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Background. Several scores have been developed to stratify the risk of graft loss in controlled donation after circulatory 
death (cDCD). However, their performance is unsatisfactory in the Spanish population, where most cDCD livers are recovered 
using normothermic regional perfusion (NRP). Consequently, we explored the role of different machine learning-based clas-
sifiers as predictive models for graft survival. A risk stratification score integrated with the model of end-stage liver disease 
score in a donor-recipient (D-R) matching system was developed. Methods. This retrospective multicenter cohort study 
used 539 D-R pairs of cDCD livers recovered with NRP, including 20 donor, recipient, and NRP variables. The following 
machine learning-based classifiers were evaluated: logistic regression, ridge classifier, support vector classifier, multilayer 
perceptron, and random forest. The endpoints were the 3- and 12-mo graft survival rates. A 3- and 12-mo risk score was 
developed using the best model obtained. Results. Logistic regression yielded the best performance at 3 mo (area under 
the receiver operating characteristic curve = 0.82) and 12 mo (area under the receiver operating characteristic curve = 0.83). 
A D-R matching system was proposed on the basis of the current model of end-stage liver disease score and cDCD-NRP 
risk score. Conclusions. The satisfactory performance of the proposed score within the study population suggests a 
significant potential to support liver allocation in cDCD-NRP grafts. External validation is challenging, but this methodology 
may be explored in other regions. 

(Transplantation 2025;109: e362–e370).
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INTRODUCTION
Liver transplantation (LT) is the best treatment option for 
several end-stage liver diseases. However, the shortage of 
donors and the emergence of new indications perpetuates 
an imbalance between donors and candidates, resulting in 
deaths and exclusions from the waiting list.1,2 Strategies 
including donations after circulatory determination of death 
(DCD) and extended criteria donors aim to mitigate this sit-
uation. DCD donations have grown exponentially in recent 
years, increasing from 1207 in 2023 to >4700 in 2022 in 
the United States. In the United Kingdom and Spain, DCD 
represents 46% of donors and 42% of transplants, respec-
tively.3 However, grafts derived from DCD and extended 
criteria donors carry a higher risk than grafts obtained from 
donors declared dead based on the neurological criteria.4 
In the United States, the 5-y graft survival rates exceeded 
75% across most LT categories, except for donors aged 65 
y or older, recipients with a model for end-stage liver disease 
(MELD) score ≥40, and DCD liver recipients.5

In addition to the increased risk of these donors, there is a 
lack of consensus on the allocations of grafts generated using 
these strategies, leading to the development of scores such 
as the donor risk index (DRI),6 survival outcomes after LT 
(SOFT),7 and balance of risk (BAR),8 which aim to assess the 
risk of donor-recipient (D-R) assignment to achieve better 
posttransplant results. The BAR score exhibits an area under 
the curve (AUC) of >0.70 for 90-d mortality and outper-
forms other predictive systems, including the DRI, MELD, 
and SOFT scores.9 However, none of these systems align 
with the current organ allocation policies. Furthermore, they 
are not specific to the assignment of DCD livers.

An ideal allocation system should optimize D-R match-
ing, prioritize candidates with the highest risk of death on 

the waiting list, and enhance the likelihood of graft sur-
vival success.

Specific scores, such as the University of California 
and Los Angeles (UCLA)-DCD,10 King College Hospital 
(KCH)-DCD risk index,11 or UK-DCD score, have been 
used for assessing the potential risk associated with LT in 
the context of DCD.12 Although the UK-DCD score is a rel-
evant contribution, it does not accurately predict outcomes 
in Spain owing to unique DCD characteristics13: it yields 
high graft survival rates even in high-risk cases (1-y graft 
survival rates of 100% and 91% in the ‘‘futile” and ‘‘high-
risk” groups, respectively14) and it lacks a matching system.

Normothermic regional perfusion (NRP) is an in situ 
preservation technique implemented in several European 
countries to reduce the effects of ischemia/reperfusion 
injury in controlled DCD (cDCD) livers.15 The cDCD pro-
gram was regulated a decade ago in Spain, and its results 
and the use of in situ NRP have been highly satisfactory.16,17 
In a previous study, 506 of 803 cDCD livers were recov-
ered with NRP (63%), whereas 258 were recovered with 
the standard rapid recovery technique (32%).17 This study 
positioned NRP as the preferred technique by Spanish 
transplant groups for cDCD procedures.17 Notably, most 
cDCD-NRP procedures in Spain are performed with 
antemortem cannulation of the vessels following specific 
authorization from the donor surrogate decision-makers 
or the donor themselves in case of first-person consent.

Different machine learning (ML) models have been used 
to improve organ allocation.18-21 In the M.A.D.R.E. study, 
artificial neural networks (ANNs) predicted the prob-
ability of graft survival (AUC: 0.80) and graft loss (AUC: 
0.82) with 90.79% and 71.42% accuracy, respectively.20 
These models surpassed traditional scores and generated 
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a rule-based matching system. This methodology has been 
externally validated.18 Although ML models are widely 
used in LT, they are not autonomous and should be con-
sidered decision-support tools.19 Furthermore, it is unclear 
whether ML algorithms can improve allocation accuracy 
by estimating the risk of LTs from cDCD.

Therefore, we explored the performance of different ML 
techniques, including logistic regression (LR), to assess the 
risk of D-R matching in cDCD performed with NRP. We 
proposed an automatic D-R matching system by integrat-
ing the best model obtained with the currently used MELD 
score to assist liver allocation.

PATIENTS AND METHODS

Study Design
This retrospective observational cohort study was con-

ducted on a cDCD-NRP LT cohort (n = 545) in Spain, as 
previously reported by Hessheimer et al.17 The data set 
was obtained from the Spanish Liver Transplant Registry 
and the Spanish Organización Nacional de Trasplantes. A 
detailed description of cDCD donor and recipient selection 
and the NRP protocol has been provided by Hessheimer 
et al.17 Immediately after initiating cannulation, sodium 
heparin will be administered. The heparin dose is speci-
fied in the cDCD national protocol.22 However, there may 
be variations between centers. After excluding pediatric 
transplants (n = 2), acute liver failure (n = 1), and graft 
survival time not specified cases (n = 3), 539 D-R pairs 
were selected. This article adheres to the TRIPOD checklist 
(Appendix 1, SDC, http://links.lww.com/TP/D218).23

Variables and Outcomes
All cohort variables related to donor, recipient, and 

graft characteristics, including graft-related complica-
tions, are shown in Table 1. Different ML models were 
built considering the following 20 variables for each D-R 
pair: donor age, donor body mass index, A-NRP duration, 
location of withdrawal of life-sustaining therapy (WLST), 
antemortem cannulation, intubation period before WLST, 
asystolic warm ischemia time, total warm ischemia time, 
functional warm ischemia time (FWIT), cold ischemia 
time (CIT), aspartate aminotransferase (AST) slope, ala-
nine aminotransferase (ALT) slope, lactate slope, recipient 
age, recipient body mass index, sex compatibility, recipient 
MELD (laboratory), retransplantation, and graft survival 
status. These variables were used as inputs to the ML mod-
els to estimate the probability of graft survival for D-R 
matching. At the start of A-NRP, an initial blood sample 
is collected, followed by additional samples every 30 min 
to assess parameters such as lactate and transaminases, 
which assist in graft viability evaluation. Lactate levels 
were measured in millimoles per liter and transaminases in 
units per liter. Detailed methodology for calculating lactate 
and transaminase slopes is provided in Appendix 2 (SDC, 
http://links.lww.com/TP/D218).

Ischemia time was reported in minutes, except for CIT, 
which was expressed in hours. CIT starts with donor 
cold preservation until graft reperfusion. The total warm 
ischemia time is defined as the period between the WLST 
and the start of NRP. FWIT starts when the donor sys-
tolic blood pressure drops to <60 mm Hg and ends with 

the initiation of NRP. AWIT is the period from cardiac 
arrest to preservation, including the “no-touch” period. 
Graft failure is defined as death or retransplantation. 

TABLE 1.

Donor-, recipient-, and transplant-related baseline 
characteristics

Characteristics A-NRP (N = 539)

Donor
 � Age, y 57 (49–67)
 � Sex male, n (%) 346 (64)
 � BMI, kg/m2 26.604 (24.16–28.89)
 � Intubation before WLST, d 10 (4–11)
 � Cause of death, n (%)
  �  CVA 246 (45)
  �  Cerebral anoxia 173 (32)
  �  TBI 52 (10)
  �  Other 68 (13)
 � A-NRP
  �  Antemortem cannulation, n (%) 500 (93)
  �  WLST location OR, n (%) 394 (73)
  �  ALT slope 0.178 (–0.04 to 0.257)
  �  AST slope 0.121 (–0.075 to 0.267)
  �  Lactate slope –0.029 (–0.049 to 0.004)
  �  TWIT, min 19 (13–23)
  �  FWIT, min 13 (9–16)
  �  AWIT, min 6 (5–6)
  �  A-NRP duration, min 108 (81–126)
  �  CIT, min 330 (270–375)
  �  Preservation solution, n (%)
   �   UW or IGL-1 121 (22)
   �   Celsior 327 (61)
   �   HTK 73 (14)
   �   Other 18 (3)
Recipient
 � Age, y 57 (53–63)
 � Sex male, n (%) 425 (79)
 � Sex compatibility, n (%) 348 (64)
 � BMI, kg/m2 27.08 (23.73–30.16)
 � Laboratory MELD score 13 (9–16)
 � Transplant indication, n (%)
  �  Cirrhosis 346 (65)
  �  HCC 136 (25)
  �  PSC 10 (2)
  �  Retransplantation 17 (3)
  �  Other 29 (5)
Graft-related complications, n (%)
 � Early allograft dysfunction 79 (14)
 � Primary nonfunction 14 (2.6)
 � Hepatic artery thrombosis 21 (3.8)
 � Biliary complications, n (%)
    Biliary stricture
    Biliary leakage
    ITBL
    Others

58 (10.7)
37 (6.8)
13 (2.5)
7 (1.3)
1 (0.1)

A-NRP, abdominal normothermic regional perfusion; ALT, Alanine aminotransferase; AST, aspar-
tate aminotransferase; AWIT, asystolic warm ischemia time; BMI, body mass index; CIT, cold 
ischemia; CVA, cerebrovascular accident; FWIT, functional warm ischemia; HCC, hepatocellu-
lar carcinoma; HTK, histidine-tryptophan-ketoglutarate; IGL-1, Institut Georges Lopez-1; ITBL, 
ischemic type biliary lesion; MELD, model of end-stage liver disease; OR, operating room; PSC, 
primary sclerosing cholangitis; TBI, trauma brain injury; TWIT, total warm ischemia time; UK 
DCD risk score, United Kingdom Donation after Circulatory Death risk score; UW, University of 
Wisconsin; WLST, withdrawal of life-sustaining therapy.
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Graft survival is reported in months with a minimum 
follow-up of 1 y.

ML models were developed using a data set from a 
Spanish multicenter, representing the most significant 
cDCD LT experience under NRP. The 3- and 12-mo graft 
survival (3 M and 12 M models, respectively) periods were 
selected as the endpoints to explore the performance of 
different models (including ML models) in predicting liver 
graft survival. The score was integrated with the MELD 
score using a rule-based matching system.

ML Techniques
Five ML techniques were considered: LR, ridge classifier 

(RC), support vector classifier (SVC), multilayer perceptron 
(MLP), and random forest (RF).21 Model performance was 
evaluated using the accuracy or correct classification rate and 
AUC. The ML models were trained using a hold-out meth-
odology wherein 75% of the patterns (D-R matches) were 
randomly selected from different years to obtain an accurate 
model. The remaining 25% of the patterns were used for test-
ing and validating the trained models. This last set of pat-
terns was hidden and excluded from the training phase of the 
model. Moreover, a 10-fold cross-validation procedure was 
performed during the training stage (Table S1, SDC, http://
links.lww.com/TP/D219). Both cohorts (training and valida-
tion) were analyzed to identify statistically significant differ-
ences that could bias the results of the best model obtained 
(Table S2, SDC, http://links.lww.com/TP/D219). MLP and 
RF were executed 10 times owing to their stochastic nature 
resulting from initialization. Hence, their results are expressed 
as mean±SD. These metrics served as performance evaluators 
and facilitated a more analytical and clinical evaluation of 
the input variables selected by each model and their weights.

Spanish Score System
After identifying the best ML model, the SPanish NRP 

cDCD risk score was constructed using the Framingham 
risk scheme.24 This score was used to estimate graft sur-
vival associated with D-R matching at 3 and 12 mo (SP3M 
and SP12M). A lower score indicated a higher probability 
of graft survival. The scoring system was discretized into 
several categories to stratify the risk into low, medium, and 
high. The coefficients for each input variable (β1,β2, ...,βn
, where n is the number of input variables considered by 
the model) were identified. The corresponding reference 
values for each category were determined as the midpoint 
(W1REF,W2REF, ...,WnREF). The base category, con-
sidered a reference risk factor, was determined to be the 
healthier state, and zero points were assigned. However, 
the worst states of the risk factors were assigned positive 
points. These points were assigned on the basis of the dis-
tance from each category to the base category and B, the 
number of regression units reflecting one point in the scor-
ing system. The points were calculated using the following 
equation: Pointsij = βi

(Wij−WiREF)
B , where i represents the 

input variable considered by the model and j represents 
the categories.

Rule-based Matching System
An automatic D-R matching system was designed on 

the basis of the aforementioned score. It calculated the 

previously suggested score for each potential D-R match 
on the waiting list. The D-R pair with the lowest score, 
indicating better graft survival, was matched. The graft 
was allocated to the recipient with the highest MELD 
score in the case of a tie. The recipient’s waiting list time 
was considered if a second tie occurred.

Statistical Analysis
Quantitative variables are reported as means and ranges, 

and qualitative variables are expressed as numbers and 
percentages. All values were logarithmically transformed 
to consider a similar magnitude. Missing values for each 
input variable have been reported (Table S3, SDC, http://
links.lww.com/TP/D219) and were recovered using the 
mean values of the variables computed from the training 
split. The specific methodologies of the models, scores, and 
matching systems are explained in the following sections. 
All statistical analyses were performed using R version 
4.2.0 (RStudio, PBC).

Ethics
All procedures, including obtaining informed consent, 

were conducted in accordance with the ethical standards 
of the Helsinki Declaration of 1975. The Spanish cDCD LT 
procedure is regulated by Royal Decree 1723/201225 and 
official national protocols.22,26 This study was approved by 
the Institutional Review Board of Reina Sofía University 
Hospital.

RESULTS
Table 1 summarizes the cohort characteristics. The graft 

survival rates at 3 and 12 mo were 92.9% and 91%, respec-
tively. In the cohort, of the 17 retransplanted patients, 5 
cases occurred within the very early period (<2 wk), 6 cases 
from 2 wk to 3 mo, and 6 cases were performed after 3 mo. 
No liver grafts in this cohort underwent ex situ machine 
perfusion.

ML Techniques
RF and MLP achieved higher accuracy levels 92% at 

3 M achieved by RF and MLP and 90% at 12 M with 
RF among all techniques. However, the results in terms 
of AUC were limited, ranging from 57% to 73%. The 
LR method achieved the best balance between accuracy 
and AUC (AUC: 82% and 83% for the 3 M and 12 M 
endpoints, respectively; Figure 1). The accuracy slightly 
decreased to 71% and 77%, respectively. RC and SVC 
presented limited results in terms of AUC. Table 2 pre-
sents the performances of the different ML models over 
the testing set for both endpoints. There were no statis-
tically significant differences between the training and 
validation cohorts in our best model (LR method; Table 
S2, SDC, http://links.lww.com/TP/D219). The LR model 
assigned various coefficients to each input variable, indi-
cating their weights. A negative coefficient indicated 
graft survival. Variables with a coefficient of <0.1 were 
excluded owing to their low significance in the model. 
Therefore, among the initial 20 variables, only 12 and 
10 variables were included in the 3 M and 12 M models, 
respectively.

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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Spanish NRP cDCD Score
Table 3 summarizes the coefficient values for 

each risk factor. Tables S4 and S5 (SDC, http://links.
lww.com/TP/D219) show the risk factors, categories 
obtained, and points associated with each one for the 3 
M and 12 M endpoints, respectively. Hence, the values 
for the category ranges are on a logarithmic scale. The 
3 M and 12 M scores ranged from 0 to 26 and 0 to 14, 
respectively. The 2 most influential variables, regardless 
of the endpoint, were “retransplantation” and “CIT.” 
Figure 2 shows the differences in graft survival corre-
sponding to each developed score (at 3 M and 12 M) 
according to the risk level. In our cohort, 53% and 
61% of the patients were considered medium risk for 
transplantation at 3 and 12 mo, respectively. The num-
ber of high-risk D-R pairings did not exceed 15% for 
both endpoints.

The negative coefficients for lactate and AST/ALT slopes 
suggest that an increase in these slopes is associated with 
a higher risk of graft failure. This means that if lactate or 
AST/ALT levels rise over time (positive slope), it is asso-
ciated with a worse graft prognosis. (Appendix 2, SDC, 
http://links.lww.com/TP/D218).

D-R Matching System
To better understand the score, 5 recipients and 10 

donors were randomly selected from the database. Table 4 
details the scores associated with each potential D-R and 
the MELD for each recipient. D-R matching was per-
formed by selecting the pair with the lowest value with a 
difference of at least one point to the other potential pairs. 
For example, consider donors 1, 3, or 4. Donors 1, 3, and 
4 were matched with recipients 1, 4, and 2, respectively. 
Matching was performed according to the MELD guide-
lines in the case of a tie. For example, consider donor 2, for 
which recipients 3 and 5 had a SP12M score of 4 points. 
The recipient with a higher MELD score, that is, recipient 
3 with a MELD score 17, was selected. A similar scenario 
was observed for donor 8, with a tie between recipients 
2 and 3. The recipient with the highest MELD score was 
selected (recipient 4).

DISCUSSION
cDCD has been widely used to address donor shortages. 

The extended criteria grafts were assumed to be at a higher 
risk; thus, scores such as MELD, DRI, SOFT, and BAR were 

FIGURE 1.  Performance of different models in 3-mo and 12-mo graft survival prediction based on ROC curve comparison. The LR 
(AUC = 0.837) shows superiority in both endpoints of graft survival prediction capability against other prediction models. The ROC 
curves showing the 3-mo endpoint model performance (A) and the 12-mo endpoint (B). AUC, area under the curve; CCR, correct 
classification rate; LR, logistic regression; MLP, multiLayer perceptron; RF, random forest; ROC, receiver operating characteristic; SVC, 
support vector classifier.

TABLE 2.

Results achieved by the ML techniques in terms of CCR and AUC evaluation metrics (values between 0 and 1) for the 3 M 
and 12 M endpoints

ML technique

3 M 12 M

Accuracy AUC Accuracy AUC

MLP 0.926 ± 0 0.694 ± 0.097 0.864 ± 0.026 0.575 ± 0.094
RC 0.674 0.548 0.659 0.700
RF 0.921 ± 0.009 0.720 ± 0.074 0.903 ± 0.026 0.736 ± 0.032
SVC 0.904 0.626 0.837 0.497
LR 0.719 0.828 0.778 0.837

The values for the MLP and RF techniques are expressed as mean ± SD of the evaluation metrics, as they are stochastic techniques.
3 M, 3 mo; 12 M, 12 mo; AUC, area under the curve; CCR, correct classification rate; LR, logistic regression; ML, machine learning; MLP, multilayer perceptron; RC, ridge classifier; RF, random forest; 
SVC, support vector classifier.
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proposed to stratify the LT risk in this scenario.27 The use 
of ML algorithms to improve D-R matching is not novel. 
Although ML algorithms have offered successful models 
in LT,28 evidence on how ML can assist in allocating liver 
grafts obtained from cDCD donors with organ recovery 
performed by the use of NRP are lacking. This study is the 
first to explore performance of different ML techniques in 
this context.

This study initially assessed the potential role of ML 
algorithms in predicting liver graft survival using cDCD-
NRP. The largest cDCD-NRP cohort17 was analyzed to 
explore these algorithms. LR (AUC 0.82 and AUC 0.83, 
respectively) overpassed both the 3- and 12-mo graft 
survival prediction compared with other ML algorithms 
(SVC, RF, MLP, or RC). ML algorithms are typically 
associated with techniques such as RFs or ANNs. LR is 

sometimes seen as a traditional statistical method and 
less associated with the field of ML. However, LR is con-
sidered the simplest form of ML and remains a widely 
used technique. Although algorithms such as ANNs or 
RF have been used to estimate posttransplant graft sur-
vival, only 2 previous studies have integrated ANNs into 
a D-R matching system.18,20 However, the heavy depend-
ency of these models on the databases used for training 
limits their exportability and raises concerns about their 
applicability in diverse countries, highlighting the need 
for standardizing registry-based variables or develop-
ing region-specific models29 to address this issue. ANNs 
and RF did not achieve satisfactory performance for 2 
reasons: the small number of patients (a larger data set 
is required for training) and imbalanced classification of 
some variables. Previous studies used up to 57 variables 

TABLE 3.

Coefficients obtained for the LR model at the 3 M and 12 M endpoints

3 M endpoint 12 M endpoint

Input variable name Coefficient Input variable name Coefficient

Retransplantation –1.467 Retransplantation –0.579
Cold ischemia time –0.589 Cold ischemia time –0.368
Antemortem cannulation 0.575 Recipient age –0.187
Lactate slope –0.305 ALT slope –0.176
ALT slope –0.220 Antemortem cannulation 0.159
AST slope –0.180 MELD –0.141
MELD –0.164 Lactate slope –0.135
WLST location OR 0.155 Sex compatibility 0.130
Intubation period before WLST, d –0.141 WLST location OR 0.122
FWIT –0.134 AST slope –0.114
Sex compatibility 0.131
Recipient age –0.125

The input variables were ordered according to the absolute value of the coefficient.
3 M, 3 mo; 12 M, 12 mo; ALT, alanine aminotransferase; AST, aspartate aminotransferase; FWIT, functional warm ischemia; LR, logistic regression; MELD, model of end-stage liver disease; OR, 
operating room; WLST, withdrawal of life-sustaining therapy.

FIGURE 2.  Five-year graft survival based on Spanish cDCD risk score stratification for 3- and 12-mo graft survival endpoints (SP3M 
and SP12M) represented by a Kaplan-Meier curve. The Kaplan-Meier curves representing the 3- and 12-mo endpoint score risk 
stratification are shown in A and B, respectively. The numeric range in parentheses represents the score points assigned to a level of 
risk. cDCD, controlled donation after circulatory death.

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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from 1003 LTs20 or external center data sets,18 whereas 
this study used only 20 variables from 539 LTs. Thus, 
prediction models with many variables can be clinically 
tedious. Furthermore, unlike LR, where variable-outcome 
relationships are discernible, ANNs are often viewed as 
“black boxes.” They do not provide a clear understand-
ing of the clinical variables that influence their predictive 
ability. This is a crucial limitation because the model may 
serve as a decision-support system for D-R allocation, 
where transparency is mandatory. Hence, data protection 
policies and the complexities of ANNs and RF models 
hinder their clinical applicability.30,31

Among the 12 and 10 variables considered for the 3- 
and 12-mo risk score, respectively, CIT and retransplan-
tation were the most relevant variables, supporting the 
findings reported by Hessheimer et al.17 These variables 
were also important risk factors in the UCLA-DCD,10 
KCH-DCD risk index,11 and UK-DCD scores.12 MELD 
did not have a significant effect in our model, prob-
ably owing to the exclusion of certain factors (acute 
liver failures, hepatocellular carcinoma rate: 26%) and 
a low MELD score in our study. FWIT strongly pre-
dicts post-cDCD graft complications, including ischemic 
type biliary lesion incidence.32,33 However, FWIT has 
no role in the 12 M model, and its role is marginal in 
the 3 M model, as NRP with antemortem cannulation 
shortens the duration of FWIT. Moreover, the distribu-
tion of FWIT was homogeneous in our database (mean: 
13 min). Consequently, FWIT did not significantly affect 
the endpoint. However, its effect on other endpoints, such 
as ischemic type biliary lesion incidence, could be more 
significant, although the incidence in our cDCD-NRP 
population was low (1%). Some variables have not been 
included in other scores, such as antemortem cannulation 
(exclusive to our model owing to Spanish law), location 
of withdrawal of life support, or sex mismatch. Among 
these variables, antemortem cannulation achieved more 
relevance in both models. Specific variables related to 
NRP, such as lactate, AST, and ALT levels, were included. 
These variables were introduced as slopes rather than 
absolute values in an effort to obtain a dynamic variable 
that reflects the evolution of these values during NRP. 

Certain limitations of these variables as markers of via-
bility have been discussed previously.15 One pitfall of LR 
models with continuous variables, such as AST or ALT 
slopes, is the potential to over-penalize transitory physi-
ological increases or secondary to procurement, which 
does not necessarily indicate graft injury. To address this 
issue, there are 2 possible alternatives: (1) reduce the 
number of missing values and increase the sample size, 
or (2) exclude transaminases from a future model, con-
sidering only the lactate slope. At 3 mo, the lactate slope 
has the greatest influence compared with transaminases. 
However, at 12 mo, while the ALT slope shows a higher 
risk coefficient, the values of all 3 variables are very simi-
lar. Overall, the 3M score presents a more asymmetric 
distribution of coefficient values compared with the 12 M 
score, which has a more homogeneous distribution. Liver 
retransplantation, especially in the first weeks, probably 
significantly impacts short-term graft survival compared 
with long-term outcomes.34 Therefore, it seems reason-
able to consider excluded retransplants from the model; 
however, it would lead to a more restrictive allocation 
system. Furthermore, this variable has been considered 
in other existing scores.12 A larger data set would likely 
reduce the impact of this variable in a future model.

The second part of our study involved designing a 
cDCD-NRP score based on the best model obtained. 
Figure 2 shows that the 3 M and 12 M cDCD-NRP scores 
share similar ROC curves. Similar to the UK-DCD score,12 
the highest-risk combination in cDCD-NRP patients at 3 
and 12 mo was CIT >6 h and retransplantation. This com-
bination was identified in 5 D-R pairs (<1%) in our data 
set. From this, we can infer that it is critical to minimize 
the association with other risk factors whenever possible 
in patients requiring retransplantation to improve graft 
survival outcomes. Despite previous reports on these find-
ings,17 what our model provides the probabilistic stratifica-
tion of graft survival risk that was not previously defined. 
Identifying different risk groups within our cohort may 
be a starting point for exploring the benefits of ex situ 
machine perfusion, which may play a significant role in 
exporting the applicability of our model. In regions with 
variations in cDCD protocols, demographics, or ischemia 

TABLE 4.

Demonstration of the D-R matching system

D-R matching system

Recipient 1 Recipient 2 Recipient 3 Recipient 4 Recipient 5

AllocationMELD 24 18 17 20 16

Donor 1 4 6 5 8 7 Recipient 1
Donor 2 5 6 4 6 4 Recipient 3
Donor 3 5 9 4 2 9 Recipient 4
Donor 4 6 3 7 5 8 Recipient 2
Donor 5 6 8 8 9 7 Recipient 1
Donor 6 5 9 6 9 4 Recipient 5
Donor 7 9 5 8 9 6 Recipient 2
Donor 8 6 4 7 4 5 Recipient 4
Donor 9 7 8 4 8 3 Recipient 5
Donor 10 3 7 2 6 5 Recipient 3

A recipient is chosen for a specific donor. Green shading indicates the matching that is allocated by this prioritization system. In the case of ties, there are several potential recipients; hence, the one 
in bold is the matching to be performed (induced by the recipient MELD).
D-R, donor-recipient; MELD, model of end-stage liver disease.



© 2025 Wolters Kluwer	 	 e369Calleja et al

times, the inclusion of ex situ machine perfusion as a pro-
tective factor may help decrease graft risk, compensating 
for other risk factors in the score.

A comparison against other scores (KCH, UCLA, or 
UK-DCD) could not be performed in this study as some 
input variables were not collected by Spanish centers. 
Although it has been previously stated that the UK-DCD 
score is not applicable in our region,13 a hypothetical 
comparison would be biased. First, both countries dif-
fer in their donation protocols, retrieval techniques, and 
logistics, affecting, among others, ischemia times. Second, 
NRP-specific variables such as NRP duration, lactate, or 
transaminases are not present in UK-DCD.

Our score is a continuum of survival probability, not 
an all-or-nothing score, such as the SOFT or BAR scores. 
This score assigns a survival probability to each D-R pair, 
facilitating its integration into a D-R matching system, as 
we previously performed.18,20 Through a system of rules, 
our score can be integrated with the MELD system. Hence, 
D-R matching would be based on graft survival probabil-
ity (considering recipient, donor, and logistic factors) and 
the current allocation system (MELD-based) that prior-
itizes mortality on the waiting list. An ideal D-R matching 
system requires predefined variables, which our score sat-
isfies, with the exception of cold ischemia, which is often 
estimated by the transplant team in our country.20 In this 
study, the D-R allocation model is based on graft survival. 
Most studies focused on D-R matching have considered this 
endpoint. When analyzing the cohort, we observe survival 
rates >90% with the current allocation system. Therefore, it 
seems reasonable to consider alternative endpoints, such as 
posttransplant complications, immunosuppression-related 
complications, or the incidence of neoplasms. However, to 
develop an organ allocation support system that does not 
primarily focus on graft survival may be inadequate, as a 
D-R pairing that reduces the risk of acute kidney injury 
may not necessarily correlate with the best graft survival. In 
our opinion, graft survival should be the basis and all other 
endpoints should be complementary. In addition, certain 
improvements may be desirable: (1) to include the risk of 
waiting list dropout from the list of available recipients and 
(2) to assess the degree of penalization for high-risk recipi-
ents and establish compensation strategies. The solution to 
these issues probably involves advanced ML algorithms, 
such as multiobjective ANNs; however, this is unattain-
able within the current database. Hence, although our D-R 
matching proposal cannot replace the current allocation 
model, it provides valuable real-time decision support.

The study has 2 main limitations: the data set and its 
validation. The data set was obtained retrospectively. 
A widely criticized aspect of ML models is that they are 
not based on prospective data. Given the amount of data 
required to generate these models, this limitation is dif-
ficult to address. Moreover, the number of variables used 
was not sufficient to obtain ML models other than LR 
with an adequate AUC. The small number of variables, 
relatively small sample size, and low graft failure rate indi-
cated that the weight distribution of the variables in our 
model is asymmetric. Despite the promising and applicable 
results, assessing whether increasing the number of vari-
ables is pertinent is advisable. In addition, we should be 
cautious about the role of lactate and transaminase levels. 
The heterogeneous collection of these variables, especially 

at the beginning of the cDCD program, has led to a missing 
values rate of 8% for lactate and >15% for transaminases. 
These percentages should be decreased to increase the con-
fidence of the model. Finally, other endpoints should be 
considered in future studies. Currently, this data set does 
not facilitate establishing other endpoints of interest, such 
as the risk of waitlist dropout (requires a new data set). 
Nonetheless, the database is being updated to improve the 
model’s robustness, evaluate whether other ML models 
would perform better, and integrate other endpoints.

This study aimed to develop a risk prediction model and 
validate it in our population. External validation was not 
considered initially as it is challenging and may be contro-
versial. In addition, before performing this validation, an 
update of the data set would be necessary. The scenario in 
Spain is unique, and the differences in demographics or 
donation protocols in other countries15 limit their appli-
cability to other populations. Consequently, other scores 
do not perform adequately in our population. Since the 
advent of artificial intelligence and ML models, the future 
rests in region-specific models rather than global models.

In conclusion, the application of ML models has expe-
rienced significant growth in LT. ML has the potential 
to improve LT outcomes, especially in the context of 
organ allocation. Although these models cannot replace 
human decisions based on clinical experience, they can be 
improved as decision-support tools. They are database-
dependent models, requiring constant training to improve 
their robustness. In this study, we developed an LR model 
for predicting graft survival in cDCD-NRP, integrated into 
a rule-based system. Despite its limitations, our model 
offers an alternative to current scoring systems in our pop-
ulation to assist organ allocation. Moreover, this method-
ology may contribute as a starting point for developing 
future models in other populations that can outperform 
current scores limitations and improve D-R matching. The 
role of ex situ machine perfusion is yet to be explored in 
this score but may promote its exportability.
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