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Abstract 

Contrast-Enhanced Spectral Mammography (CESM) is an advanced imaging modality that 

enhances breast cancer detection by combining conventional digital mammography (DM) 

with CESM obtained through intravenous contrast administration. This dual approach 

provides both morphological and functional information, improving lesion visibility, 

particularly in patients with dense breast tissue. Radiomics, a rapidly evolving field in 

medical imaging, allows the extraction of high-dimensional quantitative features from 

medical images, capturing information about tumour phenotype, texture, and 

heterogeneity that may not be visually apparent. 

This thesis investigates the application of radiomics analysis to CESM images with the aim 

of improving breast cancer classification. A key focus is on comparing the diagnostic 

performance of radiomics features derived separately from CESM and DM images, as well 

as evaluating the added value of combining both sets of features. Radiomics features are 

extracted and analysed using statistical and traditional machine learning techniques to 

assess their effectiveness in distinguishing between benign and malignant lesions. 

Furthermore, the study explores the development of predictive models based on these 

features and identifies the most relevant biomarkers for tumour classification. 

By systematically evaluating radiomics features derived from CESM, DM, and their 

combination, this research aims to determine the most effective imaging strategy for 

accurate breast cancer classification. The findings may support more informed clinical 

decision-making and contribute to the advancement of personalized diagnostic 

approaches in breast cancer care.  

Results show that models based on CESM images consistently outperformed those based 

on DM and combined data, confirming the hypothesis that contrast-enhanced imaging 

yields more informative radiomic features for tumour classification.  
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Abstract 

La Mamografía Espectral con Contraste (CESM) es una modalidad de imagen avanzada que 

mejora la detección del cáncer de mama al combinar la mamografía digital convencional 

(DM) con CESM, obtenidas mediante la administración intravenosa de contraste. Este 

enfoque dual proporciona información tanto morfológica como funcional, mejorando la 

visibilidad de las lesiones, especialmente en pacientes con tejido mamario denso. La 

radiómica, un campo en rápida evolución dentro de la imagen médica, permite extraer 

características cuantitativas de alta dimensión de las imágenes, capturando información 

sobre el fenotipo tumoral, la textura y la heterogeneidad que puede no ser visible a simple 

vista. 

Esta tesis investiga la aplicación del análisis radiómico a la CESM con el objetivo de mejorar 

la detección y clasificación del cáncer de mama. El estudio se centra en comparar el 

rendimiento diagnóstico de las características radiómicas derivadas por separado de las 

imágenes CESM y DM, así como en evaluar el valor añadido de combinar ambas. Se 

extraen y analizan características radiómicas mediante técnicas estadísticas y modelos de 

aprendizaje automático para valorar su efectividad en la diferenciación entre lesiones 

benignas y malignas. Además, se desarrollan modelos predictivos y se identifican los 

biomarcadores más relevantes para la clasificación tumoral. 

Mediante una evaluación sistemática de las imágenes CESM, DM y su combinación a través 

de radiómica y aprendizaje automático, esta investigación busca determinar la estrategia 

de imagen más eficaz para una clasificación precisa del cáncer de mama. Los resultados 

podrían respaldar una toma de decisiones clínicas más informada y contribuir al avance 

de enfoques diagnósticos personalizados en el cuidado del cáncer de mama.  

Al final de la tesis, observamos que resultados muestran que los modelos basados en 

imágenes CESM superaron de forma consistente a aquellos basados en imágenes DM y 

datos combinados, lo que confirma la hipótesis de que las imágenes con contraste aportan 

características radiómicas más informativas para la clasificación tumoral. 
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Resum 

La Mamografia Espectral amb Contrast (CESM) és una modalitat d'imatge avançada que 

millora la detecció del càncer de mama mitjançant la combinació de la mamografia digital 

convencional (DM) amb CESM, obtingudes mitjançant l’administració intravenosa de 

contrast. Aquest enfocament dual ofereix informació morfològica i funcional, millorant la 

visibilitat de les lesions, especialment en pacients amb teixit mamari dens. La radiómica, 

un camp emergent en la imatge mèdica, permet extreure característiques quantitatives 

d’alta dimensió que capturen informació sobre el fenotip tumoral, la textura i 

l’heterogeneïtat, sovint no visible a simple vista. 

Aquesta tesi investiga l’aplicació de l’anàlisi radiómic a la CESM amb l’objectiu de millorar 

la detecció i classificació del càncer de mama. L’estudi es centra a comparar el rendiment 

diagnòstic de les característiques radiómiques obtingudes per separat de les imatges 

CESM i DM, i a avaluar el valor afegit de la seva combinació. S’extreuen i analitzen 

característiques radiómiques mitjançant tècniques estadístiques i models d’aprenentatge 

automàtic per determinar la seva efectivitat en la diferenciació entre lesions benignes i 

malignes. A més, es desenvolupen models predictius i s’identifiquen els biomarcadors més 

rellevants per a la classificació tumoral. 

Mitjançant una avaluació sistemàtica de les imatges CESM, DM i la seva combinació amb 

radiómica i aprenentatge automàtic, aquesta recerca pretén determinar l’estratègia 

d’imatge més eficaç per a una classificació precisa del càncer de mama. Els resultats 

podrien contribuir a una presa de decisions clíniques més informada i a l’avanç 

d’enfocaments diagnòstics personalitzats en l’atenció al càncer de mama.  

Al final de la tesi observem que els resultats mostren que els models basats en imatges 

CESM van superar de manera consistent els basats en imatges DM i en dades combinades, 

confirmant la hipòtesi que la imatge amb contrast proporciona característiques 

radiòmiques més informatives per a la classificació tumoral. 
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Chapter 1 

1. Introduction 

1.1 Motivation 

Cancer is one of the most pressing public health challenges of our time, affecting millions 

of individuals worldwide and placing a substantial burden on healthcare systems, 

economies, and societies. It is a leading cause of death globally, accounting for 

approximately one in six deaths, and its incidence continues to rise due to factors such as 

population ageing, lifestyle changes, and environmental exposures, (World Health 

Organization, 2025). The complexity of cancer lies not only in its biological diversity but 

also in the social and economic disparities that affect prevention, diagnosis, and treatment 

outcomes. 

Among all cancer types, breast cancer is the most diagnosed one (Figure 1 left), particularly 

among women, with over 2.3 million new cases reported globally in 2020, (World Health 

Organization, 2025). However, as we can see on Figure 1 right, when considering mortality, 

lung cancer remains the leading cause of cancer-related deaths, followed by colorectal, 

liver, and stomach cancers. These statistics highlight the critical need for effective cancer 

control and prevention strategies across all stages of the disease, from early detection and 

accurate diagnosis to personalized treatment and survivorship care. 

 

Figure 1: (Right) Most common types of cancer and cancer lethality by cancer type for both sexes worldwide. 
(Left) Incidence of cancer while left figure represents mortality. 

 (World Health Organization, 2025). 
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Recognizing the urgency of coordinated action, the European Commission has established 

the EU Mission on Cancer, one of five flagship research and innovation missions under the 

Horizon Europe framework (Figure 2). This initiative aims to save more than 3 million lives 

by 2030 through improved prevention, diagnostics, treatment, and quality of life for 

cancer patients and survivors. The mission promotes multidisciplinary research and the 

translation of scientific advances into policy and clinical practice, with a strong emphasis 

on data-driven innovation and equitable access to care across Europe. 

 

Figure 2: EU Missions: Adaptation to climate change, Cancer, restore our Ocean and waters, climate-neutral 
and smart cities, a soil deal for Europe. (European Commission, 2021). 

The growing importance of cancer research is reflected in the increasing investment in 

novel diagnostic tools, including advanced imaging technologies and artificial intelligence. 

These innovations are critical to enabling earlier and more accurate detection, better 

characterization of tumours, and the development of personalized treatment plans. 

Within this broader context, breast cancer, due to its high incidence and growing survival 

rates, represents a key area where technological advances can significantly impact patient 

outcomes. 

1.2 Objectives 

The primary goal of this thesis is to investigate the application of radiomics analysis in 

contrast-enhanced spectral mammography (CESM) for improved detection and 

classification of breast cancer. In addition, the study aims to compare the diagnostic 

performance of CESM, digital mammography (DM), and a combination of both feature 

sets, in order to identify the most effective imaging modality or combination for tumour 

classification. The central hypothesis is that radiomic features extracted from CESM 

images will provide more informative and discriminative patterns for breast cancer 

classification than those derived from DM alone. While the integration of CESM and DM 

features is also evaluated, its potential benefit remains uncertain and is therefore 

approached as an exploratory component of the analysis. 

The specific objectives include: 

1. To extract and analyse radiomics features from CESM images, digital 

mammography (DM) images, and both contrast-enhanced and DM components. 
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2. To evaluate the effectiveness of radiomics features derived separately from CESM 

and DM images in differentiating benign from malignant breast lesions. 

3. To investigate whether the integration of features from both CESM and DM 

images leads to improved classification performance compared to using either 

modality alone. 

4. To develop and validate machine learning models using the extracted radiomic 

features, assessing their predictive accuracy and robustness in breast cancer 

detection. 

5. To identify the most significant radiomics features through statistical analysis and 

feature selection techniques.  

1.3 Project timeline 

At the start of this work, several tasks were defined to be able to address all the previously 

define objectives with the time and resources available, as described below. 

State of art: 

 Literature review on breast cancer detection techniques, CESM imaging, and 
radiomics applications. Reviewing existing radiomics-based feature extraction and 
classification methodologies. 

 Objectives and problem definition. 

 Dataset acquisition: Obtaining the CESM dataset from the Cancer Imaging Archive 
and verify data availability, formats and metadata. 

Implementation: 

Data preprocessing and feature extraction: 

 Image Preprocessing: Standardize CESM images (normalization, contrast 
enhancement if needed) and segment regions of interest (ROIs) using 
manual/automated techniques. 

 Radiomics Feature Extraction: Extracting a comprehensive set of radiomics 
features (texture, shape and intensity). 

 Performing feature selection to reduce dimensionality. 

Model implementation: 

 Developing classification models: Selecting the machine learning models that 
adapts the best and training the models using the extracted radiomics 
features... 

Evaluation and interpretation: 
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 Comparing the results against traditional CESM-based breast cancer 
detection. 

Writing and corrections: 

 Documenting all the results and discussions. 

 Revise the thesis based on feedback from the tutor. 

Submission 

The following Gantt chart (Figure 3) visually illustrates the project's timeline. It serves as a 

powerful tool for planification and monitoring the progress of the project, ensuring it 

reaches its intended stages by specified deadlines. 

 

Figure 3: Gantt Chart. 
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Chapter 2 

2. Background and literature review 

2.1 Breast cancer 

As we have seen on Figure 1, breast cancer is one of the most prevalent and life-

threatening diseases among specially women worldwide, affecting millions of individuals 

each year. Early detection is crucial for improving survival rates, as early diagnosis supports 

more effective treatment before the disease progresses to advanced stages.  

Breast cancer occurs when abnormal cells in the breast grow uncontrollably, forming a 

tumour that can be benign or malignant. The latter affecting to normal tissue and affecting 

its normal functions. 

As depicted in Figure 4, the breast is an organ composed of lobules, which produce milk, 

ducts that transport the milk to the nipple, and surrounding fatty and connective tissue. 

Cancer most commonly originates in the ducts (ductal carcinoma) or lobules (lobular 

carcinoma) and can either remain localized or spread to other parts of the body through 

the lymphatic system and bloodstream. 

 

Figure 4: Breast anatomy.  

(Dr. Mary Ling, n.d.). 

The exact cause of breast cancer remains unknown, but numerous risk factors contribute 

to its development. Genetic mutations play a significant role, with BRCA1 and BRCA2 gene 

mutations being the most well-known hereditary factors associated with increased 

susceptibility. A family history of breast cancer further raises the likelihood of developing 

the disease. Beyond genetics, hormonal and reproductive factors also influence risk, such 

as early onset of menstruation, late menopause, hormone replacement therapy, and 

delayed pregnancy. Additionally, lifestyle choices like sedentary lifestyle, alcohol 
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consumption, smoking, and large exposure to radiation have been linked to higher breast 

cancer incidence. (World Health Organization, 2024) (Borghild Løyland, 2024). 

Breast cancer is classified into several types based on its origin and molecular 

characteristics. Ductal carcinoma in situ (DCIS) is a non-invasive form, while invasive ductal 

carcinoma (IDC) is the most common type that spreads into surrounding tissues. Lobular 

carcinoma in situ (LCIS) increases the risk of developing invasive cancer, whereas invasive 

lobular carcinoma (ILC) originates in the milk-producing lobules and can metastasize. On a 

molecular level, breast cancer is further categorized based on the presence or absence of 

hormone receptors and HER2 protein expression. Hormone receptor-positive cancers 

(ER+/PR+) grow in response to oestrogen or progesterone and can be treated with 

hormone therapies. HER2-positive breast cancer is an aggressive form but responds well 

to targeted treatments like trastuzumab. Triple-negative breast cancer (TNBC) lacks 

hormone receptors and HER2 expression, making it difficult to treat with conventional 

hormone or targeted therapies, often requiring chemotherapy. 

The symptoms of breast cancer vary but commonly include a new lump or thickening in 

the breast or underarm, changes in breast shape or size, skin dimpling, nipple retraction, 

and abnormal discharge. Some cases remain asymptomatic, highlighting the importance 

of routine population screening. Early detection is critical, and the disease is staged using 

the TNM system, which evaluates tumour size (T), lymph node involvement (N), and 

metastasis (M). Stage 0 refers to non-invasive cancer, while Stage I to III indicate 

progressive local or regional spread. Stage IV, also known as metastatic breast cancer, 

signifies that the cancer has spread to distant organs such as the lungs, liver, or bones. 

Both mortality and incidence rates for each stage is presented in Figure 5. 

Treatment options depend on the stage and subtype of breast cancer. Surgery is often the 

first step, with lumpectomy being a breast-conserving option and mastectomy involving 

the removal of one or both breasts. Radiation therapy follows surgery in many cases to 

destroy any remaining cancer cells. Systemic treatments include chemotherapy, hormone 

therapy, targeted therapy, and immunotherapy, tailored to the cancer’s molecular profile. 

Advances in medical research have significantly improved survival rates, especially for 

localized breast cancer, where five-year survival exceeds 99%. However, metastatic breast 

cancer remains challenging, with a five-year survival rate of around 30%. 
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Figure 5: Mortality rate for 5 years or more after diagnosis on different breast cancer stages.  
(Cancer Research UK, 2021). 

2.2 Traditional breast cancer detection methods 

Early and accurate detection of breast cancer is critical for improving survival rates and 

treatment outcomes. Traditional diagnostic methods have been developed over decades, 

allowing physicians to identify and classify breast cancer based on imaging, clinical 

examination, and histopathological analysis. These methods serve as the foundation for 

modern imaging techniques, including the advanced field of Radiomics Analysis of CESM 

or dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). 

2.2.1 Clinical Breast Examination  

A clinical breast examination (CBE) is a physical inspection performed by a healthcare 

provider to detect lumps, abnormalities, or other signs of breast cancer. This involves 

palpation of the breast tissue and nearby lymph nodes to look for changes in texture, size, 

or mobility of any masses. While CBE is a simple and cost-effective method, it is subjective 

and lacks the sensitivity to detect small or deep-seated tumours, especially in dense breast 

tissue. 

2.2.2 Breast Self-Examination  

Breast self-examination (BSE), shown on Figure 6, is a method where individuals check 

their own breasts for lumps, changes in size or shape, or nipple abnormalities. While BSE 

promotes self-awareness and early symptom recognition, it is not a reliable standalone 

screening tool. Many breast cancers detected through BSE are already at a more advanced 

stage, which is why imaging techniques are preferred for early diagnosis. 
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Figure 6: Breast self-examination. 
(Mona Moon Naturals, 2023). 

2.2.3 Mammography 

Mammography is the gold standard for breast cancer screening and involves low-dose X-

ray imaging of the breast (Figure 7). It helps detect tumours before they are palpable and 

identifies microcalcifications, which can be an important indicator of early-stage cancer. 

There are two main types of mammography: 

 Screening Mammography: Used for routine examination in asymptomatic women, 

typically recommended annually or biennially for women over 40 or those at high 

risk. 

 Diagnostic Mammography: Conducted when abnormalities are detected in a 

screening mammogram or during a clinical examination. This involves additional 

imaging views to provide a more detailed assessment. 

The effectiveness of mammography is highest in women over 50. However, in younger 

women with dense breast tissue, it may be less sensitive. In Spain, organized breast cancer 

screening typically begins at age 50 and continues until age 69, although some regions may 

start invitations at 45 or 40. 
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Figure 7: Mammography procedure and possible findings. 
(Dr. Chan Ching Wan, 2021). 

2.2.4 Ultrasound (Sonography) 

Breast ultrasound uses high-frequency sound waves to create images of breast tissue. It is 

commonly used to differentiate between solid tumours and fluid-filled cysts, evaluate 

breast abnormalities found on mammography or during a physical exam, and guide 

biopsies by providing real-time imaging for precise needle placement. (Figure 8). 

Ultrasound is particularly useful for younger women with dense breast tissue, since 

mammography could miss some abnormalities in these cases. However, it is less effective 

in detecting microcalcifications, which can be an early sign of cancer. 

 

Figure 8: Breast ultrasound procedure. 
(Cleveland Clinic, 2024). 

2.2.5 Magnetic Resonance Imaging  

Breast MRI is a highly sensitive imaging tool that provides detailed images using magnetic 

fields and contrast agents. It is recommended in specific cases, including: 

 High-risk patients (e.g., BRCA1/BRCA2 mutation carriers). 

 Evaluation of tumour extent in patients already diagnosed with breast cancer. 
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 Post-surgical assessment to check for residual cancer. 

 Assessment of breast implants for rupture or abnormalities. 

Although MRI has high sensitivity, it also has a high false-positive rate, leading to 

unnecessary biopsies. (American Family Physician, 2018). Additionally, MRI is expensive 

and not widely available in all healthcare settings. 

2.2.6 Biopsy 

A biopsy is the only method that can provide a definitive breast cancer diagnosis. It 

involves extracting a small tissue sample from the patient and send it for laboratory 

analysis to determine whether the tissue is malignant. There are three different types of 

breast biopsies (Figure 9): 

 Fine Needle Aspiration (FNA): A thin needle is used to extract fluid or small tissue 

samples. This is a quick and minimally invasive technique but may not provide 

enough tissue for a definitive diagnosis. 

 Core Needle Biopsy (CNB): A larger needle extracts cylindrical tissue samples, 

allowing for more detailed pathological evaluation. 

 Surgical Biopsy: When a larger portion or the entire abnormal area needs to be 

removed for analysis. 

 

Figure 9: Types of breast biopsies.  
(Corey Whelan , 2025). 

2.2.7 Molecular and Genetic Testing 

Molecular and genetic testing have become important tools in breast cancer diagnostics. 

These tests help determine an individual’s genetic predisposition and tumour 

characteristics. Common tests include: 

 BRCA1/BRCA2 genetic testing to determine hereditary breast cancer risk. 
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 Hormone receptor testing (ER/PR status) to guide hormone therapy decisions. 

 HER2 testing to determine eligibility for targeted treatments like trastuzumab. 

 Gene expression profiling (e.g., Oncotype DX, MammaPrint) to predict the 

likelihood of cancer recurrence and guide chemotherapy decisions. 

2.2.8 Limitations of traditional methods 

As we have seen, traditional breast cancer detection methods, while effective, have 

several limitations that can impact their accuracy, accessibility, and overall reliability. 

Mammography, one of the most widely used screening tools, has reduced sensitivity in 

women with dense breast tissue. Since dense tissue appears white on a mammogram, 

similar to tumours, distinguishing between normal and abnormal growths becomes 

challenging, increasing the risk of missed diagnoses.  

Ultrasound and MRI are commonly used as supplementary imaging techniques, however, 

they also present some disadvantages. While highly sensitive, they often produce false 

positives, detecting abnormalities that turn out to be benign, resulting in unnecessary 

biopsies and anxiety for patients. MRI, despite being an effective tool for high-risk 

individuals, is expensive and not widely accessible, with insurance coverage varying across 

different healthcare systems. Ultrasound, on the other hand, is highly operator-

dependent, meaning its accuracy can fluctuate based on the skill and experience of the 

technician or radiologist. 

Biopsies considered the gold standard for confirming a breast cancer diagnosis, also 

present certain limitations. Since it is an invasive procedure, can cause discomfort, pain, 

and in some cases, complications such as bleeding, infection, or scarring. Furthermore, 

biopsy samples do not always provide conclusive results, sometimes requiring repeat 

procedures or additional testing to confirm a diagnosis. 

Molecular and genetic testing, while offering valuable insights into an individual's cancer 

risk and tumour characteristics, come with financial and accessibility challenges. These 

tests, are expensive and not always covered by insurance, making them inaccessible to 

many patients. Additionally, genetic testing may not be necessary or beneficial for all 

individuals, as its relevance depends on family history and other risk factors. Results from 

these tests can also be complex, sometimes leading to uncertainty in treatment decisions. 

These limitations highlight the need for continuous advancements in breast cancer 

screening and diagnosis. Emerging technologies such as artificial intelligence-assisted 

imaging, liquid biopsies, and personalized risk assessment tools hold promise in improving 

early detection, reducing unnecessary interventions, and making breast cancer screening 

more accurate and accessible to everyone. 
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2.3 Other detection methods 

As imaging technology has advanced, several additional modalities have emerged to 

complement traditional breast cancer detection methods such as 2D mammography, MRI 

or ultrasound. These newer techniques offer improved visualization, functional insights, 

and better assessment of disease spread, particularly in complex or ambiguous cases. 

While not all these methods are used for routine screening, they provide valuable 

information in specific clinical context, such as in women with dense breast tissue, for 

staging cancer, or for monitoring metastatic disease. 

2.3.1 Digital Breast Tomosynthesis (DBT) 

Also known as 3D mammography, is an advanced imaging technique used primarily for 

diagnosis and breast cancer screening in some countries. Unlike traditional 2D 

mammography that takes a single planar image, DBT captures multiple low-dose X-ray 

images of the breast from limited angles (Figure 10). These image projections are then 

reconstructed into thin, layered slices, giving a pseudo three-dimensional view of the 

breast tissue (i.e., a stack of 2D images representing different depths of the breast). This 

makes it easier to detect abnormalities that might be hidden in overlapping tissue, 

particularly in women with dense breasts. DBT has been shown to improve cancer 

detection rates and reduce the number of false positives, meaning fewer women are 

called back for unnecessary additional testing. While it does involve slightly more radiation 

than standard mammography, it remains within safe exposure levels. 

 

Figure 10: Digital Breast Tomosynthesis diagram procedure. 
(Royal Surrey County Hospital, 2018). 

2.3.2 Positron Emission Tomography (PET) 

PET is a functional imaging technique that provides information about the metabolic 

activity of tissues. In breast cancer evaluation (Figure 11), the most used PET tracer is 

fluorodeoxyglucose (FDG), a radioactive form of glucose. Since cancer cells tend to grow 
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and divide rapidly, they consume more glucose than normal cells. After FDG is injected 

into the bloodstream, it accumulates in areas with high metabolic activity, such as 

tumours, which can then be detected by the PET scanner. PET imaging is especially 

valuable for staging breast cancer, detecting distant metastases, and monitoring 

treatment response. It offers a whole-body view, which is useful for identifying cancer 

spread to organs like the lungs, liver, or bones. However, PET does not provide detailed 

anatomical images and is therefore often combined with a CT scan (PET/CT) to correlate 

metabolic activity with precise anatomical locations. 

 

Figure 11: Positron Emission Tomography (PET) results example. 
(Ergul, Nurhan & Kadioglu, Huseyin & Yildiz, Seyma & Yucel, Serap & Gucin, Zuhal & Erdogan, Ezgi & Aydin, 

Mehmet & Muslumanoglu, Mahmut., 2014). 

2.3.3 Single Photon Emission Computed Tomography (SPECT) 

SPECT is another nuclear medicine imaging technique, but it uses different types of 

radioactive tracers and a gamma camera to capture 3D images (Figure 12). In breast 

cancer, SPECT can be used with tracers like technetium-99m to evaluate bone metastases 

or to visualize sentinel lymph nodes prior to surgery. SPECT is particularly useful in 

evaluating skeletal involvement in advanced breast cancer cases, often in the form of a 

bone scan. While SPECT also provides functional information, its resolution is generally 

lower than PET, and it is used less frequently for soft tissue imaging. Like PET, it is not used 

for routine breast cancer screening but serves as an important tool in staging and follow-

up when specific clinical questions arise. 
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Figure 12: Single Photon Emission Computed Tomography results example. 
(Marino, Maria Adele & Avendaño, Daly & Zapata-Julián, Pedro & Riedl, Christopher & Pinker, Katja, 2019). 

2.3.4 Computed Tomography Scan (CT) 

CT is a type of imaging that uses X-rays to create detailed cross-sectional images of the 

body (Figure 13). While CT scans are not usually used for the initial detection of breast 

cancer, they play an important role in evaluating the spread of the disease to other organs, 

such as the lungs, liver, or bones. CT is fast, widely accessible, and effective for identifying 

larger tumours or metastases in other parts of the body. However, it is not as sensitive as 

DBT or MRI for detecting small or early breast cancers, and its use involves a relatively 

higher dose of radiation. For this reason, CT is generally reserved for specific clinical 

indications rather than routine screening. 

 

Figure 13: Example of a 2D slide of a CT scan result. Contour of the patient is shown in yellow whereas 
suspicious breast lesion is depicted in red. 

(Janusz Skowronek, 2011). 

2.4 Mammographic views 

In CESM, different mammographic views are taken to obtain a comprehensive evaluation 

of the breast tissue from various angles, as we can see in Figure 14. The Craniocaudal (CC) 

view is performed on both breasts in screening programs, providing a top-down image 

where the breast is compressed horizontally between two plates. This view captures the 
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breast tissue from the nipple towards the chest wall, offering a symmetrical image that 

helps compare both breasts and detect abnormalities in the central and lower regions.   

The Mediolateral Oblique (MLO) view is taken at an angle, typically around 45 degrees 

with respect to CC x-ray tube position, to visualize more of the breast tissue, especially the 

upper outer quadrant, where most breast cancers are likely to develop. This angled 

perspective allows for better imaging of the tissue close to the chest wall and the axillary 

(underarm) area, which is not always visible in the CC view. The MLO view is particularly 

useful for detecting abnormalities near the lymph nodes or deeper structures.   

Both views are essential as they complement each other, ensuring that all areas of the 

breast are thoroughly examined. The combination of CC and MLO views enhances the 

likelihood of detecting small lesions or suspicious areas that may not be visible from a 

single angle. These standardized projections are crucial in breast imaging, providing 

detailed and consistent information to aid in accurate diagnosis. 

 

Figure 14: Standard mammographic views used in clinical practice.  
(Wang, Q., Li, K., 2016). 

2.5 BI-RADS 

In breast imaging, obtaining high-quality images from different angles is essential for 

accurate diagnosis, which is why standardized mammographic views such as RCC, LCC, 

RMLO, and LMLO are used. These views ensure comprehensive visualization of the breast 

tissue, allowing radiologists to detect abnormalities that may not be visible from a single 

perspective. However, once these images are obtained, they must be interpreted 

systematically to determine whether the findings are normal, benign, or suspicious. This 

is where the Breast Imaging Reporting and Data System (BI-RADS) comes into play, 

(American College of Radiology, 2013).  
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BI-RADS provides a structured classification system that helps radiologists categorize 

breast lesions based on their imaging characteristics, ensuring consistency in diagnosis and 

guiding appropriate follow-up or treatment. Together, standardized mammographic views 

and BI-RADS classification form the foundation of breast cancer screening and diagnostic 

evaluation, enabling early detection and improving patient outcomes. 

When a breast imaging study is performed, the findings are categorized into a BI-RADS 

classification ranging from 0 to 6 (see Table 1). A BI-RADS 0 assessment indicates that the 

evaluation is incomplete, meaning additional imaging, such as magnified views, 

ultrasound, or prior imaging for comparison, is required before reaching a final conclusion. 

A BI-RADS 1 result signifies a completely normal and negative finding, where no 

abnormalities are detected, and routine screening continues as recommended. Similarly, 

BI-RADS 2 also represents a benign finding, such as a simple cyst, fibroadenoma, or benign 

calcifications, which require no additional follow-up beyond regular screening.   

A BI-RADS 3 classification suggests a finding that is probably benign, with a very low 

likelihood of malignancy (less than 2%). However, due to the small possibility of change 

over time, short-term follow-up imaging, usually in six months, is recommended to 

monitor for stability. If the finding remains unchanged, routine screening resumes. When 

an imaging study results in a BI-RADS 4 assessment, it means that the abnormality is 

suspicious for malignancy, and a biopsy is typically recommended to determine if the 

lesion is cancerous. The likelihood of malignancy in this category varies, which is why it is 

further divided into three subcategories: low suspicion (4A), moderate suspicion (4B), and 

high suspicion (4C).   

A BI-RADS 5 assessment indicates that the abnormality is highly suggestive of malignancy, 

with a greater than 95% probability of being cancerous. Immediate biopsy and further 

oncological evaluation are necessary. Finally, BI-RADS 6 is used when a patient has already 

been diagnosed with breast cancer, and imaging is being conducted for treatment 

planning, such as assessing tumor response to therapy.  

Beyond classification, BI-RADS also includes standardized terminology for describing 

masses, calcifications, asymmetries, and other findings, ensuring that radiologists provide 

clear, uniform descriptions. Additionally, the system plays a crucial role in risk 

stratification, guiding whether a patient requires routine screening, short-term 

monitoring, or immediate biopsy. By eliminating ambiguity in reports, BI-RADS enhances 

early cancer detection, reduces unnecessary interventions for benign findings, and helps 

streamline patient care. 
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Table 1: BI-RADS Categories. 

Category Management Likelihood of cancer 

0 
Need additional imaging or prior 

examinations 

Recall for additional 

imaging and/or await 

prior examinations 

n/a 

1 Negative Routine screening Essentially 0% 

2 Benign Routine screening Essentially 0% 

3 Probably benign 

Short interval-follow-

up (6 months) or 

continued 

> 0% but ≤ 2% 

4 Suspicious Tissue diagnosis 

4a. Low suspicion for 

malignancy (> 2% to 

≤10%) 

4b. Moderate suspicion 

for malignancy (> 10% to 

≤50%) 

4c. High suspicion for 

malignancy (> 50% to 

<95%) 

5 Highly suggestive of malignancy Tissue diagnosis ≥ 95% 

6 Rhown biopsy-proven 
Surgical excision when 

clinical appropriate 
n/a 

2.6 Breast density 

The breast is manly composed of adipose (i.e., fat) and glandular tissue. Breast density 

refers to the proportion of fibroglandular tissue, which includes milk glands and ducts, to 

fatty tissue. It plays a crucial role in breast imaging as it affects how mammograms appear 

and influences the ability to detect abnormalities. Breast density varies among individuals 

and can change over time due to factors such as age, hormonal fluctuations, and genetic 

predisposition.   

Based on the BI-RADS classification, breast density is divided into four categories (i.e., A to 

D) ranging from almost entirely fatty (i.e., BI-RADS A) to extremely dense (i.e., BI-RADS D). 

Breasts that contain mostly adipose tissue shows a higher detection rate since fat appears 
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dark on a mammogram while tumors and other dense structures appear white. Scattered 

fibroglandular density means that most of the breast is composed of fat, but there are 

areas of denser tissue that could obscure small abnormalities. When the breast is classified 

as heterogeneously dense, a significant amount of fibroglandular tissue is present, which 

can make it challenging to identify malignancies. Extremely dense breasts, on the other 

hand, contain very little fatty tissue, making it significantly more difficult to detect cancer 

using traditional mammography.   

In conventional mammography, dense breast tissue can complicate cancer detection 

because both fibroglandular tissue and malignant tumors appear white on an X-ray, 

creating a masking effect. This issue arises because the attenuation coefficients of tumor 

and glandular tissue are similar, making it difficult to distinguish between them. This 

similarity in appearance can result in false negatives, where cancers go undetected, and 

false positives, where benign dense tissue is mistaken for a suspicious lesion, leading to 

unnecessary biopsies and patient anxiety. The reduced sensitivity of mammography in 

dense breasts means that small tumors may be missed, delaying diagnosis and treatment.   

2.7 Contrast-Enhanced Spectral Mammography (CESM) 

Traditional diagnostic methods, such as mammography and ultrasound, have limitations, 

particularly when used to detect tumours in women with dense breast tissue. These 

limitations highlight the need for advanced imaging techniques to improve detection 

accuracy and reduce human error. 

CESM is an innovative and advanced breast imaging modality designed to significantly 

improve the detection and characterization of breast cancer. It combines traditional 

mammography with the use of contrast agents to enhance the visibility of tumours. This 

technique is particularly beneficial in cases where conventional mammography may not 

be as effective, such as with dense breast tissue or when subtle lesions may be difficult to 

detect using standard imaging methods. CESM offers a higher degree of sensitivity, making 

it an increasingly valuable tool in early breast cancer diagnosis. 

CESM is typically used in settings where there is a suspicion of breast cancer or when 

previous imaging results have been inconclusive. It also plays a critical role in assessing 

tumour biology and behaviour, which is vital for accurate treatment planning and 

improving patient outcomes. 

The innovative aspect of CESM is that it may be easier to spot cancer, because there is 

better contrast between suspicious areas, with increased blood flow, and normal breast 

tissue. For people who might have otherwise had an MRI scan, imaging with these 

technologies will be quicker and may be completed at the breast clinic, instead of in the 

radiology department. This could release time and resources for MRI in other areas. 
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2.7.1 How CESM Works 

CESM uses iodine-based contrast agents, which are intravenously administered to the 

patient before the imaging procedure. The iodine in the contrast agent is selectively 

absorbed by abnormal, cancerous tissue, which is often characterized by increased blood 

supply due to the process of angiogenesis1. This increased blood flow is an indicator of 

malignant tumours, as they require more nutrients and oxygen to support their rapid 

growth. 

The CESM imaging process begins with the injection of iodine-based contrast agents into 

the patient’s vein. Once administered, the contrast agent circulates through the 

bloodstream and is absorbed by areas with abnormal blood flow, such as cancerous 

tissues. After the contrast has been absorbed, CESM uses dual-energy X-ray imaging. The 

first set of images, captured with low energy, visualizes typical breast structures similar to 

standard mammography, focusing on dense tissues and revealing anatomical features 

such as glandular tissue and fatty areas. 

Next, a second set of high-energy images is taken to highlight areas where the contrast 

agent has been absorbed. Cancerous tissues, which absorb more contrast due to increased 

blood supply, show up as high-intensity areas on the scan. These high-energy images help 

to pinpoint areas that may indicate malignancy. A subtraction technique is then applied to 

remove the low-energy images, leaving only the enhanced areas from the high-energy 

scan. This process highlights contrast-enhanced areas where abnormalities are most likely 

to be present, resulting in a clear and focused image that makes tumours and lesions more 

visible. (Figure 15). 

By combining the advantages of traditional mammography and the contrast-enhanced 

imaging, CESM helps improve the sensitivity of breast cancer detection, particularly in 

complex cases where conventional methods may not provide a definitive diagnosis. 

 

Figure 15: A typical contrast-enhanced spectral mammography (CESM) examination. 
a. Low-energy b. High-energy c. Recombined (subtracted). 

 
1 Is the physiological process through which new blood vessels form from pre-existing vessels. 
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(U.C.Lalij, & Jeukens, C.R.L.P.N. & Houben, Ivo & Nelemans, P.J. & Engen, Ruben & Wylick, E. & Beets-Tan, 
Regina & Wildberger, J.E. & Paulis, Leonie & Lobbes, Marc, 2015). 

2.7.2 Procedure overview 

The procedure lasts approximately 30 minutes. 

Upon arrival, the patient will be asked to complete a questionnaire titled the Pre-Contrast 

Enhanced Spectral Mammography Examination Checklist. This ensures that they are 

eligible for the procedure. 

Following this, the patient will have a consultation with the mammographer (a trained 

technologist responsible for performing breast X-rays). During this discussion, the 

mammographer will review the patient’s general health and provide a detailed 

explanation of the procedure. 

An intravenous cannula will then be inserted into a vein, typically on the back of the hand 

or in the crease of the elbow. The patient may experience a brief scratching sensation 

when the needle is inserted, but once in place, it should not cause further discomfort. A 

tourniquet may be applied to the upper arm to facilitate the insertion of the needle. 

A contrast medium will be administered through the cannula. As the contrast circulates 

through the body, the patient may experience a warm sensation (this is completely normal 

and not a cause for concern). 

After a short waiting period, the mammographer will ask the patient to remove their 

hospital gown and stand in front of the X-ray machine. Each breast will be positioned in 

the machine and gently but firmly compressed by a clear plate. This compression is 

essential to minimize radiation exposure and prevent image blurring. The compression is 

released automatically once the X-ray is taken. Each breast may require multiple images 

from different angles. 

The mammogram itself takes only a few minutes, with each breast being compressed for 

a few seconds per image. While some patients may find the compression uncomfortable, 

it is brief. 

Once all necessary images have been captured, the patient will be asked to wait in the 

designated waiting area. The cannula will remain in place until the radiologists confirm 

that the images are of sufficient quality. Once approved, the cannula will be removed, and 

the procedure will be complete.  
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2.8 Radiomics 

Radiomics is an emerging field in medical imaging that focuses on the extraction of a large 

number of quantitative features from standard medical images using advanced 

computational algorithms. (Philippe Lambin, 2012). These features, often imperceptible 

to the human eye, can capture information about tumour shape, texture, intensity, and 

spatial relationships within tissues. By converting images into high-dimensional data, 

radiomics enables a more detailed characterization of tumours, potentially improving 

diagnostic, prognostic, and predictive accuracy. 

The radiomics workflow typically involves several key steps: image acquisition, 

segmentation of the region of interest (ROI), feature extraction, feature selection, and 

data analysis or modelling (Figure 16). This process allows for the development of imaging 

biomarkers that may correlate with underlying pathophysiological processes, tumour 

heterogeneity, or treatment response. Feature extraction is generally performed using 

open-source libraries such as PyRadiomics, which adhere to standardized definitions 

provided by the Image Biomarker Standardization Initiative (IBSI). Radiomic features are 

commonly grouped into categories such as first-order statistics (describing intensity 

distribution), shape features (describing geometry), and texture features derived from 

matrices such as the gray level co-occurrence matrix (GLCM), run length matrix (GLRLM), 

size zone matrix (GLSZM), and others. Additionally, features can be computed from filtered 

images, such as those processed with Laplacian of Gaussian (LoG) or wavelet 

transformations, enabling multiscale representation of tissue heterogeneity. 

 

Figure 16: Example of radiomics workflow. 
(Francesca Gallivanone,Gloria Bertoli and Danilo Porro., 2022). 

In the context of breast cancer, radiomics offers a non-invasive means to enhance the 

detection and characterization of lesions. When applied to modalities such as CESM, MRI 

or DM, radiomics can uncover subtle differences in tissue characteristics that may not be 
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visually apparent. This can lead to improved differentiation between benign and malignant 

lesions, better risk stratification, and potentially, earlier diagnosis. 

Importantly, radiomics has the potential to complement radiological assessments and 

support clinical decision-making by providing objective, reproducible, and quantitative 

data.  

Despite its promise, radiomics also faces several technical and methodological challenges. 

Feature reproducibility can be affected by variations in image acquisition protocols, 

segmentation quality, and preprocessing settings. Moreover, the high dimensionality of 

radiomic features, relative to typical sample sizes in medical datasets, necessitates careful 

handling to avoid overfitting and ensure generalizability. Nonetheless, radiomics has been 

successfully applied across various imaging modalities, including CT, MRI, PET, and 

ultrasound, and clinical domains, ranging from oncology to neurology and cardiology. 

(Liang, Y., Xu, H., Lin, J. et al. , 2025) (Rizzo, S., Botta, F., Raimondi, S. et al. , 2018). 

2.9 Applications of radiomics in breast imaging 

Radiomics has found particularly strong relevance in breast imaging, where it has been 

applied to improve the detection, characterization, and prognostication of breast cancer. 

Mammography, as a widely used and non-invasive modality, presents an accessible 

platform for radiomic analysis, especially given its high spatial resolution and availability 

in screening programs. Studies have demonstrated that radiomic features extracted from 

mammographic images can capture microstructural differences between benign and 

malignant lesions that are not always visible in conventional image interpretation. 

Recent research has reinforced this potential. For example, a pilot study focused on CESM 

demonstrated that texture-based radiomic features could effectively differentiate 

between benign and malignant breast lesions, offering diagnostic insights that go beyond 

conventional imaging alone, reporting a mean accuracy of 80% when using SVM model 

(Losurdo, 2019). Another investigation assessed the ability of CESM-based radiomics to 

identify triple-negative breast cancer (TNBC). The study revealed that machine learning 

models trained on CESM-derived features could distinguish TNBC from other molecular 

subtypes with promising AUC of 0.90 (95% CI: 0.85–0.96), sensitivity of 0.97 and specificity 

of 0.69 for the combined CC and MLO views when in the test set, suggesting potential for 

more precise phenotyping and treatment planning (Zhang Yongxia, 2021). 

Research in this domain has explored radiomics as a complementary tool to traditional 

diagnostic approaches. Several studies have shown that radiomic models based on 

mammography can achieve classification performance comparable to or better than BI-

RADS assessments made by expert radiologists. Radiomic features have also been used to 

predict tumor subtypes, such as triple-negative or HER2-positive cancers, which have 

distinct treatment pathways and prognostic implications. These findings are echoed in a 
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scoping review, which not only highlighted the diagnostic value of mammography-based 

radiomics but also emphasized its role in predicting outcomes such as tumor recurrence, 

patient survival, and lymph node involvement. For instance, the review cites studies where 

integrating radiomic features with clinical data improved model performance, yielding 

increases in AUC of up to 11% for predicting histological grade and lymph node metastasis, 

and 13% for assessing tumor invasiveness (Siviengphanom, 2021). 

Beyond binary classification, radiomics has been applied for predicting axillary lymph node 

involvement, recurrence risk, and treatment response, thereby extending its utility into 

personalized oncology. Radiomics has also been applied to other breast imaging 

modalities, such as DCE-MRI and ultrasound, often in combination with mammography. 

Multimodal radiomics models have shown improved performance, suggesting that 

different imaging techniques capture complementary aspects of tumor biology. Some 

studies have further integrated clinical or genomic data with radiomics features, aiming to 

develop hybrid models that unify radiomic, genomic, and clinical information for enhanced 

prognostic accuracy. 

However, despite its clinical potential, the adoption of radiomics in breast imaging still 

faces limitations. Many published models are based on retrospective, single-institution 

datasets and lack external validation. In addition, there is considerable variability in how 

radiomic pipelines are implemented, which can affect reproducibility and hinder clinical 

translation (Yu Ji, 2019) (Nazmul Ahasan Maruf, 2025). Standardized methodologies and 

rigorous multi-institutional studies are necessary to bridge the gap between research and 

clinical application. 
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Chapter 3 

3. Materials and methods 

3.1 CDD-CESM Dataset 

This study uses an open access dataset available from The Cancer Imaging Archive 

repository (The Cancer Imaging Archive, 2021), which includes both CESM and DM images. 

The dataset also provides ROIs, which highlight areas with potential abnormalities like 

tumours, and accompanying diagnostic information (Figure 17).  

The dataset is a collection of low-energy images with their corresponding subtracted CESM 

images gathered from the Radiology Department of the National Cancer Institute, Cairo 

University, Egypt over the period from January 2019 to February 2021. The images are all 

high resolution with an average of 2355 × 1315 pixels. Institutional review board approval 

and patient informed consent to carry out and publish data were obtained from 326 

female patients aged from 18 to 90 years. (Khaled, R., Helal, M., Alfarghaly, O. et al., 2021). 

Usually, each patient has a total of 8 images, 4 images for each breast side consisting of 

low energy and subtracted CESM images for each CC and MLO view. However, there are 

46 patients with only 4 images as they had mastectomy on a breast side, and 87 patients 

with missing images as some were not available or removed due to quality concerns. 

(Khaled, R., Helal, M., Alfarghaly, O. et al., 2021). 

Two different machines were used for image acquisition: GE Healthcare Senographe DS 

and Hologic Selenia Dimensions Mammography Systems. The two machines provide 

similar quality. (Khaled, R., Helal, M., Alfarghaly, O. et al., 2021). 

The image dataset consists of 2,006 images from 326 patients, with a total size of 1.49 GB 

(comprising 1,003 DM images (0.64 GB) and 1,003 CESM images (0.82 GB)). (Figure 19 and 

Figure 20 show the count of benign and malignant cases across the dataset, and it’s 

distribution based on image type, respectively).  
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Figure 17: Structure of the folder of the dataset used in the project. 

1. Mammography Images on .JPG File format (CESM, DM) 

 CESM: These images involve the use of contrast agents, which are injected into 
the patient to enhance abnormal tissue visibility during the mammogram 
(subtracted images).  

 DM: Digital mammography captures high-resolution images of the breast using 
electronic sensors instead of film (low energy images).  

 File’s name structure is (Figure 18): 

▪ PX: Patient ID. 

▪ L or R: Side of the breast (Left or Right). 

▪ CM or DM: Type of imaging (Contrast Mammography or Digital 
Mammography). (Note: Although the dataset refers to CESM images using 
the abbreviation "CM" in the file names, this should not be confused with 
Conventional Mammography. Throughout the code and plots, the term 
"CM" appears due to the dataset's naming convention. However, it is 
important to emphasize that all such instances are referring to CESM 
images.) 

▪ MLO or CC: The specific view taken (either Mediolateral Oblique or 
Craniocaudal). 
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Figure 18: Example entry from the dataset with CESM and DM mammograms merged. The image 
displays metadata for a mammogram file, including the filename, date of inclusion in the dataset, 

file type, and image size. 

2. Regions of Interest (ROIs)  

This CSV file contains annotations for specific areas within the mammogram images that 

have been identified as ROIs, is the file that contains the different coordinates. These 

regions typically highlight areas where abnormalities (like tumours, calcifications, or other 

suspicious features) are present.  

3. Clinical Variables  

The images are manually-annotated by expert radiologists according to the American 

College of Radiology Breast Imaging Reporting and Data System (ACR BIRADS) 2013 lexicon 

for standardized descriptors. 

This CSV file contains a variety of metadata about the mammogram images: 

Table 2: Clinical variables stored for each mammogram image on a CSV file inside the dataset. 

Image name 
The identifier of the image (e.g., P1_L_CM_MLO), linking it 

to the relevant patient and view. 

Patient_ID 
The unique identifier for the patient undergoing the 

examination. 

Side Left or right breast. 

Type Type of mammogram (CM or DM). 

Age The patient's age at the time of the mammogram. 
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Breast density (ACR) 
Categorizes the breast tissue density, which impacts how 

well abnormalities are detected. 

BIRADS 
The BIRADS score that rates the risk of malignancy, helping 

to guide clinical decision-making. 

Findings 
Describes any abnormalities found in the mammogram, 

such as masses, calcifications, or distortions. 

View The specific view of the mammogram (CC, MLO). 

Tags 
Any additional categorization or labels related to the 

mammogram. 

Machine The machine used to perform the mammogram (1 or 2). 

Pathology 

Classification/Follow-

up 

The final diagnosis based on the mammogram, typically 

indicating whether the findings are Normal, Benign, or 

Malignant. It may also include follow-up 

recommendations, such as further imaging or biopsy. 

 

 

 

Figure 19: Malignant and benign cases on the dataset. 
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Figure 20: Type of mammography and tumour distribution on the dataset. 
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3.2 Image preprocessing 

Preprocessing plays a crucial role in the analysis of mammograms, particularly in preparing 

the images for neural networks (Diaz, 2021). Mammograms, like many medical images, 

often display variations in brightness and contrast, and they can be affected by noise. 

Neural networks perform best when the input data is consistent and of high quality. 

Therefore, preprocessing is essential for standardizing the images, ensuring that the 

neural network can focus on learning the most relevant features without being distracted 

by inconsistencies or artifacts. 

An additional and critical reason for applying preprocessing techniques in this study is the 

heterogeneity of the dataset, which was compiled from two different mammography 

machines. These devices may produce images with differing intensity distributions, 

contrast levels, resolutions, and noise characteristics due to variations in hardware, 

imaging protocols, or calibration settings. Such discrepancies can significantly affect the 

consistency of the input data, making it more challenging for the neural network to 

generalize and learn meaningful patterns. Without adequate preprocessing, these 

machine-induced differences could introduce bias, reduce model performance, and 

obscure subtle diagnostic features. By applying standardized preprocessing methods, we 

aim to harmonize the images across sources, ensuring that the model learns from 

anatomical and pathological features rather than from scanner-specific artifacts. 

Another important aspect of preprocessing is highlighting significant features within the 

images. In mammograms, subtle differences in breast tissue can indicate abnormalities, 

and it is vital to make these variations more visible. By enhancing the contrast and 

adjusting the brightness of the images, preprocessing brings out these subtle details, 

making it easier for the neural network to detect important patterns that might otherwise 

go unnoticed. 

To achieve these improvements, preprocessing techniques are chosen to maximize their 

effectiveness. Min-max scaling is one such technique, where the pixel values of an image 

are rescaled to a defined range, typically between 0 and 1. Neural networks often perform 

better with input values constrained within a limited range, and this method helps 

normalize image brightness, preventing variations from confusing the model. 

In addition to min-max scaling, z-score normalization was employed. This method 

standardizes the pixel values by subtracting the mean and dividing by the standard 

deviation, effectively centring the data around zero. By ensuring that all images share a 

similar distribution of pixel values, z-score normalization makes the dataset more 

Gaussian, a property that benefits many types of neural network models. 

Another essential technique is CLAHE, or Contrast Limited Adaptive Histogram 

Equalization. CLAHE specifically enhances the contrast within images, especially in regions 
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where natural contrast is low. By dividing the image into smaller sections and adjusting 

the contrast locally, CLAHE uncovers subtle abnormalities that could otherwise remain 

hidden. This method is particularly well-suited for mammograms, as it enhances image 

details effectively without excessively amplifying noise, as we can see on Figures 21 and 

22 for CESM and DM, respectively. (Monserrate Intriago-Pazmiño, 2022). 

 

 

Figure 21: Image preprocessing techniques example for Contrast Mammography. 

 

Figure 22: Image preprocessing techniques example for Digital Mammography. 
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3.3 Radiomics pipeline 

Radiomics features were extracted from 2D mammographic pre-processed images using 

the PyRadiomics 3.1.0 library, based on manually segmented binary masks defining ROIs. 

Feature extraction followed a standardized parameter configuration, including a fixed bin 

width (25), 2D enforcement (force2D=True), and the application of both original and 

filtered image types (Wavelet and Laplacian of Gaussian with σ = 1.0, 3.0, 5.0). Six feature 

classes were extracted: first-order statistics, gray level co-occurrence matrix (GLCM), gray 

level run length matrix (GLRLM), gray level size zone matrix (GLSZM), gray level 

dependence matrix (GLDM), and neighboring gray tone difference matrix (NGTDM). The 

resulting feature matrix, comprising 558 features per image, was saved in CSV format for 

further analysis. 

To evaluate the diagnostic value of these features, a range of supervised machine learning 

models was implemented in Python using scikit-learn, imbalanced-learn, XGBoost, 

LightGBM, TensorFlow/Keras, and SHAP. The selected models included Support Vector 

Machines (SVM), Random Forests, Logistic Regression, K-Nearest Neighbors (KNN), 

XGBoost, LightGBM, and feedforward neural networks. This selection was made to include 

both traditional machine learning and deep learning approaches, ensuring a robust 

comparative analysis across model types. SVMs are well suited for high-dimensional 

classification tasks, while Random Forests aggregate decision trees to enhance stability 

and reduce overfitting. Logistic Regression provides a simple, interpretable linear baseline. 

KNN offers a distance-based approach to classification. XGBoost and LightGBM are 

advanced gradient boosting methods known for their performance and efficiency on 

structured data. Feedforward neural networks, built with fully connected layers, batch 

normalization, and dropout regularization, were used to assess the capabilities of deep 

learning on radiomics data. 

Before training, all features were standardized using z-score normalization, and highly 

correlated features (Pearson’s r > 0.95) were removed to reduce redundancy and improve 

model generalizability. To further mitigate the risk of overfitting and reduce computational 

cost, a feature resampling strategy was employed during training: at each cross-validation 

fold, a random subset of radiomic features (around 200 out of the total 558) was selected. 

This approach allowed the models to train on a reduced but diverse feature set in each 

iteration, enhancing robustness while still leveraging the high-dimensional nature of 

radiomics data. 

Class imbalance was addressed using the Synthetic Minority Over-sampling Technique 

(SMOTE) (Nitesh V. Chawla, 2002), which was applied within training folds when the 

minority class size was sufficient. SMOTE generates synthetic instances of the minority 

class by interpolating between existing samples, helping to balance the dataset and 

improve classification robustness. Cross-validation was performed using GroupKFold to 
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ensure that no images from the same patient were split across training and validation sets, 

thereby preventing data leakage. Model evaluation was based on multiple metrics, 

including accuracy, balanced accuracy, F1-score, and Matthews Correlation Coefficient 

(MCC). Finally, SHAP (SHapley Additive exPlanations) was applied to interpret model 

predictions and identify the most influential radiomic features across imaging modalities. 

3.4 Evaluation Metrics  

In order to compare the behaviour of the different models and assess their generalization 

performance, an evaluation was implemented (Maier-Hein, L., Reinke, A., Godau, P. et al., 

2024). This includes multiple performance metrics (Accuracy, F1 Score, Balanced Accuracy, 

MCC, and Area Under the Receiver Operating Characteristic Curve (AUC-ROC)) computed 

at three levels: cross-validation, confusion matrix-based predictions, and predictions on 

an independent dataset. This multi-level approach provides deeper insights into model 

reliability, performance under class imbalance, and feature consistency across training 

folds. 

For the following definitions consider: 

 TP = True Positives 

 TN = True Negatives 

 FP = False Positives 

 FN = False Negatives 

3.4.1. Accuracy 

Accuracy, as defined on Equation 1, measures the proportion of correctly classified 

instances among the total instances. While intuitive and easy to interpret, accuracy alone 

may be misleading in imbalanced datasets, where the model might perform well simply 

by predicting the majority class. 

Equation 1: Formula for classification accuracy, representing the proportion of correct 
predictions over the total number of samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

3.4.2. F1 Score 

The F1 Score, as defined on Equation 2, is the harmonic mean of precision and recall. It 

balances the trade-off between false positives and false negatives, making it more 

informative than accuracy when class distribution is uneven. This metric is especially 

important when both false negatives (e.g., missing a cancer diagnosis) and false positives 

(e.g., unnecessary interventions) carry significant consequences. 

Equation 2: Formula for the F1 score, the harmonic mean of precision and recall, 
commonly used in imbalanced datasets. 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

3.4.3. Balanced Accuracy 

Balanced Accuracy, as defined on Equation 3, accounts for imbalanced class distributions 

by averaging the recall (sensitivity) of each class. This ensures that both classes are given 

equal importance, providing a more realistic picture of model performance in cases where 

one class is underrepresented. 

Equation 3: Balanced accuracy, computed as the average recall for both classes, 
correcting for class imbalance. 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

2
∗ (

𝑇𝑃

𝑇𝑃 + 𝐸𝑁
+ 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

3.4.4. Matthews Correlation Coefficient (MCC) 

MCC, as defined on Equation 4, is a robust metric that considers true and false positives 

and negatives and is considered a balanced measure even in the presence of class 

imbalance. It produces a value between -1 and +1, where +1 indicates perfect prediction, 

0 indicates no better than random, and -1 indicates total disagreement between 

prediction and observation. 

Equation 4: MCC, a comprehensive performance metric that considers all values of the 
confusion matrix. 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

3.4.5. ROC Curve and AUC Score 

The ROC curve plots the true positive rate (sensitivity) against the false positive rate at 

various threshold settings, showing how the model’s performance varies with different 

classification thresholds. The Area Under the ROC Curve (AUC), as defined on Equation 5, 

condenses this performance into a single value, where a higher AUC indicates a better 

ability to distinguish between classes. This is particularly valuable in medical applications 

with imbalanced datasets, as it is threshold-independent and highlights discriminatory 

power. 

Equation 5: AUC-ROC, representing the model’s ability to distinguish between classes 
across all thresholds. 
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𝐴𝑈𝐶 − 𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅
1

0

, 

𝑤ℎ𝑒𝑟𝑒 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

3.4.6. Feature Importance Across Folds 

To gain interpretability, the top 10 most important features are identified for each cross-

validation fold. This analysis reveals which features consistently influence model 

predictions, aiding both in model transparency and in understanding the biological or 

clinical relevance of certain predictors. Consistent feature importance across folds 

suggests stable and generalizable model behaviour. 

3.4.7. Confusion matrix 

A separate confusion matrix is presented for each trained model, enabling a direct 

comparison of how different approaches perform in identifying cancerous lesions. This 

facilitates a more informed selection of the most effective model for clinical application. 

The confusion matrix illustrates the performance of the model in classifying breast cancer 

cases into two categories: benign and malignant. By comparing the model’s predictions 

against the actual diagnoses, the confusion matrix provides a clear breakdown of true 

positives, true negatives, false positives, and false negatives. 
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Chapter 4 

4. Implementation 

4.1 Pipeline of the work 

The pipeline illustrated in Figure 23 outlines a comprehensive approach to cancer 

classification (i.e., malignant vs benign) used in this work. Beginning with dataset 

acquisition, we implement a series of preprocessing steps including binary masking and 

image normalization. These steps are crucial for isolating regions of interest and ensuring 

consistent input features. The system extracts relevant features from the pre-processed 

images, combines them with clinical metadata, and feeds this information into a classifier 

model that has been carefully balanced, trained, and evaluated. As a result of all of these 

steps, the classifier outputs some plots where we can see its accuracy using different 

models, the confusion matrix and a comparison between the results of using DM or CESM. 

In order to do so, Table 3 and Table 4 describe the imports used in the code and the main 

classifier methods, respectively. 

 

Figure 23: Pipeline of the python modules implemented in this work. Bold elements represent individual files, 
while arrows indicate what the file does. 



45 

 

Table 3: Python library imports used in the classifier script, organized by functional category. 

Data handling and preprocessing 

import numpy as np 

import pandas as pd 

from sklearn.preprocessing import LabelEncoder, StandardScaler 

Model evaluation and metrics 

from sklearn.metrics import accuracy_score, 

balanced_accuracy_score, f1_score, precision_score, recall_score 

from sklearn.metrics import matthews_corrcoef, 

cohen_kappa_score, log_loss 

from sklearn.metrics import roc_auc_score, roc_curve, auc, 

RocCurveDisplay 

Cross-validation and model 

selection 

from sklearn.model_selection import GroupKFold, 

RandomizedSearchCV, GridSearchCV 

from scipy.stats import randint, uniform 

from sklearn.utils import resample 

Machine learning models 

from sklearn.svm import SVC 

from sklearn.ensemble import RandomForestClassifier 

from xgboost import XGBClassifier 

from lightgbm import LGBMClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.neighbors import KNeighborsClassifier 

Dimensionality reduction from sklearn.decomposition import PCA 

Imbalanced data handling from imblearn.over_sampling import SMOTE 

Visualization and plotting 

import matplotlib.pyplot as plt 

import seaborn as sns 

from IPython.display import Image, display 

Explainability and interpretation import shap 
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Table 4: Core methods implemented in the classifier script, with a description of their purpose and 
functionality. The functions described below belong to the classifierCode.py file, shown in the project 
pipeline overview in Figure 24, and are explained in the following the table. 

Classifier’s Methods Task 

_extract_features_and_labels(self) 

Reads the CSV file that contains both the extracted 

radiomics features and their corresponding labels. It 

separates the input features from the labels and encodes 

the labels into a machine-readable format using a label 

encoder. It also extracts additional metadata, such as 

image filenames, which are later used to determine the 

imaging modality (DM or CESM), and patient IDs, which are 

crucial for splitting the dataset correctly during cross-

validation. 

preprocess_features(self, X_train, 

X_val=None, 

correlation_threshold=0.95, 

use_pca=False, pca_components=None) 

Prepares the feature data for machine learning models. It 

standardizes all features to have zero mean and unit 

variance, which improves model convergence and stability. 

Optionally, it can apply PCA (Principal Component Analysis) 

to reduce dimensionality, keeping only the most significant 

components and discarding noise. It can also remove 

highly correlated features to simplify the feature space and 

prevent redundancy that could confuse learning 

algorithms. 

_extract_patient_ids(self) 

Extracts the unique patient identifier from the image 

filenames. This step is critical because medical images 

often include multiple views or scans from the same 

patient. By grouping images based on patient IDs, it 

ensures that cross-validation splits are based on patients, 

preventing data leakage between training and testing sets. 

balance_dataset(self, X, y) 

Addresses the common issue of class imbalance in medical 

datasets. It applies resampling techniques like SMOTE or 

SMOTETomek to balance the distribution of benign and 

malignant cases. This ensures that the model does not 

become biased toward the majority class and can learn to 

classify both classes effectively. 

run_patient_based_cross_validation() 

Manages the training and evaluation process across 

multiple folds. It splits the dataset based on patient IDs into 

training and validation sets, preprocesses features, applies 

balancing if needed, trains the selected models, and 

collects performance metrics like accuracy and confusion 

matrices. This method ensures that model evaluation is 

realistic and clinically meaningful by preventing patient 

overlap between training and testing sets. 

compare_image_types() 

Analyses the impact of different imaging modalities, DM 

and CESM, on model performance. It separates the dataset 

based on image type, trains models separately on each 



47 

 

subset, and compares their classification accuracies. This 

provides insight into which imaging technique is more 

effective for detecting and classifying cancer types. 

compare_models() 

Trains and evaluates multiple machine learning models 

(including neural networks, support vector machines, 

random forests, and ensemble methods) on the same 

dataset. It collects and organizes the performance metrics, 

allowing for a direct comparison of how different types of 

models perform under the same conditions. 

visualize_model_comparison() 

Generates bar plots and box plots to compare the average 

performance of different models. These visualizations 

summarize and present the results in a clear, interpretable 

way, making it easy to see which model consistently 

performs best across cross-validation folds. 

train_svm(self, X_train, y_train, 

X_val=None, y_val=None, 

tune_hyperparams=True) 

Trains a SVM classifier. Optionally performs 

hyperparameter tuning using randomized search with 

cross-validation. It returns the best model and optionally 

evaluates its performance on a validation set. 

train_random_forest(self, X_train, 

y_train, X_val=None, y_val=None, 

tune_hyperparams=True) 

Trains a Random Forest classifier. Like the SVM method, it 

supports hyperparameter tuning and validation. Also 

computes and displays feature importances from the 

trained forest, aiding in interpretability. 

train_xgboost(self, X_train, y_train, 

X_val=None, y_val=None, 

tune_hyperparams=True) 

Trains an XGBoost classifier, optionally with randomized 

hyperparameter search. Evaluates the model on validation 

data and reports accuracy. 

train_lightgbm(self, X_train, y_train, 

X_val=None, y_val=None, 

tune_hyperparams=True) 

Trains a LightGBM classifier. Performs hyperparameter 

tuning if enabled. Like other training methods, it validates 

and reports model performance. 

train_knn(self, X_train, y_train, 

X_val=None, y_val=None, 

tune_hyperparams=True) 

Trains a kNN classifier. Performs grid search over different 

values of k to optimize performance. Evaluates the trained 

model on validation data. 

train_logistic_regression(self, X_train, 

y_train, X_val=None, y_val=None, 

tune_hyperparams=True) 

Trains a logistic regression model with optional 

hyperparameter tuning. Uses class balancing and different 

solvers depending on the hyperparameter configuration. 

tune_hyperparameters(self, X_train, 

y_train, X_val, y_val) 

Tunes neural network hyperparameters including learning 

rate, dropout rate, and batch size using grid search. Applies 

early stopping to avoid overfitting and uses SHAP to 

provide interpretability for the best models. 

create_ensemble(self, X_train, y_train, 

X_val, y_val) 

Creates an ensemble of different models (deep neural 

networks, SVM, Random Forest). Combines their 

predictions using soft-voting by averaging predicted 

probabilities. Evaluates individual models and the 

ensemble on validation data. 

run_patient_based_cross_validation(...) 
Performs cross-validation by grouping samples by patient, 

ensuring that data from the same patient does not appear 
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in both training and validation sets. Trains and evaluates 

the selected model (or ensemble) across all folds and 

reports a comprehensive set of performance metrics, 

including accuracy, F1 score, MCC, and AUC. Supports 

modality-specific evaluations (DM vs CESM vs CESM+DM). 

feature_importance(self, 

force_neural=False) 

Estimates feature importance using either a Random 

Forest or a SHAP-based analysis with a neural network. 

Outputs a DataFrame ranking features by their impact on 

model predictions. 

visualize_confusion_matrices(self, 

fold_results) 

Plots the confusion matrix based on the predictions of the 
trained models. This visualization helps to quickly 
understand how well the model is performing, including 
how often it misclassifies benign tumours as malignant 
and vice versa. 

plot_model_metric_by_image_type_2(s

elf, model_results, metric) 

Generates a grouped boxplot for a specified metric (F1, 

accuracy, MCC, balanced accuracy) across different models 

and image types (DM, CESM, ALL), providing insights into 

performance variance. 
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4.2 Generation of tumour’s binary mask 

In the context of cancer classification from medical images, accurately isolating ROIs is a 

crucial step in ensuring that the features extracted are both relevant and informative. One 

powerful approach for this is the use of binary masks. 

A binary mask is an image with the same dimensions as the original medical image, where 

each pixel is either 1 (included in the region of interest) or 0 (excluded). This mask acts as 

a filter that allows the analysis to focus only on specific areas identified as diagnostically 

significant, typically areas containing or surrounding tumours. 

In this workflow, the ROIs are not arbitrarily defined. Instead, they are based on polygon 

coordinates provided by a medical expert, stored in a CSV file. Each set of coordinates 

outlines a specific area of interest, such as suspected malignant tissue, benign lesions, or 

other pathological regions.  

Using binary masks in this way offers several advantages: 

 Noise reduction: By ignoring the background and non-relevant tissues, we reduce 

the risk of extracting misleading or irrelevant features. 

 Data efficiency: Feature extraction and model training become more efficient as 

the model focuses only on the most important areas. 

 Improved accuracy: Machine learning models trained on features extracted from 

expert-annotated regions tend to perform better because the input data is more 

aligned with diagnostic criteria. 

 Interpretability: It becomes easier to trace the model's predictions back to specific 

annotated regions, enhancing the interpretability and trustworthiness of the 

system. 

To implement this, the CSV file containing the doctor’s annotations is used to extract the 

polygon coordinates. These polygons are then rendered onto a blank image to create the 

binary mask. This mask is applied to the original medical image to isolate the ROIs, and 

only the pixels within these regions are used for subsequent processing and feature 

extraction. (Figure 24). 
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Figure 24: Example of binary mask on mammography. 

The left image shows the CLAHE-normalized mammogram, the centre image displays the ROI mask, and the 
right image illustrates the overlay of the ROI mask on the normalized mammogram. 

4.3 Image preprocessing 

When extracting radiomic features using PyRadiomics, preprocessing steps play a crucial 

role in standardizing the input images and potentially enhancing relevant information. 

Min-Max scaling scales the intensity values to a specific range, typically 0 to 1, and is useful 

for ensuring all images have the same intensity range. However, it's sensitive to outliers, 

which can compress most of the data into a narrow range, and may not enhance subtle 

intensity variations within the image. Z-score normalization standardizes intensity values 

by subtracting the mean and dividing by the standard deviation, centring the data around 

zero with unit variance. Its limitations include the assumption of a Gaussian distribution 

of intensity values, which may not always be the case in medical images, and susceptibility 

to outliers, in addition to not enhancing local contrast. In contrast, CLAHE enhances local 

contrast by dividing the image into small tiles and applying histogram equalization to each 

tile, limiting the amplification of noise by clipping the histogram at a predefined value. 

CLAHE offers several advantages for radiomics. Its ability to preserve and enhance local 

texture means that subtle intensity variations within specific regions of the image can lead 

to the extraction of more discriminative texture features. CLAHE also reduces intensity 

variability by enhancing contrast locally, which can make the extracted features more 

robust. Furthermore, it can reveal details that might be obscured by global normalization 

methods, potentially leading to the extraction of new or more distinct radiomic features. 

Radiomics often relies on analysing the texture of an image, which refers to the spatial 

relationships between pixel intensities. Features that describe texture, like those from 

GLCM and GLRLM, quantify how often certain intensity patterns occur and how they are 

arranged. CLAHE enhances the contrast within small, local areas of the image, making 

subtle differences in intensity between neighbouring pixels more pronounced. Because 



51 

 

texture is based on these local intensity variations, CLAHE makes the texture within an 

image more visible and easier to quantify. By making the texture more apparent, CLAHE 

helps radiomic algorithms extract features that are more sensitive to the fine details of the 

image. If the texture is enhanced, the features extracted are more likely to be different 

from each other, which is important because distinct features provide more information 

for analysis and modelling. Min-Max scaling and Z-score normalization, on the other hand, 

primarily focus on adjusting the overall distribution of pixel intensities and don't 

specifically enhance the local variations that define texture. As a result, these methods 

were not as effective as CLAHE when highlighting the subtle textural differences that can 

be important in radiomics, and as a result, providing less features. 
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4.4 Features extraction 

The starting point for this process was a dataset of mammographic images, each 

accompanied by a corresponding binary mask that delineated the ROI, typically a tumour 

or suspicious lesion. These masks were essential for focusing the feature extraction 

process on the relevant area. However, due to variability in naming conventions and 

dataset organization, a matching process was implemented to correctly associate each 

image with its mask. This included regex-based parsing of filenames to extract a shared 

identifier. The final image-mask pairs were loaded using the SimpleITK 2.5.0 library, which 

allowed for direct manipulation of medical imaging data. 

Feature extraction was then performed using a custom YAML configuration file (Figure 25) 

that specified both preprocessing and feature calculation settings. Key settings included 

disabling image normalization (to preserve raw intensity distribution), setting a fixed bin 

width of 25 for intensity discretization, and forcing 2D analysis mode to align with the 

nature of the images. The configuration also defined which feature classes to compute and 

which image filters to apply. Features were extracted from the original images as well as 

from filtered versions, LoG and multi-resolution wavelet decompositions. These filtered 

images highlight structures at different spatial scales and frequencies, thereby enriching 

the feature space with multi-scale texture information. 

 

Figure 25: Screenshot of the YAML configuration file used by PyRadiomics for image preprocessing for 
radiomic features extraction. 
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After extracting features from all available image-mask pairs, the results were compiled 

into a structured dataset, with each row corresponding to an individual image and each 

column representing a specific radiomic feature. The final dataset contained around five 

hundred features per image. 

This dataset was then saved to a CSV file for downstream analysis. Importantly, each image 

retained its unique identifier, allowing for patient-level grouping and stratified evaluation 

across different image types. In doing so, this radiomics pipeline transformed raw medical 

images into structured, high-dimensional numerical data suitable for machine learning, 

while preserving anatomical specificity and clinical interpretability. 

4.5 Machine learning for radiomics-based classification 

Once radiomics features were extracted from both DM and CESM, they were used as the 

base for training the machine learning algorithms designed to classify breast lesions as 

benign or malignant. A classification pipeline was designed not only to optimize 

classification performance but also to ensure clinical validity through cross-validation, 

preprocessing and interpretability. The process includes data transformation, model 

training, evaluation, and ensemble learning, with a special emphasis on avoiding data 

leakage and accounting for patient-specific variability. 

Before any model training could occur, the radiomics dataset was subjected to several 

preprocessing steps. First, all features were standardized using z-score normalization. This 

step was critical, particularly for algorithms that are sensitive to feature scale, such as SVM 

and NN. Standardization ensured that all features contributed equally during training and 

prevented any single high-magnitude feature from dominating the learning process. 

Subsequently, highly correlated features were removed using a correlation threshold of 

0.95. This form of redundancy reduction minimized the risk of multicollinearity, which can 

impair model interpretability and inflate variance in decision boundaries. In selected 

experiments, Principal Component Analysis (PCA) was applied as an optional 

dimensionality reduction technique, enabling compression of the feature space while 

preserving most of its variance. 

Handling class imbalance was another key component of the pipeline. The dataset 

exhibited an uneven distribution of benign and malignant cases, which is a common issue 

in medical imaging datasets. To address this, SMOTE was integrated. SMOTE generates 

synthetic samples of the minority class by interpolating between existing samples. 

However, SMOTE was used selectively; it was activated only when the minority class 

contained enough samples to produce reliable synthetic data. This safeguard prevented 

the introduction of noise when the sample size was critically low, ensuring that model 

performance was not artificially inflated by poorly representative synthetic instances. 
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One of the core principles of this framework was the use of patient-based cross-validation. 

To ensure robust evaluation and prevent data leakage, the dataset was split using patient-

based cross-validation via GroupKFold, with patient identifiers extracted from filenames 

serving as the grouping variable. The data was split into a training set and a validation 

(test) set based on patient grouping. All radiomic features and corresponding labels from 

a given patient were included in only one of these subsets per fold. The training set was 

used for model fitting, feature selection, class balancing, and, when enabled, 

hyperparameter tuning. The validation set was used exclusively for model evaluation and 

remained untouched during training to provide an unbiased estimate of performance. This 

guaranteed that all images from the same patient were assigned to either the training or 

the validation set within a fold, never both, thereby preserving the independence of 

samples across folds. This ensured that all images from a single patient were either in the 

training set or the validation set but never separated across both.  

Each model was trained and evaluated within this cross-validation scheme, with 

hyperparameter tuning performed using either GridSearchCV or RandomizedSearchCV. 

Parameter grids were predefined for each algorithm, and tuning was carried out within 

the training data of each fold to avoid biasing performance estimates. During training, a 

feature resampling strategy was also employed to manage the high dimensionality of the 

radiomic feature space.  

Learning strategies were tailored to the type of model. For classical machine learning 

models (e.g., SVM, Random Forest, Logistic Regression, kNN, XGBoost, and LightGBM), 

standard training procedures were applied with attention to regularization and feature 

scaling. For deep learning models built using Keras, batch normalization and dropout 

layers were used to stabilize and regularize training.  

A wide array of machine learning algorithms was explored. Classical models included SVM, 

RF, Logistic Regression, kNN, XGBoost, and LightGBM. Each algorithm was evaluated with 

and without hyperparameter tuning. For tuning, randomized or grid search was used with 

cross-validation over predefined parameter spaces. In parallel, feedforward neural 

networks using TensorFlow/Keras were developed. These deep learning models 

incorporated batch normalization and dropout layers to mitigate overfitting and improve 

generalization. Architectures varied in depth and width, with tuning focused on learning 

rate, dropout rate, and batch size. 

To leverage the strengths of individual models while mitigating their weaknesses, an 

ensemble classifier was used. This ensemble included two distinct neural networks, an 

SVM, and a Random Forest. Predictions from all models were aggregated using soft voting, 

where class probabilities were averaged to determine the final prediction. This approach 

helped to reduce model variance and improve robustness, especially on difficult or 

borderline cases. 
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Model evaluation was comprehensive and multifaceted. For each fold in cross-validation, 

traditional metrics were computed, such as accuracy and F1-score, but also included 

balanced accuracy and MCC to account for class imbalance. Confusion matrices were 

aggregated across folds to visualize classification patterns, and AUC-ROC was used to 

assess discriminative power. Precision-recall curves, Cohen’s Kappa, and log loss were also 

calculated to provide a deeper understanding of classifier behaviour. 

To ensure transparency and interpretability, SHAP was added to the trained models. SHAP 

summary plots and bar plots allowed to identify which radiomic features had the most 

significant impact on classification decisions. These insights are especially valuable in 

medical contexts, where understanding why a model makes a certain prediction is as 

important as the prediction itself. 

Finally, performance was analysed not only across the entire dataset but also within 

subsets based on image type (DM alone vs CESM alone vs CESM+DM). This stratified 

evaluation revealed differences in model performance across imaging modalities and 

helped to identify which image type performed better across the multiple models. The 

comparison was further reinforced through visualizations of ROC curves, bar plots of 

different metrics, and statistical testing using paired t-tests between models. 

 



56 

 

Chapter 5 

5. Results and discussion 

5.1 Model and image type comparison 

To determine the most effective approach for classifying breast cancer cases, the code 

evaluates and compares the performance of eight different machine learning models: 

Neural Network, SVM, Random Forest, Ensemble Method, XGBoost, Logistic Regression, 

kNN, and LightGBM.  

The comparison is based on key performance metrics, such as accuracy, balanced 

accuracy, MMC, and F1-score. By analysing these metrics side by side, we aim to identify 

which model offers the best balance between correctly detecting malignant cases and 

minimizing false positives. 

The plots below are boxplots, which visually summarize the distribution of performance 

metrics across all cross-validation folds for each model. These plots help highlight 

variability, consistency, and potential outliers in model performance. Specifically: 

 Box: Represents the interquartile range (IQR), covering the middle 50% of the 

results, values between the 25th and 75th percentiles. 

 Middle line inside the box: Indicates the median value across folds, providing a 

robust central estimate of model performance. 

 Whiskers: Extend to the minimum and maximum values excluding outliers, 

showing the typical range of performance. 

 Dots outside the whiskers: Represent outliers, or individual folds where the model 

performed significantly better or worse than usual. 

These boxplots allow for quick visual comparison between models, revealing not only 

average performance but also stability and sensitivity to the data split. 

Figure 26 shows the distribution of classification accuracies across the different models, 

stratified by image type (DM, CESM, and ALL). It is evident that models trained exclusively 

using CESM features consistently outperformed those trained with DM or the combined 

features. Among the classifiers evaluated, the Ensemble, LightGBM, and XGBoost models 

demonstrated the highest median accuracies and lowest variability when trained with CM. 

This result reinforces the hypothesis that radiomic features derived from CESM images are 

more informative for lesion classification than those from DM or mixed modalities.  
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Figure 26: Model accuracies distribution by image type across all the models as a result of the X-validation 
test. 

In Figure 27 a similar trend when evaluating balanced accuracy. As in the previous analysis 

based on overall accuracy, models trained with CESM outperformed those trained with 

DM or the combined features across nearly all classifiers. Notably, XGBoost, LightGBM and 

Ensemble achieved the highest balanced accuracy scores when trained exclusively with 

CESM images. 

 

Figure 27: Model balanced accuracies distribution by image type across all the models as a result of the X-
validation test. 

Figure 28 displays the distribution of MCC scores across all models and image types. MCC 

is a balanced metric that considers all elements of the confusion matrix, making it 

especially suitable for imbalanced classification problems. As observed with accuracy and 

balanced accuracy, models trained with CESM features significantly outperformed those 

trained on DM or the combined features. In particular, LightGBM, Ensemble, and XGBoost 

achieved the highest median MCC scores with CESM data. 
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Figure 28: Model MCC scores by image type across all the models as a result of the X-validation test. 

In Figure 29 a similar trend when evaluating F1 Score. As in the previous analysis based, 

models trained with CESM outperformed those trained with DM or the combined features 

across nearly all classifiers. XGBoost and Ensemble achieved the highest balanced accuracy 

scores when trained exclusively with CESM images. 

 

Figure 29: Model F1 Scores by image type across all the models as a result of the X-validation test. 

 

5.2 Individual models performance 

For each model, the code provides a comprehensive evaluation across all folds of the 

cross-validation process. Rather than only reporting overall performance model 

comparison at the end of training and testing, it outputs detailed metrics for each fold and 

at the end of each model, offering better understanding of model consistency and 

robustness. 

Also, individually, it displays metrics such as Accuracy, F1 Score, Balanced Accuracy, and 

MCC at three levels: the full cross-validation summary, predictions made using the 
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confusion matrix, and predictions on a distinct dataset. This level of detail enables deeper 

insights into the generalization ability of each model. 

Additionally, the AUC-ROC score is computed and the ROC curve is plotted for each model, 

in order to see the difference on the different types of images. The ROC curve illustrates 

the trade-off between the true positive rate (sensitivity) and the false positive rate across 

different threshold values, while the AUC score summarizes this performance into a single 

value. A higher AUC indicates better model ability to distinguish between classes, making 

it a valuable measure, especially in imbalanced classification tasks. (Figure 30). 

Furthermore, the code also highlights the top 10 most important features for each fold, 

allowing us to examine how consistently certain features contribute to classification across 

different training subsets. This helps in identifying which features are most influential in 

the decision-making process of the models. (Table 5). 

As shown in Figures 26-29, the XGBoost model demonstrated one of the best 

performances metrics (Table 6) across all folds compared to the other models. While all 

models were evaluated using the same metrics and graphical representations, XGBoost is 

presented here as a representative example due to its superior results. The following plots 

and tables illustrate key evaluation metrics observed during the training and validation 

process, highlighting the model’s robustness and consistency. 

Table 5: Top 10 features by importance output for fold 5 using XGBoost model. 

Feature importance Name of feature 

0.022716 original_glrlm_LongRunEmphasis 

0.018586 log-sigma-1-0-mm-3D_ngtdm_Strength 

0.018168 original_gldm_DependenceNonUniformity 

0.017149 wavelet-H_ngtdm_Coarseness 

0.015457 log-sigma-1-0-mm-3D_glcm_ClusterShade 

0.014635 log-sigma-5-0-mm-3D_ngtdm_Coarseness 

0.014565 original_firstorder_Energy 

0.013785 log-sigma-1-0-mm-3D_firstorder_Median 

0.012680 log-sigma-3-0-mm-3D_ngtdm_Contrast 

0.012301 original_gldm_DependenceNonUniformityNormalized 
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The metrics showed on Table 6 correspond to the overall model’s performance: 

Table 6: Cross validation summary on DM, CESM and ALL image types, the higher values 
are highlighted. 

 DM CESM ALL 

Accuracy 0.7189 0.7706 0.7432 

Balanced accuracy 0.7108 0.7528 0.7299 

MCC 0.4343 0.5189 0.4736 

F1 Score 0.7388 0.8001 0.7684 

AUC Score 0.7180 0.7632 0.7384 

 

Figure 30: ROC curves for the XGBoost model. 
(a) ROC curve for CESM-derived features. (b) ROC curve for DM-derived features. 

(c) ROC curve for the combined feature set (CESM + DM). (d) Overlay of the mean ROC curves from all three 
modalities for direct comparison. 

 

The ROC curves displayed in Figure 30 illustrate the performance of the XGBoost model 

across multiple cross-validation folds. Each curve represents the trade-off between 
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sensitivity (true positive rate) and specificity (false positive rate) for a different fold, 

showing how the model distinguishes between the classes under varying classification 

thresholds. The closer the curve follows the top-left corner, the better the model’s overall 

discriminative ability. 

In Figure 31, the diagonal elements (top-left and bottom-right) represent correct 

classifications: 393 benign cases were correctly identified as benign, and 514 malignant 

cases were correctly classified as malignant. The off-diagonal elements represent 

misclassifications: 177 benign cases were incorrectly labelled as malignant (false 

positives), while 135 malignant cases were mistakenly classified as benign (false 

negatives). These results demonstrate the model's ability to distinguish between cancer 

types, while also highlighting areas for potential improvement, particularly in reducing 

false positives. 

 

Figure 31: Confusion matrix using XGBoost model for all images. 

 

In Figure 32, the diagonal elements (top-left and bottom-right) represent correct 

classifications: 179 benign cases were correctly identified as benign, and 255 malignant 

cases were correctly classified as malignant. The off-diagonal elements represent 

misclassifications: 70  benign cases were incorrectly labelled as malignant (false positives), 

while 68 malignant cases were mistakenly classified as benign (false negatives). 
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Figure 32: Confusion matrix using XGBoost model for CESM images. 

 
In Figure 33, the diagonal elements (top-left and bottom-right) represent correct 

classifications: 214 benign cases were correctly identified as benign, and 259 malignant 

cases were correctly classified as malignant. The off-diagonal elements represent 

misclassifications: 107 benign cases were incorrectly labelled as malignant (false 

positives), while 67 malignant cases were mistakenly classified as benign (false negatives). 

 

 

Figure 33: Confusion matrix using XGBoost model for DM images.  
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5.3 Feature importance by image type 

In order to gain deeper insights into the decision-making process of the trained models, 

there was performed an explainability analysis using SHAP, a model-agnostic method for 

interpreting complex predictions. SHAP assigns a value to each feature based on its 

contribution to the final output, which allows to identify which radiomic features are 

strongly influencing the classification outcomes. To make a comparison on the different 

image types, SHAP analysis was conducted separately for each image type (CESM, DM and 

both combined). This separation enabled to explore whether different features are 

prioritized by the model depending on the imaging modality, and whether certain radiomic 

patterns are more predictive in one context than the other. The following results present 

SHAP value summaries and feature rankings for model LightGBM as an example, 

highlighting key differences in feature importance across image types (Figures 34-36). 

Figure 34 is SHAP summary plot illustrates the top 25 radiomic features contributing to the 

model’s classification decisions when trained exclusively with CESM features. The most 

impactful feature is original_glrlm_RunEntropy, indicating that run-length matrix-based 

heterogeneity in pixel intensities plays a key role in malignancy prediction. The SHAP value 

range spans approximately -0.5 to +0.3, reflecting moderate variability in how individual 

feature values affect predictions. 

The dominance of GLRLM features is apparent, with LongRunEmphasis, 

GrayLevelNonUniformity, and LowGrayLevelRunEmphasis all contributing significantly. 

Several filtered features (e.g., LoG and Wavelet) also appear, suggesting that texture 

transformations add discriminative power.  

The spread and clustering of SHAP values across features indicate that both high and low 

values of these features can push predictions in different directions, confirming the 

model’s nuanced use of radiomics for CESM data. 
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Figure 34: SHAP summary plot showing the most influential radiomic features for the LightGBM 
trained with CESM features. The feature original_glrlm_RunEntropy had the greatest overall 

impact on model output, highlighting the importance of texture heterogeneity in CESM-based 
classification. 

As shown on Figure 35, for DM features, the most relevant feature is log-sigma-3-0-mm-

3D_glcm_MaximumProbability, a GLCM feature derived from Laplacian of Gaussian-

filtered images. This suggests that the model heavily relies on texture uniformity patterns 

for classification in the absence of contrast enhancement. Compared to CESM images, the 

SHAP values here span a more constrained range (about -0.25 to +0.15), implying more 

stable and less extreme feature contributions. 

The feature set is largely dominated by GLCM and first-order features, with very few 

GLRLM or GLDM features ranking highly. This narrower feature importance profile may 

reflect the lower discriminative richness of DM images, as fewer modalities and intensity 

dynamics are available. The tighter clustering also suggests a more cautious model with 

less variability in how features influence predictions. 
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Figure 35: SHAP summary plot for LightGBM trained with DM features. The most impactful feature 
was log-sigma-3-0-mm-3D_glcm_MaximumProbability, indicating that local intensity relationships 

dominate the model’s decision-making in the absence of contrast enhancement. 

When combining both CESM and DM image features, the model again ranks 

original_glrlm_RunEntropy as the most influential, reinforcing its robustness across 

modalities. Interestingly, the SHAP value range here is the most constrained 

(approximately -0.1 to +0.1), suggesting that while the model is highly sensitive to small 

changes, the magnitude of impact per feature is smaller, likely due to feature dilution or 

redundancy from combining two modalities. (Figure 36). 

A more diverse feature set appears in this plot, with contributions from GLRLM, first-order 

statistics (e.g., Skewness, Energy), and GLDM features. This variety reflects the attempt to 

integrate complementary information, but also leads to wider spreads for top features, 

indicating potential interactions or overlaps between CESM and DM contributions. 
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Figure 36: SHAP summary plot for the LightGBM model trained on the combined CESM and DM 
radiomic features. While original_glrlm_RunEntropy remained the most influential feature 

(highlighting the continued importance of CESM-derived texture) other features contributed more 
evenly across categories. However, the SHAP value distribution was narrower and more diluted 

than in the CESM-only model, suggesting that combining modalities introduces feature 
redundancy and reduces the individual impact of key predictors. 

 

These results emphasize the impact of contrast enhancement on the nature and 

interpretability of radiomic features. In CESM images, the dominance of GLRLM features 

suggests that patterns related to run-length variability and tissue heterogeneity become 

more prominent and diagnostically useful. In DM, where such contrast is absent, the 

model instead relies more on local intensity relationships captured by GLCM features. 

When both modalities are combined, the model integrates a wider set of features, 

indicating a more complex interaction of texture descriptors across image types. This 

suggests that CESM not only improves overall classification performance, as previously 

shown, but also alters the radiomic signature of malignant versus benign lesions in a way 

that influences which features are most relevant. 
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Chapter 6 
 

6. Conclusions and future work 

6.1 Conclusions 

The central hypothesis of the thesis was that CESM would provide more powerful radiomic 

features, and therefore higher diagnostic value, than those extracted from DM. This 

assumption was based on the different advantages of CESM in highlighting vascularization, 

contrast uptake, and lesion borders, factors that are especially important for 

differentiating between benign and malignant tissue (Claudia Lucia Piccolo, 2024). It was 

expected that these characteristics would be reflected in the extracted radiomic features, 

making them more informative for training machine learning classifiers. Consequently, the 

hypothesis was that models trained on CESM images would perform better than those 

trained on DM images in terms of classification accuracy, robustness, and overall 

diagnostic reliability. 

To evaluate this hypothesis, the images were evaluated separately using the same 

pipeline, using the most common machine learning algorithms and patient-level cross-

validation. The results consistently confirmed the hypothesis: across all models, whether 

traditional models such as SVM and Random Forest or deep learning-based models such 

as neural networks, those trained with CESM images provided an overall 5-8% superior 

performance over DM (similar results to the works explained on the literature review), 

specially XGBoost, that showed one of the best results, including an increase in 7.19% 

accuracy, 5.91% balanced accuracy, 19.48% MCC and 8.3% F1-score. Even when models 

were trained on the combined dataset containing both image types, the performance 

remained lower than when trained solely on CESM, suggesting that including DM may 

introduce more noise or less discriminative information into the feature space. 

These findings strongly validate the hypothesis and support that CESM imaging leads to 

the extraction of richer and more diagnostically relevant radiomic features. The 

improvement in classification performance is evident not only in raw metrics but also in 

visualizations such as SHAP plots, where CESM models showed clearer and more 

consistent patterns of feature importance. From a clinical perspective, this result proves 

the potential of CESM as a superior modality for radiomics-based diagnostic tools. It also 

highlights the importance of considering the different possible imaging modality when 

designing machine learning pipelines for medical image analysis.  
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6.2 Limitations 

While the results of this thesis support the use of radiomics and machine learning for 

breast cancer classification, particularly with contrast-enhanced mammography, it is 

important to acknowledge several limitations that affected the scope and depth of it. 

Firstly, the study was constrained by time and computational resources, which limited the 

scale of model tuning, the exploration of more computationally intensive deep learning 

architectures, and the ability to perform extensive external validations. For example, by 

doing SHAP values analysis, not all the features were considered because of memory 

shortage. 

Secondly, the analysis was based on a single dataset (CDD-CESM Dataset), which limits the 

generalizability of the findings. The lack of multi-centre data introduces potential biases 

due to acquisition protocols, imaging hardware and population characteristics. Without 

external validation on independent datasets, the robustness of the models in broader 

clinical settings remains uncertain. Despite balancing classes through techniques such as 

SMOTE, the relatively small sample size restricts the complexity of the models and 

increases the risk of overfitting. 

Finally, although SHAP analysis was used to understand which radiomic features had the 

most influence on the model’s predictions, but due to time, no comparison was made 

between these features and established clinical knowledge. In other words, while the 

models highlighted certain features as important for distinguishing benign from malignant 

lesions, I could not verify whether those features correspond to the characteristics that 

radiologists typically use when evaluating breast images, such as lesion shape, margins, or 

density. As a result, even though the models are interpretable from a technical standpoint, 

their outputs have not yet been validated against expert clinical understanding. Further 

work would be needed to determine whether the most predictive features identified by 

the model are also meaningful and recognizable to clinicians in a real diagnostic setting. 

6.3 Future work 

While this thesis highlights the important role of radiomics-based machine learning in 

classifying breast lesions, there are still some important areas for further investigation that 

could enhance the clinical utility of such approaches. A critical next step involves 

systematically comparing the performance of these radiomics-driven models with 

conventional diagnostic practices. For instance, juxtaposing the predictive accuracy of 

machine learning algorithms with assessments by experienced radiologists or 

standardized clinical tools such as the BI-RADS would help quantify the incremental 

benefit that radiomics may bring to diagnostic workflows. This comparison is essential for 
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understanding whether these advanced computational methods can meaningfully support 

or even outperform human judgment in routine clinical settings. 

Beyond model comparison, another promising avenue lies in the integration of radiomic 

features with a broader spectrum of clinical data. Patient demographics (such as age or 

menopausal status), tumour biology (like hormone receptor expression or HER2 status), 

and histopathological findings could be incorporated alongside image-derived features to 

build more holistic predictive models. This multimodal approach could significantly 

improve the ability to subtype breast cancer more precisely, assess individual risk profiles, 

and anticipate treatment responses. Such enriched models would have greater potential 

for aiding in personalized treatment planning and improving patient outcomes. 

To ensure that the findings are generalizable and not confined to a specific dataset or 

institutional setting, future studies should prioritize external validation. Applying the 

trained models to datasets from other sources would provide a more rigorous assessment 

of their performance under real-world variability.  

Another exciting direction involves the combination of handcrafted radiomics with deep 

learning-based feature extraction. While traditional radiomics relies on predefined image 

characteristics such as texture, shape, and intensity, deep learning, especially through 

Convolutional Neural Networks (CNNs), can automatically learn hierarchical and abstract 

representations from raw image data. Integrating these complementary approaches could 

capture a broader range of image features, potentially leading to more accurate and 

nuanced diagnostic tools. 

Finally, expanding beyond classification tasks to include prognostic modelling represents 

a natural evolution of this work. By incorporating time-to-event data, such as time to 

recurrence or survival duration, machine learning models could shift from merely 

identifying malignancies to predicting long-term patient outcomes. This capability would 

be crucial for designing risk-adaptive follow-up strategies and guiding treatment decisions 

over the course of a patient's disease trajectory, ultimately contributing to more 

personalized and effective healthcare. 
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