous NL intent, W: previous WIMP interaction),
and Input Modality.

V-NLI

V-NLI Interface Input

Chatbot Form VisQuery T. Follow-Up Conversational Guidance Multimodal.

Help Autocom. Recom.

ACUI [19] low

Ava [91] low Hint/help D, N

Boomerang [116] low

Chat2Vis [122] low & high

ConVisQA [171] low WIMP

Data@Hand [108] low D Touch

DataBreeze [175] low Touch

Evizeon [81] low WIMP

FlowNL [84] low WIMP

GameBot [214] low WIMP

GeCoAgent [43] low

InChorus [174] low Touch

Iris [57] low

MIVA [39] low WIMP

ONYX [154] low data-based WIMP

Orko [178] low N Touch

Snowy [176] low data-based D, N, W WIMP

Talk2Data [169] low & high D

TransVis [16] low user-based WIMP

Valetto [95] low user-based Gestures
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Additionally, these VisQueries can be only One-turn or Follow-up. There are only a few

V-NLIs that support follow-up VisQueries [81, 176, 175, 178] and all of them support only low-

level VisQueries. After each VisQuery, Snowy [176] recommends follow-up VisQueries on a list.

On [178, 175, 81], users can refer to entities using determiners and pronouns.

One of the important characteristics of chatbots is having Conversational Guidance. In

the visualisation context, chatbots can help users to ask the right questions, suggest possible

VisQueries, navigate them through visualisations, and explain the tool operations that chatbots

can perform. According to the our review, eight of the existing tools do not provide [19, 39,

175, 174, 116, 214, 57, 122] the user with any conversational guidance, while the rest of the tools

(12/20, five of them chatbot-based) recommend VisTasks or VisQueries [176, 91, 178, 108, 169],

help users [154, 91, 176, 16, 95], or auto-complete VisQueries [43, 171, 84, 81] designed to increase

the discoverability of the NLI, helping users to understand what the NLI is capable of doing.

For example, users can ask for help from the chatbot in Valletto [95] and TransVis [16] regarding

what users can ask the chatbot. Ava [91] gives hints on how to execute actions based on previous

interactions. Onyx [154] helps with what it is able to do, and when something is not clear, it gives

users instructions to go into the training interface and teach the system. Snowy [176] supports

users by providing possible intents based on data before starting the analysis.

Moreover, Ava [91] gives users recommendations about how to continue the analysis, i.e., which

actions it can do next. It also gives the users choices and asks them follow-up questions about

whether they want to perform the action that the chatbot recommended. These recommendations

are based on data and previous users’ intents expressed in natural language. Data@Hand [108] and

Talk2Data [169] recommend intents to users according to the data, and Orko [178] suggests to users

possible operations on tool-tip when the system is not sure about a user’s VisQuery. Snowy [176]

offers three different kinds of recommendations. The first one is recommendations depending on

the data, which are displayed at the beginning to start the analysis since users may sometimes be

new to the dataset and do not know what to ask. Moreover, it offers users recommendations as a

follow-up intent depending on previous NL intents and WIMP interactions. Furthermore, some

V-NLIs are designed to collect specific information from users in a structured format in which

chatbots ask questions or give the users prompts to complete the analysis [214, 57, 91, 43].

Finally, 13 of the V-NLIs have additional Multimodality to Natural Language (NL). For

example, [19, 81] have ambiguity widgets, which serve as slider filters, allowing users to interact

and refine their selections. In addition, with V-NLIs [108, 174, 178, 175], users can interact with the

user interface using touch. Users can also select filters and interact with data without using NL. It
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should be noted that these systems have synchronised input modalities. For example, in [178], users

can select a node with touch and ask a VisQuery about that node. Moreover, in [175], users can

select data points and ask the system to move them, for example, to the left-hand corner. Similarly,

[39, 176] have synchronised input modalities for, when a user selects a part of the visualisation

using the mouse while answering the VisQuery, the system remembers this selection. FlowNL

[84] and ONYX [154] have filters through which users can interact with them using WIMP. In

TransVis [16], users can employ the WIMP to select a part of visualisation to explore in depth,

while Gamebot [214] offers the users buttons during the conversation and Valetto [95] uses gestures

to change visual encoding such as flipping the axis.

5.4.6 Chatbot Output

Finally, we explored the Output categories of the chatbot. Giving Feedback is one of the

most important qualities of chatbots. All of the works in this literature review give the users

textual feedback and some of them give visual feedback as well. The only exception is

Chat2Vis [122], which, probably due to its recentness, is not yet integrated into a visualisation

platform. Basically, textual feedback is used to inform or justify chatbot decisions to the users.

Works such as [19, 39, 176, 178] inform users about the success or failure of their VisQueries.

Moreover, [91, 214, 57, 43, 16] provide the users with informative feedback, additional explanations

and follow-up questions to users to carry on the analysis. For example, after creating a decision

tree, Ava [91] can ask users if they want to see another plot. Iris [57] and TransVis [16] ask users

questions to continue the analysis, such as “Which column should I use on the x-axis” and “What

is the recovery time you want to use?”.

Works such as [108, 175, 81, 174, 178] proposed different informative feedback types. For

example, Data@Hand [108] gives users three types of textual feedback: to confirm that it had

applied the command to visualisation, to inform users that the command is not valid, and when it

fails to understand. Databreeze [175] also has three available textual feedback types: to confirm

successful action, after a follow-up command, and after partially understanding a command.

Evizeon [81] has five types of textual feedback: (i) when the intent is understood and the result is

shown, (ii) when it does not understand the request but the system guesses the nearest operable

result, (iii) when the VisQuery is partially understood feedback appears with highlighting the

unknown word, (iv) when it understands the VisQuery but cannot find any result, and (v) when it

does not understand the intent. InChorus [174] has three different feedback styles, after a successful

operation, after completing a successful operation but not having an effect on the visualisation
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(e.g., asking to sort by date but the data are already sorted by date), and after an invalid command.

Orko [178] is the only one that gives informative feedback using speech and it supports giving

feedback after successful and unsuccessful commands.

Moreover, Boomerang [116] informs users about the insights of the data and additionally gives

answers to direct questions such as “Is there a correlation between sales and profit?”. Similarly,

ConVisQA [171] gives answers to direct questions such as “what is the most negative comment?”

while displaying the textual answer with updated visualisation. Moreover, ONYX [154] informs

users about the action it has performed and gives instructions to users to teach the meaning of the

unknown commands using WIMP. Valetto [95] provides feedback to inform users when there is a

misunderstanding and provides additional information to users such as stating the correlation of

two attributes. Finally, Talk2Data [169] provides explanations about visualisations for creating

narrative storytelling.

Furthermore, we explored related work that provided users with additional visual feedback,

such as supplementary graphs with main visualisation or changes on filters on the UI that have

been applied by the chatbot. For example, Boomerang’s [116] main goal is to show users multiple

recommended visualisations related to users’ VisQueries on the right-hand side of the screen;

however, relevant graphs are also displayed in the chat window when required. FlowNL [84]

presents users with an ambiguity widget and has two auxiliary charts, one being a histogram

displaying the velocity magnitude of hurricanes, while the other is a 2D map chart that is used to

signal to specific regions. Additionally, visualisation is synchronised with a table. ConVisQA [171]

visualises a hierarchical structure of comments on the main visualisation that is synchronised with

actual comments displayed on the right side of the screen. Moreover, Orko [178] visualises additional

charts (e.g., bar) and shows on the user interface whose filters are activated and display widgets

in response to VisQueries. Similarly, Evizeon [81] presents related widgets after each VisQuery.

Gamebot [214] displays buttons to assist the conversation.

V-NLIs such as [174, 176, 39, 154, 175, 95, 108, 16] have visual feedback on the UI. For example,

Data@Hand [108] displays an ’undo’ button after every VisQuery; further, the user interface

changes according to VisQueries such as displaying related filters. InChorus [174] and Snowy [176]

show applied filters on the WIMP; additionally, in Snowy, selected attributes can be seen as well.

Filters and attributes shown on the UI are updated after each VisQuery in [39, 154]. Moreover,

Valetto [95] highlights the recognised text in the chatbot’s UI. For example, when a user asks to

“Add acceleration to the graph”, it changes the colour of the ’Add’ token in the user’s sentence.

Finally, Talk2Data [169] shows annotations with visualisations, and Chat2Vis [122] titles the
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visualisations from the users’ VisQuery.

Furthermore, we examined the interaction styles of the output across the analysed systems.

A significant number of these systems support WIMP [116, 171, 108, 175, 81, 84, 214, 174, 39, 154,

178, 176, 169, 16, 95], where filters and sliders dynamically update in response to NL commands.

For instance, in Snowy [176], completing a VisQuery not only updates the graph but also adjusts

the encoding parameters, such as the x and y axes on the left panel (see Figure 5.4.b). Similarly, in

FlowNL [84], when a user requests an attribute through the chat, it is automatically added to the

attributes table and assigned a distinct colour, seamlessly integrating into the visualisation (see

Figure 5.11.d).

5.4.7 Technology behind V-NLIs

In this section, we briefly explore the software technologies used in the related works. We can

distinguish between those that directly useNLP-toolkits and those that use chatbot frameworks.

For the former, we found multiple examples. The most used NLP-toolkit is open-source CoreNLP

in Java [124]. For instance, Snowy [176], Miva [39] and Evizeon [81] all use it. Others use CoreNLP

in combination with other toolkits, such as [178], which combines CoreNLP with NLTK [20]

and AIML [29], and ConvisQA [171], which integrates CoreNLP with an ANTLR parser [143].

Some works use other NLP-toolkits; for example, Valetto [95] uses spaCy toolkit [78]. Finally,

Data@Hand [108], which focuses on speech recognition, uses Apple speech framework [9] and

Microsoft Cognitive Services [129] for IOS and Android devices, respectively, and Compromise NLP

toolkit [101] to perform part-of-speech tagging. Among the V-NLIs that use chatbot frameworks,

running independently from the visualisation module, we find: ACUI [19] using Rocket Chat

open-source software [151]; Boomerang [116] based on IBM Watson Assistant [1]; GeCoAgent [43]

based on Rasa [146]; and TransVis [16] employing Google Dialogflow4 [67].

Moreover, other works proposed customised solutions. Gamebot [214] uses rule-based word

matching. Iris [57] uses domain-specific language that transforms Python functions into a finite

state machine. Ava [91] employs a state machine to control natural language conversations.

FlowNL [84] uses a declarative language to filter and combine data to derive structures and

translates natural language VisQueries into declarative specifications to render visualisations.

Finally, the latest contributions to the field: Chat2Vis [122] uses LLMs, while Talk2Data [169] uses

a novel decomposition model that is extended from sequence-to-sequence (deep neural networks)

architectures.

Furthermore, recent advances in chatbot technology, such as ChatGPT-4 [138], and Gemini[188]
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demonstrate its ability to respond to VisQueries. These advances already started to be applied to

the field of data visualisation. For example, users can ask the chatbot to show them a visualisation

of a particular layout by sending an image showing the desired layout. In fact, a recent study has

focused on creating data visualisations using Natural Language with ChatGPT-3 and GPT-3.5 [122].

The study proposed using Large Language Models (LLMs) to create data visualisations from tabular

data with basic visualisation methods. The system is able to select the appropriate visualisation

type based on user VisQueries. In another example, ChatKG [40] employs LLM using ChatGPT for

analysing temporal sequences. While the study reported positive results, it also recognised certain

constraints, such as the difficulty in effectively comparing extensive sets of data simultaneously. It

is particularly not suitable for analysing non-temporal or multivariate data and can become visually

overwhelming when dealing with numerous patterns simultaneously. Moreover, these advances come

with several challenges, such as difficulties in specifying refinements to plotting elements, variability

in the type of plot generated, and their non-deterministic nature. Given the fact that none of the

works reviewed in this literature review use NL interactions to change symbolic Graphical Elements,

such as glyphs and colour palettes, these generative approaches can potentially be used to generate

them during analytical conversations.

5.4.8 Design Methodologies

In the previous sections, we explored V-NLI interfaces that contributed to the visualisation chatbot

literature. As explored, these works presented V-NLIs in health [108] or business [89] domains,

and also delved into specific aspects of VisChatbots such as queries’ recommendation [176] and

ambiguity resolution [65]. However, it should be noted that these works did not mention general

design methodologies focused on VisChatbot, and neither does the literature present contributions

in this aspect. However, the creation of a VisChatbot presents numerous challenges due to its

multifaceted nature; integrating visual elements into a conversational interface requires careful

planning to ensure a seamless user experience; while the specifications need to be broad enough to

encompass factors such as target user profile, goals tasks, preferred visualisations, and input/output

modalities.

It should be mentioned that, in the field of text-based chatbots, there have been some efforts to

introduce design methodologies, following well-known steps in software development but tailored

to specific fields like health [30] and education [13]. Additionally, Moore et al. [131] provided the

Natural Conversation Framework (NFC) wherein they presented 100 conversation patterns, among

other artefacts, to guide the conversational UX design process. The framework proposes the phases
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of the design thinking methodology [75] for crafting effective chatbot interactions. However, these

methodologies fall short of meeting VisChatbots requirements such as being aware of the nature of

the data, visualisation types and interaction modalities.

Feine et al, [58] proposed three design principles for interactive chatbot creation. Firstly,

they advocated for direct manipulation of objects of interest. Secondly, they stressed contingent

responses to engage users further. Lastly, they highlighted the importance of collecting and

visualising interaction metrics. These principles were then integrated into specific design features

for their chatbot. Although their approach emphasises interactivity, it focuses primarily on chatbot

functionality rather than visualisation aspects.

While these works are well-established methodologies for visualisation, HCI, and chatbot design,

they are not directly applicable to VisChatbots. Actually, proposing a new methodology for

developing visualisation chatbots (V-NLI) is essential because it addresses the unique challenges

and requirements that traditional HCI design methodologies and textual chatbot frameworks fail

to cover adequately. Although the phases in these methodologies may be similar, the artefacts

produced and the steps followed within each phase must be specifically tailored to the context of a

V-NLI. HCI methods are primarily focused on user interfaces [131], [30], [58], and did not provide

guidelines for integrating NL interaction with complex data visualizations, while general chatbot

frameworks are optimised for text or voice communication without addressing the intricacies

of presenting and interpreting visual data. That is, the integration of visual elements into a

conversational framework demands more than the simple addition of graphics to dialogue— it

requires a careful rethinking of how users interact with and explore data through conversation.

Existing methodologies fail to account for the multidimensional interaction, where both visual and

verbal cues must work together to guide the user through complex data.

In summary, while several studies have explored methodologies and tools for designing text-based

chatbots, a significant gap persists in the literature regarding the development of methodologies

specifically tailored for VisChatbots. Indeed, VisChatbots introduce unique considerations involving

the visual mapping of data (generating or updating visualisations) and the subsequent transforma-

tions of these visualisations(zoom in, panning, changing colour, among others). Moreover, designing

a VisChatbot requires understanding why users engage with visualisations, their characteristics

(demographics, familiarity with visualisations, and the data domain), their objectives, and the

complexity of the target tasks extracted from their hypotheses. Additionally, the different nature

of the inputs and outputs (text and visual) means putting the focus on the modalities (e.g., natural

language, WIMP, sound, touch, gestures) that need to be managed and synchronised by the
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VisChatbot. Finally, in this novel paradigm, VisChatbots designers need new proposals for UX

evaluation metrics.

5.5 Summary

In the V-NLI literature discussed above, most works focused on tabular data with basic vi-

sualisations, rather than exploring more complex data with advanced visualisations. This

trend continues in the selection of visual mapping techniques, where the emphasis remains on

simple data and visualisations. Moreover, they typically allow users to express only low-level

VisQueries, while those that consider high-level VisQueries still do so using simple data types

and attributes, such as tabular data with numerical and nominal attributes. Indeed, Talk2Data [169]

and Chat2Vis [122] are the only related works that used high-level VisQueries, both with tabular

data. However, the former has a form-based interface, and although the latter is VisChatbot,

it lacks chatbot qualities such as conversational feedback and viewing conversation history. As

a result, a gap exists in the use of natural language for analysing more complex data types, such as

network and hierarchical data.

Remark 5.1. Designing VisChatbot should account for complex data and advanced

visualisations that support high-level VisQueries.

Furthermore, when we explored conversational guidance strategies (auto-complete, help,

recommendation, and follow-up), we came across works that include different kinds of conversational

guidance [91, 154, 176, 95, 16, 108, 178, 169, 171, 81, 43, 175], few of them supporting multiple

types [176, 91]. Conversational guidance strategies enhance the user experience by helping users

navigate the V-NLIs, understand intricate components, can guide them in formulating effective

VisQueries, and supporting their data analysis. Therefore, guidance strategies should be thoroughly

explored and integrated into V-NLIs to enhance user experience and simplify the analysis process.

Remark 5.2. Chatbots’ guidance strategies are crucial in VisChatbot design, as they

improve the usability of V-NLIs, ultimately enhancing the overall user experience.

A significant development that can enhance guidance strategies is the implementation of a

passive listening mode, which allows the chatbot to observe conversations between users and

respond accordingly [19]. In line with this, a recent study explored an always-listening agent that
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acts as a third collaborator in a multi-person visual analysis. The agent generates visualisations

based on observations it makes from users’ conversations [185].

Generally, V-NLI research examines various aspects of VisChatbots, such as widgets for managing

ambiguity [65] [163], intent recommendations for data analysis [176], automated chart selection for

accessibility [169] [116], and multimodality (touch and gestures) to improve user experience [95]

[174]. However, these studies frequently lack a structured design methodology, complicating

the integration of user needs, natural language understanding, and conversational flow. This lack

of methodical planning can lead to inefficiencies, inconsistencies, and challenges in delivering a

cohesive and effective VisChatbot solution. Although some toolkits, such as NL4DV [133] and

ncNet [119], facilitate V-NLI creation, they fail to guarantee their robustness and efficacy, as

revealed by Feng et al. [59].

Remark 5.3. There is a notable gap in comprehensive design methodologies tailored

specifically for VisChatbots. Addressing this gap is essential for developing effective

and cohesive VisChatbots.

5.6 Conclusions

In this Chapter, we brought together the fields of data visualisation and chatbot-based interaction

to study the body of literature on Visualisation-oriented Natural Language Interfaces (V-NLIs).

Our aim was to provide an overall picture of the current state of V-NLIs, especially VisChatbots,

and to identify and highlight future research directions. We provided a summary of the aspects that

are currently focused on and supported by V-NLIs, as well as their limitations. Specifically, the

limitations found are related to the complexity of the analysed data, advanced type visualisations,

the type of queries supported by the chatbot, the lack of visual mapping automatisation, and

the supported interaction styles. Moreover, after this thorough review, we emphasise that these

V-NLIs focused on only specific aspects and did not explore a comprehensive methodology for

creating VisChatbots. In the following chapters, we will use this information as guidance to develop

a comprehensive methodology for designing VisChatbots and for creating a VisChatbot for our

visualisation platform, DViL using this methodology.



Chapter 6

VisChat Methodology

With the exponential growth of data from diverse sources, effective data analysis tools have become

increasingly crucial. V-NLIs, also known as VisChatbots, have emerged as promising solutions

to address this challenge. As explored in the previous section, numerous research efforts have

significantly advanced the literature on VisChatbots. These studies have applied V-NLIs in various

domains, including health [108] and business [89], and have investigated specific aspects such as

query recommendations [176] and ambiguity resolution [65].

However, as stated in Remark 5.3 in Chapter 5, these works have not addressed design

methodologies specifically focused on VisChatbots, and the literature lacks contributions in this

area. Indeed, creating a VisChatbot involves numerous challenges due to its multifaceted nature.

Integrating visual elements into a conversational interface requires meticulous planning to ensure a

seamless user experience, while also addressing broad specifications such as the target user profile,

goals, tasks, preferred visualisations, and input/output modalities. In the broader context of

conversational user interfaces, some research has proposed natural conversational frameworks [131]

[30], while others have outlined principles to guide chatbot design [58].

To tailor these design frameworks to the context of VisChatbots, in this chapter, we propose a

new Visualisation Chatbot methodology (VisChat), which aims to guide the incremental creation of

VisChatbots for visual analytics processes. This iterative process includes the three main classical

phases of a development process: Analysis, Design, and Development. In our case, however, each

phase introduces various stages that deal with specific characteristics of VisChatbots.

154
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6.1 Methodology

VisChat Methodology is inspired by the well-known Behaviour Driven Development (BDD) from

agile software development [172], which is especially suitable when a project is complex. BDD

ensures that the software meets the customer’s precise requirements and breaks down complex

requirements into smaller, manageable pieces (features, scenarios, and use cases). Particularly, we

focus on describing VisChatBot behaviour through use cases and encouraging collaboration among

stakeholders (users, designers, and developers). Our VisChat methodology proceeds through three

phases - Analysis, Design and Development -, where the Design phase is the centre of the process

on which the Analysis and the Development phases will pivot in successive iterations, not only

ensuring the VisChatbot’s design evolves cohesively with the demands of users but also empowering

continual enhancements in its design. Figure 6.1 shows these phases, depicting the Design phase

as a big turquoise square, and the Analysis and Development phases as blue and green circular

shapes, respectively. Circular arrows cross the main stages (coloured small squares) of each phase,

allowing for revisiting and iteration over phases.

Figure 6.1: The 3 Phases of VisChat Methodology. Squares indicate stages within phases. Icons
show Ethics requirements and stakeholders’ roles (see the legend on the right bottom side). Role
icons at the centre of a circle indicate the roles involved in all stages.

Each iteration incorporates one use case, i.e., a research hypothesis, to be analysed along
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the visual analytics workflow. Each research hypothesis involves several elemental VisTasks. For

example, in a visual analytics process dealing with urban mobility patterns, researchers formulate

the research hypothesis: ”The larger the population in an area, the more pronounced the peak

hours of traffic congestion”. Then, the first iteration incorporates into the design two tasks: (1) an

initial exploration of the data which is to get familiarise with the visualisation and gain a general

understanding of it (first VisTask), and (2) discovering patterns inside the data which is to test the

hypothesis (second VisTask), ending with an evaluation stage to ensure that the VisChatbot can

assist users in the validation of the hypothesis. This evaluation allows for gathering users’ feedback

to refine either the requirements of the VisChatbot (see blue circle in Figure 6.1), or VisChatbot’s

design (see green circle in Figure 6.1). Finally, after addressing all the refinements, the design is

prepared to integrate a second research question into the visual analysis.

The design of a VisChatbot requires the collaborative efforts of key participants: users, develop-

ers, and designers. In the Analysis Phase, users and designers collaborate to gather and evaluate

user needs, with designers focusing on capturing detailed requirements and preferences related to

users, their data, and the visualisation platform on which the analysis will be performed. During

the Design Phase, all three roles are actively involved: users offer additional details as needed

based on insights from the analysis phase, while designers refine the design using the collected

information to balance user needs with technical feasibility. Designers work closely with developers

to ensure the design can be effectively implemented. In the Development Phase, collaboration

persists as users engage in testing and provide feedback, developers turn the design into a functional

system, and designers oversee the integration to ensure the final product aligns with both the initial

vision and user expectations. The specifics of the roles will be explained in each phase below.

Moreover, it should be noted that during the design of a VisChatbot, we recommend the

consideration of ethical and privacy issues throughout all phases, especially in the stages of user

analysis, data analysis, in the generation of Annotated Transcripts in the VisChatBot Design

—where the fundamental logic and decision-making processes of the chatbot are established, ensuring

ethical interaction between the chatbot and the user—, and during the user evaluation stage. This

means double-checking data sources (authenticity and reliability), avoiding bias both in the data

and in the visualisations by preserving sufficient context, encouraging feedback for transparency,

respecting privacy rights and obtaining consent before collecting personal data during testing,

among others. The following sections introduce each phase of the VisChat methodology (Analysis,

Design and Development), describing the stages involved in each of them.
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6.1.1 Analysis Phase

The aim of this phase is to investigate users’ requirements (use cases), describe data characteristics

to comprehend its structure, perform the VisTask analysis, and set the visualisation demands and

interaction needs. Note that a VisChatbot is naturally aware of the textual conversation, but it

also has awareness of the visualisations, the data it manages and the user interface (UI) in which it

is embedded.

Gathered insights will be used to guide the design of the VisChatbot, ensuring it aligns with

users’ requirements for seamless data exploration and interpretation. This phase encompasses the

following stages: User, Data, VisTask, Visualisation Type, and Interaction Requirements Analysis

(see Figure 6.2).

In this phase, users and designers collaborate to create a user-centric design. Specifically, users

actively collaborate with designers by sharing valuable insights regarding their objectives, preferred

visualisations, and data interaction methods. This input allows designers to better understand user

needs and preferences. In turn, designers synthesise this information to inform the next phase of

development, ensuring that the resulting chatbot design effectively supports users’ goals and tasks

while seamlessly integrating with the visualisation platform.

Figure 6.2: Analysis Phase of the VisChat Methodology
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User Analysis Stage

This stage involves a comprehensive exploration of the target audience. The primary focus is on

acquiring knowledge regarding the users and their goals with the conversational agent.

In the HCI field, there are general user research methods to emphasise with users and gather

data from them (observations, interviews, questionnaires) [113], and others based on analysing the

visual analytic activity [68]. When it comes to chatbot design, Wizard of Oz studies (mimicking

a chatbot) is the most suitable method [12]. Collected data such as users’demographics and

background will undoubtedly affect the vocabulary and the jargon of VisChabot’s design. For

example, if users are children who are learning data visualisations, they might require designing a

different jargon than adult users who are analysing a company’s sales [70].

Moreover, as users interact with the VisChatbot using natural language, it is crucial to know

their language proficiency in order to ensure the effectiveness of the conversation. For example,

English may not be the users’ mother tongue and they may not have the grammatical mastery

required to talk to the chatbot. Finally, understanding the extent of users’ expertise regarding

the data domain, visualisation terminology, and the confidence needed to manage the UI helps

determine the appropriate level of support provided by the VisChatbot.

In summary, in this stage, designers gather information about the target user profile, includ-

ing their goals, demographics, background, language proficiency, and expertise with data and

visualisations. These data will inform design decisions in the Design Phase.

Data Analysis Stage

This stage explores the characteristics of the data the VisChatbot will deal with. The literature

provides a myriad of data types for visualisation [170], although for the sake of simplicity here we

consider two main Data Types: tabular and complex data as we introduced in the Chapter 2,

Section 2.1. Indeed, user queries are simpler with tabular data (e.g., requesting to plot a bar chart

or select the peak point) than with unstructured or complex data, which requires more sophisticated

visualisation (e.g. network layouts), and consequently, longer conversations and more difficult

language understanding are needed to interpret user queries. This situation worsens when dealing

with high multidimensional data, which brings more aspects to analyse, including complex

relationships between features.

Whatever the case, whether the data is simple or complex, users need to prepare and restructure

raw data into a format suitable for visualisation. Thus, designers can consider that NL can help to

improve the accessibility of average users to perform data transformation and facilitate intuitive

visualisations [85].
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Another aspect is to determine the vocabulary used during a VisTask. On the one hand,

the chatbot’s designers must define general terms commonly used in analytics (e.g. ”Are there

outliers?”, ”Which category has the lowest values?”, etc.). On the other hand, specific jargon of the

data domain should be included in the VisChatbot’s vocabulary (e.g., sports, healthcare, business).

To sum up, in this stage, designers should document key information about the target data

type and domain. This includes clearly defining the data domain, specifying the type of data,

and recording the relevant jargon and terminology. For example, if dealing with hierarchical data,

designers need to ensure the VisChatbot understands terms like ”thread,” ”depth,” or ”node.”

Similarly, for other types of data, the chatbot should be able to comprehend relevant terms, such

as ”trends”, ”axis”, ”frequency”, and ”time range” for time series data, or ”category”, ”values”,

and ”trends” for categorical data.

VisTasks Analysis Stage

At this stage, it is essential to understand what motivates users to interact with the VisChabot

(the ’why’ of usage). This involves analysing the VisTasks that are useful when solving a specific

research hypothesis. The selection of the VisTasks will depend on the research hypotheses and

goals. To do so, we leverage the main VisTasks Types presented in the Chapter 2, Section

2.1: LookupT (known Location and Target), LocateT (unknown Location and known Target),

BrowseT (known Location and unknown Target) and ExploreT (unknown Location and Target).

Moreover, we introduced VisQueries; IdentifyQ, CompareQ, and SummariseQ which are utilised

to execute sequences of VisTasks. By the end of this stage, designers compile a set of VisTasks

and associated VisQueries necessary to validate their research hypotheses. The known/unknown

location/target labels of VisTasks, along with the types of VisQueries, will inform the selection of

suitable VisChatbot’s input/output modalities during the Interaction Analysis stage.

Visualisation Types Analysis Stage

This stage determines the kind of visualisations required to analyse the data regarding the Visual

Mapping and the View Transformation operations. As presented in the DataVis Pipeline in

Chapter 2, Section 2.1, Visual Mapping refers to visual aspects such as visualisation layouts,

glyph, size, and colour meanwhile View Transformation is concerned with operations like zoom,

panning, multiple views, and focus+context [34] [167] [96].

Different charts and diagrams can be used in the Visual Mapping stage, depending on the

VisTask and the kind of data. For instance, with bar charts or line charts, users analyse trends

in data, while with hierarchical layouts or network diagrams, the focus shifts to exploring paths

and the relationships between different data points. Moreover, when dealing with complex data,
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there exists a wide variety of layouts that can help the users to perform their VisTasks, though

in some cases one layout can be more informative than others as explained in Chapters 2 and

3. In this context, the VisChatbot can automatically select the most appropriate layout for each

visualisation [176, 81, 97, 122, 121]. For example, Mackinlay et al. [121] used a rule-based method

to automatically decide the best way to display the data in a chart. For example, in the case of

one quantitative attribute and one categorical attribute, the system recommended a bar chart.

Additionally, colour and glyphs are essential visual elements for an effective visual analysis.

Nevertheless, choosing the right ones can be challenging for novice users. Novice users may struggle

to select the most effective colours and glyphs to best present the data and to arrange elements

in a way that clearly communicates the insights, potentially leading to confusing or misleading

interpretations of the visualisations. Therefore, designers of the VisChatbot should consider

implementing features for the automatic generation of colours and glyphs [168], tailored to achieve

the desired visual outcomes.

Moreover, View Transformations like zooming or panning, influence how the visualisation is

displayed. Thus, designers need to decide whether the VisChatbot should be aware of these changes.

Alternatively, they can also decide to empower the VisChatbot with the ability to automatically

locate the view on the most relevant areas in response to a user query. Finally, note that based on

these Visual Mapping and View Transformation analyses, designers specify the VisChatbot’s

intents, terminology, and types of additional output. Additional outputs will be elaborated upon in

the next section.

Interaction Requirements Stage

This stage is responsible for analysing the required VisChatbot’s Input/Output characteristics.

Notice that a VisChatbot is embedded in a three-faceted interactive ecosystem that is characterised

by diverse user interactions and dynamic data visualisations: WHERE do users interact: in

areas such as menus, canvas 2D/3D, and text boxes; HOW do users interact: using multimodal

interactions (i.e., text, sound, gestures); and WHAT is their interaction style: WIMP, AR, VR.

Therefore, a good VisChatbot should be able to handle information from and to these different

sources (see Input and Output in Figure 6.3) to make users feel like it all works together seamlessly.

Across this ecosystem, the VisChatbot’s inputs are complex, since users may interact through

low or high level VisQueries using: NL, pointing to objects in the 2D/3D canvas, or selecting GUI

widgets, among others. As outlined in Chapter 5, Section 5.3, Low-level queries are usually very

specific, and, in most cases, can be solved using NL and also directly through the GUI. In contrast,

high-level queries are so broad and varied that they are not manageable all at once by the GUI
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Figure 6.3: Input and Output modalities of a VisChatbot.

nor predictable. Therefore, they require the use of various input modalities (e.g., NL and canvas

interaction) that should be preserved in the context of the conversation.

Given the complexity of user-chatbot interactions and the need for multiple input modalities,

the designer must analyse the VisQueries defined in the VisTasks Analysis stage to specify the

most adequate inputs to be maintained in the VisChatbot context and also to be considered in

the Design Phase. By maintaining this information in the context, the follow-up conversations

can refer to pronouns or co-references to previous text-based and visual inputs. For instance, if

the user signals a 3D object in the visualisation, afterwards she can refer to it in the conversation

saying ”Tell me more about it”.

In addition,Guidance—such as auto-complete, recommendations, suggested queries, and hints—

, and Proactivity, to suggest to users the necessary steps to complete an analysis, are relevant

VisChatbot characteristics to be considered and are closely related to the type of VisTask. Indeed,

Guidance and Proactivity are relevant characteristics in LocateT, BrowseT, and ExploreT tasks

as either the location, the target, or both are unknown. For example, imagine a user performing

a LocateT task through the IdentifyQ query, analysing online conversations, ”Show me the most

positive thread”. A proactive chatbot decides an automatic zoom-in to help the user to find and see

important details, of the unknown location.

The analysis of VisChatbot’s output characteristics is also driven by the VisChatbot’s interactive

ecosystem since there are multiple ways to enrich the Feedback such as through additional charts,

annotated visualisations, statistics, and even haptics in VR, among others (see the right-hand side in

Figure 6.3). That means the chatbot can give responses such as a New or Updated Visualisation,

and visual feedback (i.e., View Transformations using zoom and Visual Mapping like colour
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changes). It can also confirm or inform about the answers using Natural Language and

Additional visual info, such as displaying supplementary charts and highlighting widgets

in the GUI. Additional outputs are Visual Annotations in the updated Visualisation, the

Disambiguate Buttons in the chat, and Visual Summaries.

Finally, note that supplementary charts generate Multiviews. Thus, the chatbot should be

able to differentiate which view the user is referring to. Actually, Multiviews are closely related

to CompareQ queries since they assist users in contrasting different parts of a visualisation or

two different datasets.

In summary, the designer must define the VisChatbot’s input and output characteristics,

including multiviews, multimodality, and also user interactions the VisChatbot is intended to

support. We emphasise the connection between VisTasks and their interaction requirements,

particularly how guidance and follow-up skills relate to different VisTasks. For example, tasks

like LookupT, where both the location and target are known, generally require less guidance. In

contrast, more complex tasks, such as LocateT, BrowseT, or ExploreT, may necessitate additional

support and sophisticated interactions. Thus, after this stage, the designers should have the

complete set of required interaction methods.

6.1.2 Design Phase

Once the requirements of the VisChatbot have been defined in the previous phase, in this phase, the

VisChatbot design is conceptualised, adhering to design principles for conversational interactions:

Recipient design, Minimisation, and Repair [131].

Recipient design refers to the way that speakers shape or structure their conversation in

various ways depending on the specific individual with whom they are talking. Therefore, designers

of VisChatbots should adjust the vocabulary based on user characteristics, such as expertise level.

They should also offer multiple conversation paths to ensure users with varying levels of expertise

can navigate efficiently. For instance, experts may require shorter interactions to accomplish

VisTasks than novice users.

The Minimisation principle reflects real-world conversational norms in which individuals aim

to use concise language. This principle should inform VisChatbot design, in the sense that text

can be minimised both in terms of how it is expressed and by utilising complementary visuals and

WIMP interactions. For instance, users can make shorter queries while pointing to elements in the

visualisation, such as asking for more details about a specific element.

The last principle, the Repair principle, similar to conversational strategies like repeating or
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paraphrasing, aims to rectify misunderstandings or ambiguities. For instance, highlighting specific

parts of the visualisation can clarify the user’s intent.

Based on these principles, our methodology proposes three design artefacts: (1) VisAgent

Persona, (2) Conversational-Visualisation Patterns, and (3) VisChatBot Transcripts (see Figure

6.4). The VisAgent Persona aids in designing the characteristics of the chatbot according to the

target users. The Conversation-Visualisation Patterns help to design the interaction between the

user and the VisChatbot. From these, designers can define the VisChatBot Transcripts, which are

instantiations of the pattern and will inform the deployment phase of the VisChatbot interactions.

These transcripts will be the basis for defining the agent’s training data.

In this phase, collaboration involves designers, developers, and users. Initially, designers will

complete the VisAgent Persona using information collected from users. If any details are missing

or require confirmation, users will participate to provide the necessary input. In the second design

artefact, designers and developers will work together to create and refine conversation patterns.

Finally, the VisChatbot Transcripts will be developed collaboratively by designers and developers to

ensure they align with the established conversation patterns and effectively support user interactions.

Next, we will present and discuss each of the proposed design artefacts in detail.

Figure 6.4: Design Phase of the VisChat Methodology
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Artefact 1: VisAgent Persona

User Persona artefacts are widely used in classical HCI research [93], and Moore et al. [131]

suggested the need to define a Conversational Agent Persona for text-based chatbots. Following

these ideas, we propose a Conversational Agent Persona template called VisAgent Persona that

describes an archetype of the chatbot incorporating both conversational aspects and the visual

dimension of VisChatbots, providing a consistent view of the intended users (see Figure 6.5). The

template has six key sections outlining general descriptions: Goals, Traits, Target Visualisation,

Target Interactions, Target Users characteristics, and Skills of the VisAgent, which is filled

according to the outcome of the Analysis Phase.

Figure 6.5: VisAgent Persona Template. Adapted from [93]

In Figure 6.5, the Goals section outlines general objectives that designers must customise

to the specific VisChatbot instance, using the information collected from User Analysis, Data

Analysis, and Task Analysis stages in the Analysis Phase. For example, the goal ”Guide users

about the domain” in data visualisation in the music domain would be ”Give the users info about

their preferred artists and songs”. Traits specifies the characteristics that the VisChatbot must

possess, such as the language, jargon, and vocabulary of the chosen domain, the personality of the

VisChatbot, and more importantly, input/output modalities. These are the information gathered

from the User and Data Analysis stages as well as, the Interaction Requirements Analysis stage.
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The interaction with these modalities is specified in the Target Interactions section, which refers

to the possible interactions with the GUI’s buttons, together with complementary charts which are

collected from the Interaction Requirements Analysis stage.

Regarding new sections in the proposed template that are closely related to VisChatbots,

Target Visualisation includes data types, the types of the main visualisation, and the types

of the complementary charts, among other aspects related to Visual Mapping and View

Transformation, which are collected from Visualisation Type Analysis stage. In addition, Target

Users focuses on users’ background (e.g., students, biologists, etc.), age range, visualisation skills,

data domain knowledge and level of expertise in VisChatbot’s language, which are gathered from

the User Analysis stage.

Finally, the Skills section demonstrates the expected capabilities of the VisChatbot, including

its ability to retain and recall visual context changes or interactions during conversations, ensuring

continuity and relevance which is called Memory of Visual Context. Moreover, it includes Guidance

(reactive or proactive), Knowledge of the Data Domain, Data and Visualisation knowledge, and

Query level (low or high). This information is collected from various Analysis stages such as

Interaction Requirements Analysis and VisTasks Analysis.

Artefact 2: Visualisation Conversation Patterns

The second artefact, Visualisation Conversation Patterns are predefined templates that specify

user-chatbot interactions. These patterns provide a starting point for designers and developers so

they do not have to reinvent the basic mechanics of conversational structures. They emerge from

stakeholder brainstorming and the study of visual analytical conversations and are influenced by

the defined VisAgent Persona.

Notably, the NCF framework proposed by [131] described conventional text-based conversational

patterns which address the primary goals of user interactions such as inquiring about details,

requesting repetition, and aborting conversations. Drawing inspiration from these, we introduce

generic patterns tailored for VisChatbots. Our attention now turns to VisTasks and their possible

input/output modalities that enrich the conversation.

We showcase all the Visualisation-Conversation Patterns through pattern cards displayed

in Figures 6.6 to 6.13. Each card introduces a pattern name (e.g., Guidance Tool) alongside

its specific objectives and an outline of its intended purposes. We present dialogue patterns in

sequential steps, demonstrating interactions between users and VisChatbot, and giving an example

for each pattern. As there are different input and output styles in a VisChatbot, in all the patterns,
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these types are represented by icons (see Figure 6.3).

We organise our patterns into three families depending on their purpose:

• TheVisualisation Patterns family refers to those patterns that aim to define the interactions

of the VisChatBot in VisTasks and VisQueries. In this family, we propose two patterns: the

Request Visualisation Task and Query and the Request Visualisation Details (see

Figures 6.6 and 6.7, respectively).

• The Assistance Patterns, which aim to guide users in the analysis. In these patterns,

we focus on the VisChatbot’s capability to observe user conversations and suggest effective

interaction methods to aid in task completion, as described in Remark 5.2. This remark

highlights the importance of VisChatbots’ guidance strategies in improving the usability

of V-NLIs, ultimately enhancing the overall user experience. Additionally, these patterns

address ambiguities in user communication, where potential vagueness or unclear expressions

can lead to misunderstandings. Thus, we propose two proactive patterns in this family:

Sniffer, and Ambiguity Helper (see Figures 6.8 and 6.9, respectively). Moreover, another

key aspect of guidance focuses on helping users navigate visualisations and data domains,

thereby enhancing their ability to derive meaningful insights. Therefore, we present two

reactive patterns: Guidance Tool, and Guidance Domain (see Figures 6.10 and 6.11,

respectively).

• Finally, the Flow Patterns family focuses on the thread of the analytical conversations.

In this family, we specifically focus on how VisChatbots can assist users in summarising

data analysis findings while ensuring the insights are clear and unbiased. Thus, we propose:

Visual Summary (see Figure 6.12). Additionally, we present Closer Invite to Continue

(see Figure 6.13) to offer users a smooth transition to further engagement or to gracefully

end the conversation.

Pattern 1: Request VisTask and Query

Pattern 1 allows users to interact with visualisations through VisTasks (LookupT, LocateT,

BrowseT, ExploreT) and queries (IdentifyQ, CompareQ, SummariseQ). As illustrated in Figure

6.6, this pattern involves the following steps: the user requests a visualisation task and query,

the VisChatbot responds with the relevant visualisation and query results, and optionally, the

VisChatbot may recommend further actions 1. This pattern supports input via text/voice and

1Step 3 is optional and indicated by brackets [ ].
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PointingVis, and output through text/voice, updated visualisations, additional visual details, and

visual annotations. As shown in the example provided in the figure, the user asks to see the country

with the highest number of players for the game Witcher. The VisChatbot responds by updating

the visualisation to highlight Australia on the map and annotating it with both a visual marker

(the bar chart showing the top four countries) and a text label displaying the exact number of

players. Additionally, the VisChatbot states textually that the top-ranked country is Australia and

explains that the bar chart shows the top four countries. Following this, the VisChatbot offers a

recommendation by suggesting an additional analysis, asking if the user would like to explore data

trends for Australia over time, and illustrating the optional recommendation step.

Figure 6.6: Request VisTask and Query Pattern from Visualisation Patterns Family.

Pattern 2: Request Visualisation Details

Pattern 2 focuses on enhancing visualisations by allowing users to request finer details such as

zooming, panning, adjusting colours, resizing, and more (see Figure 6.7). The steps in this
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pattern include: the user requesting specific visualisation details, the VisChatbot responding with

the requested adjustments, and optionally, the VisChatbot suggesting further actions 2. This

pattern supports input via text/voice and PointingVis, and outputs through text/voice, updated

visualisations, additional visual details, and visual annotations. This pattern continues with the

Witcher example from Pattern 1. The user requests to see the country with the fewest Witcher

players, and the VisChatbot responds by zooming in on Sri Lanka, presenting a more detailed view

with visual annotations such as labels identifying the player count which is 1000. Additionally, it

provides further insights with a bar chart highlighting other popular games in the country, such as

Sims and FIFA.

Figure 6.7: Request Visualisation Details Pattern from Visualisation Patterns Family.

2Step 3 is optional and indicated by brackets [ ].
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Pattern 3: Sniffer

Pattern 3 is intended to observe users’ interactions within both the visualisation and the VisChatbot.

For example, as users explore or navigate over the canvas, and users can type and delete text in the

chat, in these cases the VisChatbot remains attentive, ready to offer additional support or guidance

as needed. This pattern includes input of text/voice and PointingVis, and text/voice output. In

the example, the user seems lost moving the mouse on the canvas, without a concrete direction

but mostly centred around China or writing but deleting text continuously. The VisChatbot

asks whether the user is looking for China or information about it and states that it can provide

additional details, such as demographics in China

Figure 6.8: Sniffer Pattern from Assistance Patterns Family Proactive, i.e., observe users’ interac-
tions within both the visualisation and the VisChatbot.
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Pattern 4: Ambiguity Helper

Pattern 4 aims to guide users through disambiguate queries to assist with the analysis when the

VisChabot has some doubts about the user’s intents (see Figure 6.9). This pattern involves four

steps: 1) the user requests a visualisation task and query, 2) the VisChatbot offers disambiguation

interactions, 3) the user selects a response, and 4) the VisChatbot provides a final answer or further

disambiguation. The pattern supports text/voice and PointingVis input, with outputs including

text/voice, updated or new visualisations, additional visual information, and disambiguation

buttons. Continuing from the Sniffer pattern example, the VisChatbot suggests exploring China.

The user hovers over China in the visualisation and asks, ”Tell me about that” referring to the

country. The VisChatbot detects ambiguity and responds with a clarifying prompt: ”Do you want

to explore the players by Age or Gender?” (displaying clickable disambiguation buttons). After the

user selects an option (e.g., ”Age”), the VisChatbot generates further information, such as a new

visualisation (e.g., a spider chart), along with textual data explaining that the top players in China

are aged 19.
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Figure 6.9: Ambiguity Helper Pattern from Assistance Patterns Family Proactive.
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Pattern 5: Guidance Tool

Pattern 5 helps users with queries regarding the visualisation tool providing guidance through

the GUI. This pattern includes two steps; the user’s intent to request guidance on the tool and a

guidance tool response. It accepts text/voice and PointingGui as input and provides text/voice,

additional visual information, and visual annotations as output. In the example in Figure 6.10, ,

the user points to the Filters on the GUI and asks, ”What else can I analyse?” The VisChatbot

responds by transitioning the interface into tutorial mode. During this mode, the GUI highlights

the available filters (such as RPG, Action, and MMO), displaying additional visual elements like

charts and offering an explanatory narration. For example, the VisChatbot may highlight a bar

chart displaying the statistics of different game genres played over the past year, guiding the user

through the filter options interactively. The speech playback can be paused or resumed at any time.

Figure 6.10: Guidance Tool Pattern from Assistance Patterns Family Reactive.
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Pattern 6: Guidance Domain

Pattern 6 helps users with queries about the specific vocabulary and concepts implied in the

application being analysed. This pattern involves the user requesting domain guidance and the

VisChatbot providing a response. It accepts text or voice input and outputs through text, voice,

and additional visual information on the GUI. Returning to the example of analysing data from

the game Witcher, it can be observed in Figure 6.11, the user asks about the game’s plot. In

response, the VisChatbot provides a video trailer of the game, which can be played or paused by

the user at any time. Alternatively, the VisChatbot could present the plot as text instead of a

video. Additionally, the GUI highlights relevant information (e.g., genre) and prompts the user

with a follow-up question: ”Do you want to explore other games with the same type of genre?”

Figure 6.11: Guidance Domain Pattern from Assistance Patterns Family.
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Pattern 7: Request Visual Summary

Pattern 7 gives users a visual summary of key points from their analysis with annotations under

the frames (see Figure 6.12). This pattern also includes two steps; the user requesting a visual

summary and getting a visual summary response from the VisChatbot. It includes text/voice as

input and output, as well as, visual summary output. Here we can see in the example that the user

requests a summary of their session, and VisChatbot provides a visual summary with annotations.

The annotations in the summary include highlighted key actions from the user’s interaction, such

as asking about the most-played country, zooming into specific countries, and exploring the map to

analyse other regions.

Figure 6.12: Request Visual Summary Pattern from Flow Patterns Family.
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Pattern 8: Closer Invitation to Continue Pattern

Pattern 8 monitors user activities to recommend steps to close the current analysis and start a new

one (see Figure 6.13). This pattern involves four steps: 1) The user completes the current VisTask,

2) The VisChatbot invites the user to continue with another VisTask, 3A) If the user accepts, 4A)

the VisChatbot suggests a query to proceed, 3B) If the user declines, 4B) the VisChatbot concludes

the session. This pattern accepts text/voice and PointingGUI as input and provides text/voice and

additional visual information on the GUI as output. In the example, after the user closes some

pop-up windows to finish their analysis, the VisChatbot asks if the user would like to see anything

else before quitting. If the user responds affirmatively, the VisChatbot offers a query for further

exploration. If the user declines, the VisChatbot responds with a polite farewell, ensuring a smooth

and respectful conclusion to the session.

Figure 6.13: Closer Invitation to Continue Pattern from Flow Patterns Family. 3A-B depicting the
conversation when the user is affirmative, and 4A-B when user is rejecting. Speaker indicates that
VisChatbot prompted user with an alert.

It should be emphasised that these patterns can be combined to form larger, more complex
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patterns, allowing for a mix-and-match approach in any order. Additionally, the conversational text-

based patterns proposed by the NFC framework [131] can be included among the VisChat patterns,

such as: requesting repetition, expressing gratitude, or aborting conversations, and patterns that

help participants navigate the beginning and end of interactions, facilitating control over the overall

engagement state. These patterns are agnostic to any type of task or query, offering flexibility and

adaptability to suit various interaction scenarios. For example, consider the requesting repetition

pattern used when the VisChatbot encounters unclear or unfamiliar user input. If a user types,

”Show me the stats for players in the game”, but the VisChatbot’s programmed terminology

is more specific, like ”visualise player statistics”, it may not immediately grasp the request.

The chatbot, recognising the confusion, would then ask for clarification of the user intent to ensure

it provides the correct visualisation.

Artefact 3: Annotated Transcripts

Usually, transcripts are text-based lines specifying user-chatbot dialogues, for instance, ”User:”

and ”VisChatbot:” steps in Figure 6.13. In the case of VisChatbots, we extend the lines of the

transcript with side notes related to visual and interactive aspects of the conversation. Regarding

VisChatbot’s lines, for instance, a note may indicate that an additional chart appears along with

the main visualisation and simultaneously with the text response. Concerning the user’s lines, a

note may point out that an ellipsis in the text refers to an object in the visualisation (for example,

”it” refers to the location at which the mouse is pointing). This third artefact is based on the

selected Visual Conversation patterns, considering the VisAgent persona. That is, each pattern is

used to guide the generation of transcript lines of conversation examples, aligned with the defined

VisAgent Persona (e.g., examples with child vocabulary if the users are 6 years old).

Transcripts will make up the VisChatbot training data in the Development phase. Notice

that the side notes with visual aspects are an add-on in the VisChatbot’s context. That is, the

VisChatbot is able to remember specific points or areas previously interacted with or selected,

as well as interactions with GUI elements such as filters and buttons. Also, the side notes in

transcripts are the key points to detail all the VisQueries related to the data types, visualisation

types, visualisation transformations, and interaction requirements identified in the Analysis phase.

See the side notes in Figure 6.14, highlighting the important key points that should be implemented

by the developer in the development phase. In the example, we categorised each user query into

input (what the chatbot will detect) and output (what actions the chatbot should take to fulfil

this user query). The input involves processing natural language understanding (NLU) and visual
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comprehension. It includes notes about recognising the user’s request, such as identifying key

terms (e.g., ”country with least players”), extracting contextual data (e.g., the current dataset

and visualisations), saving information (e.g., Sri Lanka as the country with the fewest players),

and interpreting user interactions, such as mouse movements, identifying locations (e.g., China).

The output is natural language generation (NLG) and visual generation. In the output, notes are

divided into updated visualisation (e.g., show the country with the least players), additional visual

info notes (e.g., a complementary bar chart displaying statistics about other games, like Sims and

FIFA), visual annotations (e.g., displaying the number of least players on the map), and textual

explanation about the output. These notes will guide developers in systematically programming

user intents, VisChatbot responses, visual transformations, and interactions. Note that the three

artefacts presented in this section (VisAgent Persona, Visualisation Conversation Patterns and

Annotated Transcripts) are agnostic of the conversational technology, which is selected in the next

phase of the methodology.
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Figure 6.14: Including examples from Pattern 2 and Pattern 3, side notes illustrating Annotated
Transcripts.
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6.1.3 Development Phase

In this phase, the VisChatbot is developed according to the three design artefacts. Next, we detail

the three stages: VisChatbot-Modelling, Visualisation-Chatbot Connection, and User

Evaluation. The first two stages are developer-oriented while the last stage involves designers and

users (as indicated by icons on the right-hand side of Figure 6.15). In the VisChatbot Modelling

stage, the developer consolidates all the information and artefacts from the Design Phase crafted by

the designer. Here, the designer can assist the developer by clarifying design intentions and ensuring

that all elements are implemented correctly. During the Visualisation-Chatbot Connection

phase, the developer focuses on integrating the chatbot with the visualisation platform, ensuring

seamless interaction between the two systems. Some VisChatbots also display some visualisation

output directly in the chatbot window, so this integration should account for both embedding

visualisations within the chat interface and handling external visualisation displays smoothly. In the

User Evaluation phase, both the designer and users collaborate once again. Users participate in

testing the VisChatbot and provide feedback, while the designer collects and analyses this feedback.

This data is crucial for refining the system and preparing for subsequent iterations. In the following,

we explore these three stages.

Figure 6.15: Development Phase of the VisChat Methodology
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VisChatbot Modelling

This stage creates the conversational model for the VisChatbot. At this stage, it is therefore impor-

tant to decide on the technology to build it. On the one hand, information-retrieval technologies

[52] search for relevant information from a predefined set of transcripts in response to user queries.

They can be based on rules, such as AIML, ChatScript, or based on machine-learning strategies

such as Rasa, Microsoft’s Bot Framework, Google’s DialogFlow, IBM Watsonx, and AmazonLex.

On the other hand, generative technologies [125] produce new content or responses based on learned

patterns and models, rather than retrieving pre-existing information, as is the case with ChatGPT

and Gemini.

In information-retrieval technologies based on Machine Learning, the VisChatbot model under-

goes a process of training and refinement using the generated Transcripts, equipping it with the

knowledge to effectively respond to user inputs in data visualisation. In the generative approaches,

a fine-tuning approach may incorporate additional training data through the Annotated Transcripts.

All these technologies involve a testing step to validate the accuracy of the generated model.

Visualisation-Chatbot Connection

The goal of this phase is two-fold: (i) the identification of the details of the platform on where the

VisChatbot will be integrated, and (ii) the integration of VisChatbot itself.

The platform details, including the Modalities defined in the Interaction Requirements stage

and the types of visualisations specified in the Analysis phase (see Section 6.1.1), must be carefully

documented and addressed in this stage. For instance, the VisChatbot should be connected to the

defined visualisations to facilitate dynamic interaction and real-time data updates. Moreover, if

the platform is web-based, factors such as menus, filters, and navigation bars must be taken into

account to ensure smooth communication between the VisCatbot and the user interface. If the

platform is a mobile app, considerations should include touch interactions and screen orientation.

In Extended Reality (XR), it is essential to consider how users interact with 3D environments,

through spatial interactions.

Second, the most costly part is the integration of the VisChatBot model in the platform.

In this aspect, side notes in the annotated transcripts are crucial to define the bidirectional

VisChatbot-platform communication. This communication facilitates the synchronisation between

the conversation and the visualisation, as well as preserving not only textual but also visual

information in the VisChatbot conversation context.

User Evaluation

This is the last stage of VisChatbot methodology. It aims to test the quality of user—Vischatbot

http://www.aiml.foundation/
https://github.com/ChatScript/ChatScript
https://rasa.com/
https://dev.botframework.com/
https://cloud.google.com/dialogflow/?utm_source=google&utm_medium=cpc&utm_campaign=emea-es-all-en-dr-skws-all-all-trial-e-gcp-1707574&utm_content=text-ad-none-any-DEV_c-CRE_526560789261-ADGP_Hybrid+%7C+SKWS+-+EXA+%7C+Txt+-+AI+And+Machine+Learning+-+Dialogflow+-+v3-KWID_43700057038463328-kwd-401718033071-userloc_1005424&utm_term=KW_dialogflow-NET_g-PLAC_&&gad_source=1&gclid=EAIaIQobChMI0rXdgp7ZhQMVenJBAh3HxQXIEAAYASAAEgI_BfD_BwE&gclsrc=aw.ds
https://www.ibm.com/artificial-intelligence?utm_content=SRCWW&p1=Search&p4=43700077936849507&p5=p&gad_source=1&gclid=EAIaIQobChMI0azgj57ZhQMVX0JBAh0aCA21EAAYASAAEgK-pvD_BwE&gclsrc=aw.ds
https://aws.amazon.com/pm/lex/?gclid=EAIaIQobChMI6cmJ953ZhQMVS5VoCR2tPg0VEAAYASAAEgKpifD_BwE&trk=2b3e7a58-ecd5-4834-87f0-5c620a58dc36&sc_channel=ps&ef_id=EAIaIQobChMI6cmJ953ZhQMVS5VoCR2tPg0VEAAYASAAEgKpifD_BwE:G:s&s_kwcid=AL!4422!3!655532933880!e!!g!!amazon%20lex!20006017873!149032460540
https://openai.com/
https://gemini.google.com/
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communication –such as NL understanding, the appropriateness of responses, and visualisations’

aesthetics—as well as general usability dimensions such as effectiveness, efficiency, error management

and satisfaction.

Recall that our methodology incorporates a use case in each iteration, starting from the User

Analysis and progressing until the User Evaluation. However, when we deal with the evaluation of

one use case, we perform an iterative testing limited to the Development Phase (see the green

circle in the right part of Figure 6.15). The first test helps designers to identify user actions and

agent responses that were not anticipated, and therefore developers should feed the VisChatbot

Modelling and Visualisation-Chatbot Connection stages. Then, subsequent tests focus on refining

the chatbot model based on how users express themselves, adding variations of existing intents,

entities and synonyms.

Concretely, we propose an evaluation that follows a well-defined methodology that establishes:

(1) evaluation goals and metrics; (2) criteria to recruit participants; (3) VisTasks that users will

perform; (4) location and the necessary equipment; and (5) data security and privacy policies.

Finally, (6) data is analysed based on established metrics to propose improvements, and if necessary,

go back to previous stages of our VisChat methodology. Since goals, and especially metrics, are

different to the evaluation of other interactive systems, we think they deserve the thorough analysis

that we present next.

Similarly to other contexts, when evaluating the UX with a VisChatbot, the goals are to ensure

the experience is effective, engaging, easy to use, and aesthetically pleasing. Regarding metrics,

VisChatbots have unique features because the users may naturally interleave natural language

(NL) queries with interactive manipulations on the canvas/visualisation, and they are designed to

deal with particular aspects of the visualisation pipeline. Thus, we first propose special metrics

for VisChatbots, and afterwards, we also highlight the standard metrics used in the evaluation of

text-based chatbots [148] [149] all of which are shown in Table 6.1 grouped by the evaluation goals.

Note that some metrics appear in multiple rows of the table because they measure different aspects

of the UX. The proposed VisChatbot metrics are:

• Success Rate of Multimodal Queries: This metric measures the ability of the VisChatbot to

deal with different input/output modalities simultaneously. For instance, to understand when

users employ both NL and interactions, such as gestures, in canvas in their queries.

• Multimodality Use at Pattern Level: Measures the types of input/output modalities (text,

voice, mouse, gestures, haptics) used in the steps of conversation patterns.
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• Pattern Completion Rate (PCR): It is the percentage of completed steps of a Visualisation

Conversation Pattern. This metric is defined at a finer granularity than the TCR (Task

Completion Rate) used in general chatbots.

• Success Rate of data/visualisation queries: Measures how correctly the VisChatbot interprets

the user’s data and visualisation needs and generates a relevant and accurate visualisation.

• Appropriateness of created/updated visualisations: Assess whether the user gained the

intended insights or learned something new from the visualisation generated by the VisChatbot.

• Appropriateness of additional visual output: Measures how well the complementary visual

output chosen by the VisChatbot (e.g., bar chart popups, hierarchical chart) communicates

the query results.

• Visualisation score: Measures the visual appeal and overall design quality of the visualisations.

On the other hand, we propose to maintain also the chatbot metrics used in the literature [35]

[189]:

• Average Conversation Length (AvCL): Measures user engagement with the conversational

system.

• Retention Rate: Measures the percentage of users who return to interact with the chatbot

after an initial session.

• Task Completion Rate (TCR): The percentage of tasks that the users completed. This metric

is closely related to the level of mutual understanding since misunderstanding may lead to

non-completed conversations (and, consequently uncompleted tasks).

• Understanding Ratio: The number of queries successfully understood by the chatbot over the

total number.

• Interactional Efficiency: The number of turns needed to complete a task. This measure

informs designers about the efficiency of the conversation by comparing the expected minimum

number of turns to the actual number of turns taken by the user to complete the tasks,

expressed as a ratio of the minimum to the actual turns.

• Response Error Rate (RER): Measures the percentage of times the chatbot provides inaccurate,

irrelevant, or nonsensical answers to users’ queries.
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Table 6.1: Suggested metrics in relation to each evaluation goal.

Evaluation goals Metrics

Quality and effectiveness

of the visual analytic

conversation

Success Rate of Multimodal Queries

Multimodality Use at Pattern Level

Pattern Completion Rate (PCR)

Task Completion Rate (TCR)

Response Error Rate (RER)

Understanding Ratio

Appropriateness of visualisation

Appropriateness of additional visual output

Aesthetics of

the visualisation

Visualisation score

Additional visual output score

Engagement
Average Session Lenght (AvCL)

Retention rate

Usability

Task Completion Rate (TCR)

Response Error Rate (RER)

Number of Help Requests

Interactional Efficiency

Customer Satisfaction Score (CSAT)

• Number of Help Requests: Measures the frequency of users seeking help or guidance from the

chatbot.

• Customer Satisfaction Score (CSAT): Measures user satisfaction with the chatbot on a rating

scale.

All these metrics are gathered by logs, likes/dislikes during the experience, usability question-

naires, focus groups, and expert evaluations. Moreover, automating the collection of these metrics

is crucial to minimise any disruption to the user experience while still ensuring that the data

gathered is accurate and reliable.
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6.2 Conclusions

In this chapter, we introduced the VisChatbot Methodology, an iterative approach guiding

VisChatbot development through the Analysis, Design, and Development phases. The Analysis

phase encompasses User, Data, Tasks, Visualisation Type, and Interaction Requirements analyses.

This phase aims to collect essential information beforehand, which will then be used to shape the

design phase.

In the Design phase, we proposed the VisAgent Persona and Visualisation Conversation Patterns.

Additionally, we introduced Annotated Transcripts to enrich the visual conversational context. The

VisAgent Persona offers several benefits, including providing a comprehensive framework that

integrates both conversational and visual aspects of the VisChatbot. It ensures a consistent and

user-centred design by detailing goals, traits, and interactions, while also specifying the VisChatbot’s

skills and capabilities. This structured approach aids in aligning the VisChatbot with user needs

and interaction requirements, streamlining the development process, and ensuring a coherent and

effective user experience.

Regarding the eight Visualisation Conversation Patterns provided, not only establish a

solid baseline for VisChatbot design but also demonstrate flexibility and adaptability

to multiple scenarios. Moreover, they can serve as guides to identify key points for collecting

logs associated with the evaluation metrics. Also, it should be noted that this set of patterns can

grow to address new challenges.

In relation to Annotated Transcripts, although they are more complex than other text-based

documents [131], they have served as valuable documentation in both the VisChatbot-

Modelling and the Visualisation-Chatbot connection phases. Indeed, we proposed a

preliminary version of side notes that address concrete visual aspects of the conversation such as a

complementary chart, or a visual cue, which can be enriched with more sophisticated interactions,

such as gestural poses, eye movements, and collaborative experiences [142].

Additionally, we also proposed a comprehensive set of both user-centred and chatbot-centred

metrics to evaluate the usability, effectiveness, and engagement of the VisChatbot design. However,

the existing literature lacks dedicated usability questionnaires for VisChatbots, presenting

an ongoing challenge for the development and validation of such tools. Finally, we would like

to highlight the social implications of the VisChatbots designed using our methodology. On

the positive side, they can democratise access to complex data analysis tools, making

them more accessible to visual analysts without specialised technical skills. However, there are
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also potential negative implications, such as concerns about ethics, data privacy and

security. Chatbots interacting with sensitive data may raise questions about who has access to

this information and how it is being used, potentially leading to privacy breaches or the misuse of

conversational data. In the next chapter, we demonstrate a use case of the VisChatbot Methodology

by utilising it to design a VisChatbot for our platform, DViL, introduced in Chapter 4.



Chapter 7

DViL Chatbot: Analysis, Design, and

Development

In this chapter, we present a case study related to hate speech analysis where we use our VisChat

Methodology introduced in the previous Chapter, to design a VisChatbot named DViL (Data

Visualisation in Linguistics) Chatbot. We describe a first iteration through all the phases of our

methodology. This iteration included one use case that allowed linguists to explore their research

hypotheses.

7.1 DViL Chatbot: Analysis Phase

In this phase, we conduct analyses of Users, Data, VisTasks, Visualisation Types, and Interaction

Requirements to gather essential information. We will then use this information in the subsequent

Design phase.

User Analysis Stage

Our primary users are linguistics who annotated hate speech in comments on online news articles.

The main goal of the VisChatbot is to facilitate the visual analytics of their annotated comments.

The linguists are adults (students and professionals) and most do not have prior experience in the

data visualisation field, nor English is their mother tongue.

Given their limited experience with data visualisation, the VisChatbot must be intuitive and

user-friendly, requiring minimal technical expertise. The VisChatbot must provide clear guidance

and support to help users navigate and interpret complex visualisations effectively. Additionally,

186
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efficiency is paramount, as users need to quickly analyse large datasets of annotated comments.

Moreover, linguists aim to analyse two specific hypotheses based on their annotated corpus. The

first hypothesis explores: ”Not all argumentative messages have to be constructive, but constructive

ones are typically non-toxic.” The second hypothesis states: ”Intolerance is a prominent feature in

toxic subtrees, with stereotypes being most prevalent at higher levels of toxicity”. Thus, we focus on

having a VisChatbot that is designed to solve their hypotheses.

Data Analysis Stage

The data is hierarchical and multivariate, consisting of a set of news articles and their related

comments that refer directly to the news or replies on other comments, forming threads as presented

in Chapter 4, Section 4.1. Each comment has 13 annotated features such as argumentation,

constructiveness, sarcasm, insult, and intolerance, among others, and a level of toxicity (i.e., having

four labels ranging from ”Non-Toxic to ”Very-Toxic”), described in detail in Section 4.1.2. Ten of

these features are abstract and nominal, and three of them, such as the target person, are concrete

and nominal. Moreover, levels of toxicities are considered ordinal. Note that all these concepts

define the specific jargon of the hate speech VisChatbot.

VisTask Analysis Stage

This case study focuses on two main VisTasks (VisTasks-1 and VisTasks-2), each with subtasks (A

and B) derived from the two hypotheses that linguists aim to validate during the visual analytics

process, which were stated in the User Analysis stage. We specifically considered two different

types of VisTasks (defined in Chapter 2, Section 2.1), to explore these hypotheses, LocateT and

ExploreT, both IdentifyQ since both aim to spot data points/values (see Table 2.1). Next, we

detail the VisTasks and provide the rationale for using LocateT and ExploreT.

• VisTask-1A (i.e., LocateT): ”In how many comments do we see Argumentation and Construc-

tiveness together?”

• VisTask-1B (i.e., LocateT): ”What is the most common level of toxicity for comments tagged

with the feature Constructiveness? Are there other features that appear for this level of

toxicity?”

• VisTask-2A (i.e., LocateT): ”What is the most common level of toxicity for the feature

Stereotype?”

• VisTask-2B (i.e., ExploreT): ”What is the most common level of toxicity for the feature

Intolerance in the most toxic subtree?”



CHAPTER 7. DVIL CHATBOT: ANALYSIS, DESIGN, AND DEVELOPMENT 188

Although the target in VisTasks-1AB is known (Constructive, Argumentation, and Levels of

Toxicity) users cannot know the location of the comments that include these features until they

interact with the GUI or with the VisChatbot since the features are not directly shown on the

canvas. Therefore, it is a LocateT task. Similarly, VisTask-2A follow the same LocateT approach.

Otherwise, VisTask-2B, which is an ExploreT task, identifies trends in the data, i.e., the most

common level of toxicity of a feature (unknown target) in the most toxic tree, which is not directly

visible in the current visualisation (unknown location).

Visualisation Type Analysis Stage

In the following, we analyse the visualisation types that the VisChatbot will deal with. We

introduced our data visualisation platform DViL (more details were presented in Chapter 4, Section

4.4) where the VisChatbot aimed to be integrated along with all the visualisations and functionalities.

For visual mapping, the VisChatbot will handle the visualisation layouts: Tree, Force, Radial,

and Circle. The VisChatbot should be able to recognise the names of these layouts, as it will

need to switch between them. Since determining the layout that best suits the topology of the

hierarchy can be a complex decision, the VisChatbot automatically should also decide the initial

layout based on the characteristics of the data, using the categorisation presented in Chapter 3.

The VisChatbot will be able to visualise additional subtrees that cannot be visualised in the DViL

platform using the WIMP. Thus, the automatic categorisation will be applied to the subtrees as

well, as the hierarchical structure of the subtree can be different from the main visualisation. The

VisChatbot should be able to understand to display different parts of the hierarchy, such as the

largest thread, and the most toxic thread.

Moreover, as our data is tagged with various features (e.g., sarcasm, constructiveness, and

mockery, among others), each comment (or node) can visualise these features using different glyphs.

Thus, the VisChatbot is required to recognise vocabulary related to these features to ensure they are

accurately visualised using glyphs. In the visual mapping, the chatbot will also handle visualising

complementary charts, such as bar charts and pie charts to show the statistics of the tagged features.

Regarding the View Transformation, these complementary charts and subtrees will be displayed in

pop-up windows. The VisChatbot should be able to understand the context of this and respond to

relevant user queries related to these pop-up windows as well.

Interaction Requirements Stage

The DViL chatbot provides the users with a multimodal experience through text-based, speech,

and mouse-based interactions, all synchronised with the visualisations. That is, the DViL chatbot

is endowed with text/voice and PointingGUI as inputs and both text-based and additional visual
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outputs, as shown in Figure 7.1.

Figure 7.1: DViL VisChatbot’s input and output, as defined in Figure 6.3.

Moreover, our VisChatbot is capable of maintaining the context of a follow-up conversation

addressing not only the user’s previous queries (text co-references) but also input interactions

within the platform (GUI co-references). It incorporates both low-level queries (simple, doable in

one step) and high-level queries (more abstract and complex ones, which cannot be performed using

only the WIMP). The latter usually require additional visualisations, or multi-view to visualise

statistics or subtrees on separate pop-up windows.

7.2 DViL Chatbot: Design Phase

In this phase, we present the three artefacts; VisAgent Persona, Visual Conversation Patterns, and

Annotated Transcripts that were filled with the information from the Analysis Phase to inform the

design of the VisChabot.

Artefact 1: VisAgent Persona

Figure 7.2 outlines the main characteristics of the DViL chatbot persona, designed specifically

to support adult linguists working with hate-speech data. Since users are generally non-native

English speakers with limited experience in data visualisation, the chatbot adopts a professional yet

accessible tone, understanding even imperfect grammar to facilitate smoother communication. The

VisChatbot’s primary goals include assisting users in the complex analysis of annotated hate-speech

data and providing guidance on tool functionality, and the data domain. A notable goal is its

ability to “save key moments of the visualisation,” enabling users to save specific insights or views

that they can revisit later.

Moreover, the VisChatbot’s skill set should include the capacity for storing visual context,

allowing it to recall previously viewed visualisations and provide consistent, context-sensitive

assistance. Also, the VisChatbot should have a through understanding of the data, data domain,
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and target visualisations and interactions. It should be designed with a query level that can

handle both low and high level visualisation queries, allowing it to answer straightforward questions

and guide users through complex visual analyses. To enhance this capability, it can suggest

complementary charts or provide pop-up visual aids to make intricate visualisations easier to

understand. Furthermore, it has a supportive and friendly personality to emphasise the use of help

in the chatbot.

Figure 7.2: VisAgent Persona: DViL Chatbot characteristics.

Artefact 2: Visual Conversation Patterns

In our VisChatbot, from the eight proposed patterns (recall from Figure 6.6 to Figure 6.12 of

Chapter 6), we applied the following:

• From the Visualisation family patterns, we used (1)-Request Visualisation Task and Query,

and (2)-Request Visualisation Details. The steps defined in these patterns include the low

and high-level queries that allow the users to perform the VisTasks-1AB and VisTasks-2AB.

Indeed, the VisTasks-1AB and VisTask-2A are considered low-level queries that can be also

performed using the GUI. However, the VisTask-2B is a high-level one, which is not available

in the GUI and needs to be solved through multiple low-level queries like changing layout

and glyph, glyph activation, highlighting features and access to supplementary statistical

charts. For instance, VisTask-2B ”What is the most common level of toxicity for the feature
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Intolerance in the most toxic subtree” involves asking first about the most toxic subtree, and

afterwards, once the user has visualised it, also involves asking about the most common level

of toxicity for intolerant comments contained in this subtree. An example of this VisTask is

displayed using Pattern 1 in the following Figure 7.3.

• From the Assistance Family, we selected the (4)-Ambiguity Helper pattern to address mis-

understandings. Concretely, as there are two ways to select a hate speech feature - using

the glyphs and highlighting on the main graph - this pattern defines the user-VisChatbot

interaction to prompt the users and use buttons to allow them to choose the desired method

(see Figure 7.4). Moreover, we selected (5)-Guidance Tool and (6)-Guidance Domain Patterns,

which facilitate the visual analysis for users who are not familiar with the visualisation

platform (helping with operations on layouts, statistics summaries, subtrees, etc.) and the

data domain (features’ definition, links to the news where the data come from).

Figure 7.3: Example of Pattern 1: Request Visualisation Task and Query for VisTask-2B of the
hate-speech case study.

Artefact 3: Annotated Transcripts
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Figure 7.4: Example of Pattern 4: Ambiguity Helper for VisTask-1A of hate-speech case study.

The application of the patterns described earlier presents the initial instances of user-DViL chatbot

conversations, setting the stage for the Transcripts definition. As an example, Figure 7.3 shows a

possible pattern example displaying visual analytic conversation to perform VisTask-2B. In Figure

7.5, Annotated Transcripts for VisTask-2B can be observed. This figure presents the potential

dialogue to solve VisTask-2B between a user and the VisChatbot. In the first interaction, the

user asks to view the ”most toxic subtree” using (1)-Request Visualisation Task Query Pattern,

noting on the annotations that the VisChatbot should save ”most toxic subtree” in its memory to

understand future related commands. The VisChatbot should then display the requested subtree

in a pop-up window, and the annotations specify that the visualisation should be updated and a

pop-up generated. In the next interaction, the user requests to view comments with ”Intolerance”,

using (1)-Request Visualisation Task Query Pattern. The chatbot should recognise ”Intolerance”

as a tagged feature and save it to memory. It should understand that this refers to specific nodes

(comments) in the visualisation and updates the display to show these comments both in the pop-up

and the main view, with filters turned on to focus on intolerance-related comments. Each user

query includes notes about both the input (how the VisChatbot should interpret the request) and

the output (actions taken by VisChatbot to update the visualisation and give textual feedback to
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the user), demonstrating how the VisChatbot should manage and visually represent complex data

in response to user commands.

Figure 7.5: Annotated Transcripts example for VisTask2B.

7.3 DViL Chatbot: Development Phase

In this phase, we outline the three stages involved: VisChabot Modelling, where we discuss the

technology selected to create our VisChatbot; Visualisation-Chatbot Connection, where we explain

how we integrated this technology with our data visualisation platform, DViL; and finally, a User
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Evaluation section, where we conduct a comprehensive evaluation of the DViL chatbot to ensure

each iteration enhances the system and supports the ongoing development process.

VisChatbot Modelling

We used an information-retrieval ML-based technology that generates a trained model for the DViL

chatbot. Information retrieval ML-based chatbots use machine learning techniques to retrieve and

present relevant information from large datasets, documents, or knowledge bases in response to

user queries. These chatbots incorporate models for intent recognition, entity extraction, and query

understanding to process user input and generate appropriate responses [131].

Specifically, we selected Rasa [146], an open-source conversational platform. Rasa’s key compo-

nents include intents, which refers to the possible user queries; responses, which are the chatbot’s

replies; rules, which define a one-to-one mapping between a specific intent and its corresponding

response; and stories, which are sequences of intents and responses that guide the chatbot’s

behaviour in more complex conversations. Moreover, slots are variables used to store and manage

information extracted from user inputs during a conversation, aiming to help the chatbot remember

the context and make decisions based on previous interactions. These components work together

to help the chatbot to understand users’ queries. Specifically, Rasa NLU (Natural Language

Understanding) processes the user’s input to identify intents and extract relevant data, while Rasa

Core determines the appropriate response based on the context of the conversation. The Rasa NLU

uses DIET (Dual Intent and Entity transformer) which is a multi-task transformer architecture

that handles both intent classification and entity recognition.

Moreover, the Rasa Core uses TED (Transformer Embedding Dialogue) policies to predict the

next action to be performed. When the next action is not a direct response, Rasa Action Server

uses custom actions to perform operations such as recovering information from the conversation

tracker (which involves accessing the bot’s memory to retrieve past events and the current state of

the conversation), composing responses and also to connect to external systems. In these actions,

we implemented functionalities such as login, logout, sign-up, and opening a dataset, that can be

managed through the VisChatbot.

Additionally, custom actions were created to enhance user interaction with visual data. As

introduced in Chapter 4, Section 4.4, our platform DViL includes filters called ”Select Node and

Edge,” allowing users to highlight specific graph features, where selected elements are emphasised

and the rest are greyed out. We integrated this with the DViL chatbot, enabling the control of these

filters directly through conversational commands. Moreover, actions were implemented to toggle

the visibility of features using pronouns like ”it” or ”them,” allowing users to refer to previously
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selected features without repeating their names. This is achieved through Rasa slots, which store

contextual information throughout the conversation. They act as the memory of the chatbot,

retaining important details. These actions streamline user engagement, facilitating complex graph

manipulation and ensuring a seamless, and interactive data visualisation experience.

Indeed, all these components are defined based on the VisAgent persona, Visualisation Conver-

sation Patterns, and Annotated Transcripts that are defined in the Design phase. For instance, we

defined the intents in English, creating a comprehensive corpus that includes both visualisation-

related jargon and hate speech, which are specifically based on our tagged features. In particular,

we developed intents focused on visualisation layouts such as Tree, Radial, Force, and Circle

Packing layouts. To complete the VisTasks, users need to interact dynamically with the features in

the visualisations. We incorporated terminology focused on selecting, deselecting, and exploring

parts of hierarchical data to ensure clarity and ease of navigation in task execution. On the one

hand, the rules describe one-turn user-DViL chatbot interactions which correspond to Transcripts’

lines. On the other hand, stories define multiple-turn interactions, coming either from a specific

pattern or from a combination of patterns. An example can be observed in Figure 7.6, combining

patterns Guidance Domain, Guidance Tool and Request Visualisation Task and Query, and the

corresponding story. The descriptions of intents can be found in the Appendix B.

Figure 7.6: The combination of the patterns Guidance Domain, Guidance Tool, and Request
Visualisation Task and Query and the corresponding Story defined in Rasa.

Visualisation-Chatbot Connection

Figure 7.7 shows the connection between the DViL chatbot and the web-based visualisation platform,

which was developed using HTML/CSS, JavaScript, D3.js, and jQuery on the frontend, and Python

and a PostgreSQL database on the backend. The DViL chatbot includes the main components of



CHAPTER 7. DVIL CHATBOT: ANALYSIS, DESIGN, AND DEVELOPMENT 196

Rasa: the Rasa Server, including Rasa NLU and the Rasa Core for language understanding and

the generation of responses respectively; and the Rasa Action Server to perform more sophisticated

actions and handle complex requests.

Figure 7.7: Visualisation Platform and DViL chatbot connection.

There are three channels of communication:

1. WebSocket (Chatbot Frontend to Agent Rasa Server): This WebSocket connection is re-

sponsible for enabling real-time, two-way communication between the chatbot’s frontend

and the Rasa server. Through this channel, user inputs are sent to Rasa, and responses

are immediately received, ensuring smooth and interactive dialogue. For example, when a

user types a message in the chat, such as ”Show me the constructive nodes”, the WebSocket

connection sends this text input to the Rasa server. Rasa processes this input and determines

what is the user’s intent, and responds with the relevant information.

2. REST API (Rasa Action Server to Visualisation Platform Backend): This API enables direct

communication between the Rasa Action Server and the backend of the visualisation platform

(DViL). It is particularly useful for executing custom actions that have been predefined. For

example, if a user requests to highlight specific features on the graph using commands with

pronouns, such as ”highlight it” referring to a previously selected node, the Rasa Action

Server handles this through custom actions. The server uses the REST API to interact with

the DViL backend to perform the necessary updates. It queries the backend to fetch and

manipulate the relevant data, such as highlighting nodes based on the user’s request.
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3. Rasa HTTP API (Visualisation Platform Frontend to Rasa Server): This API enables the

visualisation platform’s frontend to interact with Rasa. For example, when a user inputs

”change layout to radial” into the VisChatbot, the request is sent via the Rasa HTTP API.

Rasa HTTP API interprets the command based on predefined intents and identifies the

corresponding action, which triggers the graph layout change to radial. After executing the

action, Rasa sends a textual response back to the chatbot frontend through the WebSocket

connection established in step 1.

User Evaluation

We performed one test iteration, incorporating the aforementioned VisTasks-1AB and VisTasks-2AB

(hereafter referred to as VT1A-B and VT2A-B). We aimed to assess the quality and effectiveness

of the visual analytic conversation and the VisChatbot Usability. Following the metrics suggested

in Table 6.1, we gathered: i) Task Completion Rate-TCR, ii) Interactional Efficiency, iii) Under-

standing Ratio, iv) Appropriateness of created/updated visualisations and v) Usability from BUS

questionnaire [25]. We performed this evaluation with the approval of the Bioethics Committee of

our university and obtained the participants’ consent to store the acquired data on secure servers.

Participants and Setup

We recruited 16 participants which were mostly professionals and students from the Faculty of

Philology and Communication at the University of Barcelona; 56% of the participants were male,

62% were aged between 18 and 30, 81% of the participants had experience in message annotation,

and 63% of them in data visualisation. The study was an exploratory and moderated observational

test, conducted in a classroom with participants doing the test one by one under the guidance of a

moderator, and an observer. Participants interacted with our platform using Google Chrome on a

computer. The moderator positioned alongside the user, using a separate computer to display the

Google Forms that included VisTasks and instructions for the user to complete, ensuring that the

user’s interaction with the primary platform remained undisturbed. The observer was seated behind

the user to observe and take notes while the user doing the study. In all the sessions, we recorded

the screen, and audio as we asked users to think aloud and saved logs of the users’ interactions

and chat history. Furthermore, to maintain consistency across participants, we kept the task order

uniform, ensuring that all participants experienced the same conditions. The goal was for users to

start with the easier task and then move on to the more complex ones, progressing step by step.

This approach allowed us to focus on testing the VisChatbot’s conversational abilities, rather than

evaluating users’ performance or how quickly they completed the VisTasks. By structuring the
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tasks in this way, we aimed to identify errors and gather insights that could help improve future

interactions.

Procedure

At the beginning of the sessions, we explained to the users our study with a presentation that

included: a small introduction to the annotated corpus (tagged features), the structure of conver-

sation threads, an explanation of how they were mapped onto our visualisation layouts, and an

introduction to our platform and DViL Chatbot (10-15 min.). We did not provide any examples

of how to ask queries to the DViL Chatbot to prevent any potential bias towards influencing

participants to interact in a specific manner.

After the presentation, we provided participants with information about the structure of the

test. Then, we gave users five minutes of training time to get them familiarised with the platform,

however, we asked them not to interact with the DViL Chatbot at this stage and only interact with

the platform using a mouse. During the training, first, we let the users explore the DViL platform

freely and then, we guided users through the platform and asked them to complete some simple

VisTasks. In the training time users were allowed to ask us questions about the platform (5 min.).

Afterwards, we asked participants to complete two VisTasks with subtasks, using the DViL

Chatbot that we introduced in section 7.1 (total 20-30 min.). To complete the VisTasks, users

were instructed to rely solely on the VisChatbot for interaction and not to use the mouse. They

were informed that using the mouse would be considered a failure of the VisTask. In VisTask-1A

users need to find the number of comments tagged with two specific features, VisTask-1B requires

identifying the most common toxicity level for comments tagged with a particular feature and

checking for any co-occurring features, VisTask-2A focuses on determining the most common

toxicity level for another feature, and VisTask-2B involves exploring the most toxic subtree to find

the common toxicity level associated with a given feature. While performing the VisTasks, we asked

users to direct any questions they had to the DViL Chatbot first. The moderator intervened only

in cases where a user encountered significant difficulties that impeded their ability to continue, such

as repeatedly asking the same question without receiving an understandable response. Since each

VisTask required users to apply filters and use complementary pop-up charts, after each VisTask

we instructed users to clear all filters and close pop-up windows if there were any. Also, after

each VisTask, we reminded users of DViL Chatbot’s abilities by stating ”to help you carry out the

analysis, you are free to ask the DViL Chatbot for a tutorial, definitions, explanations and fast help

and to change layouts and glyph types at any point”. After finishing, the users provided feedback

through open questions, the BUS usability questionnaire, and a small interview (5-10 min.).



CHAPTER 7. DVIL CHATBOT: ANALYSIS, DESIGN, AND DEVELOPMENT 199

Results

i) Task Completion Rate-TCR

Results were positive, with a high Task Completion Rate (TCR) of VisTasks (94% for VT1B

and VT2B, and 100% for VT1A and VT2A). One participant, the first user in the evaluation, was

unable to complete VT2B. Despite the concept of a subtree being explained during the presentation,

the participant struggled to understand it and did not seek assistance from the moderator. For

all VisTasks, we assisted users only if they first asked the DViL Chatbot and it was unable to

answer their question. This assistance included reminding users of the information provided during

training or in the presentation sessions, suggesting users to ask their questions in an alternative

way, after a couple of failed attempts with the same question, stating that the DViL Chatbot is

unable to perform that. Users received help during all tasks except for VT2A, where no assistance

was needed, possibly due to participants getting more familiar with the VisTasks or the DViL

Chatbot’s functionality. There were cases where the DViL Chatbot failed to comprehend user

queries, giving the users Guidance Domain or Guidance Tool responses, meaning, the VisChatbot

provided users with responses including help about the domain of the data or the visualisation

tool. From here on, these responses are referred as Assistance responses. For example, in VT1B, a

user asked, ”Show me statistics for no toxic comments” and in response, the VisChatbot provided

an assistance response explaining how the statistics charts work, as the user’s request was not

clearly understood by the VisChatbot due to its inability to display the statistics of a single level of

toxicity in the complementary charts. Interestingly, these kind of responses (Assistance response)

aided several users in VisTask completion.

ii) Interactional Efficiency

To assess the interactional efficiency which is the number of turns needed to complete a VisTask,

we set a minimum number of steps required to solve each VisTask. We present the overall aggregated

results in Figure 7.8. The VT1A exhibited the lowest interactional efficiency at 38%, with users

having used the highest number of total intents to complete the VisTask. This is understandable

because VT1A was the first task and the initial interaction with the chatbot, so users naturally

needed more time to familiarise themselves with the system, leading to lower efficiency. The

efficiency increased to 58% with VT1B, indicating that users began to feel more comfortable and

familiar with the system. While all other tasks showed higher efficiency than the first VisTask, the

trend fluctuated slightly, starting with an increase as described, followed by a small dip to 43% for

the VT2A, and then another rise to 46% for the VT2B. This is interesting because, in the final

task, users needed to access a subtree using the VisChatbot for the first time. Despite this, VT2B
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have better interactional efficiency than VT2A.

Figure 7.8: Summary of the aggregated results for Interactional Efficiency

Next, we summarise the results of each VisTask in the Figure 7.9. For VT1A, where the

expected number of user intents to solve the task was three, most users exceeded our expectations

(see Figure 7.9.a). User U12 notably used 15 steps, well above the required count, while others,

like U11 and U15, remained closer to the expected value. The average number of user intents

(indicated by the red line) was driven higher by outliers such as U6 and U12, showing a general

trend of exceeding the baseline. In VT1B, with an expected count of four intents, users displayed a

similar pattern, with most users surpassing the expectation (see Figure 7.9.b). Specifically, user

U13 was the standout performer, using 21 intents to solve the task, far above the rest. However, a

number of users remained closer to the expected value. The average number of intents to complete

the task was seven. For VT2A, with a lower expectation of one intent to solve the task, most users

performed close to or slightly above the requirement (see Figure 7.9.c). Users U6 and U10 stood

out significantly, using six and seven queries respectively, creating a marked gap between them and

the majority who completed the task in only one or two queries. The average was two which is

represented by the green line. Finally, in VT2B, where the expected number of intents was two,

performance was more varied (see Figure 7.9.d). While users such as U6 and U10 again stood out

with nine queries each, others, like U3, U4, U15, and U16, remained closer to or below the expected

value. The average was four, represented by the green line. In the following, we provide the details

of the actual user performance compared to the minimum expected intents for each VisTask. In

the comparison, we excluded the user intents regarding the Assistance patterns. The results of

VT-1AB are summarised in table 7.1 and VT-2AB are in table 7.2.
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Figure 7.9: Summary of the results for Interactional Efficiency for a) VisTask1A, b) VisTask1B, c)
VisTask2A, and d) VisTask2B.

In the initial VisTask labelled as VT1A (that aims to find the number of constructive and

argumentation comments) the baseline number of intents was three (see Appendix B, Table B.1

for the steps to complete this VisTask). Given that this was the users’ first interaction with the

DViL Chatbot, most participants naturally inquired about more intents compared to the baseline.

It should be noted that in this VisTask, the average number of both Visualisation intents and

intents asking for assistance (from now on referred to as Assistance intents) was higher than in

other tasks. This increased level of interaction was likely due to users’ curiosity and eagerness to

explore the DViL Chatbot’s capabilities and understand the evaluation study. The average number

of intents for this VisTask was eight. See Appendix B, Figure B.4 for an example of the expected

conversation, and Figures B.5 and B.6 for two real user conversations, the longest and minimal

conversations, respectively.

In this VisTask, most participants attempted to get answers directly from the DViL Chatbot

without using any filters. For example, participants asked, ”How many comments show both

argumentation and constructiveness together?” However, our chatbot is not designed to answer
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Table 7.1: Results of Interactional Efficiency for VisTasks 1A and 1B.

VisTask1A: Total Expected: 3 VisTask1B: Total Expect: 4

User id #Vis #Assist. #Total Exp./#Vis #Vis #Assist. #Total Exp./#Vis

U1 11 0 3/11 5 0 4/5

U2 10 2 3/10 3 0 4/3

U3 6 0 3/6 4 0 4/4

U4 9 1 3/9 6 0 4/6

U5 5 0 3/5 4 0 4/4

U6 13 1 3/13 9 0 4/9

U7 5 1 3/5 7 0 4/7

U8 9 0 3/9 6 0 4/6

U9 10 0 3/10 7 0 4/7

U10 8 0 3/8 4 0 4/4

U11 4 0 3/4 5 0 4/5

U12 15 1 3/15 8 0 4/8

U13 6 0 3/6 21 0 4/21

U14 7 0 3/7 4 0 4/4

U15 3 0 3/3 4 0 4/4

U16 6 2 3/6 14 0 4/14

Avg. 8 - 3/8 7 0 4/7

such questions specifically. Instead, its primary aim is to facilitate visual analysis and the use of

intricate visual analytic tools. Consequently, users spent time understanding how to approach the

DViL Chatbot and the VisTasks. Another common challenge was attempting to select two features

simultaneously, which is not currently supported by our VisChatbot. In these cases, we reminded

users about the VisChatbot’s capabilities.

Moreover, when examining participants U1, U2, U6, U9, U12, and U16, who had 10 or more

intents, we found that only U12 and U16 had more failed intents than successful ones. It should

be noted that some users explored aspects unrelated to the VisTask. Additionally, U2, U4, U7,

U12, and U16 asked Assistance intents more frequently than in other tasks, supporting the idea

of users being curious. U2 sought help with the data, while U4, U6, and U12 sought help with

the DViL platform. Interestingly, U11 solved the VisTask by filtering for argumentation alone.

By observing the complementary statistics chart, which showed the number of each feature with

argumentation, U11 identified the number of constructive comments to determine how many nodes

had both argumentation and constructiveness. This can be observed in Figure 7.10 that the user

asked to see argumentative comments and then to see the statistics information. It can be seen
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that the user is pointing to the constructive column in the statistics bar chart to find the answer.

Figure 7.10: Conversation of the U11 to solve VisTask1A

The minimum number of required intents to solve VT1B, the one that aims to find the most

common level of toxicity with constructiveness, was four (see Appendix B, Table B.1 for the steps

to complete this VisTask). In this VisTask, five users (U3, U5, U10, U14, U15) completed it with

four intents and the average number of intents was seven. It should be noted that compared to the

previous VisTask, the total number of intents of the most participants decreased significantly. This

could be because users began to better understand the system’s functionality. Moreover, in this

VisTask, users did not use any Assistance intents.

U2 is the only participant who completed the VisTask with fewer intents than the baseline using

three intents. However, when we examined the user logs and recorded screen, we found out that

the user used the mouse to open the statistics window therefore, in this case, we do not consider

this VisTask as completed. Another noteworthy observation is that U13 used 21 intents to solve

the VisTask. To address the second part of this VisTask, which involves identifying the features

that co-occurred with constructiveness, users needed to make use of a statistical chart. This user

used a different approach and applied and removed all the features to see which ones were present

thus, having a lot more intents at the end compared to the baseline. U16 used a total of 14 intents,

getting stuck on visualising complementary charts because these questions were not included in the

training data, such as ”please show me the histogram” or ”visualise the data”.
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From the feedback we gathered from the open questions, participants stated that they initially

faced some confusion and uncertainty when using the DViL Chatbot and interface as they were

new to the system. However, with time, they found it easier to navigate and interact with it. Users

stated that they adapted their way of communicating according to the DViL Chatbot to make sure

it understood them. This can also be confirmed by the decrease in the number of intents between

VT1A and the subsequent tasks.

Table 7.2: Results of Interactional Efficiency for VisTasks 2A and 2B.

User id VisTask 2A: Total Expected: 1 VisTask 2B: Total Expected: 2

#Vis #Assist. #Vis/#Total Exp. #Vis #Assist. #Vis/#Total Exp.

U1 2 0 1/2 / / /

U2 3 2 1/3 5 1 2/5

U3 1 0 1/1 3 0 2/3

U4 2 0 1/2 4 0 2/4

U5 1 0 1/1 2 0 2/2

U6 6 0 1/6 9 0 2/9

U7 2 0 1/2 5 1 2/5

U8 1 0 1/1 5 0 2/5

U9 2 0 1/2 7 0 2/7

U10 1 0 1/1 9 0 2/9

U11 7 0 1/7 3 0 2/3

U12 2 0 1/2 3 0 2/3

U13 1 0 1/1 4 0 2/4

U14 1 0 1/1 4 0 2/4

U15 1 0 1/1 2 0 2/2

U16 4 0 1/4 4 0 2/4

Avg. 2 - 1/2 5 - 2/5

Users could solve VT2A (aims to find the most common level of toxicity with stereotype

comments) with one intent (see Appendix B, Table B.1 for the steps to complete this VisTask).

Seven participants completed this VisTask with one intent as expected and the average is two

intents. Only U2 used two Assistance intents to help with the context of the data. Moreover, users

needed a minimum of two intents to solve the VT2B (see Appendix B, Table B.1 for the steps

to complete this VisTask), which aims to find the most common level of toxicity for the feature

intolerance in the most toxic subtree (see Figure 7.11 for an example of to solve this task). Users

first had to ask to see the most toxic subtree and then filter the comments with intolerance and find

the answer visually as there were few nodes. Additionally, they can open the statistics window, as
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it is synchronised with the pop-up window that displays the subtrees in the DViL Chatbot. At this

stage of the evaluation, users were more confident using the DViL Chatbot. Two users completed

the VisTask using only two intents, while the average number of intents for this VisTask was five.

Some users spent time trying to understand what the most toxic subtree was, mistakenly thinking

the VisTask referred to the most toxic nodes. We had to re-confirm to most users that a subtree is

indeed different from a node.

Figure 7.11: VisTask2B: User-DViL chatbot dialogue and VisTask solution example.

iii) Understanding Ratio

In this section, we present the results of the DViL Chatbot’s understanding ratio, which is closely

related to the classification task performed by the NLU module of the Vischatbot. We conducted

separate analyses to take a closer look at the Visualisation intents used for solving VisTasks and

using Assistance (user intents to ask directly for assistance from the VisChatbot). This allowed us

to better understand the role of different types of intents and offer a more comprehensive analysis.

We categorised failed intents into two categories for both Visualisation intents and Assistance

intents. In Visualisation intents, we have Assistance failed and failed intents. Assistance failed

refers to scenarios where intent has initially failed, but the DViL Chatbot responded with an

Assistance response. These particular responses are designed to assist the user, which in some cases

helped the users complete their VisTask successfully. In contrast, failed responses had different

reasons to fail, such as the query was impossible for the DViL Chatbot to understand, or it failed
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because of not enough training data. We will elaborate on the failed cases in the following.

We summarise the results of visualisation intents in Figure 7.12 and in Table 7.3, which presents

the understanding ratio. We observed significant differences in the understanding ratio between the

first two VisTasks, while no notable differences were found in the remaining tasks. This indicates

that initial interactions with the VisChatbot tend to be less effective; however, as users engage in

more interactions, the communication between the user and the VisChatbot improves.

VT1A has a relatively lower understanding ratio, with 70 successful intents out of 126 (56%).

This can be due to the VisTask being the first interaction for users with the DViL Chatbot and

they required some time to adapt to the chatbot’s communication. This VisTask had 11 failed

visualisation intents answered through responses of Assistance intents, i.e., the visualisation intent

was incorrectly classified as an assistance intent, but they finally guided the user to perform the

task. Among these, six of them helped users with their queries and of them, 5 did not. For example,

U1, U2, U5, U10, U12, and U15 all asked the chatbot ”how many comments are selected?”, it

answered this question by explaining, that the Selected Comments button displays the overall

number of features for comments that the user has selected in complementary charts, directing the

user to the right point. However, in some cases, such as when U8 asked ”how can I see the number

of comments with argumentation?”, the chatbot answered with a Guidance Domain answer from

the Assistance pattern by stating a definition of Comment ID, which at the end did not guide the

user to the right direction to solve the VisTask. The VisChatbot could be improved by identifying

more potential user misunderstandings and enhancing its ability to ask follow-up questions. For

instance, when a user mentions ”argumentation” the chatbot could clarify whether they want to

view comments related to argumentation or additional data on complementary charts about it.

Expanding the training data to cover a broader range of user intents could also make interactions

smoother and more intuitive.
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Figure 7.12: Results of the Understanding Ratio - Visualisation Intents for each VisTask

Table 7.3: Results of the Understanding Ratio - Visualisation Intents

VisTask id Visualisation Intents

Succeeded Failed Unders. Ratio

#succeed #Assistance #failed #succeed/totalI

VisTask-1A 70 11 45 70/126=56%

VisTask-1B 89 5 17 89/111=80%

VisTask-2A 30 0 6 30/37=81%

VisTask-2B 56 6 8 56/70=80%

Total 245 22 77 245/344=71%

Moreover, this VisTask had the highest number of failed intents. This could again be due to

users still familiarising themselves with the chatbot’s capabilities and vocabulary. Out of the 45

failed intents, 19 were due to attempts to filter two features at once—-an unsupported action by

the VisChatbot– despite being explained in training. Fourteen additional failures occurred from

unsupported queries, such as when U1 and U9 requested statistics charts for specific features (e.g.,

constructiveness). However, it is possible that the users misunderstood the functionality of the

DViL Chatbot. While our VisChatbot offers complementary charts, such as bar or pie charts,

which visualise the number of each feature in selected comments, it is important to note that these
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charts display the count of comments associated with features like constructiveness, rather than

presenting detailed statistics chart for individual features.

Moreover, U9 asked to see non-constructive comments, U10 asked to see the subtree of selected

nodes, and U11 asked the chatbot to count argumentation comments, either questions made no

sense or are not possible to do in our VisChatbot. Additionally, nine of the intents failed because

of the lack of training data. Among those, seven of them failed because U2 and U6 were asking

to change the filter option from AND to OR. We concluded that we need to review these specific

intents and add more training data. Furthermore, in this category, U13 asked the DViL Chatbot

to filter argumentation nodes and then asked: ”and select those with constructiveness as well”.

Although these kinds of intents are included in the training data, this intent failed. Only two of

them failed because of grammar or spelling errors.

In VT1B, the success ratio significantly increased to 89 successful intents out of 111 (80%),

indicating that users became more comfortable with the DViL Chatbot. In this VisTask, five

intents failed in the Assistance category. For example, U5 asked ”How toxic are these comments?”

and was guided to the Selected Comments statistics charts to visualise toxicity. However, U7 and

U9 asked ”What are the relevant features when the level of toxicity is not toxic” and ”What is the

most typical for constructive comments?” failed to receive proper guidance on toxicity, and U12’s

query about ”What features are included?” resulted in guidance on layouts instead.

In this VisTask, 17 intents failed. Half failed due to being unsupported by the VisChatbot. For

example, two users asked, ”What other features appear with a non-toxic level of toxicity?”. This

high-level query is not supported by our chatbot yet. Some users also attempted to apply two

filters simultaneously. Some failures occurred due to a lack of training data. For instance, U7 asked

to ”mark the comments with the feature constructiveness”, but the word ’mark’ was not included as

a synonym for select, causing the failure. U16 asked for complementary charts in ways not covered

in the training data, like ”show me histogram” or ”visualise the data”. Additionally, some queries

failed due to the context of the conversation managed by the chatbot was not complete enough.

For example, U11 simply said ”unfilter,” and U15 asked ”show me the graph” without specifying

which filters to unselect or which graph to display. This issue stemmed not only from the users’

input but also from the chatbot’s inability to clarify or disambiguate. While the DViL chatbot

can handle pronouns, it struggles with vague or ambiguous references. This limitation should be

noted in the annotated transcripts and could be addressed by prompting users for clarification or

improving context storage for better handling of follow-up questions.

VT2A showed a strong understanding ratio, with 30 out of 37 (81%) intents succeeding. This
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is likely because VT2 required only one intent to complete, and by this point, users were more

familiar with the VisChatbot’s functions. For instance, U6 requested to ”uncheck filters” without

specifying which ones, and U11 repeatedly asked to ”filter stereotype” despite prompts to rephrase.

These issues may point to gaps in the training data.

The final VisTask VT2B had 56 successful intents out of 70 (81%), with only six Assistance

failures and eight other unsuccessful intents. All Assistance failures were unhelpful, such as when

U14 asked, ”What is the most common level of toxicity for feature intolerance?” and received

information about the level of toxicity. Among the eight failures, two were due to user errors

either conceptual or grammatical, like U6 attempting to ”uncheck toxicity” and spelling ”selected

comments” incorrectly. U7 and U10 also asked to see charts with undefined queries, containing

grammar mistakes. The remaining failures were due to missing scenarios in the annotated transcripts

of the design phase, such as visualising a subtree with only very toxic comments.

Similarly, we used the same approach to analyse Assistance queries, and we have Visualisation

failed intents and failed intents. That is, if a user makes an Assistance query, they either receive

an inappropriate visualisation response or the Assistance intent simply fails. We analysed 11

Assistance intents (intents asking for an assistance such as Guidance Domain or Guidance Tool), of

which seven were successful. VT1A had the highest number, with six. For instance, U2 asked for

definitions of constructiveness and argumentation, U7 asked for the definition of constructiveness,

U4 asked about the filter in the UI, and U6 asked about the difference between AND and OR.

There were no Assistance intents in VT1B. VT2A had two Assistance intents. In the first, U2

asked for the definition of intolerance with poor grammar and received an incorrect response, but

after rephrasing the question, they received the correct answer. VT2B had one Assistance intent,

where U7 asked about a subtree and received the correct answer.

Correlation analysis between Interactional Efficiency and Understanding Ratio

We explored the relationship between Interactional Efficiency (IE) and Understanding Ratio

(UR) only for VisTasks 1B and 2B since VisTasks 1A and 2A served primarily as onboarding

tasks. Specifically, we calculated the Pearson correlation coefficient to identify how strongly these

variables are related to each other. For VisTask1B, the correlation coefficient is r = 0.29 (not

statistically significant with p− value = 0.2675 > 0.05), which indicates a weak positive correlation

where higher efficiency in User-VisChatbot interactions is associated with a higher understanding

ratio. Likewise, the correlation between IE and IE in VisTaks2B shows a weak association r = 0, 36,

with a marginal significant trend (p = 0.0505 > 0.05). This analysis confirms the importance of

ensuring that the VisChatbot has a strong understanding capability to facilitate user interactions
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with the visualisation. Nevertheless, it would be needed to go further with this preliminary study

to better capture the relationship between IE and UR, because of the factors such as the limited

understanding of the VisChatbot, the small sample size and the presence of outliers that could

distort the correlation.

iv) Appropriateness of created/updated visualisations

To assess the Appropriateness of Created/Updated Visualisations, users were asked to select

their preferred layout before starting each VisTask. As detailed in Chapter 3, we introduced a

formalisation for automatic layout selection, which is also applied to the subtree visualisations in

pop-up windows by the DViL Chatbot. Upon starting, the VisChatbot automatically selects the

layout based on this predefined selection. In this evaluation, we aim to compare the VisChatbot’s

automatic layout selection with users’ layout preferences to understand how well the automatic

system aligns with user expectations. Thus, in the following, we present the results of the

Appropriateness of Created/Updated Visualisations. For VT1A the appropriateness was 44%. In

this VisTask, our chatbot suggested the best layout to use is Radial. Most of the users stated

that it was easier to differentiate the comments, see depth, and visualise the data as a whole with

the Radial layout (7/16). Although some users found the Force layout (3/16) cool and organised,

eventually Radial layout was preferred as it was clearer with this dataset. Additionally, most

users agreed that due to the compact nature of the dataset, the Tree layout (6/16) resulted in a

wide visual representation and required extensive zooming, which ultimately caused a loss of the

comprehensive view of the entire visualisation.

For VT2A the appropriateness was also 44%. Most users selected the Tree layout (7/16)

although the DViL Chatbot selected the Force layout for them. We asked users to justify their

choices and collected valuable insights into their decision-making. Those who opted for the Tree

layout both stated that they selected this layout as it was easier to see information. Although

some users found Force and Radial layouts similar stated that it was more comfortable and clear to

see the information with the Radial layout. Users who preferred the Force layout commented that

they appreciated its ability to present information without overlaps, resulting in a more organised

representation of the dataset. Specifically, users noted that the Radial layout made it easier to

differentiate between two levels of comments and understand the relationships between them.

Finally, for VT2B the appropriateness was 93%. In this VisTask the DViL Chatbot selected

Tree layout to visualise the subtree in the pop-up window. All the users except one preferred Tree

layout. We excluded one answer from the results as it was decided based on the wrong visual view.

Similarly, we asked users to justify their selections. Users stated that it was easier to understand
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the hierarchical relationship between comments and the distribution of the data was very clear.

Overall, the automatic layout selection by the DViL Chatbot was well received by users. For two

VisTasks, the VisChatbot’s layout selection matched users’ preferences, demonstrating the system’s

effectiveness. Although the DViL Chatbot selected the Force layout for VT2A, users generally

preferred the Tree layout, finding it easier to interpret the information. Users who favoured the

Force layout appreciated its well-organised structure and the lack of overlaps, enabling a more

comprehensible presentation of the data.

v) Usability from BUS questionnaire

We asked users Bot Usability Questionnaire [25] to test users’ perceptions and experiences with

the DViL Chatbot and we asked them to rate the questions on a scale from 1 (strongly disagree) to

5 (strongly agree). Table 7.4 displays the questions included in the questionnaire and Figure 7.13

shows the average of the results on the bar chart, accompanied by a standard deviation illustrated

on each question. Overall, the data suggests that users had generally positive perceptions of the

DViL Chatbot. The average ratings for three statements are above 4, indicating favourable opinions

and the rest is 3 and above. Moreover, we believe that results are in line with the analysis we made

previously as the overall understanding ratio for all tasks is 71% (245/344).

Table 7.4: Bot Usability Questionnaire

1. I was immediately made aware of what information the chatbot can give me.

2. The chatbot gives me the appropriate amount of information.

3. The chatbot’s responses were easy to understand.

4. I feel like the chatbot’s responses were accurate.

5. I find that the chatbot understands what I want and helps me achieve my goal.

6. The interaction with the chatbot felt like an ongoing conversation.

7. The chatbot was able to keep track of context.

8. Did the chatbot help you to understand visualisations?
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Figure 7.13: Bot Usability Questionnaire Results (responses range from 1 to 5, as shown on the
y-axis). The bar chart displays the average results for each question, with the standard deviation
represented as a horizontal line across the bars.

Additionally, when we asked users to elaborate on question eight, they expressed that the chatbot

played a significant role in helping them understand the visualisations. They appreciated the clarity

and usefulness of the definitions they requested from the DViL Chatbot. Users acknowledged the

chatbot’s usefulness in explaining the definitions of different filters. Some users expressed a desire

for the DViL Chatbot to provide specific numerical answers corresponding to the graphics, such

as indicating the number of comments with specific features. Moreover, some users stated their

preference for using a mouse over the chatbot. This may be due to the familiarity and ease of

interacting with traditional input methods, highlighting a potential area for improvement in the

chatbot’s usability or the learning curve for users.

Also, we asked participants to provide suggestions or recommendations for future improvements.

Their feedback highlighted several desired features. Users expressed the need to perform multiple

actions simultaneously, enabling them to accomplish several tasks concurrently. They also desired

the ability to view the opposite ends of the hierarchy, such as identifying both the least toxic threads.

Participants requested more direct questioning capabilities, allowing them to specify complex queries
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like finding comments with specific features and a designated toxicity level. Furthermore, users

expressed an interest in accessing the original article and obtaining information regarding the

comment level where the most toxic comments were located. Also, some users suggested to use of

matrix visualisation to analyse all combinations of features.

7.4 Discussion

In the previous chapter, we proposed the VisChat Methodology, a comprehensive approach designed

to guide the creation of effective VisChatbots. To illustrate the practical utility of VisChat

Methodology, in this chapter, we presented a case study focused on hate speech analysis in social

media. This case study demonstrates how the methodology can be applied in real-world scenarios

to address complex challenges and deliver meaningful insights. Our experience as designers, and in

line with other chatbot methodologies in education [13] and healthcare [30], suggests the utility of

our proposal in directing the design of VisChatbots beyond the specific context of hate speech.

As previously discussed, the Data and Task Analysis stages are closely interrelated, and their

sequence can vary depending on the domain and application (data-driven or task-driven). In our

case, since the data had already been annotated by linguists with specific features within the

hierarchical comment structure, it was most natural to start by exploring the data before defining

the tasks to validate our hypotheses. Conversely, in more established domains, task analysis is

often prioritised initially [64].

Furthermore, our case study is limited to only one iteration of the design and a preliminary

evaluation performed by 16 participants. Although we only conducted one iteration, we collected a

considerable amount of data, including recorded screen and audio data, as well as logs which will

be used in the following iterations to refine and enhance the VisChatbot’s performance and user

experience, either passing through Analysis and Design stages or by improving the model training

using reinforcement learning and parameter tuning [48].

Finally, when we explored the results, we found that the evaluation demonstrated a notably high

task completion rate, highlighting the effectiveness of the DViL Chatbot. The high completion rate

can be partly due to the moderator’s assistance, which included restating instructions and clarifying

questions, particularly in the initial and final tasks but never involved instructing participants on

how to interact with the VisChatbot. Users received more help with understanding concepts such

as subtrees, indicating that initial unfamiliarity with the visualisations contributed to the need for

intervention. Over time, participants required less assistance. This suggests that users adapted to
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the system and became more self-reliant.

The higher number of intents in VT1A compared to other tasks likely stemmed from users’

initial interactions with the DViL Chatbot and their curiosity about the new interface and data

context. Users, unfamiliar with how to effectively use the chatbot, asked more questions and

explored functionalities beyond the VisTask’s scope. Despite providing explanations, we did not

offer examples of chatbot interactions, which led to a greater number of exploratory queries. This

exploratory behaviour contributed to a lower understanding ratio in VT1A, compared to the 80%

or above understanding ratios in subsequent VisTasks. As users became more familiar with the

chatbot’s functions and adapted their communication strategies, the number of intents decreased

and understanding improved, reflecting a typical learning curve associated with new technology.

Our analysis of failed intents revealed that some issues stemmed from insufficient training data.

Users frequently posed queries or used terminology that the chatbot was not prepared to handle,

such as changing filter options or using specific terms as synonyms. Addressing these challenges

involves expanding and refining the chatbot’s training data to better recognise and respond to

these user nuances and preferences, a process informed by the insights gathered from this user

evaluation. On the other hand, some errors arose due to limitations in the chatbot’s capabilities,

such as handling simultaneous feature filtering, counting comments with specific features, excluding

certain features, or retrieving subtrees of selected nodes. This suggests us to revisit the Analysis

phase to add additional requirements and do another iteration for the VisChatbot development.

While we are addressing the challenge of simultaneous feature filtering, other requests, like viewing

non-constructive comments, are not aligned with the data logic. Feedback from our linguist partners

indicates that users are more interested in combining features rather than isolating them, suggesting

a need for further refinement in handling such intents.

Another key finding of user evaluation is that the DViL Chatbot occasionally provided Assistance

responses to queries that did not explicitly request assistance. While some of these responses

were beneficial, guiding users to relevant resources and giving explanations, others did not provide

clear direction. Despite their limited use, Assistance patterns demonstrated a high understanding

ratio, indicating their effectiveness when employed. To improve the conversation flow of the DViL

chatbot, we need to analyse user feedback and their conversations with the VisChatbot more

thoroughly. This includes adding more potential user intents, whose absence led the VisChatbot to

respond with Assistance responses. Additionally, enhancing the VisChatbot’s ability to retain more

conversational context could help reduce the need for assistance by improving its understanding of

user queries. All the findings and implications in VisChatbot design are really useful to refine our
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initial Design of the DViL Chatbot for further evaluations following the green circle in Figure 6.1.

Finally, throughout all phases, we were concerned about ethical and privacy issues, particularly

during the stages of user analysis, and data analysis, as well as during the user evaluation stage.

Users were informed that their data would be securely stored and kept private. For the design of the

chatbot, we ensured that harmful contexts were excluded. This involved verifying the authenticity

of the data, securely storing them, and minimising bias in the visualisation of sensitive content (by

using balanced datasets and reviewing visual representations to avoid reinforcing stereotypes or

misrepresenting vulnerable groups).



Part III

Dissertation Conclusions

216



Chapter 8

Conclusions

This final chapter provides a summary of the contributions in relation to the established objectives,

discusses unresolved research challenges, and outlines potential directions for future work.

8.1 Contributions Summary

Tracking and analysing the vast amounts of data generated from social networks, digital platforms,

and societal activities presents a significant challenge, not only because of the overwhelming volume

but also due to the complex relationships embedded within the data. Data visualisation emerges

as an effective approach that enhances the analysis by helping to uncover profound insights and

intricate patterns. However, creating meaningful visualisations also presents challenges, as is the

case with hierarchical and multivariate data. Hierarchical data contains interrelationships that

require careful analysis, while multivariate data adds additional dimensions to analyse, as each

point is linked to multiple attributes. Therefore, to develop effective visualisations, it’s essential to

avoid visual clutter and maximise the information conveyed within limited canvas space.

Additionally, with the abundance of hierarchical visualisations available today, the challenge lies in

selecting the most appropriate one for the data, as well as determining the best method for

visualising multivariate information without causing clutter on the layouts.

Furthermore, this type of data requires interactive elements to facilitate analysis, as visualisa-

tions alone may not suffice due to the complexity of the data. Also, interactions are essential for

addressing visualisation tasks, which often require interactive elements to be effectively solved.

Moreover, interactions can also pose issues, as they may impose a high cognitive load on users due

to the numerous elements on the user interface to control, such as filters. To address these issues,

217
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Visual Natural Language Interfaces (V-NLIs, also referred to in this dissertation as

VisChatbots) have been developed, aiding users in analysis through natural language. Although

V-NLIs are rapidly evolving, particularly due to advancements in natural language processing and

generative language models, they still encounter difficulties, such as resolving ambiguities, under-

standing the context of the visual analytic conversation, misinterpretations, and the relationship

between visualisations and the underlying data.

In this thesis, we investigated the interconnected fields of Visualisation of Hierarchical

Multivariate Data and Visualisation-oriented Natural Language Interfaces to contribute

to a more effective analysis and interaction with hierarchical multivariate datasets. To achieve

this, we established two objectives (see Section 1.4). The first objective, O1-Vis, pertains to

the improvement of hierarchical multivariate visualisations, emphasising the identification of

the most informative layouts and techniques to effectively depict complex data structures and

multivariate attributes. In contrast, the second objective, O2-VisChatbot, involves the creation

and demonstration of a design methodology for a VisChatbot, focusing on the exploration and

integration of chatbots with data visualisation techniques.

Regarding the first objective, O1-Vis, we proposed a categorisation algorithm to classify

hierarchies in order to select the most informative layout in the visual mapping. To validate our

proposal we developed a visualisation platform called DViL (Data Visualisation in Linguistics) that

integrates this algorithm to automatically select the most informative layout. The DViL platform

also incorporates various interactive elements, such as filters and interactive complementary charts,

and visual representations, such as multivariate data glyphs, to enhance user engagement and

facilitate data exploration.

Specifically, in Chapter 2, we laid the foundation for understanding hierarchical multivariate

data by introducing the Data Visualisation Pipeline (DataVis Pipeline), encompassing three essential

spaces: Data Space, Visual Space, and Interaction Space. These spaces serve as the framework

for defining the key vocabulary and principles of data visualisation. Through a comprehensive

literature review, we examined three core areas: the visualisation of network and hierarchical

data, multivariate data, and conversational data, identifying both the contributions of prior

research and the gaps that remain in each domain. Notably, in hierarchical visualisation, we

highlighted that previous approaches have predominantly focused on a single layout strategy,

overlooking the necessity of flexibility. Our analysis underscored that no singular layout is universally

optimal—successful visualisations must harmonise aesthetic considerations, clarity, and scalability to

maximise information displayed without compromising context or creating clutter. For multivariate
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data visualisation, we explored a variety of techniques, including interaction-driven methods, hybrid

approaches, and glyph-based, icon-based, and animation-based visualisations, each contributing

distinct advantages for representing and interpreting complex datasets. These insights emphasise

the importance of adapting visualisation strategies to the specific demands of the data, a theme

that underpins the conclusions drawn throughout the chapter.

In Chapter 3, we proposed a novel categorisation algorithm to classify hierarchical structures

as Elongated or Compact, depending on defined key attributes such as the growth factor and

the number of direct children of a node. This algorithm is versatile and can be applied to any

hierarchical dataset, providing a systematic approach to structure classification. Our analysis

confirmed the algorithm’s efficiency, and we further explored the suitability of various visualisation

layouts for each category. Specifically, we proposed that Tree and Circle layouts are the most

informative for Elongated structures, while Radial and Force layouts offer clearer representations for

Compact structures. Despite the potential of this categorisation, we identified certain limitations

that suggest enhancement for further development. Additional categories, such as n-compact

structures (consisting of multiple compact structures) or hybrid configurations (where Elongated

and Compact structures coexist), could be incorporated, thereby increasing the algorithm’s flexibility

and enhancing its applicability to more complex datasets. Moreover, we formalised the features

of multivariate data visualised within hierarchical structures, developing guidelines for visualising

different multivariate data types. For ordinal data, we argued that direct representation using hue

colours on nodes or edges is most effective, as it conveys clear, distinguishable values (e.g., small,

medium, large). In contrast, nominal data is best represented using icons for concrete features,

while abstract features can be conveyed through glyphs mapped to unique colours. These formalised

approaches ensure more intuitive and accurate visual representations of complex multivariate data

embedded in hierarchical structures.

In Chapter 4, we presented our visualisation platform, Data Visualisation in Linguistics (DViL),

which is designed to visualise hierarchical multivariate data. Our goal was to create a visualisation

of hierarchical structures that facilitates a clear, effective, and efficient analysis of both parent-child

relationships and feature distributions, ensuring a user-friendly experience that minimises cognitive

overload while maintaining clarity. DViL not only achieves this but also offers adaptability, making

it suitable for visualising any hierarchical multivariate dataset. To validate our proposed algorithm

in DViL, we conducted an in-depth case study on hate speech data collected from comment

sections of online newspapers, demonstrating the potential of DViL in real-world applications. This

case study highlighted the flexibility and effectiveness of our platform in representing complex
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datasets while enabling users to easily explore and understand both the structural and feature-based

relationships within the data.

Moreover, we conducted a user evaluation using this case study to validate the categorisation

introduced in Chapter 3. It should be noted that user feedback from our evaluation indicated that

DViL was well-received, with participants noting that it was easy to learn and navigate. This ease

of use contributed to participants’ ability to explore and interpret the data effectively, thereby

reinforcing the platform’s accessibility and reducing cognitive strain. In relation to the proposed

layout selection, while most users found the Tree layout to be the most intuitive for both Elongated

and Compact data, there is strong evidence suggesting that Force and Radial layouts offer distinct

advantages for broader datasets, particularly in visualising Compact structures. Interestingly,

user feedback indicated that these alternative layouts required more time for participants to fully

understand, which may have contributed to the overall preference for the Tree layout. This insight

points to a potential learning curve associated with the more complex layouts, highlighting an area

for future improvement in user training, interface design, or the design of those layouts to maximise

their effectiveness.

Considering the second objective, O2-VisChatbot, we developed a VisChatbot methodology

to establish a standardised approach for creating V-NLI. This methodology was used to create our

VisChatbot, which we integrated into our visualisation platform which was evaluated with users.

In Chapter 5, we introduced the V-NLI pipeline, an extension of the DataVis Pipeline. Similarly,

we explored the key vocabulary related to V-NLI and presented a literature review examining the

synergies between the fields of data visualisation and natural language interfaces, highlighting gaps

and contributions in the field. Our analysis revealed that there are limited studies concerning

complex data and advanced visualisations in V-NLIs, as well as gaps in using high-level queries and

guidance strategies. Additionally, we revealed the gap in the methodologies to design VisChatbots,

while there are several design methodologies for creating chatbots, none specifically address the

unique and complex requirements of VisChatbots.

To fill this critical gap in the design methodology for VisChatbots, in Chapter 6, we proposed

a new methodology called Visualisation Chatbot (VisChat Methodology), which aims to guide

the incremental creation of VisChatbots for visual analytics processes. This iterative approach

encompasses three main classical phases of the development process: Analysis, Design, and

Development. We outlined several key stages for each phase. The Analysis phase includes stages;

User, Data, VisTask (visualisation task), Visualisation Type, and Interaction Requirements analyses,

ensuring a deep understanding of both user needs and data characteristics. In the Design phase we
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contributed with three design artefacts; VisAgent Persona, Visualisation Conversation Patterns

and Annotated Transcripts, which are derived from the Analysis phase and aimed at guiding the

conversational flow and interaction design of the VisChatbot. Finally, the Development phase

includes VisChatbot Modelling, Visualisation-Chatbot Connection and User Evaluation stages,

facilitating the smooth implementation and the continuous development of the VisChatbot.

Our findings demonstrated that this structured, phase-based approach enhances the development

process, making it more systematic and adaptable to varying contexts. However, we also identified

some key limitations. For example, the order of data analysis and task analysis is closely linked

and interchangeable, depending on whether the methodology is data-driven or task-driven. This

relationship warrants additional consideration in future iterations, as the order could significantly

influence the design outcomes. Moreover, we suggest that additional Visualisation Conversation

Patterns could be incorporated to address more specific user needs, VisTasks, data types, and

interaction modalities. For instance, tasks such as Request Visualisation Task and Query

and Request Visualisation Details could be further refined to support distinct VisTasks like

LocateT, LookupT, BrowseT, and ExploreT, as well as, VisQueries such as IdentifyQ,

CompareQ, and SummariseQ.

Overall, our proposed VisChat Methodology contributes a robust, flexible framework for the

iterative development of VisChatbots, filling a critical shortcoming in current methodologies. The

findings from our work highlight not only the utility of this structured approach but also the need

for continued refinement, particularly in tailoring the methodology to different analytic contexts

and in developing better tools for evaluating VisChatbot usability.

In Chapter 7, we applied the VisChat Methodology presented in Chapter 6 to design our

VisChatbot and integrate it within the DViL platform. We demonstrated how we utilised each

phase in developing our VisChatbot, systematically guiding its creation through the methodology.

This hands-on application not only validated the methodology but also showcased its flexibility

and adaptability in real-world use cases. Specifically, we presented a user evaluation to assess the

performance of our VisChatbot with users. Our results are promising, as users were able to complete

each VisTask, demonstrating the VisChatbot’s capability to facilitate efficient visual analytics

interactions. As users became more familiar with the VisChatbot, their performance improved,

underscoring the effectiveness of our iterative design approach in enhancing usability over time.

These findings highlight the potential of VisChatbots to improve user engagement and streamline

complex data VisTasks, particularly in environments where hierarchical multivariate data needs to

be explored. Moreover, our results indicated that the VisChatbot effectively reduced the cognitive
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load associated with traditional data exploration methods. Users appreciated the VisChatbot’s

conversational interface, which provided a more intuitive and interactive way to navigate VisTasks.

This reinforces the importance of integrating chatbots into visual analytics platforms like DViL,

offering a more user-friendly alternative to manual interaction methods. Despite these encouraging

findings, our study has some limitations. Our case study is limited to a single iteration of the

design; therefore, we recommend conducting experiments with different iterations. This can be

achieved by revisiting the Development Stage or returning to the Analysis Stage, completing either

a half-circle or a full circle of the entire methodology. Additionally, our preliminary evaluation was

conducted with a relatively small sample of 16 participants. Future studies should involve a larger

and more diverse group of users to validate the generalisability of our findings and also to gain

more comprehensive insights into the VisChatbot’s usability.

Finally, it should be noted that this thesis contributes to the 2030 Agenda for Sustainable

Development [87], particularly Goal 4 (Quality Education), by democratising access to data through

the VisChatbot, which enables a wider audience, including those without technical expertise, to

gain insights via natural conversations. Additionally, both DViL and VisChatbot, designed for

non-expert analysis, align with Goal 17 (Partnerships for the Goals) by fostering collaboration

across diverse groups. Moreover, our case study on hate speech in online news furthers Goals

16 (Peace, Justice, and Strong Institutions), 10 (Reduced Inequalities), and 5 (Gender Equality)

by helping analysts explore complex data to identify patterns related to discrimination and bias,

enabling critical insights into inequality.

8.2 Future Work

This research lays the foundation for a wide range of future investigations in different fields.

Concerning our first objective O1-Vis, we focused on developing a categorisation algorithm aimed

at selecting the most informative layouts for visualising hierarchical data. In this dissertation,

we introduced two primary categories, ”Elongated” and ”Compact”, which provide a foundation

for classifying hierarchical structures. However, we acknowledge that these categories represent

only an initial step, and there is significant potential to expand this framework further. Future

categorisations could introduce new classes that better reflect the diversity of hierarchical structures

and their subtrees, considering not only the arrangement of the hierarchy itself but also how

features within the hierarchy are visually represented. For example, we presented two approaches

for visual mappings of multivariate data: individual features can be mapped one-by-one, and
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displayed all-in-one using glyphs, which offers a more compact representation. By incorporating

these visual elements into the categorisation process, our algorithm could evolve to account for both

structural and feature-based complexities, offering a more comprehensive approach to hierarchical

and multivariate data visualisation.

Moreover, we focused primarily on hierarchical visualisations such as Tree, Radial, Force,

and Circle Packing layouts, which are well-suited for representing parent-child relationships in

multivariate data. However, there is potential to explore new visual metaphors that could further

enrich the analytical experience. For instance, temporal visualisations could be particularly useful

in scenarios where time-based data is a significant factor, enabling users to track changes over time

within the hierarchical structure.

Additionally, there is room to create more versatile, general-purpose glyphs that could be adapted

to various contexts as we developed application-specific glyphs in our current implementation.

These new glyphs could provide more flexibility in representing a broader range of data types and

relationships within the hierarchy, allowing for more intuitive visual mapping and interaction with

complex datasets.

We implemented a rule-based decision-making process to guide the selection of the most

informative layout for hierarchical data visualisation. However, this rule-based system could

be enhanced by adopting a Machine Learning approach, specifically leveraging reinforcement

learning [198] by using user interactions and preferences during the visual analysis. In this scenario,

the visualisation selection process could become more dynamic, as the system learns from user

interactions and feedback to better tune the visual representation of each dataset over time. The

initial state of this Machine Learning model would still be guided by our established taxonomy,

ensuring that the system starts with well-founded principles for hierarchical data classification. As

the model evolves, it could refine its decision-making process, allowing for more personalised and

context-sensitive visualisations that adapt to the specific needs and characteristics of each dataset.

This shift from rule-based to Machine Learning would not only increase flexibility but also enable

more intelligent and adaptive visualisation strategies that respond to user preferences and data

complexities.

Regarding our second objective, O2-VisChatbot, the field of VisChatbots presents a promising

yet evolving area of research, with significant potential for future developments. In this thesis, we

introduced a VisChatbot methodology to address the existing gap in integrating chatbots with

visualisations. In the Analysis Phase of our methodology, we focus on refining and defining the

appropriate vocabulary for the visualisations. With advancements in chatbot technologies such as
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LLMs, the need for manually curating extensive vocabulary lists is significantly reduced. Recent

advances in chatbot technologies, such as ChatGPT-4 [138] and Gemini [188], showcase their ability

to efficiently respond to complex visual queries. These developments minimise the necessity for

explicitly teaching chatbots specialised visualisation vocabulary, making them more adaptable to

diverse user inputs. By relying less on extensive training datasets, these advancements enhance

the overall development process, making VisChatbots more intuitive, efficient, and effective in

supporting data analysis.

In the Design Phase, we presented several patterns that provide a framework for understanding

VisQueries within a VisTask, while highlighting their potential for expansion. For instance, the

Request Visualisation Task and Query pattern can be enhanced by creating distinct patterns for

each type of VisTask and VisQuery. Similarly, the Request Visualisation Details pattern, which

currently integrates multimodal input and output, can be refined into more specific patterns that

first address these modalities separately, and then together. This separation would allow for a

clearer representation of user-VisChatbot interactions and ensures that the VisChatbot can adapt

to emerging needs in data visualisation.

Furthermore, to enhance storytelling capabilities within the VisChatbot interface, such as a

study [169] that explored high-level queries with narrative visualisations, a new Visual Narrative

pattern can be defined inspired by the Visual summary pattern. The new Visual Narrative pattern

can be built on the Visual Summary pattern by not only summarising key data insights but also

presenting them as a coherent story. Unlike the Visual Summary, which offers a concise overview,

the Visual Narrative weaves data into a structured sequence, providing context and guidance

throughout. This approach would help users understand the broader story behind the data, offering

a more comprehensive and engaging exploration of insights.

In the Development Phase, we utilised Rasa as a first approach for our VisChatbot. However,

the integration of cutting-edge technologies like large language models (LLMs) presents significant

opportunities for enhancing visualisation capabilities. While many existing tools excel at handling

either LLMs or visualisations independently, few offer a truly seamless and integrated solution

that combines both functionalities. Libraries such as Lida [46], Plotly Chatbot Builder [55], and

Chat2Vis [122] have made commendable strides in this direction, paving the way for more effective

interaction between users and data visualisations through LLMs.

Recent research has explored the readiness of LLMs for visual analytics, exploring the potential

benefits of this integration while also acknowledging the challenges that remain. The use of LLMs

can significantly enhance the interpretability and usability of visualisations by enabling more
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natural language interactions, thereby allowing users to query and manipulate data intuitively.

Despite the unresolved issues that still need to be tackled, there are promising advancements in

this area to maximise the capabilities of both LLMs and visualisations [192].

In this phase, we also proposed a comprehensive set of both user-centred and chatbot-centred

metrics to evaluate the usability, effectiveness, and engagement of the VisChatbot design. However,

the existing literature lacks dedicated usability questionnaires for VisChatbots, presenting an

ongoing challenge for the development and validation of such tools. Addressing this gap could

significantly improve the evaluation process and ensure that VisChatbots meet user expectations

in terms of functionality and interaction quality. Additionally, the potential fatigue induced by

lengthy data analyses poses another obstacle, highlighting the need for VisChatbots to assume an

evaluator role [152], collecting user feedback seamlessly during the visual analytics experience.

Furthermore, we sought to explore gaps, particularly in using VisChatbots with complex data

and advanced visualisations. There remains much to investigate. One potential future direction

is addressing how complex data is often projected into a two-dimensional space, limiting queries

on intricate structures such as multivariate hierarchical and network data, which may be better

explored in three-dimensional spaces [28]. The immersive environments such as VR and AR, can

enhance the exploration of multivariate hierarchical data by allowing users to manipulate and

interact with the data spatially, making complex relationships more apparent. For example, users

could navigate through a three-dimensional hierarchical structure, rotating and zooming in on

different levels to uncover insights that would be challenging to discern in a static, two-dimensional

representation. Thus, designing V-NLIs to accommodate high-level queries and extending their

study beyond traditional WIMP interfaces, such as incorporating immersive analytics in VR and

AR environments [110], represents a promising direction for further exploration.

Moreover, to let users better express their intents with less ambiguity, V-NLI systems use either

guidance strategies or multimodality. While our systems incorporate multimodality through natural

language and WIMP interfaces, it is essential that these modalities communicate effectively with

one another. While most systems facilitate user-chatbot interactions through WIMP interfaces, it is

noteworthy that few support touch interactions [108, 174, 175, 178], and there is limited exploration

into the use of gestures [95]. This indicates significant opportunities for improvement, particularly

in relation to multimodality [155], which can enhance the transformation of data by enabling

users to interact with the system in a more comprehensive manner—using not only text and voice

but also gestures and gaze. Furthermore, multimodality can support collaborative analysis of

visualisations and serve as an additional input for the NLP system, enriching the context during
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analytical conversations.

Additionally, as presented in Chapter 6, we introduced the ’Sniffer’ pattern, which incorporates

a passive listening mode that allows the VisChatbot to observe conversations between users and

automatically propose relevant interaction methods accordingly [19]. In line with this, recent

research has examined an always-listening agent that acts as a third collaborator in multi-person

visual analysis, generating visualisations based on observations of users’ conversations [185]. The

concept of passive listening could be enhanced by incorporating other input signals, such as eye

tracking [117] and emotional indicators like tone of voice [5]. These enhancements could be easily

integrated into our proposed pattern and significantly improve the guidance provided by the

VisChatbot.
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Appendix A

Supplementary Information for

Chapter 2

In the following, we summarise the key vocabulary introduced in the DataVis pipeline:

For the Data Space, the characteristics include:

• Data Transformation: Operations like filtering, clustering, and aggregation applied to raw

data before visualisation.

• Attributes: Characteristics of data points, including Nominal (categories), Numerical

(quantitative), Temporal (time-based), and Spatial (location-based).

• Data Type: Tabular (structured, non-connected items) or Complex (high-dimensional,

temporal, or interconnected data).

In relation to the Visual Space, the characteristics considered include:

• Visualisation Type (Basic or Advanced): Basic layouts (e.g., bar, line charts) vs.

advanced layouts (e.g., network graphs, parallel coordinates) for mapping data.

• Graphical Elements: Abstract (Lines, Points, Bar) and Symbolic (glyphs, icons) for

visualising multivariate data.

• Visual Mapping Identification (Fixed, User-defined, Rule-based, Intelligent):

Methods for selecting layouts and graphical elements, ranging from fixed choices to dynamic

or AI-driven selections.
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• View Transformation (Single or Multiple): Allows users to change the viewpoint (e.g.,

zooming, panning), measure values, create distortions, and use multiple views or animations

to highlight data.

• Interaction Style (Basic—WIMP or Advanced—NL): Basic interaction (e.g., WIMP

interfaces) vs. more advanced interaction methods (e.g., Natural Language interfaces).

Lastly, for Interaction Space:

In the Interaction Space, we collect information about the seven interaction methods proposed

by Yi et al. [209]: select, explore, reconfigure, encode, abstract/elaborate, filter, and connect.

Visualisation tasks (VisTasks) define how users interact with visualisations to derive insights. These

tasks help users conduct visual analytics, transforming raw data into meaningful information that

aligns with their specific goals. The key Visualisation Tasks are:

• LookupT: location and target know

• LocateT: location unknown, target known

• BrowseT: location known, target unknown

• ExploreT: location and target unknown

The Interaction Style can be classified based on the type of interaction used. It includes:

• Basic (WIMP): Interaction using traditional input devices like a mouse, keyboard, and

pointers.

• Advanced (NL): Interaction using more advanced methods such as Natural Language (NL)

interfaces.
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Supplementary Information for

Chapter 7

Figure B.1: Define Constructiveness Intent
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Figure B.2: Help for Select Node and Edge Intent

Figure B.3: Highlight Check intent displaying Constructiveness and Argumentation examples.
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Figure B.4: VisTask1A: Expected conversation.

Table B.1: Expected intents for each task.

VisTask Expected Intents

VisTask1A: In how many comments do we see Argumenta-
tion and Constructiveness together?

1) Select comments with Construc-
tiveness
2) Select comments with Argumen-
tation
3) Open statistics for selected com-
ments

VisTask1B: What is the most common level of toxicity for
comments tagged with the feature Constructiveness? Are
there other features that appear for this level of toxicity?

1) Show comments with Construc-
tiveness
2) Uncheck Constructiveness
3) Choose Not-Toxic comments
4) Show me statistics

VisTask2A: What is the most common level of toxicity for
the feature Stereotype?

1) Select Stereotype comments

VisTask2B: What is the most common level of toxicity for
the feature Intolerance in the most toxic subtree?

1) Display the most toxic subtree
2) Highlight Intolerance comments
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Figure B.5: VisTask1A: Example of a long conversation of User 12
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Figure B.6: VisTask1A: Example of a minimal conversation of User 11
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