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Hypothesis: Quasi-static displacements of one immiscible fluid by another in a single pore can lead to interface 
jumps, pinning and capillary hysteresis, depending on the pore dimensions. It is expected that there is a critical 
pore configuration for which the interface becomes unstable and an interface jump is triggered. These processes 
are at the origin of hysteresis in porous media and control macroscopic two-phase fluid displacements.
Experiments and theory: We conduct quasi-static imbibition and drainage experiments and detailed numerical 
simulations in three and two-dimensional pores, represented by capillaries of different radii that are joined by 
a conical section (ink-bottle). A theoretical model for the interface is derived based on pressure balance that 
captures the full spectrum of possible interface behaviors.
Findings: Depending on the slope of the conical section, we observe a range of interfacial behaviors, including 
capillary jumps and interface pinning during both imbibition and drainage, which give rise to capillary hysteresis, 
that is, history dependence of the interface position. We identify a critical pore configuration for the occurrence 
of interface jumps and hysteresis, which depends on surface tension and contact angle.
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1. Introduction

Cyclic two-phase flow in porous media, observed in various natu
ral and industrial processes like carbon dioxide sequestration [1], un
derground hydrogen storage [2], enhanced oil recovery [3], and soil 
evaporation [4], is typically marked by pressure-saturation hysteresis. 
This means that the pressure required to achieve a given saturation dur
ing imbibition differs from that during drainage, resulting in different 
pressure-saturation trajectories [4]. During two-phase flow, the intrinsic 
pore-space variability in porous media leads to variability in interface 
curvature as the fluidfluid interfaces move through the medium. This 
variability induces local interface instabilities that may align spatially, 
driving coordinated front movements (Haines jumps [5]), which are 
linked to energy dissipation [6,7]. Thus, local interface instabilities can 
be seen as the origin of capillary hysteresis in porous media [8--10].

Hysteresis models are typically constructed based on the general ap
proach by Everett and Whitton [11], Preisach [12], and the mathemati
cal descriptions provided by Krasnosel’skii and Pokrovskii [13], Mayer
goyz [14], and Visintin [15], among others. These works propose that 
hysteresis arises from the presence of numerous independent domains 
within a system, some of which may exhibit metastability. These models 
are macroscopic and phenomenological, and account for the pore-scale 
processes that cause Haines jumps and interface pinning during imbi
bition and drainage by integrating factors such as pore geometry, con
nectivity, and fluid-solid interactions [16--20]. In this work, we focus 
on the detailed pore-scale processes that result in pressure-saturation 
hysteresis.

Haines jumps are ubiquitous for two-phase displacements in porous 
media and are caused by unstable interface configurations. These in
stabilities have a leading contribution to energy dissipation [7--9] and 
thus the efficiency of two-phase flow in porous media. They impact on 
fluid displacement patterns, are related to interface pinning, and are 
at the root of pressure-saturation hysteresis. Despite the central role of 
Haines jumps for the understanding of two-phase flow in porous me
dia, their origin and impact on hysteresis is not well understood. In 
fact, while classical studies [6] refer to interface instability and unstable 
configuration, a quantitative description of the microscopic processes is 
often elusive. The imbibition experiments of Rubio et al. [21] in a thin 
two-dimensional porous medium show random interface pinning due to 
spatial variations in pore sizes and thus capillary forces, which they re
late to the self-a˙ine interface structure and scale-dependent scaling of 
its roughness. The experimental study Moebius and Or [22] evidences 
interfacial jumps and pinning during drainage in a porous medium. Both 
works emphasize the role of pore scale mechanisms for the macroscopic 
description of fluid displacement fronts in porous media. Koplik and 
Levine [23] use a stochastic interface model to elucidate the origin of 
interface pinning, namely the competition between the external driv
ing force and capillary forces. The work by Sun and Santamarina [24]
analyzes possible causes for Haines jumps in sinusoidal pores due to 
entrapped gas bubbles, compliant matrix, and interactions between con
nected pores. Following the seminal work of Joanny and De Gennes [25]
for contact angle hysteresis, Planet et al. [26] and Holtzman et al. [10]
study fluid displacement in Hele-Shaw cells characterized by variable 
aperture in order to assess the impact of capillary instabilities on hys
teresis and energy dissipation [27]. However, the pore-scale mecha
nisms of Haines jumps in porous media and their geometrical controls 
remain open questions.

The spatial complexity of porous media complicates both experi
mental and numerical efforts to extract meaningful insights that can be 
molded into macroscopic descriptions of pressure-saturation hysteresis 
[28]. Thus, we focus here on imbibition and drainage in single pores, 
which can be represented by two capillaries of different radii that are 
connected by a conical section (ink-bottle), as shown in Fig. 1. Ferrari 
and Lunati [29] have used a similar setup to assess inertia effects dur
ing irreversible meniscus reconfiguration during imbibition into single 
pores with focus on corners. The study of simple geometries to obtain 

Table 1
Fluid properties for the laboratory experiments.

𝜇w Silicone oil viscosity 0.0486Pa s
𝜌w Silicone oil density 972 kgm−3

𝜇nw Air viscosity 1.48 × 10−5 Pa s
𝜌nw Air density 1 kgm−3

𝜎 Air-oil interfacial tension 0.0207N m−1

𝜆 Capillary length Eq. (1) 1.47 mm 

closed form solutions has provided insight into the sources of hysteresis, 
for example, in water retention, relative permeability, water freezing, or 
electrical resistivity curves [30,31].

The main objective of this work is to elucidate the influence of the 
pore geometry on capillary hysteresis during quasi-static imbibition and 
drainage. We disregard the impact of the roughness of the solid surface, 
which may give rise to contact angle hysteresis and interface pinning 
[25]. The specific research questions we are addressing are: Which 
conditions prompt the interface to jump during imbibition and drop 
during drainage, and how are these jumps and drops related to hystere
sis? Which mechanism governs interface pinning during imbibition and 
drainage, and can we establish a predictive relationship to understand 
and quantify this phenomenon? In order to address these questions, we 
use laboratory experiments and numerical simulations to study imbibi
tion, drainage and hysteresis in three and two spatial dimensions. The 
experimental and numerical observations are rationalized in a theoreti
cal model.

2. Materials and methods

We present here the experimental, numerical and analytical methods 
that are used to study quasi-static imbibition and drainage in a single 
pore. The laboratory experiment uses a cylindrical ink-bottle setup and 
allows to explore a single parameter set. The numerical model, which 
is limited to two spatial dimensions due to computational complexity, 
is used to explore a wider parameter space and interfacial mechanisms. 
The analytical model provides a robust estimate of the interface po
sition, and allows for an in-depth investigation and discussion of the 
mechanism of interface jumps, pinning and capillary hysteresis.

2.1. Laboratory experiment

The experiments consider imbibition and drainage in a vertical cylin
drical ink-bottle under quasi-static conditions. A schematic of the ex
perimental setup is shown in the Supplementary Material. The setup 
features an ink-bottle drilled into a clear acrylic rectangular prism and 
a wide cylindrical tube reservoir 28 mm in diameter) filled with silicone 
oil, which fully wets the walls of the ink-bottle and displaces the air ini
tially present. Experiments were conducted at an ambient temperature 
of 23 ◦C. The fluid properties are listed in Table 1. The capillary length 
is defined by [32]

𝜆 =
√

𝜎

𝜌𝑔
, (1)

where 𝜎 is surface tension, 𝜌 fluid density and 𝑔 gravity acceleration. 
It denotes the length at which capillary pressure balances hydrostatic 
pressure for a spherical droplet. For silicone oil it is 𝜆 = 1.47 mm. The 
Bond number is defined in terms of the radius of curvature of the fluid 
meniscus in a capillary with the capillary length as

Bo = 𝑅2

𝜆2
= 𝜌𝑔𝑅2

𝜎
, (2)

where 𝑅 is the radius of the capillary. The dimensions of the experimen
tal ink-bottle are listed in Table 2. The radius of the lower tube corre
sponds to the size of a macropore or the pore size in coarse sand [33]. 
The radius of the upper tube to a typical pore size in a bead pack or 
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Fig. 1. Single pore-throat system in a porous medium resembling an ink-bottle. 𝑅1 and 𝑅2 are the radii of the lower and upper cylindrical tubes, respectively. 𝐻1 is 
the height of the upper end of the lower tube, while 𝐻2 is the height of lower end of the upper tube, and 𝛼 is the angle of the conical section.

Table 2
Experimental ink-bottle parameters.

𝜃 Contact angle 0◦
𝛼 Angle of conical section 15◦
𝑅1 Lower radius 2.3 mm 
𝑅2 Upper radius 0.5 mm 
𝐻1 Height of upper end of lower tube 16 mm 
𝐻2 Height of lower end of upper tube 23 mm 

medium sand [34]. The Bond number for the lower capillary tube is 
Bo = 2.44, and for the upper capillary tube Bo = 0.12. Thus, the fluid 
meniscus in the lower tube is deformed by gravity. In the upper tube, 
capillary pressure is dominant and the meniscus has the form of a spher
ical cap.

The reservoir was mounted on a platform that can be adjusted to 
change the inlet pressure, measured by a displacement gauge with a 
sensitivity of 0.01 mm. During imbibition, the platform is raised in
crementally to increase the inlet pressure, allowing fluid to enter the 
ink-bottle, and the system is allowed to equilibrate at each step for at 
least 10 min. During drainage, this procedure is reversed. The setup was 
backlit, and a camera with a macro lens captured images at each pres
sure step, which were analyzed using the Python library cv2 [35].

2.2. Numerical simulations

We perform numerical simulations of immiscible displacement of 
one incompressible fluid by another under isothermal conditions and 
quasi-static driving in a two-dimensional setup, complementary to the 
three-dimensional experimental setting described in the previous sec
tion. The numerical model solves a set of continuity and momentum 
balance equations for pressure and velocity fields in the whole domain. 
In order to track the interface between the two fluids, we use the volume 
of fluid (VOF) approach [36]. The surface tension force in the momen
tum balance equation is described by the continuum surface force (CSF) 
model [37]. In this model, the curvature of the interface is approxi
mated by the divergence of the unit normal to the interface, which can 
be expressed as the norm of the gradient of the volume fraction term 
used in the VOF method. Further details on the governing equations, 
VOF approach and CSF model are given in the Supplementary Material. 
The numerical simulations are run in OpenFOAM [38]. Continuity and 
momentum balance equations are solved using a finite volume method 
on a grid with an accuracy of first order in time and second order in 
space. The two-dimensional computational domain of the ink-bottle is 
discretized with the mesh consisting of uniform hexahedral cells with 
0.05 mm side lengths.

The fluid properties are the same as in the experiment and listed 
in Table 1. The dimensions of the numerical ink-bottle are given in 
Table 3. Note that the radii 𝑅1 and 𝑅2 of the lower and upper tube 
as well as the height 𝐻1 of the lower tube are fixed. We vary the 

Table 3
Numerical ink-bottle parameters.

𝜃 Contact angle 45◦
𝑅1 Lower radius 0.5 mm 
𝑅2 Upper radius 0.35 mm 
𝐻1 Height of upper end of lower tube 8 mm 

angle 𝛼 of the conical section and thus the height 𝐻2 according to 
𝐻2 =𝐻1 + (𝑅1 −𝑅2) tan(𝛼). The tube radii correspond to typical pore 
sizes in bead packs and medium sands [34]. The capillary length is the 
same as for the experiment, 𝜆 = 1.45 mm. However, the Bond numbers 
in the lower and upper tubes are Bo = 0.12 and 0.06. That is, the menis
cus shape in both tubes is capillary dominated.

A no-slip boundary condition is applied to the walls, along with a 
specified contact angle. Pressure boundary conditions are set at the inlet 
and outlet of the ink-bottle. Pressure at the inlet is increased (imbibi
tion) or decreased (drainage) at a regular interval of 2 s allowing the 
fluid to equilibrate. The time interval between pressure increments is 
determined from a previous simulation run, where the simulation was 
conducted in a straight capillary tube until the fluid equilibrated with 
the applied external pressure.

2.3. Analytical model for interface height

In this section, we develop an analytical model for the interface 
height during pressure-driven quasi-static imbibition and drainage in an 
ink-bottle. The ink-bottle is divided into three sections. The first section 
comprises the lower tube of radius 𝑅1, the third section the upper tube 
of radius 𝑅2 < 𝑅1. The second section is the conical section that con
nects the upper and lower tubes. For an illustration, see Fig. 1 and the 
Supplementary Material. For each section, we derive the equilibrium 
interface height separately by using the balance between hydrostatic 
pressure, external pressure 𝑝, and capillary pressure 𝑝𝑐 ,

𝜌𝑔ℎ = 𝑝+ 𝑝𝑐. (3)

Capillary pressure is given by the Young-Laplace equation, which for a 
tube with a circular cross section of radius 𝑅 reads as

𝑝𝑐 =
2𝜎 
𝑅𝑐

. (4)

Surface tension is denoted by 𝜎 and 𝑅𝑐 denotes the radius of curvature 
of the interface. For a straight tube, 𝑅𝑐 is given by

𝑅𝑐 =
𝑅 

cos(𝜃)
, (5)

where 𝜃 is the equilibrium contact angle and 𝑅 the tube radius.
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Fig. 2. Left panel: Experimental meniscus images at varying external pressures for 𝛼 = 15◦ and 𝜃 = 0◦, with remaining parameters detailed in Table 2. The label 
beneath each image indicates the pressure difference between the inlet and outlet. Right panel: Interface height as a function of the external pressure. Red star 
markers indicate experimental imbibition data points, while blue diamond markers represent experimental drainage data points. Numbered markers correspond to 
meniscus images in the left panel. The red line represents the analytical interface heights derived in Section 2.3 for (blue) imbibition and (red) drainage. Vertical 
lines connecting green markers indicate Haines jumps, which occur at different external pressure during imbibition and drainage, thus resulting in hysteresis. Two 
dotted horizontal lines are 𝐻1 and 𝐻2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.3.1. Section 1: ℎ <𝐻1
From Equations (3) to (5), we obtain the interface height

ℎ = 𝑝 
𝜌𝑔

+ 2𝜎 cos(𝜃)
𝜌𝑔𝑅1

, (6)

where 𝑅1 is the radius of the lower tube. This expression is known as 
the Jurin height [39].

2.3.2. Section 2: 𝐻1 < ℎ <𝐻2
In the conical section, the inclination of the walls and the decrease in 

radius lead in general to an increase of the interface curvature compared 
to Section 1. In fact, the radius of curvature is

𝑅𝑐(ℎ) =
𝑅(ℎ) 

cos(𝜃 − 𝛼)
, (7)

where 𝛼 is the angle between the wall of the conical section and the 
vertical, and 𝑅(ℎ) = 𝑅1 − (ℎ −𝐻1) tan(𝛼) is the radius at height ℎ, see 
the Supplementary Material. Thus, we obtain for the interface height 
the implicit equation

ℎ = 𝑝 
𝜌𝑔

+ 2𝜎 cos(𝜃 − 𝛼) 
𝜌𝑔

[
𝑅1 − (ℎ−𝐻1) tan(𝛼)

] , (8)

which is quadratic in ℎ.

2.3.3. Section 3: ℎ >𝐻2
In the third, straight section, the expression for the interface height 

is

ℎ = 𝑝 
𝜌𝑔

+ 2𝜎 cos(𝜃)
𝜌𝑔𝑅2

, (9)

where 𝑅2 is the radius of the upper tube. The expressions for two di
mensions can be derived in full analogy to three dimensions with the 
only difference that capillary pressure is 𝑝𝑐 = 𝜎∕𝑅𝑐 .

3. Results

3.1. Experimental results

The fluid properties and dimensions for the experimental ink-bottle 
are given in Table 1 and Table 2. Fig. 2 shows the experimental data for 
the interface height at different external pressures as well as the analyti
cal results for the interface height presented in Section 2.3. Note that the 

analytical expressions are derived based on the assumption that the tube 
radii are smaller than the capillary length, which however is not the case 
in the lower tube. Nevertheless, firstly, the capillary rise in the lower 
tube is small compared to the height of the oil column due to the exter
nal pressure, and secondly, the non sphericity has only a minor effect on 
the interface position estimated by the Young-Laplace equation [40]. For 
the upper tube in contrast, the radius is less the half of 𝜆 and capillarity 
dominates. In both the upper and lower tube, the interface height varies 
linearly and reversibly with external pressure during cyclic imbibition 
and drainage. This behavior is correctly described by the analytical ex
pressions of Section 2.3 for which no fitting parameters are used. During 
imbibition, the interface enters the conical section smoothly with in
creasing external pressure up to a certain height for which 𝑝 = 160 Pa, 
at which a Haines jump occurs into the upper tube. During drainage, 
the interface falls at external pressure 𝑝 = 137 Pa through the conical 
section from 𝐻2 to 𝐻1. The pressure-height data exhibits hysteresis be
cause the interface jumps occur at different external pressure, which is 
correctly captured by the analytical interface model.

3.2. Simulation results

We simulate cyclic imbibition-drainage in three different two
dimensional ink-bottles with different cross-section gradients, hence 
different angles of the conical section. We choose the angles 𝛼 and the 
contact angle 𝜃 different from those used in the experiment in order to 
explore a wider range of interface behaviors beyond the experimental 
observations. The resulting interface height is plotted as a function of 
pressure in Fig. 3 for 𝛼 = 10◦,6◦ and 2◦ with contact angle 𝜃 = 45◦. The 
interface heights during imbibition and drainage are linearly dependent 
on the external pressure in the lower and upper tubes for all three ink
bottles. For 𝛼 = 10◦ and 6◦, Haines jumps are observed at height 𝐻1
during imbibition and at height 𝐻2 during drainage. These jumps oc
cur at different external pressures, which results in hysteresis. Unlike 
in the experiments, we observe interface pinning at height 𝐻2 during 
both imbibition and drainage for 𝛼 = 6◦, but only during drainage for 
𝛼 = 10◦, as shown in Fig. 3. This is marked by the nearly horizontal line 
at height 𝐻2. For 𝛼 = 2◦, there is no Haines jump or interface pinning 
anywhere in the ink-bottle. The ℎ−𝑝 trajectory is fully reversible. Thus, 
there seems to be a critical angle between 𝛼 = 6◦ and 2◦ that separates 
hysteretic from non-hysteretic behavior of the interface.
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Fig. 3. Simulated interface heights versus external pressure for two-dimensional ink bottles with 𝛼 = 10◦, 6◦, and 2◦, and 𝜃 = 45◦. The remaining parameters are 
detailed in Table 2. Red star markers indicate simulation imbibition data points, while blue diamond markers represent simulation drainage data points. The red line 
represents analytical interface heights during imbibition, derived in section 4.1.1, and the blue line shows those during drainage, derived in section 4.1.2. Vertical 
lines connecting green markers indicate Haines jumps for 𝛼 = 10◦ and 6◦, which occur at different external pressures during imbibition and drainage, thus resulting 
in hysteresis. For 𝛼 = 2◦, the h-p trajectory is fully reversible. The two dotted horizontal lines represent 𝐻1, fixed at 8 mm, and 𝐻2 =𝐻1 + (𝑅1 −𝑅2)∕ tan(𝛼).

4. Theory and discussion

In this section, we use the analytical model for the interface position 
presented in Section 2.3 to develop a theory for the mechanisms of hys
teresis in a single pore. We discuss the evolution of the interface position 
during imbibition and drainage cycles in the light of the theoretical find
ings and analyze the mechanisms that lead to capillary hysteresis and 
interface pinning. The theory identifies the critical angles for the occur
rence of hysteresis and interface pinning at the conical section, which is 
corroborated by the experimental and numerical data.

4.1. Mechanisms of imbibition and drainage

We identify and discuss the criteria under which the interface can 
jump or get pinned. To this end, we focus on the processes at the begin
ning, within, and at the end of the conical section.

4.1.1. Imbibition

As the external pressure increases, the interface rises to a height 𝐻1
with pressure

𝑝𝐻1
= 𝜌𝑔𝐻1 −

2𝜎 cos(𝜃)
𝑅1

. (10)

At height 𝐻1, the interface is unstable because it changes its curvature 
from cos(𝜃)∕𝑅1 to cos(𝜃 − 𝛼)∕𝑅1 upon an infinitesimal change of exter
nal pressure. In the conical section, the interface height ℎ for 𝑝𝐻1

and 
curvature cos(𝜃 − 𝛼)∕𝑅1 is

ℎ =
𝑝𝐻1

𝜌𝑔 
+ 2𝜎 cos(𝜃 − 𝛼)

𝜌𝑔𝑅1
=𝐻1 +

2𝜎[cos(𝜃 − 𝛼) − cos(𝜃)]
𝜌𝑔𝑅1

. (11)

For 𝛼 < 2𝜃, ℎ is larger than 𝐻1 because the radius of curvature is smaller 
and thus capillary pressure is larger than in the lower straight tube. 
Hence, the interface jumps into the conical section. For 𝛼 > 2𝜃, ℎ would 
be smaller than 𝐻1 because the radius of curvature is larger than in 
the lower tube. Consequently, the interface is pinned at 𝐻1. The pinned 
interface is mobilized when the external pressure reaches

𝑝1 = 𝜌𝑔𝐻1 −
2𝜎 cos(𝜃 − 𝛼)

𝑅1
. (12)

For the experiments discussed in Section 2.1 the contact angle is 𝜃 = 0◦, 
that is, the interface is always pinned at 𝐻1. However, the pressure 
differential required to mobilize the interface is too small to be visible 
in Fig. 2. For the numerical simulations, 𝜃 = 45◦, that is 𝛼 < 2𝜃 and 
therefore the interface cannot be pinned at 𝐻1.

The position of the interface in the conical section is obtained from 
the solution of the quadratic Equation (8) for 𝑝 ≥ 𝑝𝐻1

as

ℎ± =
𝑝 tan(𝛼) + 𝜌𝑔𝐻1 tan(𝛼) + 𝜌𝑔𝑅1

2𝜌𝑔 tan(𝛼) 
±
√
Δ, (13)

where the discriminant Δ is given by

Δ=
[
𝑝 tan(𝛼) + 𝜌𝑔𝐻1 tan(𝛼) + 𝜌𝑔𝑅1

2𝜌𝑔 tan(𝛼) 

]2

−
2𝜎 cos(𝜃 − 𝛼) + 𝑝[𝑅1 +𝐻1 tan(𝛼)]

𝜌𝑔 tan(𝛼) 
.

(14)

If the discriminant is negative for a given 𝑝 ≥ 𝑝𝐻1
, the solution is not 

a real number, which indicates a jump. We define the critical angle 𝛼𝑘
as the angle 𝛼 of the conical section for which Δ = 0 for fixed 𝑝 = 𝑝𝐻1
in Equation (14). Therefore, the interface jumps at 𝐻1 for 𝛼 ≥ 𝛼𝑘. If 
𝛼 < 𝛼𝑘, the discriminant is positive for 𝑝 = 𝑝𝐻1

and the interface moves 
smoothly into the conical section. The equilibrium heights are given by 
ℎ = ℎ+ in Equation (13). The interface advances with increasing external 
pressure up to a critical height ℎ𝑘 , at which the curvature is large enough 
to trigger a runaway event. For a given angle 𝛼 < 𝛼𝑘, the height ℎ𝑘 can 
be determined by (i) setting Δ = 0 in Equation (14) and solving for 𝑝, 
which gives the critical external pressure 𝑝𝑘 , and (ii) inserting 𝑝𝑘 into 
Equation (13), which yields

ℎ𝑘 =
𝑝𝑘 tan(𝛼) + 𝜌𝑔𝐻1 tan(𝛼) + 𝜌𝑔𝑅1

2𝜌𝑔 tan(𝛼) 
. (15)

At ℎ = ℎ𝑘, the interface jumps. If ℎ𝑘 >𝐻2, the interface moves smoothly 
up to the end of the conical section.

In the laboratory experiments 𝛼 < 𝛼𝑘 ≈ 89◦. Thus, the interface 
moves into the conical section and jumps at a critical height and pres
sure as shown in Fig. 2. In the numerical simulations shown in Fig. 3, 
𝛼𝑘 ≈ 5.28◦. For 𝛼 > 𝛼𝑘, the interface jumps from 𝐻1 across the whole 
conical section. The intersection of 𝑝𝑘 with the line 𝑝𝐻2

marks the an
gle 𝛼0 below which no jumps can be observed. The angle below which 
no jump occurs in the experiment is 𝛼0 = 3.27◦, and for the simulations 
it is 𝛼0 = 5.28◦, which coincides with 𝛼𝑘.

When the runaway event is triggered at external pressure 𝑝𝑘, the 
interface may (i) jump into the upper straight section, or (ii) jump to 
the height ℎ =𝐻2 and get pinned, depending on the interface curvature 
at ℎ = 𝐻2. At ℎ = 𝐻2, the interface is metastable regarding the two 
curvatures cos(𝜃−𝛼)∕𝑅2 and cos(𝜃)∕𝑅2. If the critical external pressure 
is

𝑝𝑘 > 𝑝𝐻2
= 𝜌𝑔𝐻2 −

2𝜎 cos(𝜃)
𝑅2

(16)

the interface advances into the upper straight section up to the height

ℎ =
𝑝𝑘

𝜌𝑔
+ 2𝜎 cos(𝜃)

𝜌𝑔𝑅2
. (17)
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If on the other hand 𝑝𝑘 < 𝑝𝐻2
, the interface is pinned. It is mobilized at 

the external pressure 𝑝 = 𝑝𝐻2
. In the straight upper tube, the interface 

then advances according to Equation (9). These behaviors are illustrated 
in Figs. 2 and 3. In the experiments, the interface jumps into the upper 
tube from a critical height ℎ𝑘 because 𝑝𝑘 > 𝑝𝐻2

. In the numerical simu
lations, for 𝜃 = 45◦, 𝑝𝑘 = 𝑝𝐻1

. Here we observe pinning at 𝐻2 for 𝛼 = 6◦.

4.1.2. Drainage

During drainage, the interface height decreases linearly with the 
external pressure according to Equation (9) until it arrives at ℎ = 𝐻2
for 𝑝 = 𝑝𝐻2

. At ℎ = 𝐻2, the curvature changes from 𝑅2∕ cos(𝛼) to 
𝑅2∕ cos(𝜃 − 𝛼) upon an infinitesimal decrease of external pressure, and 
the interface height is

ℎ =
𝑝𝐻2

𝜌𝑔 
+ 2𝜎 cos(𝜃 − 𝛼)

𝜌𝑔𝑅2
=𝐻2 +

2𝜎[cos(𝜃 − 𝛼) − cos(𝜃)]
𝜌𝑔𝑅2

. (18)

For 𝛼 > 2𝜃, the new interface height is ℎ < 𝐻2 because the new capil
lary pressure cannot sustain the liquid column. If 𝑝𝐻2

> 𝑝𝐻1
the inter

face drops to a new equilibrium position inside the conical section. For 
𝑝𝐻2

≤ 𝑝𝐻1
it drops to or beyond 𝐻1. For 𝛼 < 2𝜃, ℎ would be larger than 

𝐻2. Consequently, the interface is pinned at 𝐻2. It is unpinned at the 
external pressure

𝑝2 = 𝜌𝑔𝐻2 −
2𝜎 cos(𝜃 − 𝛼)

𝑅2
, (19)

and drops to a new interface height either in the conical section or the 
lower straight tube depending on whether 𝑝2 is larger or smaller than 
𝑝𝐻1

. This interface pinning at a sharp edge is related to apparent contact 
angle hysteresis. As discussed in the review paper by Quéré [41] for 
a drop moving over a straight horizontal surface with a groove, one 
observes a contact angle 𝜃 before the edge and an apparent contact angle 
𝛼 + 𝜃 (referred to the horizontal) after the edge. Note that we use here 
the angle convention of Fig. 1. Thus, at the groove the interface can 
be pinned as if the apparent surface were non-wetting. The expanding 
conical section has a similar effect for the advancing interface, but here 
we need to account also for the change of the interface curvature and 
its effect on capillary pressure. Thus, we find, as pointed out above, 
that pinning occurs only if 𝛼 is smaller than the critical angle 2𝜃. In 
the experiments, the interface is not pinned and drops as it arrives at 
𝐻2 because 𝜃 = 0◦, see Fig. 2. In the numerical simulations 𝜃 = 45◦. As 
𝛼 < 2𝜃, in all cases, the interface is always pinned as illustrated in Fig. 3.

4.2. Energy density of the fluid interface

To further illustrate how the metastability of the interface in the 
conical section affects imbibition and drainage, we define the energy 
function

𝑈 (𝑧) = −

𝑧 

∫
0 

𝑑𝑧′𝑝𝑒(𝑧′), (20)

where the effective pressure 𝑝𝑒(𝑧) is defined by

𝑝𝑒(𝑧) = 𝜌𝑔(𝑧− ℎ𝑒) − 𝑝𝑐(𝑧). (21)

The external head is ℎ𝑒 = 𝑝∕𝜌𝑔. According to (5), the capillary pressure 
is 𝑝𝑐(𝑧) = 2𝜎∕𝑅𝑐(𝑧), where 𝑅𝑐(𝑧) = 𝑅1∕ cos(𝜃) and 𝑅𝑐(𝑧) = 𝑅2∕ cos(𝜃)
in the lower and upper sections, and according to (7) it is 𝑅𝑐 = [𝑅1 −(𝑧−
𝐻1) tan𝛼]∕ cos(𝜃 − 𝛼) in the conical section. By definition, the minima 
of 𝑈 (𝑧) determine the interface position ℎ, that is,

− 𝑑𝑈 (𝑧)
𝑑𝑧 

||||𝑧=ℎ = 𝑝𝑒(𝑧 = ℎ) = 0. (22)

Using Equations (20) and (21), we obtain for 0 < 𝑧 <𝐻1

𝑈 (𝑧) = 1
2
𝜌𝑔(ℎ− ℎ𝑒)2 −

1
2
𝜌𝑔ℎ2

𝑒
− 2𝜎 cos(𝜃)

𝑅1
ℎ. (23)

For 𝐻1 < 𝑧 <𝐻2, the energy function reads

𝑈 (𝑧) = 1
2
𝜌𝑔(ℎ− ℎ𝑒)2 −

1
2
𝜌𝑔ℎ2

𝑒
− 2𝜎 cos(𝜃)

𝑅1
𝐻1

− 2𝜎 cos(𝜃 − 𝛼)
tan(𝛼) 

ln
[

𝑅1
𝑅1 − (ℎ−𝐻1) tan(𝛼)

]
(24)

And for 𝑧 >𝐻2 we obtain

𝑈 (𝑧) = 1
2
𝜌𝑔(ℎ− ℎ𝑒)2 −

1
2
𝜌𝑔ℎ2

𝑒
− 2𝜎 cos(𝜃)

𝑅1
𝐻1

− 2𝜎 cos(𝜃 − 𝛼)
tan(𝛼) 

ln
[

𝑅1
𝑅1 − (𝐻2 −𝐻1) tan(𝛼)

]

− 2𝜎 cos(𝜃)
𝑅2

(ℎ−𝐻2). (25)

Fig. 4 shows the energy functions corresponding to the numerical 
simulations for 𝛼 = 10◦ and to the experiment for 𝛼 = 15◦. The symbols 
denote the possible interface positions corresponding to local energy 
minima. There is a single energy minimum when the interface is in the 
lower tube or upper tube. In the vicinity of the beginning and end of the 
conical section the energy density can become metastable depending 
on the external pressure. For the numerical simulations with 𝛼 = 10◦, 
the energy develops a saddle point at 𝑝𝐻1

and the interface becomes 
unstable. It jumps to the local minimum at 𝑧 > 𝐻2. During drainage, 
the interface is pinned at 𝑧 =𝐻2 because the local energy minimum at 
𝑧 =𝐻2 is not unstable. The interface becomes unstable only when the 
external pressure is lowered further, which is when it drops below the 
conical section. For the experimental interface heights with 𝛼 = 15◦, 
the energy has a single minimum when the interface reaches 𝑧 = 𝐻1
at 𝑝𝐻1

. Only when the external pressure is increased to 𝑝𝑘 does the 
minimum become unstable. The interface then can jump to the new 
energy minimum at 𝑧 >𝐻2. During drainage, the interface is not pinned 
at 𝑧 =𝐻2, it becomes unstable and drops to 𝑧 ≈𝐻1.

5. Conclusions

It has been known for a century that interface instabilities and 
pinning are key mechanisms for fluid displacements in porous media 
[6,17,42], but the underlying pore-scale mechanisms have been elusive. 
In this work, we have studied how the geometry of a single pore can 
control the displacements of two immiscible fluids, and how it is re
lated to capillary hysteresis, interface jumps and pinning. Experiments 
and numerical simulations have shown that there is a critical shape 
for which the interface becomes unstable, interface jumps are triggered 
and hysteresis ensues. A theoretical model captures the full spectrum 
of possible interface configurations, and elucidates the mechanisms of 
imbibition and drainage. The theory relates the critical angle 𝛼𝑘 of the 
pore constriction to contact angle and surface tension between the two 
fluids and explains observed interface pinning during imbibition and 
drainage. These results show that a single pore features the fundamental 
mechanisms leading to Haines jumps and hysteresis without additional 
effects such as compliance of the solid matrix, trapped gas bubbles, or 
interconnected capillaries [22,24]. The geometry under consideration, 
connected pores of different radii can be ubiquitously found in natural 
and industrial porous media [34], which makes the reported results rel
evant for a wide range of porous media applications. In this paper we 
have focused on one aspect of hysteresis, namely capillary hysteresis. 
For example wettability variability and surface roughness can give rise 
to contact angle hysteresis [43], which is another source for hysteresis 
in porous media.

The critical angle 𝛼𝑘 defines the transition between two different 
types of interface motion. For 𝛼 < 𝛼𝑘, the interface moves smoothly 
through the conical section, whereas for 𝛼 > 𝛼𝑘 the interface exhibits 
metastable behavior that leads to interface jumps and hysteresis. The 
magnitude of the jump and the size of the hysteresis cycle increase with 
increasing 𝛼. Depending on the angle 𝛼, surface tension 𝜎 and contact 
angle 𝜃, the interface may jump and get pinned at the end of the conical 
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Fig. 4. Energy functions for various external pressures, illustrating energy minima corresponding to the interface height. Red and blue markers show the analytical 
interface heights during imbibition and drainage, respectively. Vertical dotted lines represent heights 𝐻1 and 𝐻2. The left panel corresponds to the interfaces shown 
in Fig. 2, the right panel to the interfaces shown in the left panel of Fig. 3.

section, which occurs if the external pressure cannot sustain the inter
face in the upper capillary during imbibition. On the other hand, if the 
external pressure at the jump is larger than what is required to sustain 
the interface at the upper end of the capillary, the interface jumps be
yond it. During drainage, the interface is pinned at the upper end of the 
conical section if the contact angle is 𝜃 < 𝛼∕2. In this case, the external 
pressure is larger than what is required to hold the interface. Further 
lowering the external pressure increases the interface curvature, which 
eventually leads to the release of the interface. For 𝜃 > 𝛼∕2, the inter
face drops when it reaches the upper end of the conical section. The pore 
geometry, contact angle and surface tension are the key parameters for 
the occurrence of Haines jumps and hysteresis.

These results show possible ways for the control of energy dissi
pation and hysteresis, and thus displacement efficiency. In fabricated 
porous media this can be achieved through the design of individual 
pore shapes as a function of the fluid properties. In natural porous me
dia, for which the pore space cannot be modified, this can be realized 
through manipulation of wettability and surface tension. Furthermore, 
our findings provide new insights into the role of pore geometry for 
the implementation of two-phase flow in pore network models [44--46], 
and how to account for pore-scale variability in discrete-domain mod
els for multiphase flow and hysteresis in porous media [9]. It remains 
to be explored how dynamic effects and inertia [22,29] impact on or 
possibly alter these processes, and how individual pores respond in a 
connected network of pores with different geometrical properties [47]. 
Also the roughness of the pore surface may alter the observed behaviors 
because it can give rise to additional interface pinning through contact 
angle hysteresis [25]. The presented results can provide the basis for 
future studies into the role and control of pore scale processes and het
erogeneity on macroscopic fluid displacements, and the generation of 
displacement patterns.
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