

Preventing Infusion-Related Reactions With Intravenous Amivantamab—Results From SKIPPirr, a Phase 2 Study: A Brief Report

Alexander I. Spira, MD, PhD,^{a,*} Luis Paz-Ares, MD, PhD,^b Ji-Youn Han, MD, PhD,^c Jin-Yuan Shih, MD, PhD,^d Céline Mascaux, MD, PhD,^e Upal Basu Roy, PhD,^f Jon Zugazagoitia, MD, PhD,^b Yu Jung Kim, MD, PhD,^g Chao-Hua Chiu, MD,^h Sang-We Kim, MD, PhD,ⁱ Ernest Nadal, MD, PhD,^j Ignacio Gil-Bazo, MD, PhD,^k Sean P. Murphy, MS,^l Bailey G. Anderson, MPH,^l Yichuan Xia, PhD,^m George Wang, MS, MAS,^m Joshua M. Bauml, MD,^m Marc Chioda, PharmD,^l Jairo Simoes, MD,^l Parthiv J. Mahadevia, MD, MPH,^l Gilberto Lopes, MDⁿ

Received 6 December 2024; revised 17 January 2025; accepted 21 January 2025 Available online - 24 January 2025

ABSTRACT

Introduction: Amivantamab, an EGFR-MET bispecific antibody, is approved for multiple indications in *EGFR*-mutated advanced NSCLC as monotherapy or combined with other agents. Intravenous amivantamab is associated with a 67% infusion-related reaction (IRR) rate.

Methods: The phase 2 SKIPPirr study (NCT05663866) enrolled participants with *EGFR*-mutated (exon 19 deletion or exon 21 L858R) advanced NSCLC after progression on osimertinib and platinum-based chemotherapy who received intravenous amivantamab plus oral lazertinib (amivantamab-lazertinib), a third-generation tyrosine kinase inhibitor. Aiming to mitigate IRRs, four independent prophylactic approaches were evaluated using Simon's two-stage design with an expansion stage if a cohort passed both stages: oral dexamethasone 4 mg twice daily given on cycle (C) 1 day (D) -1 (two doses); oral dexamethasone 8 mg twice daily given on C1D-2, C1D-1, and the morning of C1D1 (five doses); oral montelukast 10 mg once daily given on C1D-4, C1D-3, C1D-2, C1D-1, and

C1D1 (five doses); subcutaneous methotrexate 25 mg (one dose) given anytime between C1D-7 and C1D-3. The primary end point was C1D1 IRR incidence.

*Corresponding author.

SKIPPirr data presented at the World Conference on Lung Cancer Annual Meeting in San Diego, California, September 7 to 10, 2024. Updated data presented at the European Society for Medical Oncology Annual Meeting in Barcelona, Spain, September 13 to 17, 2024.

Address for correspondence: Alexander I. Spira, MD, PhD, FACP, Virginia Cancer Specialists, 8613 US-29, Fairfax, Virginia 22031. E-mail: Alexander.Spira@USOncology.com

Cite this article as: Spira Al, Paz-Ares L, Han JY, et al. Preventing Infusion-related reactions with intravenous amivantamab—results from SKIPPirr, a phase 2 study: a brief report. *J Thorac Oncol.* 2025;20:809-816.

© 2025 The Authors. Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ISSN: 1556-0864

https://doi.org/10.1016/j.jtho.2025.01.018

^aVirginia Cancer Specialists, Fairfax, Virginia

^bHospital Universitario 12 de Octubre, Madrid, Spain

^cNational Cancer Center, Goyang, Republic of Korea

^dNational Taiwan University Hospital, National Taiwan University, Taipei, Taiwan

^eHopitaux Universitaire de Strasbourg, Strasbourg, France

[†]LUNGevity Foundation, New York, New York

^gSeoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea

^hTaipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan

¹Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea ¹Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain

^kInstituto Valenciano de Oncología, Valencia, Spain

^lJohnson & Johnson, Raritan, New Jersey

^mJohnson & Johnson, Spring House, Pennsylvania

ⁿSylvester Comprehensive Cancer Center, University of Miami, Miami, Florida

Results: As of June 24, 2024, 68 participants were treated across all cohorts. The dexamethasone 8 mg cohort passed stages 1 and 2 proceeding to the expansion stage, with 24 additional participants treated. At C1D1, nine of 40 participants (22.5%) experienced IRRs, resulting in an approximately threefold decrease versus historical data (67.4%). By the end of C3, 10 of 41 participants (24.4%) in the dexamethasone 8 mg cohort experienced IRRs (grades 1–2, except one grade 3 on C2D1). Amivantamab-lazertinib's safety and efficacy were consistent with previous reports.

Conclusions: Prophylaxis with 8 mg oral dexamethasone meaningfully reduced IRRs and can be readily implemented in clinical practice.

© 2025 The Authors. Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Amivantamab; Dexamethasone; Infusion-related reactions; NSCLC; Prophylaxis

Introduction

Amivantamab is an EGFR-MET bispecific antibody with immune cell-directing activity. $^{1-3}$ Intravenous amivantamab has shown significant clinical efficacy and received regulatory approval in combination with lazertinib for first-line treatment of common *EGFR*-mutated advanced NSCLC, in combination with chemotherapy for second-line treatment after disease progression on EGFR tyrosine kinase inhibitors, and in combination with chemotherapy for first-line treatment or as monotherapy after progression on platinum-based chemotherapy for NSCLC with *EGFR* exon 20 insertion mutations. 4,5

Like other anticancer therapies, intravenous amivantamab is associated with infusion-related reactions (IRRs; 67%). Historically, approaches to manage IRRs associated with intravenous amivantamab in clinical trials included splitting the first dose over two days and premedication with antihistamines, antipyretics, and glucocorticoids. Subcutaneous amivantamab reported a lower incidence of IRRs compared with intravenous amivantamab and is under review by several health authorities.

Emerging data suggested that adding montelukast to premedication regimens or the use of methotrexate can reduce IRRs associated with monoclonal antibodies.^{8,9} A case series also used dexamethasone to reduce the incidence of IRRs with encouraging results.¹⁰

On the basis of these data, the phase 2 SKIPPirr study (NCT05663866) evaluated four independent prophylactic strategies to reduce the incidence and severity of IRRs in participants with *EGFR* exon 19 deletion or exon 21 L858R-mutated advanced or

metastatic NSCLC treated with the combination of intravenous amivantamab plus oral lazertinib (amivantamab-lazertinib). Here, we present safety and efficacy results from SKIPPirr.

Materials and Methods

Participants

Eligible participants were aged 18 years or older with advanced or metastatic NSCLC with *EGFR* exon 19 deletion or exon 21 L858R mutations and an Eastern Cooperative Oncology Group performance status score of 0 to 1. Participants had disease that had progressed on or after prior treatment with osimertinib and platinumbased chemotherapy. Prior use of first- or secondgeneration tyrosine kinase inhibitors was allowed if administered before osimertinib.

Study Design

A Simon's two-stage design with an expansion stage was used to evaluate four independent prophylactic regimens (cohorts): oral dexamethasone 4 mg twice daily given on cycle (C) 1 day (D) -1 (two doses); oral dexamethasone 8 mg twice daily given on C1D-2 and C1D-1 and another dose an hour before infusion of amivantamab on C1D1 (five doses); oral montelukast 10 mg once daily given on C1D-4, C1D-3, C1D-2, C1D-1, and C1D1 (five doses); or a single dose of subcutaneous methotrexate 25 mg given anytime between C1D-7 and C1D-3 (Supplementary Fig. 1). All participants received intravenous amivantamab 1050 mg (1400 mg if \geq 80 kg) once weekly for four weeks and then every two weeks thereafter, and oral lazertinib 240 mg daily. The initial amivantamab dose was administered as a split dose over two days (C1D1 [350 mg] and C1D2 [remainder of dose]). All participants received standard premedication with antihistamines, antipyretics, and intravenous dexamethasone 10 mg. Adequate oral hydration was encouraged with prophylactic oral dexamethasone. Each cohort initially enrolled up to six participants in stage 1, and if three or fewer participants had IRRs, this cohort would move to stage 2. In stage 2, up to 10 additional participants would be enrolled. If eight or fewer of 16 participants in stages 1 and 2 had IRRs, this cohort would move to an expansion stage, where 24 more participants would be enrolled.¹¹

Study End Points and Assessments

The primary end point was the rate of IRRs occurring on C1D1 within 24 hours of the start of amivantamab administration. Each prophylactic approach was evaluated individually. Secondary end points included rates and severity of IRRs in subsequent Cs, incidence and severity of other adverse events (AEs), amivantamab

Table 1. Demographic and Baseline Characteristics										
Characteristics	Dexamethasone 4 mg $(n=6)$	Dexamethasone 8 mg $(n = 41)$	$\begin{array}{l} \text{Montelukast} \\ \text{(n} = 15) \end{array}$	$\begin{array}{l} \text{Methotrexate} \\ \text{(n = 6)} \end{array}$	All Cohorts $(N = 68)$					
Median age (range), y	56 (44-77)	62 (32-82)	66 (47-78)	66 (48-82)	63.5 (32-82)					
Female, n (%)	3 (50)	26 (63)	10 (67)	5 (83)	44 (65)					
Race, n (%)										
Asian	2 (33)	24 (59)	10 (67)	6 (100)	42 (62)					
White	4 (67)	10 (24)	4 (27)	0	18 (26)					
Black or African American	0	1 (2)	0	0	1 (1)					
Not reported	0	6 (15)	1 (7)	0	7 (10)					
ECOG PS score of 1, n (%)	4 (67)	32 (78)	12 (80)	3 (50)	51 (75)					
Brain metastases, n (%)	3 (50)	15 (37)	10 (67)	2 (33)	30 (44)					
EGFR mutation type, n (%)										
Exon 19 deletion	5 (83)	29 (71)	9 (60)	2 (33)	45 (66)					
Exon 21 L858R	1 (17)	12 (29)	6 (40)	4 (67)	23 (34)					
Median prior lines of therapy (range)	3 (2-4)	3 (2-9)	4 (2-9)	4 (3-9)	3 (2-9)					

ECOG PS, Eastern Cooperative Oncology Group performance status.

infusion duration, health care utilization, objective response rate (ORR), and duration of response. The response was assessed by the investigator according to Response Criteria in Solid Tumors version 1.1. Additional methods are included in the Supplementary Materials.

Statistical Analysis

Categorical values were summarized using the number of events and percentages. Where appropriate, two-sided exact 95% confidence intervals (CIs) were included. Continuous variables were summarized using the number of events, median, and range. The primary end point was assessed on the basis of the per-protocol analysis set, defined as participants who received all prophylaxis treatment as scheduled and received amivantamab-lazertinib on C1D1.

ORR was defined as the proportion of participants who achieved either a complete response or partial response as defined by investigator assessment using the Response Criteria in Solid Tumors version 1.1. Owing to the limited number of participants and the nature of this study, all antitumor analyses were considered descriptive.

Secondary end points and safety data were assessed on the basis of the safety analyses set.

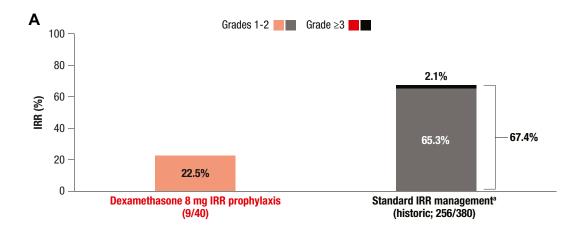
Results

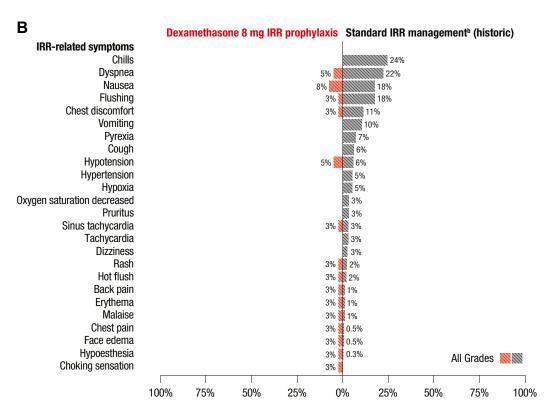
Participants

At the clinical cutoff date, June 24, 2024, 68 participants were treated across all cohorts (median follow-up: 4.2 mo; Table 1). The median age was 63.5 years (range: 32–82 y), 65% were female participants, and 62% were Asian paticipants, with a median of three prior lines of treatment (range: 2–9). Owing to small sample sizes in all but the

dexamethasone 8 mg cohort and sequential enrollment, some demographic and baseline characteristic imbalances existed between cohorts.

Incidence and Severity of IRRs


The dexamethasone 4 mg and methotrexate cohorts both had five of six participants (83.3%) who experienced IRRs and did not pass stage 1. The montelukast cohort had 10 of 15 participants (66.7%) who experienced IRRs and did not pass stage 2. The dexamethasone 8 mg twice daily cohort passed stages 1 and 2 and proceeded to the expansion stage, where 24 additional participants were enrolled and treated. One participant did not receive an amivantamab infusion on C1D1 per protocol and was excluded from the primary end point analysis, but did not experience an IRR in the study.


On C1D1, nine of 40 participants (22.5%) in the dexamethasone 8 mg cohort reported an IRR (Fig. 1A). For the dexamethasone 8 mg cohort, all IRRs on C1D1 were grades 1 to 2 and none were serious. The most frequent IRR-related symptoms were nausea (8%), dyspnea (5%), and hypotension (5%); all were grades 1 to 2 (Fig. 1B).

By the end of C3, 10 of 41 participants (24.4%) in the dexamethasone 8 mg cohort experienced IRRs. Nine participants had IRRs on C1D1 (one of these participants also had an IRR on C1D2); one participant had an IRR on C2D1. All IRRs were grades 1 to 2 except for the one grade 3 IRR that occurred on C2D1.

Safety

The most frequent AEs in the overall population by preferred term were rash (44%), paronychia (44%), and hypoalbuminemia (35%; Table 2). AEs occurring in the

Figure 1. Incidence of (*A*) IRRs and (*B*) IRR-related Symptoms on C1D1. Clinical cutoff: C1D2. Participants from historical data in the standard IRR management group received standard premedications (antihistamines, antipyretics, and glucocorticoids). ^aIncludes IRRs from 380 participants treated at the RP2D in the CHRYSALIS study on the basis of a March 30, 2021, data cutoff for the entire study period. Most (98.4%) IRRs occurred on C1D1 with an IRR rate of 66.3%, of which 1.8% were grade 3 or higher. ^bIRR symptoms on C1D1 with IV amivantamab monotherapy are reported in the 380 participants treated at the RP2D in the CHRYSALIS study on the basis of a March 30, 2021, data cutoff. C, Cycle; D, Day; IRR, infusion-related reaction; RP2D, recommended phase 2 dose.

dexamethasone 8 mg cohort were similar to the overall population and consistent with prior reports, 4,5,7,12 where rash (41%), hypoalbuminemia (41%), and paronychia (39%) were the most frequently reported events. AEs reported by the investigator as potentially related to dexamethasone prophylaxis occurred in three participants receiving dexamethasone 8 mg (one event each: gastroesophageal reflux disease, muscle atrophy, somnolence) and were all grades 1 to 2.

Efficacy

Investigator-assessed ORR in the dexamethasone 8 mg cohort was 33% (95% CI: 19-49), and the confirmed response rate was 28% (95% CI: 15-44; Supplementary Table 1), which are consistent with results from prior studies in similar populations. The median follow-up for this cohort was 4.2 months. The median duration of response among confirmed responders was not estimable (not

Most Common Treatment-Emergent AEs (\geq 15% a), n (%)	Dexamethasone 4 mg $(n = 6)$		Dexamethasone 8 mg $(n=41)$		$\begin{array}{l} \text{Montelukast} \\ (n=15) \end{array}$				All Cohorts $(N=68)$	
	Any Grade	$Grade \geq 3$	Any Grade	$Grade \geq 3$	Any Grade	$Grade \geq 3$	Any Grade	$Grade \geq 3$	Any Grade	Grade ≥ 3
Associated with EGFR inhibition		_	_	_		_	_			
Rash	2 (33)	0	17 (41)	0	8 (53)	3 (20)	3 (50)	1 (17)	30 (44)	4 (6)
Paronychia	2 (33)	0	16 (39)	0	10 (67)	0	2 (33)	0	30 (44)	0
Stomatitis	1 (17)	0	14 (34)	1 (2)	3 (20)	0	2 (33)	0	20 (29)	1 (1)
Pruritus	2 (33)	0	5 (12)	0	3 (20)	1 (7)	4 (67)	0	14 (21)	1 (1)
Dermatitis acneiform	2 (33)	0	7 (17)	0	3 (20)	0	0	0	12 (18)	0
Diarrhea	1 (17)	0	7 (17)	1 (2)	2 (13)	0	2 (33)	0	12 (18)	1 (1)
Associated with MET inhibition										
Hypoalbuminemia	1 (17)	1 (17)	17 (41)	0	4 (27)	0	2 (33)	0	24 (35)	1 (1)
Peripheral edema	0	0	9 (22)	0	5 (33)	0	0	0	14 (21)	0
Other										
IRR	5 (83)	0	10 (24)	1 (2)	11 (73)	1 (7)	5 (83)	0	31 (46)	2 (3)
Nausea	2 (33)	0	10 (24)	1 (2)	6 (40)	0	4 (67)	1 (17)	22 (32)	2 (3)
Epistaxis	0	0	9 (22)	0	3 (20)	0	1 (17)	0	13 (19)	0
Dyspnea	2 (33)	0	8 (20)	1 (2)	1 (7)	1 (7)	0	0	11 (16)	2 (3)
Hypoesthesia	1 (17)	0	8 (20)	0	4 (27)	0	1 (17)	0	14 (21)	0
Headache	0	0	8 (20)	0	1 (7)	0	1 (17)	0	10 (15)	0
Constipation	2 (33)	0	8 (20)	0	1 (7)	0	1 (17)	0	12 (18)	0
Hypotension	0	0	8 (20)	2 (5)	0	0	1 (17)	0	9 (13)	2 (3)
Asthenia	2 (33)	0	7 (17)	2 (5)	3 (20)	1 (7)	0	0	12 (18)	3 (4)
Dry skin	1 (17)	0	6 (15)	0	3 (20)	1 (7)	0	0	10 (15)	1 (1)
Pain in extremity	1 (17)	0	5 (12)	0	3 (20)	0	1 (17)	0	10 (15)	0
Decreased appetite	1 (17)	0	4 (10)	0	4 (27)	1 (7)	2 (33)	1 (17)	11 (16)	2 (3)
Chills	2 (33)	0	0	0	6 (40)	0	2 (33)	0 `	10 (15)	0 `

 $^{^{}a}$ Includes all AEs occurring in 15% or more participants from all cohorts or in the 8 mg dexamethasone cohort. AE, adverse event; IRR, infusion-related reaction.

estimable; 95% CI: 4.2 mo-not estimable) owing to limited follow-up.

Health Care Utilization

The median (range) of amivantamab infusion times on C1D1 are shown in Supplementary Figure 2. By C1D15 and onward, the median duration of amivantamab infusion was approximately 2.3 hours for all cohorts. Median treatment room time, time in the infusion chair, and active health care provider time are shown in Supplementary Figure 3.

Discussion

In SKIPPirr, the addition of dexamethasone 8 mg twice daily to standard IRR prophylaxis with antihistamines, antipyretics, and intravenous dexamethasone 10 mg (Supplementary Fig. 4) effectively reduced the rate of first infusion IRRs for participants treated with intravenous amivantamab by approximately threefold versus historical intravenous amivantamab data (22.5% versus 67.4%). IRRs occurring through the end of C3 for participants in the dexamethasone 8 mg twice daily cohort were also reduced by approximately threefold compared with historical data, underscoring that most amivantamab-associated IRRs occurred on C1D1.

The confirmed ORR of amivantamab-lazertinib in participants receiving the dexamethasone 8 mg twice daily regimen (28%) was consistent with ORRs from similar participant populations in CHRYSALIS-2 Cohort A (28%) and PALOMA-3 (27%),^{7,12} demonstrating that the addition of dexamethasone 8 mg did not impact the efficacy of amivantamab-lazertinib.

Except for the reduced rate of IRRs, the safety profile of intravenous amivantamab-lazertinib was consistent with prior reports with no new safety signals identified.^{7,12} The most frequently reported AEs were associated with inhibition of EGFR or MET. AEs often associated with steroid use were not observed in participants receiving the dexamethasone 8 mg twice daily regimen.¹³

Participants receiving the dexamethasone 8 mg twice daily regimen had numerically lower median amivantamab infusion times compared with a similar participant population receiving intravenous amivantamab with standard IRR management from PALOMA-3 (4.4 versus 5.0 h). Decreased infusion times observed in all cohorts from C1D15 onward were consistent with historical data, reflecting the guidance for increased infusion rates owing to low incidences of IRRs after C1D1.

Intravenous amivantamab has received regulatory approvals around the world in multiple indications for *EGFR*-mutated advanced NSCLC as monotherapy or in combination with chemotherapy or lazertinib. ^{4,5} Timely adoption of the convenient dexamethasone 8 mg twice

daily regimen to reduce IRRs and the prophylactic dermatologic AE management under evaluation in the COCOON study (NCT06120140)¹⁴ could have an immediate clinical impact by enhancing safety and tolerability of intravenous amivantamab while allowing patients to initiate and remain on therapy.

CRediT Authorship Contribution Statement

Alexander I. Spira: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing.

Luis Paz-Ares: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing.

Ji-Youn Han: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing.

Jin-Yuan Shih: Data curation, Investigation, Methodology, Project administration, Writing - original draft, Writing - review & editing.

Céline Mascaux: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing.

Upal Basu Roy: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing.

Jon Zugazagoitia: Data curation, Investigation, Writing - original draft, Writing - review & editing.

Yu Jung Kim: Data curation, Investigation, Writing - original draft, Writing - review & editing.

Chao-Hua Chiu: Data curation, Investigation, Writing - original draft, Writing - review & editing.

Sang-We Kim: Data curation, Investigation, Writing - original draft, Writing - review & editing.

Ernest Nadal: Data curation, Investigation, Validation, Writing - original draft, Writing - review & editing.

Ignacio Gil-Bazo: Data curation, Investigation, Writing - original draft, Writing - review & editing.

Sean P. Murphy: Conceptualization, Writing - original draft, Writing - review & editing.

Bailey G. Anderson: Conceptualization, Data curation, Formal analysis, Writing - original draft, Writing - review & editing.

Yichuan Xia: Writing - original draft, Writing - review & editing.

George Wang: Formal analysis, Methodology, Writing - original draft, Writing - review & editing.

Joshua M. Bauml: Writing - original draft, Writing - review & editing.

Marc Chioda: Writing - original draft, Writing - review & editing.

Jairo Simoes: Conceptualization, Data curation, Formal analysis, Methodology, Writing - original draft, Writing - review & editing.

Parthiv J. Mahadevia: Writing - original draft, Writing - review & editing.

Gilberto Lopes: Data curation, Investigation, Methodology, Writing - original draft, Writing - review & editing.

Disclosure

Dr. Spira reports serving in a consulting or advisory role for Array Biopharma, Incyte, Amgen, Novartis, AstraZeneca, MedImmune, Mirati Therapeutics, Gritstone Bio, Jazz Pharmaceuticals, Merck, Bristol Myers Squibb, Janssen, Mersana, Blueprint Medicines, Daiichi Sankyo, Regeneron, Eli Lilly, Black Diamond Therapeutics, and Sanofi; serving in a leadership role for Next Oncology; owning stock or other ownership interest with Eli Lilly; receiving payment or honoraria from CytomX Therapeutics, AstraZeneca, Merck, Takeda, Amgen, Janssen, Novartis, Bristol Myers Squibb, and Bayer; receiving research funding from Roche, AstraZeneca, Boehringer Ingelheim, Astellas Pharma, MedImmune, Novartis, Incyte, AbbVie, Ignyta, Takeda, Macrogenics, CytomX Therapeutics, LAM Therapeutics, Astex Pharmaceuticals, Bristol Myers Squibb, Loxo Oncology, Arch Therapeutics, Gritstone Bio, Plexxikon, Amgen, Daiichi Sankyo, ADC Therapeutics, Janssen, Mirati Therapeutics, Rubius Therapeutics, Synthekine, Mersana, Blueprint Medicines, Regeneron, Alkermes, Revolution Medicines, Medikine, Black Diamond Therapeutics, BluPrint Oncology, Nalo Therapeutics, Scorpion Therapeutics, and ArriVent Biopharma. Dr. Paz-Ares reports serving in a consulting or advisory role for Roche, Merck Sharp & Dohme, Merck Serono, Bristol Myers Squibb, AstraZeneca, Eli Lilly, Pfizer, Pharmamar, Bayer, Amgen, Janssen, GlaxoSmithKline, Novartis, Takeda, Sanofi, Mirati, Genomica, Altum Sequencing, BeiGene, Daichii Sankyo, Medscape, and PER; serving as a member of the Board of Directors for Stab Therapeutics; receiving research funding from Daiichi Sankyo, AstraZeneca, Merck Sharp & Dohme, Bristol Myers Squibb, Janssen, Novartis, Roche, Sanofi, Amgen, Tesaro, Alkermes, Eli Lilly, Takeda, Pfizer, and Pharmamar. Dr. Han reports serving in a consulting or advisory role for Merck, AbbVie, AstraZeneca, Amgen, Daiichi Sankyo, LG Chem, Oncovix, Dae Woong, Novartis, Lantern, Bristol Myers Squibb, Janssen, Takeda, Pfizer, and Roche; receiving payment or honoraria from Astra-Zeneca, Janssen, Takeda, Merck, Novartis, Pfizer, Yuhan, and Roche; receiving payment for expert testimony from AstraZeneca; serving on a Data Safety Monitoring Board or Advisory Board for Janssen and AstraZeneca. Dr. Shih reports receiving payment or honoraria from ACTgenomics, Amgen, Genconn Biotech, AstraZeneca, Roche, Bayer, Boehringer Ingelheim, Eli Lilly, Pfizer, Novartis, Merck Sharp & Dohme, Chugai Pharma, Daiichi Sankyo,

Takeda, CStone Pharmaceuticals, Janssen, TTY Biopharm, Orient EuroPharma, MundiPharma, GlaxoSmithKline, Lotus Pharmaceutical, Ono Pharmaceutical, and Bristol Myers Squibb; receiving support for attending meetings and/or travel from AstraZeneca, Roche, and Chugai Pharma; serving on a Data Safety Monitoring Board or Advisory Board for Takeda; receiving grants or contracts from Roche and Genconn Biotech. Dr. Mascaux reports serving in a consulting or advisory role for AstraZeneca, Roche, Merck Sharp & Dohme, Sanofi, Pfizer, Takeda, Janssen, and Amgen; receiving payment or honoraria from AstraZeneca, Roche, Merck Sharp & Dohme, Amgen, Pfizer, Takeda, Bristol Myers Squibb, and Sanofi; receiving support for attending meetings and/or travel for Janssen, Merck Sharp & Dohme, Takeda, Bristol Myers Squibb, Novartis, and Amgen. Dr. Roy reports serving in a consulting or advisory role for Janssen. Dr. Zugazagoitia reports receiving grants or contracts from AstraZeneca, Roche, and Bristol Myers Squibb; serving in a consulting or advisory role for Bristol Myers Squibb, Sanofi, and Pfizer; receiving payment or honoraria from Janssen, Takeda, Sanofi, Roche, AstraZeneca, NanoString, Amgen, Bristol Myers Squibb, Pfizer, Merck Sharp & Dohme, and Diagnostica Longwood; receiving support for attending meetings and/or travel from Janssen, Sanofi, AstraZeneca, Takeda, and Roche. Dr. Chiu reports receiving payment or honoraria from Amgen, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Chugai Pharmaceuticals, Daiichi Sankyo, Eli Lilly, Janssen, Merck KGaA, Merck Sharp & Dohme, Novartis, Ono Pharmaceutical, Pfizer, Roche, Shionogi, and Takeda; serving on a Data Safety Monitoring Board or Advisory Board for AstraZeneca, Bristol Myers Squibb, Eli Lilly, Janssen, Merck KGaA, Novartis, Ono Pharmaceutical, and Roche. Dr. Nadal reports serving in a consulting or advisory role for Roche, Bristol Myers Squibb, Merck Sharp & Dohme, Sanofi, Pfizer, Eli Lilly, Amgen, Janssen, Daiichi Sankyo, Boehringer Ingelheim, AstraZeneca, Takeda, Sanofi, Pierre Fabre, and Qiagen; receiving grants of contracts from Roche, Bristol Myers Squibb, and Pfizer; receiving payment or honoraria from Roche, Bristol Myers Squibb, Merck Sharp & Dohme, Merck Serono, Sanofi, Pfizer, Eli Lilly, Amgen, Janssen, Daiichi Sankyo, Boehringer Ingelheim, AstraZeneca, Takeda, Sanofi, Pierre Fabre, Qiagen, and Bayer; receiving support for attending meetings and/or travel from Johnson & Johnson, Merck Sharp & Dohme, Takeda, and Roche; serving on a Data Safety Monitoring Board or Advisory Board for Roche, Apollomics, Merck Sharp & Dohme, and Transgene; serving in a leadership role for the Steering Committee of the Spanish Group of Lung Cancer (GECP). Dr. Gil-Bazo reports serving in a consulting or advisory role for Johnson & Johnson, Eli Lilly, and Boehringer Ingelheim; receiving payment or honoraria from Johnson

& Johnson, Amgen, AstraZeneca, Merck Sharp & Dohme, and Takeda; receiving support for attending meetings and/or travel from Johnson & Johnson, Merck Sharp & Dohme, Daiichi Sankyo, and Sanofi. Sean P. Murphy, Bailey G. Anderson, Dr. Xia, George Wang, Dr. Bauml, Dr. Chioda, Dr. Simoes, and Dr. Mahadevia report being employed by (or were at the time of the study) and may hold stock in Johnson & Johnson, outside of the current work. Dr. Lopes reports serving in a consulting or advisory role for Pfizer and AstraZeneca; owning stock or other ownership interests with Lucence Diagnostics, Xilis, Biomab, Morphometrix, and CDR-Life; receiving payment or honoraria from Boehringer Ingelheim, Blueprint Medicines, AstraZeneca, Merck, and Janssen; receiving research funding from Astra-Zeneca, Lucence, Xilis, E.R. Squibb Sons, Merck Sharp & Dohme, EMD Serono, AstraZeneca, Blueprint Medicines, Tesaro, Bavarian Nordic, Novartis, G1 Therapeutics, Adaptimmune, Bristol Myers Squibb, GlaxoSmithKline, AbbVie, Rgenix, Pfizer, Roche, Genentech, Eli Lilly, and Janssen; receiving support for attending meetings and/or travel from Boehringer Ingelheim, Pfizer, E.R. Squibb Sons, Janssen, Seattle Genetics, Celgene, Ibsen, Pharmacyclics, Merck, AstraZeneca, and Seagen; and having other relationships with Mirati Therapeutics. The remaining authors declare no conflict of interest.

Acknowledgments

This study (NCT05663866) was funded by Janssen Research & Development, LLC, a Johnson & Johnson company. The authors would like to thank all the participants enrolled in this study and their families and caregivers. The authors would also like to thank the physicians and nurses who cared for the participants and the staff at the clinical sites. Medical writing assistance was provided by David Le, PharmD, of Lumanity Communications Inc. and funded by Johnson & Johnson.

Data Availability Statement

The data sharing policy of Janssen Pharmaceutical Companies of Johnson & Johnson is available at https://www.janssen.com/clinical-trials/transparency. As noted on this site, requests for access to the study data can be submitted through the Yale University Open Data Access Project site at http://yoda.yale.edu.

Supplementary Data

Note: To access the supplementary material accompanying this article, visit the online version of the *Journal of*

Thoracic Oncology at www.jto.org and at https://doi.org/10.1016/j.jtho.2025.01.018.

References

- Moores SL, Chiu ML, Bushey BS, et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 2016;76:3942-3953.
- Vijayaraghavan S, Lipfert L, Chevalier K, et al. Amivantamab (JNJ-61186372), an Fc enhanced EGFR/cMet bispecific antibody, induces receptor downmodulation and antitumor activity by monocyte/macrophage trogocytosis. *Mol Cancer Ther.* 2020;19:2044-2056.
- 3. Yun J, Lee SH, Kim SY, et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of *EGFR* exon 20 insertion-driven NSCLC. *Cancer Discov.* 2020;10:1194-1209.
- Janssen Biotech, Inc. Rybrevant. Prescribing Information. https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/RYBREVANT-pi.pdf. Accessed December 3, 2024.
- Rybrevant. Rybrevant 350 mg Concentrate for Solution for Infusion [Product Information]. Leiden, The Netherlands: Janssen Biologics B.V.; 2024.
- Park K, Sabari JK, Haura EB, et al. Management of infusion-related reactions (IRRs) in patients receiving amivantamab in the CHRYSALIS study. *Lung Cancer*. 2023;178:166-171.
- 7. Leighl NB, Akamatsu H, Lim SM, et al. Subcutaneous versus intravenous amivantamab, both in combination with lazertinib, in refractory epidermal growth factor receptor-mutated non-small cell lung cancer: primary results from the phase III PALOMA-3 study. *J Clin Oncol*. 2024;42:3593-3605.
- **8.** Chari A, Lonial S, Mark TM, et al. Results of an early access treatment protocol of daratumumab in United States patients with relapsed or refractory multiple myeloma. *Cancer.* 2018;124:4342-4349.
- Vermeire S, Noman M, Van Assche G, Baert F, D'Haens G, Rutgeerts P. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn's disease. Gut. 2007;56:1226-1231.
- 10. Boon Yeow Chan D. Prevention of amivantamab infusion related reactions with extended pre-infusion day oral steroid therapy. *J Clin Oncol*. 2023;41:e21083.
- 11. Simon R. Optimal two-stage designs for phase II clinical trials. *Control Clin Trials*. 1989;10:1-10.
- Shu CA, Goto K, Ohe Y, et al. Amivantamab and lazertinib in patients with EGFR-mutant non-small cell lung (NSCLC) after progression on osimertinib and platinumbased chemotherapy: updated results from CHRYSALIS-2. *J Clin Oncol*. 2022;40(suppl 16):9006.
- 13. Hodgens A, Sharman T. Corticosteroids. In: *StatPearls*. Treasure Island, FL: StatPearls Publishing; 2024.
- 14. Cho BC, Girard N, Sauder MB, et al. P3.12D.04 Enhanced vs standard dermatologic management with amivantamab-lazertinib in advanced NSCLC: phase 2 COCOON study. *J Thorac Oncol*. 2024;19(suppl):S347.