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ABSTRACT

Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS) is a near-infrared multi-object spectrograph
for Gran Telescopio Canarias (GTC). It has 12 deployable Integral Field Units (IFU) based on probe arms with
pick-off mirrors, each of which can observe a different user-defined sky object. MIRADAS can work with target
sets where their components are spread over such a wide area so that all of them do not fit in the field-of-view
of the instrument. Therefore, data sets of that kind require, prior to capturing them, some arrangement that
groups its elements in different subsets where the distance between the two most remote elements is inferior to
the field-of-view diameter. This field segmentation is achieved using a hierarchical clustering technique. Our
method relies on determining mutual nearest-neighbors, which will be merged if they show a given degree of
similarity known beforehand. Moreover, we also compute a geometric center for these clusters, information to be
delivered to the telescope’s pointing process. This step is formulated as the minimum bounding disk problem,
which founds the center of the smallest radius circle enclosing all points of a cluster. Finally, we consider several
real science cases and analyze the performance of the proposed solution.

Keywords: disperse objects fields, cluster analysis, telescope pointing, probe arm, multiple-object spectrography

1. INTRODUCTION

Many of the leading scientific open questions in modern Astrophysics can be only answered with the help of
moderate to high spectral resolution instruments mounted in large collecting area telescopes. As a result, the
demand for instruments with multi-object spectrography (MOS) capabilities has significantly increased in the
last decades. The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS) is a near-infrared MOS for
Gran Telescopio Canarias (GTC).1 This instrument is under development by an international consortium led
by University of Florida and is provisionally scheduled for commissioning at the end of 2018. One of its more
remarkable components is its multiplexing system (MXS), which enables it to simultaneously observe up to 12
user-defined astronomical targets. This task is accomplished by 12 independent and deployable Integral Field
Units (IFU) based on robotic probe arms with pick-off mirrors working in a cryostat2 (see Figure 1). Each of
these arms has a series of folds inside the articulated mechanism that relay light from the telescope focal plane to
the spectrograph. These internal optical elements are designed for simplicity, always keeping a fixed optical path
length while the arm is moving between any two locations. Furthermore, the tubes and bars forming the arm
are arranged in a way that provides a high level of stability to the mechanical structure when it works upside
down. However, the kinematic behavior of the arm is not intuitive, making the control of the optomechanical
system more complex.3

To reach the targets, all arms in the system need to execute safe trajectories starting from their current
positions. As long as all targets can be fitted inside the region of the MIRADAS field-of-view (FOV), the arms
motions can be computed following a two-step sequential process. First, a piece of software known as target
allocator analyzes each of the targets and delivers a sequence of assignments, a set of <target, arm> pairs.4 The
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Figure 1: A drawing of the MIRADAS MXS bench with 12 probe arms. The primary task of these mechanisms
is to relay light from a given target located in the instrument’s FOV to the spectrograph. The FOV is a circular
area with a diameter of 250mm placed in the middle of the bench.

number of pairings returned mainly depends on the location of the targets as well as the kinematic characteristics
of the arms, but they cannot be greater than the number of arms available. Then, the motion planner determines
collision-free trajectories for each of the arms in the assignment plan. Multiple iterations of this two-step process
might be required, especially if there are more targets than arms in the system. However, since MIRADAS does
not severely constrain the star fields it can work with, the user-defined targets might be spread over an area
more extensive than the instrument’s FOV. In such cases, an additional processing step has to be carried out
before the two previously mentioned. This step is responsible for finding some sort of arrangement that properly
distributes the targets in different groups so that all elements in a batch fit in the FOV region. Hence, it makes
sense that this preprocessing task groups targets following a geometrical approach: the distance between any
pair of elements in a set has to be less than or equal to the FOV diameter. In addition, for each batch, it has
also to be computed practical information that will help the telescope’s pointing process to adequately place the
MIRADAS FOV center so that all targets of the batch are reachable.

The partition of a data set of interest into distinct subsets so that members within a group are related
to one another is known as cluster analysis,5 a well-established technique in unsupervised machine learning
and data mining. There exist a number of methods; however, distance-based algorithms are very frequent in
real applications due to their simplicity and ease of implementation. K-means6 is one of the most broadly
applied algorithms in this family, but presents a few limitations. One of them is that the algorithm requires
the specification beforehand of the number of distinct clusters to extract from the input data set, which is
what we precisely want to determine in MIRADAS. Hierarchical agglomerative clustering algorithms overcome
this limitation. They produce a hierarchic relationship of the points to cluster, requiring the execution of an
additional method to select the optimal number of clusters. This hierarchy is frequently represented utilizing a
dendrogram.∗ After visually or analytically analyzing it, data scientists cut the tree at a given height/distance,
yielding a number of clusters. Other times, once computed the complete dendrogram, the user decides the number
∗A tree specifying the relationships between the data in the set. It has many leaves at one end corresponding to all

points in the input data set. As we move toward the other end of the tree, similar data is progressively merged into
branches until reaching the root, which contains all points. Sometimes, for convenience, the tree is displayed horizontally.
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of clusters and the tree is cut accordingly. However, in the case of MIRADAS, there is no need to construct the
full tree as we know well in advance the height where it has to be cut. Unfortunately, to our best knowledge,
popular cluster analysis software packages/libraries do not allow the direct construction of a height-limited tree.

In this paper, we describe the particular threshold-assisted agglomerative algorithm used in MIRADAS to
automatically determine the distinct batches of targets. It is based on the search of Reciprocal Nearest Neighbors
(RNN) by constructing chains of Nearest Neighbors (NN-chain). Introduced in the early 1980’s,7,8 this technique
guarantees O(n2) worst case time complexity†. However, knowing the celestial targets forming each cluster is not
enough. As we have commented before, to fully characterize each group, in addition to the elements it comprises,
its center needs to be also computed. Cluster algorithms sometimes do not provide this information. In other
occasions, a center can be statistically inferred from the clustering process, but it could not meet the geometrical
constraints of our problem. Here we also present the approach we have followed to compute the batches’ centers,
which relies on an algorithm determining the smallest circle containing all the elements in a cluster. Bounding
volumes are employed in many fields, especially in ray tracing and motion planning. In the latter, these simpler
shapes are used to speed up collision checking between a robot and the environment or among two or more
robots.

The paper is organized as follows. First, we introduce hierarchical agglomerative clustering as well as the
enhancement applied to detect the number of clusters automatically. Next, we provide the approach followed to
determine the center of each cluster. In Section 4, we demonstrate the performance of our approach. Finally, we
conclude with future work.

2. AGGLOMERATIVE CLUSTERING WITH NN-CHAINS

Although different agglomerative methods can be found in literature, all employ a similarity matrix. Additionally,
all follow a common bottom-up greedy strategy that starts by separating each component of the input data set
into its own individual cluster. Then, at successive iterations, the two most similar clusters are combined into a
new one. This sequential process ends when there is only one cluster left comprising the entire initial data set.
The approaches only differ in two points: (i) the measure used to compute the similarity between two elements in
the data set and (ii) the inter-cluster linkage criteria, which specifies how distance between each pair of clusters
is determined. There are many similarity metrics10 as well as linkage schemes.11 Although intuitive, this greedy
approach presents two computational problems. It requires a significant amount of storage as it works with a
O(n2) similarity matrix and has a time complexity of O(n3), where n is the number of points in the data set.

Popular software packages such as scikit-learn or scipy in Python and cluster in R implement agglomerative
clustering. However, to our knowledge, those pieces of software either (a) return the complete dendrogram,
and it is the analyst who decides the height of the cut, yielding, this way, a number of different clusters or
(b) the number of clusters to find is specified as an input parameter to the clustering routines. Considering
the geometrical constraints in MIRADAS, a building process that automatically prevents the agglomeration
of two clusters if their dissimilarity is larger than a given value (the diameter of the instrument FOV) seems
more appropriate. Such an approach is frequently utilized in image analysis and object recognizition.12,13 This
hierarchical agglomerative scheme including a cut-off threshold is based on the detection and agglomeration of
RNNs,7,8 which are pairs of points i and j such that i is j ’s nearest neighbor and j is i ’s nearest neighbor. The
search process is carried out with the help of a structure know as NN-chain. It is a sequence of clusters composed
of a random agglomerable cluster followed by its NN, which is then followed by its NN from the remaining
agglomerable clusters, and so on.

The NN-chain approach merges clusters in a different order to the one employed in the common greedy
strategy described in a previous paragraph. However, for those linkage criteria fulfilling the Bruynooghe’s
reducibility property,10 the NN-chain approach is the preferred since it achieves the same results in O(n2)
time.14,15 We adopt the Euclidean distance and pursue complete-linkage, which meets the reducibility property.
In this connectivity scheme, the distance between two clusters is equal to the furthest distance between a member
of one cluster and a member of the other. Pseudocode for the threshold-based agglomerative clustering approach
†In computer science, the time complexity is the computational complexity estimating the running time of an algorithm.

It is expressed using big O notation, where n normally refers to the input size.9

Proc. of SPIE Vol. 10707  107070N-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



is given in Algorithm 1. As can be appreciated, the algorithm arbitrarily chooses an initial cluster (line 2) and
then, with the help of a routine that finds nearest neighbors (line 5), iteratively builds up an NN-chain (line
7). Once a RNN pair is discovered (line 8), the involved clusters are agglomerated if they show a similarity
compatible with a given threshold (line 10). Otherwise, the chain construction is interrupted and all its elements
are included in the final cluster sequence (line 13). What really makes this implementation more efficient than
the standard greedy approach is that the NN-chain can be reused in successive iterations. That is due to the
reducibility property, which ensures that the merging of a given RNN pair does not affect the relations among the
NN discovered before. Note that the pseudocode provided does not consider what has to be done if a premature
end occurs. In fact, it may be possible that the while loop (line 4) exits when the current NN-chain is not empty.
In such case, the remaining clusters need to be inspected again to check if they can be agglomerated further.

Algorithm 1 Threshold-based agglomerative clustering using NN-chains

Require:
P : a sequence with all points in the data set, where p ∈ P = (p1, . . ., pn)
t: agglomeration threshold

Ensure:
C: a sequence with the clusters found

1: C ← ∅; last← 0; lastSim[0]← 0
2: N [last]← p ∈ P . Initialize NN-chain with an arbitrary point
3: R← P\p . Sequence with the remaining agglomerable clusters
4: while R 6= ∅ do
5: (c, sim)← getNearestNeighbor(N [last], R)
6: if sim > lastSim[last] then . Update NN-chain with the cluster
7: last← last+ 1;N [last]← c;R ← R\c
8: else . RNN pair found
9: if lastSim[last] > t then
10: c← merge(N [last], N [last− 1])
11: R ← R∪ c; last← last− 2
12: else . Update cluster sequence with the content in NN-chain
13: C ← C ∪ N ; last← −1; N ← ∅
14: end if
15: if last < 0 then . Initialize a new NN-chain with a random cluster
16: last← 0; N [last]← p ∈ R; R ← R\p
17: end if
18: end if
19: end while
20: return N

3. SMALLEST BOUNDING CIRCLE FOR A SET OF POINTS

Determining the circle of smallest radius enclosing a set of points is a classical optimization problem of compu-
tational geometry. As a circle is uniquely determined by at most three points, a brute force approach can be
attempted. It will consist in checking every circle defined by three and two points and keeping the minimum-sized
disk containing all points of the set. This is by far the worst solution since there exist O(n3) circles and O(n) time
is required to check each of them, yielding, then, a total execution complexity of O(n4). Although alternative
methods can be found in literature, it was Welzl16 the first proposing a fast and easily implementable algorithm
for 2D. His solution was inspired by a previous work solving a linear program with n constraints and d variables
in expected O(n) time, provided d is constant. In such work as well as in Welzl’s work a randomized incremental
construction is used, a powerful technique nowadays widely employed to efficiently solve optimization problems
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found in computational geometry. Although it provides a convenient framework, it comes at the cost that the
O(n) running time is only an expected bound that might be larger for some data sets. Generally, this technique
applies to those optimization problems where: (i) the solution does not change if a new constraint is added or
(ii) the solution is partially defined by the new constraint so that the dimension of the problem is reduced.17
Both conditions are met in the smallest enclosing disk problem.

Given a set of n points Pn = {p1, p2, . . . , pn}, the Welzl approach iteratively selects one point and grows
the smallest bounding disk that contains that point and the previously processed. The algorithm is based on
the observation that when the smallest disk Di enclosing the subset Pi = {p1, p2, . . . , pi}, where 1 ≤ i ≤ n,
is updated to include another point pi+1, then the new optimal disk Di+1 = Di if the point belongs to Di.
Otherwise, Di+1 must pass through pi+1. In the former case, the algorithm directly proceeds to the next point
while in the latter a new method computing the smallest bounding circle of a set of points P with a given point
pi on its boundary is required. Relying on this additional method that we will call minidiskWithSupport(P, pi),
Welzl incrementally computes the optimal disk for the initial data set.

The algorithm for minidiskWithSupport(P, pi) follows a similar iterative approach. It sequentially checks
the points of the set for inclusion, calling, when necessary, a subroutine determining the smallest enclosing circle
of a set of points with two given points in its boundary. This new subroutine is also constructed using the same
framework, but this time it will require another subroutine computing a bounding disk of a set of points with
3 points in its perimeter. As a circle is determined by at most three points, there is no need to expand further
the search. Although this scheme of nesting routines is quite intuitive, a more compact recursive solution can
be obtained relying on a generalized version of minidiskWithSupport(P, R). This version determines the
smallest disk containing the points in P with the points in R on its perimeter (see Ref. 16 for proofs). The
pseudocode for the recursive approach is shown in Algorithm 2. The smallest enclosing disk for a set of points
P can be solved by the call minidiskWithSupport(P, ∅).

Algorithm 2 Smallest enclosing disk

Require:
P : a set with all points to be enclosed
R: a set with all points that must be on the boundary of the smallest circle

Ensure:
D: The smallest circle enclosing the set P

1: function minidiskWithSupport(P, R)
2: if P 6= ∅ or |R| = 3 then
3: D ← buildCircle(R) . Construct a circle with the given points in its boundary
4: else
5: select p ∈ P randomly
6: D ← minidiskWithSupport(P\p, R)
7: if p /∈ D then . point p does not lie inside D
8: D ← minidiskWithSupport(P\p, R∪ p)
9: end if
10: end if
11: return D
12: end function

4. SIMULATIONS AND RESULTS

The proposed threshold-based RNN clustering algorithm for complete-linkage as well as the minimum bounding
disk, respectively described in Section 2 and in Section 3, were implemented. Several simulations with synthetic
and with real science targets were conducted to study the performance of our method. First of all, we will focus
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(b) Four overlapping clusters were found for this scenario
with 270 targets. Many targets that were initially assigned
to different clusters (distinct colors) are inside more than
one threshold circle (in bold color).

Figure 2: Synthetic data scenarios.

on two random scenarios, which will help us to show the reader what we want to accomplish in MIRADAS by
employing the proposed algorithms. In Section 4.2, our solution is tested with real celestial objects.

4.1 Synthetic scenarios
In the first of the two synthetic scenarios, a total of 20 points were arbitrarily arranged inside a square of side
50mm, as seen in Figure 2a. Then, the clustering algorithm with a threshold value of 25mm. (the FOV diameter
for this example‡) is run to detect clusters automatically. Once known these clusters and the points included in
each of them, the smallest enclosing circle is determined for every cluster. The center of this circle will be used
as telescope’s pointing information while the members of each cluster will be delivered to a different instance of
the target allocator since it is assured that all targets in a cluster can be fitted in the FOV area. Intra-cluster
and inter-cluster distances for this example are given in Table 1. The former refers to distances between elements
in a cluster, while the latter refers to the distance between two clusters, which is the distance between their two
farthest-apart members. As expected, the dissimilarity (distance) between any pair of members of one cluster
is inferior to the specified threshold while the dissimilarity between clusters remains higher than the threshold.
In addition, the results show how the algorithm generates compact groups. That is due to the tendency of the
selected linkage scheme to combine those cluster pairs whose merge has the smallest diameter. Finally, we plot
the full dendrogram, given in Figure 3, for this scenario. As seen there, if the tree is properly cut at a height
equal to 25, we obtain the 5 clusters found in Figure 2a.

A second random scenario, but this time with 270 targets more densely distributed was generated. Clustering
with a cut-off threshold of 250mm was performed. As can be appreciated in Figure 2b, four clusters were needed
to contain all points in the input data set. For some clusters, their corresponding circles representing the FOV
‡The worst case scenario for the presented agglomerative algorithm is that presenting three points separated all of

them by a distance equal to the FOV diameter. To guarantee, even in such case, that all points in a cluster are contained
in a given FOV, the cut-off threshold should be equal to the side of the equilateral triangle inscribed in a circle with
diameter equal to the FOV diameter.

Proc. of SPIE Vol. 10707  107070N-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 7/27/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



0 10 20 30 40 50
Height/Distance

(11, 42)

(15, 41)

(1, 15)

(6, 20)

(16, 7)

(10, 2)

(49, 2)

(33, 8)

(37, 3)

(47, 45)

(49, 42)

(38, 45)

(41, 46)

(30, 48)

(33, 47)

(29, 27)

(33, 32)

(38, 19)

(49, 24)

(44, 28)

Po
in

ts

Figure 3: Dendrogram for the clustering example in Figure 2a. The tree has as many leaves as points are in the
scenario and they are merged up to the root, where all the initial points are members of a single cluster. A cut
at a distance of 25 gives the 5 clusters automatically obtained by our algorithm.

overlap. That means that targets in the intersection area of two or more FOV, although belonging to different
clusters, can be delivered to two or more distinct instances of the target allocator. This degree of flexibility
might be conveniently exploited when trying to compute safe trajectories for the targets. In fact, as we will see,
this superposition is normal when clustering real science targets since they are frequently arranged in a quite
compact surface.

4.2 Real data scenarios
We have also performed a series of tests with real data. They contain groups of celestial objects that, according to
the MIRADAS science cases, can be targeted by the instrument. These sky targets were originally determined in
equatorial coordinates. To be represented in the surface of the MIRADAS FOV, they were previously converted
into standard coordinates (aka tangential coordinates) using the MIRADAS plate scale. Since each input data
set does not implicitly specify the center/reference of the targets to observe, we considered it to be the mean
value of the samples. Once known the ξ and η values, the X and Y axis respectively, the data was delivered to
the clustering algorithm. In Figure 4a, the cluster analysis for several objects belonging to Messier 13 (M13) is
given. All targets fit in the MIRADAS FOV area; therefore, a single cluster, with its center at the denser zone
of the data set, was found.

A different scenario is shown in Figure 4b. This time targets represents a group of objects in Czernik 3.
The clustering algorithm returns more than one cluster since the targets occupy an area slightly bigger than
the MIRADAS FOV. Note that these clusters present bias. That means that the members of a cluster can be

Table 1: Intra-cluster and inter-cluster distances for the example in Figure 2a
(a)

Intra-Cluster dist. (mm.)
Cluster min. max.

1 3.1622 19.9249
2 6.4031 20.2237
3 6.4101 17.088
4 4.1231 4.1231
5 7.8102 18.4391

(b)

Inter-Cluster distance (mm.)
cluster 1 cluster 2 cluster 3 cluster 4 col5

cluster 1 . . . 30.6105 49.7695 30.2655 36.8782
cluster 2 30.6105 . . . 34 42.0476 29.5466
cluster 3 49.7695 34 . . . 55.1725 46.6154
cluster 4 30.2655 42.0476 55.1725 . . . 28.7924
cluster 5 36.8782 29.5466 46.6154 28.7924 . . .
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concentrated in a peripheral zone of the FOV. That is the case of the red cluster, where its components are
mainly concentrated in the center and towards the inferior semicircle of the FOV. This bias, if necessary, could
be mitigated by adequately rebalancing the load of those clusters presenting overlapping areas. The effect of
bias can be more marked, especially in scenarios with a larger number of targets. Figure 4c shows 1354 objects
from Sagittarius A (Sgr A), all densely distributed in a surface moderately bigger than the MIRADAS FOV.
The corresponding circles associated with each cluster are given in Figure 4d and bias is more significant here
than in the previously analyzed cases.

Finally, we retrieved two more sparsely distributed sets of sky objects from the UKIRT Infrared Deep Sky
Survey (UKIDSS)§. The first of them contains 2000 selected targets from Sgr A (∼0.5×0.5 deg) and the second
the same number of targets but this time from a particular portion of the Scutum-Centaurus arm. The celestial
targets, as well as the resulting clusters, are shown in Figure 5. In scenarios of this kind, bias can also occur but,
since the points of interest are scattered over a wider area, it is not as severe as in denser scenarios. Overlapping
is also present, but, as expected, superposed regions enclose few points.

5. CONCLUSION AND FUTURE WORK
MIRADAS is a science-driven spectrograph that has been conceived as a GTC common user instrument for
many years to come. Consequently, it does not impose severe limitations on the celestial objects fields it can
observe. Targets will be selected by scientists mainly considering their sky locations, yielding, in many cases,
disperse fields of objects that do not fit in the area of the instrument FOV. In this paper, we have proposed and
demonstrated how fields of that kind can be arranged to be observed by MIRADAS. Specifically, it has been
proposed a preprocessing step based on cluster analysis that is run before the target allocator. In this step,
user-defined objects are grouped so that all those in the same group fit in the FOV area. That is achieved by
employing a hierarchical agglomerative clustering algorithm returning also the center of each cluster, which will
be used as telescope’s pointing information. This technique successfully partitions the data set of interest as well
as creates some overlapping areas that might help to redistribute load among different clusters. However, our
solution shows bias towards clusters, especially in those located in the remotest areas, with members unevenly
distributed. Future work will include modeling the center of each cluster in a way that the load of each group is
balanced more homogeneously. We will also explore distinct clustering approaches as well as a solution connecting
this clustering step with the target allocator.
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(a) Sky objects (dots) from M13 occupying and area
smaller than the MIRADAS FOV (red circle). The al-
gorithm groups all points in a single cluster centered at
the black cross.
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(b) Targets from Czernik 3 occupying a wider area than
the MIRADAS FOV. Here, the agglomerative algorithm
returns 3 clusters. The members of the green one are
grouped around the cluster center, while those in the yel-
low cluster are spread over the whole FOV surface. Note
that the bounding disk of the yellow cluster has the same
diameter as the FOV.
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(c) More than 1300 targets from Sgr A occupying a circu-
lar area slightly wider than the MIRADAS FOV. For this
compact scenario, the clustering algorithm returns three
different sets. The dots with the same color belong to the
same cluster.
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(d) The same points found in Figure 4c, but now the circles
specifying the FOV for each cluster are also shown. As can
be appreciated, in each cluster there is a bias. The mem-
bers are not uniformly distributed, leaving a considerable
region of the respective FOVs empty.

Figure 4: Clustering results for targets from M13, Czernik 3 and Sgr A.
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(a) 2000 targets from a wider area of SgrA.
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(b) Clusters obtained from the 2000 targets shown in Fig-
ure 5a.
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(c) 2000 targets from a particular region of the Scutum-
Centaurus arm.
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(d) Clusters obtained from the 2000 targets shown in Fig-
ure 5c.

Figure 5: Clustering results for disperse objects fields belonging to portions of Sgr A and Scutum-Centaurus
arm.
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